
Computer Networks 53 (2009) 810–820
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Architecture and scalability of a high-speed traffic measurement platform
with a highly flexible packet classification

Detlef Saß *, Simon Hauger, Martin Köhn
Universität Stuttgart, Institute of Communication Networks and Computer Architecture (IKR), Pfaffenwaldring 47, 70569 Stuttgart, Germany
a r t i c l e i n f o

Article history:
Received 1 May 2008
Received in revised form 16 October 2008
Accepted 6 November 2008
Available online 3 December 2008

Keywords:
Passive traffic measurement
Packet classification
Architecture
Scalability analysis
Prototype
Hardware acceleration
1389-1286/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.comnet.2008.11.010

* Corresponding author. Tel.: +49 711 68569
68559003.

E-mail address: detlef.sass@ikr.uni-stuttgart.de (
a b s t r a c t

Evolving network technologies, new web services and changing usage patterns continu-
ously change traffic characteristics. But a thorough understanding of the traffic is the basis
for many applications in networking. Thus, it is crucial to analyze up-to-date traffic traces
collected by passive measurements in many relevant network contexts. As the traces’ qual-
ity defines the significance of such analysis, the measured data is required to be complete,
temporally accurate and reliable. This is especially challenging for measurements on high-
speed links.

In this paper, we present a scalable architecture for a high-speed, passive measurement
platform for obtaining highly accurate packet traces. Its functional blocks are distributed to
a specialized hardware unit and a commodity PC unit according to their specific require-
ments. For pre-processing, the hardware unit integrates a protocol-aware classification
and filtering module which allows an easy definition of classification and filtering rules.
We analyze the platform’s scalability and support this by a implementation with current
FPGA technology and a standard server PC.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the penetration of fixed and wireless
broad-band Internet access has increased all over the
world. While less then 10 years ago, the access to the Inter-
net was dominated by dial-up access with low bit rates,
today there is a strong trend towards always-and-every-
where-connected users. Due to this, users change their
behavior as well as their usage patterns. On the one hand
they still use established services but in a different way,
e.g. more frequently. On the other hand, they use new
upcoming services with new usage paradigms. For the
future, it is according to e.g. [1] foreseeable that such
changes will happen due to the introduction of new ser-
vices and the Web2.0 boom.
. All rights reserved.

003; fax: +49 711

D. Saß).
Within the networks this shift has changed the traffic
characteristics with respect to both the temporal behavior
as well as the protocols used and protocol stacks. Examples
for this today are the well known self-similarity [2,3] or the
long range dependence [4] that is even present in the Inter-
net backbone [5] as well as a partial shift from Peer-to-Peer
traffic back to web traffic induced by the broad usage of
e.g. video services like YouTube [6].

Clearly, a deep understanding of the traffic characteris-
tics is the basis for many applications in networking. This
ranges from the design and evaluation of new network
architectures to the management of operational networks.
This understanding as well as corresponding models are
provided by traffic characterization and traffic modeling.

Traffic characterization analyzes the current traffic and
extracts the relevant characteristics. For this, commonly
characteristic properties and metrics are derived from traf-
fic traces that are captured on relevant network links. For
generalization, sets of traces are analyzed that are captured
at different locations and/or at different instants of time.

mailto:detlef.sass@ikr.uni-stuttgart.de
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


D. Saß et al. / Computer Networks 53 (2009) 810–820 811
Traffic modeling derives from these characteristics mathe-
matical or algorithmic models of the traffic for certain sce-
narios. These models are capable of being parametrized by
the user to adapt them to their needs.

Obviously, the determined characteristics and models
can only reflect the behavior of the underlying traces.
Accordingly, it is crucial to analyze sufficiently detailed
traffic traces collected in many relevant contexts. This
leads to a major trade off: to elaborate the balance be-
tween traced details and data volume or capturing rate.
This is especially important for long-term traces at the
packet level in high-speed networks, as simply recording
all packets entirely would lead to trace sizes of several ter-
abytes in a short time.

Beyond dumping the raw data, more intelligent solu-
tions pre-process the packet stream before recording in
non-volatile memory. This contains e.g. filtering to reduce
the captured data volume and rate, or further processing
operations to preserve the users’ privacy.

In this paper, we present the architecture of our high-
speed passive measurement platform, the I2MP (IKR Inter-
net Measurement Platform). We discuss major scalability
aspects supported by numerical results of fittings to cur-
rent FPGAs (Field Programmable Gate Arrays). We tailored
the design to support long-term capturing of packet traces
on high-speed metro and core network links lasting for
days. We realized the performance critical and time critical
tasks in a dedicated hardware unit and implemented
complex post-processing operations as well as storage on
commodity PCs. With this, we enable high-precision and
high-performance traffic capturing while keeping the com-
plexity low.

To reduce the data volume on the fly, we integrate a
hardware Classification and Filtering unit. This unit ex-
tracts arbitrary user-defined byte areas of the packets for
recording and discards the remaining data. For this, it auto-
matically decodes the protocol stack of each packet on the
basis of a configurable set of arbitrary protocols. It then ap-
plies for each protocol layer separately the classification
rules as well as the filter rules. Our architecture allows
the flexible adaptation of both rule sets as well as of the
protocol definitions, even during operation.

The rest of the paper is structured as follows: Section 2
reviews the traffic measurement principles, the relating
relevant functional blocks and suitable platforms for mea-
surement systems. Section 3 introduces the architecture of
our measurement platform I2MP. In Section 4, the scalabil-
ity of the architecture with respect to the throughput as
well as the number of classification rules is discussed.
Realization aspects, implementation results and the
deployment are shown in Section 5. Finally, the paper
closes with conclusions and an outlook to future work.

2. Traffic measurement

In the literature as well as in practice traffic measure-
ment is widely discussed and used. In the following, we
will discuss the different aspects and the scope of traffic
measurement, present its common fundamental functional
building blocks and review the various approaches for the
realization of traffic measurement on different platforms.
2.1. Principles

Traffic measurements differ with respect to the mea-
sured data as well as the measurement methods. The mea-
surement purposes span a large scope and determine the
methods to obtain the measured data. In the following,
we will briefly discuss the fundamentally different mea-
sured data types, describe the main measurement methods
and, finally, discuss the major measurement purposes.

Measured data is based on packets either from the entire
traffic or from a filtered subset of it. It is classified to either
unmodified sections of packets, e.g. protocol headers, or to
processed values of them. Processed values are for example
statistical data calculated from the packet data (e.g. histo-
grams for packet sizes) or data on a higher abstraction level
than packet-level (e.g. flow-level).

In addition to the measured data, also time information
is recorded when each datum is collected. The required
accuracy of this time information varies largely for differ-
ent measurement purposes. This has to be carefully exam-
ined which is a challenging task for many purposes [7].

Measurement methods are classified into passive and ac-
tive methods. Passive measurements collect traffic without
impacting the traffic of the observed links. Active measure-
ments inject additional traffic on the link. Both methods
are performed at either a single link or spatially distributed
at multiple links simultaneously.

The major measurement purposes are network manage-
ment, network control and traffic characterization and
modeling. These purposes possess rather different require-
ments on traffic measurement.

For network management, measurements are per-
formed for health monitoring, troubleshooting and
accounting. The measured data is mainly counter statistics
and flow data from multiple network nodes [8]. For net-
work control various different data is measured by a broad
range of methods depending on the specific needs. Com-
mon to these applications are that the measured data is
usually not stored but immediately used for decisions or
further processing steps [9].

The purpose of traffic measurement focused on in this
paper is traffic characterization and modeling. Here, the
main target is to enlarge the understanding of the traffic
and derive appropriate traffic models for analysis, simula-
tion or emulation. The requirements for such measure-
ments vary heavily and depend on context and objectives
of the analysis or the modeling. However, for an accurate
understanding of the traffic behavior with its underlying
principles, sets of measured data are necessary that are
rich in detail and that cover a long time span. Such mea-
sured data is collected by passive measurements.

These measurements usually result in huge sets of mea-
surement data, especially when recording high-speed
links. So, special requirements are imposed on these mea-
surements, which lie in particular on the correctness of the
measured data with respect to time, completeness, storage
and post-processing.

In the following we will focus on passive traffic mea-
surement at high-speed links for the purpose of traffic
characterization and modeling. Subsequently, we will sim-
ply use the term traffic measurement for it.



812 D. Saß et al. / Computer Networks 53 (2009) 810–820
2.2. Functional blocks

Architectures for passive traffic measurement platforms
for high-speed links consist in general of functional blocks
that can be classified into four groups: blocks for reception
of data from the network link, blocks for time stamping,
blocks for pre-processing and blocks for storing data. The
arrangement and organization of these blocks vary
depending on the realization of the measurement platform
as well as its purpose.

The first group consists of all blocks that support receiv-
ing data from the network by an interface. They are
responsible for decoding the line signal including error
checks and restoring the packets. Depending on the inter-
face type, they also decapsulate packets from lower layer
protocols. Finally, the output is a stream of packets.

The second group of blocks is responsible for time
stamping. Hereby, a tag is assigned to each packet reflect-
ing the instant of time at which the packet arrives at the
measurement platform or at the time stamping unit.

The scope of such tags differs. In their simplest form,
they reflect the time between two successive packets or rel-
ative to the start of the measurement. This is sufficient for
short term measurements. Long-term measurements will
often be correlated to external events like business hours.
Thus, their meaning needs to be extended to reflect also
the time of day. For distributed measurements at different
locations they must be related to a global unique reference.

The achievable precision of the time stamps depends on
the architecture of the measurement system as this limits
the reachable accuracy. This is due to functional building
blocks which are traversed before reaching the time
stamping unit and that may introduce jitter. In contrast,
the required precision depends on the application of the
measurement as this presupposes a certain temporal preci-
sion of the entire measurement system.

The functional blocks within the third group (pre-) pro-
cess passively or actively the packet data stream. Passive
processing blocks only analyze the content of the packet
while keeping the packet data stream unchanged. Results
are commonly metadata or triggers for defined actions.
Examples for such tasks are packet classification, or statis-
tical evaluation. The active processing blocks also modify
and manipulate the packet data stream. This is possible
on data stream level, e.g. by removing unwanted packets,
or on the packet level, e.g. by modifying the content of
packets through anonymization or by removing unwanted
higher layer payload by a filter.

The last group contains all functional blocks that store
data. Here, we have to point out the wide ranges of data
volume and data rate which must be handled. The data vol-
ume ranges from a few hundred bytes for accumulated
data to several giga- or even terabytes for long-term traces
of high-speed links. Respectively, the data rates range from
a few bytes per second to several tens of megabytes per
second.

2.3. Platforms

The challenging tasks for a measurement platform are
to provide a time resolution in the order of the smallest
data unit on the link layer as well as to reliably process
and store the incoming data defined by the high-speed
measured link. This becomes even more massively chal-
lenging as link speeds increase with a growth that exceeds
Moore’s Law [10].

Traffic measurement at high-speed links requires pro-
cessing steps of low complexity however on a large
amount of data. The described functional blocks in Section
2.2 can be implemented by using several different technol-
ogies and in various system configurations fulfilling the
above constraint. Both aspects will be discussed in the
following.

For processing data in a measurement platform several
device technologies with different properties are possible.
General-purpose processors (GP-CPU) provide large flexi-
bility. However, they are primarily designed for complex
processing on a small set of data and do not fulfill the
requirements for high I/O throughput.

Network processors (NP) are devices which are de-
signed for high I/O throughput and optimized for packet
processing tasks. They can be programmed with primitive
programming languages [11].

Field Programmable Gate Arrays (FPGA) and application
specific integrated circuits (ASIC) allow specialized logic
designs for the different functional blocks. As the designer
can develop system modules on different abstraction lay-
ers, he is able to optimize selected modules. Both device
types – FPGAs and ASICs – are very well suited to achieve
the required performance and accuracy for high-speed
links. FPGAs are fast and easily reconfigurable, while ASICs
provide the highest processing speeds.

For storing the measured data also different technolo-
gies can be employed. The usage of hard disks (HD) pro-
vides very large storage capacities in the range of
terabytes and the I/O throughput of a single HD is in the
area of several hundreds of megabits per second. Random
access memory (RAM) modules have a higher I/O through-
put of several tens of gigabits per second, however, offer
only storage capacity in the range of few gigabytes. This
is too little for long-term measurements with measure-
ment data rich in detail.

The above described technologies for the functional
blocks can be composed in different ways to measure-
ments platforms. Two classes are deployed in practice:
platforms with dedicated measurement hardware (HW)
and platforms without dedicated HW.

Commodity PCs equipped with a GP-CPU, a network
interface card (NIC) and HDs can be regarded as measure-
ment platforms without dedicated measurement HW.
They are often used as they are widely available at moder-
ate prices. This is a very flexible approach with large stor-
age capabilities. Unfortunately, it can only be used for links
with small to medium-sized bandwidth or for only very
lightly loaded high-speed links [7,10,12]. The main limita-
tions are a rather poor time resolution and time accuracy
as well as insufficiently reliable throughput at high-speed
links.

Several approaches have been developed to overcome
these limitations, while keeping the flexibility of a com-
modity PC and its GP-CPU. Such systems use additional
acceleration HW that adds higher I/O bandwidth and



D. Saß et al. / Computer Networks 53 (2009) 810–820 813
additional processing power for traffic measurement.
These are realized as additional boards equipped with
receiving units, little storage memory and processing units
implemented in NPs, FPGAs or ASICs. They are commonly
connected via the peripheral component interconnect
(PCI) bus and write the measurement data via direct mem-
ory access.

Acceleration HW realized with NPs have only little
instruction memory and have to be programmed with
primitive programming languages and with insufficient
tool support [13]. Platforms based on an additional FPGA
board, e.g. DAG cards [14] or SCAMPI adapters [15], are
very powerful and very well suitable for long-term passive
measurement.

However, common to these approaches is that the addi-
tional HW is closely coupled via the PCI bus to the com-
modity PC. This close coupling results in major
difficulties to scale the system to higher link rates and
showing higher down-times when replacing parts. Even
with the introduction of PCI Express, enabling higher I/O
throughput in the area of serval gigabits per second, still
the required high-capacity HDs do not support such fast
writing throughput. Further, such closely coupled plat-
forms require high-end server components for achieving
the needed throughput, thus, resulting in significantly
higher costs.

The major limitation of these platforms is their lack of
parallelism, thus, having only limited capabilities to scale.
The performance is limited by the bottleneck of the overall
system. It cannot be replaced by multiple instances to ease
this bottleneck as is possible in an inherently parallel solu-
tion where parallelism was considered already in very first
design phase.

In the following we will introduce an architecture for a
scalable, high-speed passive measurement platform which
is based on a dedicated HW-unit and a commodity PC. Due
to its modularity and the loose coupling of its components,
the architecture is easily scalable to higher data rates by
increasing the parallelism of its modules.

3. I2MP – concept and architecture

The I2MP is a high-speed, passive measurement plat-
form. In the following we will detail the objectives of the
I2MP and its design principles leading to the main architec-
ture of our measurement platform. After that we describe
its core components: the HW-unit and the PC-unit.

3.1. Concept and overall architecture

We designed our traffic measurement platform I2MP to
capture packet traces on high-speed network links with
high time precision. We tailored its concept to long-term
measurements lasting hours or even days.

For measurements in high-speed networks, the ques-
tion arises how much data need to be stored. One extreme
is to store the entire packet stream. This is not necessary as
payload is rarely analyzed. Furthermore, it is usually not
permitted due to privacy issues. The other extreme is to
calculate statistics online and to drop all collected packets
without recording them. This is not sufficient as often in
research, the traffic will be analyzed by many researchers
with a broad scope of analysis scenarios and thus detailed
traffic traces are needed.

We positioned the I2MP between these two extremes. It
captures all incoming packets, however, its design allows
arbitrarily selecting byte areas within a packet for further
processing or storage while dropping the remaining data.
By this the amount of data can be reduced while retaining
all relevant information. In order to enable the definition of
byte areas relative to the start of protocol headers and
independent of their absolute position in the packet, we
further designed the selection to be protocol-aware. This
especially simplifies handling of packets with protocols
with non-constant header length as well as tunneled
protocols.

For the realization, one can use the different platforms
as introduced in Section 2.3. As explained, customized
hardware provides a predetermined temporal behavior
which cannot be achieved by pure commodity PC based
systems. Furthermore, processing power is tailored to ded-
icated tasks. Both come at the drawback of a higher imple-
mentation complexity. Therefore, in our architecture, we
analyzed each functionality with respect to its timing
requirements as well as the required processing power.
Based on this, we assigned each functionality explicitly to
either a hardware module or a software running on a PC.
We further separated the functionalities implemented in
software according to their execution time to online and
offline tasks.

Therefore the I2MP consists of two parts, the HW-unit
and the PC-unit. Its basic architecture is depicted in Fig. 1.

In the HW-unit, the performance- and time-critical
functions are realized. These are the reception of packets
at line speed, high-precision time stamping and intelligent
classification and filtering. The filtered packets and their
metadata, comprising time stamp and classification re-
sults, are assembled to data containers and transmitted
to the PC-unit.

The functions of the PC-unit can be divided into online
and offline tasks. The former comprise the reception of the
data containers and the reliable storage of the contained
data records on hard disks. The latter are mainly post-pro-
cessing functions on the received data records. Apart from
this, the PC-unit controls and configures the HW-unit.

This modularization at the hardware and software level
necessitates the definition of formats to exchange data. We
interconnect the HW-unit and the PC-unit by Ethernet via
standard network interfaces. This loose coupling allows a
flexible way for optimizing each unit separately. Further-
more, it enables a scalable system where HW-units and/
or PC-units can be used to increase the processing/storage
capacity, respectively. The software modules exchange
data in the widely used pcap format.

Having the entire system running, usability is a critical
aspect. On the one hand, users must be able to easily adapt
the I2MP to their present scenario. On the other hand,
introducing flexibility by means of configuration option in-
creases also the complexity of soft- and hardware modules
and makes the entire system more error-prone. This is in



Measure-
ment
Link +

Management
HW-unit PC-unit

comprraw

Control

I2MP

i/f i/f i/f

Classification
and Filtering

Time
Stamping Assembly Reception

and Storage Post-Processing
Ethernet

anon

pcap pcap

Fig. 1. Architecture of I2MP.

814 D. Saß et al. / Computer Networks 53 (2009) 810–820
direct contradiction to reliability and stability which is of
major impact in long-term measurement scenarios.

Therefore we thoroughly analyzed all relevant use
cases. Based on this we defined the set of parameters
which can be changed by a user simply, quickly, and with-
out downtime. Such parameters are for example rules for
traffic classification and filtering as well as the routing of
collected data to storage servers.

Finally, scalability is a major design aspect that impacts
on all parts of the design. To allow scaling to higher data
rates, we designed all modules such that they need only
state information for the packet that is currently pro-
cessed. By that several modules or groups of modules can
be run in parallel to achieve a higher throughput.

3.2. Hardware unit

The HW-unit performs the time-critical tasks of the
measurement platform. As depicted in the left part of
Fig. 1, it is organized as a functional pipeline. It consists
of the line interface to the measured link, the Time Stamp-
ing unit, the Classification and Filtering unit, and the
Assembly unit with the interface to the PC-unit.

The line interface is connected to the network at the
location where the traffic is to be measured. As soon as
the line interface unit starts with the reception of a packet,
it triggers the succeeding Time Stamping unit to record the
exact time of arrival. The interface unit buffers the incom-
ing packet until it is completely received and its integrity is
approved. Then the packet is forwarded to the Time
Stamping unit. In case of an erroneous packet it notifies
the following unit to discard the recorded time stamp.

The Time Stamping unit houses an internal counter that
is incremented in constant time-intervals. As soon as the
line interface signals the arrival of a packet, it saves the
current value of its counter. When this packet is passed
from the interface unit, the Time Stamping unit attaches
that value (time stamp) to the packet.

The Classification and Filtering unit is the next stage of
the functional pipeline. This unit is the core component of
the HW-unit and contributes to the highest degree to the
outstanding flexibility of our measurement platform. This
unit performs three tasks. Firstly, it decodes the protocol
stack of each packet. The number and order of the stacked
protocols can be arbitrary, as long as all protocols have
been specified in this unit. Secondly, it classifies the packet
according to a configurable rule set. And finally, this unit
filters each packet based on the results of decoding and
classification. It discards irrelevant parts of the packet,
e.g. parts of the header or the payload, and puts the
remaining sections as well as the classification result and
the time stamp into a data record. This data record is then
forwarded to the following stage.

As protocol definitions are constantly evolving and new
protocols are introduced very often, the traffic measure-
ment unit must be adaptable to changing classification
and filtering requirements. Hence, the Classification and
Filtering unit supports an easy configuration of the classi-
fication rules as well as an easy adaptation to new or mod-
ified protocols. How this flexibility is achieved is
documented in more detail in Section 3.3.

The Assembly unit buffers the data records forwarded
by the Classification and Filtering unit. It fills the incom-
ing data records in so called data containers and finally
sends them to the PC-unit via the succeeding Ethernet
interface. The collected data records are transmitted to
the PC not individually but assembled as data containers
in order to decrease the critical burden of interrupt han-
dling and context-switching on the PC to a manageable
level.

Finally, the interface to the PC-unit is also used to re-
ceive control and configuration messages. These messages
are forwarded to the Management unit that decodes these
messages and configures the addressed units of the HW-
unit correspondingly.

3.3. Classification and Filtering unit

The task of the Classification and Filtering unit is to
classify each packet according to a given rule set and to
extract the relevant parts from the packet headers accord-
ing to the classification result. The unit comprises the fol-
lowing three blocks, as illustrated in Fig. 2: The Protocol
Layering Decoder, the Classifier and the Filter.

Within the entire Classification and Filtering unit the
packet data is processed and forwarded in data words of
fixed width. The main task of the Protocol Layering Deco-
der is to interpret the relevant header fields of each proto-
col in order to determine the contained protocols of the
packet and their absolute position within the packet. Fur-
thermore, it aligns each protocol header with a word
boundary in order to ease the subsequent classification.
The decoder results are forwarded to the Classifier and
the Filter. The Classifier maps each packet to a certain cat-
egory. Based on this, the Filter finally selects specific parts
of the packet and discards the rest.



Criteria
Matching

unit

Match
Accu-

mulator

Rule
Matching

unit
Classifier

Protocol
Layering
Decoder

Filter

shifted packet

metadata
word

match
vector

packet
match
vector category

packet
packet

sections

time stamp

protocol stack descriptor

Fig. 2. Basic structure of the classification and filtering unit.

D. Saß et al. / Computer Networks 53 (2009) 810–820 815
In the following subsections, the Protocol Layering De-
coder, the Classifier and the Filter are described in more
detail. Besides their concept and functionality also their
adaptability to new or changed requirements are
presented.

3.3.1. Protocol Layering Decoder
The data of a received packet at the traffic measurement

platform can be distinguished into payload and protocol
data. The protocol data represents the hierarchical encap-
sulation of the payload according to the protocol layers,
by adding headers (and/or trailers) to the payload.

The main task of the Protocol Layering Decoder is to de-
code the protocol data in order to determine at which posi-
tions in a packet the different, contained protocol headers
are located. To achieve this it only requires two pieces of
information from each contained protocol: the length of
its header and the protocol which it encapsulates. Each
protocol must either specify this data in dedicated header
fields of each packet or must have fixed, pre-defined val-
ues. The Ethernet header has for example a fixed, pre-de-
fined length of 14 Bytes and the encapsulated protocol is
specified in Byte 13 and 14 of its header.

The decoding information about each protocol is micro-
programmed [16]. Each line of microcode corresponds to
one single protocol and contains all necessary information
for decoding that protocol. The code specifies if the length
is fixed or variable. In the former case it specifies the fixed
length, in the latter case the byte position and the width of
the length field. Similarly for the encapsulated protocol,
the microcode word specifies if it is fixed or variable and,
respectively, either a fixed protocol identifier or the posi-
tion and width of the respective header field.

When decoding a packet, the Protocol Layering Decoder
starts with the microcode of the known lowest layer proto-
col. With this it extracts the required information (length
and encapsulated protocol) of the header fields or uses
the pre-defined values, respectively. By evaluating the
length information it can then determine the start of the
next encapsulated protocol. By using the information of
the type of the encapsulated protocol, it can determine
the line of microcode for this protocol by a fast table look-
up, and thus is able to decode the encapsulated protocol
layer in the same way. In this way, all stacked protocols
can be decoded, as long as the protocols used have been
configured in the microcode memory. Even the handling
of protocols with a variable header length and tunneled
protocols is possible.

As the microcode memory as well as the lookup table
mapping the protocol types to their corresponding line of
microcode are realized by random access memory, they
can be modified by the user. By this the Protocol Layering
Decoder is easily adaptable to changing or new protocol
definitions, as long as they specify the header length and
their encapsulated protocol, as described above.

Fig. 3 illustrates the processing of a packet by the Proto-
col Layering Decoder. It signals each protocol used as well
as its absolute start and end position within the packet to
the Filter unit. Furthermore, it labels each data word of the
packet with an identifier of the protocol it belongs to and
aligns it such that each protocol starts at a word boundary.
Additionally, it numbers each data word with its position
relative to the beginning of that protocol. The shifted data
words and its metadata are then output to the subsequent
Classifier. More technical details about the Protocol Layer-
ing Decoder can be found in [17].

3.3.2. Classifier
Packet classification is one of the major tasks of modern

packet processing systems and it is widely investigated by
researchers. Different classification methods have been
introduced in recent years. They can be coarsely divided
into three groups: approaches using decision trees,
searches in tuple spaces and decomposition techniques
[18]. We used an approach of the third group that is similar
to the Bit Vector scheme [19].

In our Classifier, the determination of the category is
based on rules. Such a rule combines several criteria that
a packet must fulfill to be mapped to a certain category.
Each criteria corresponds to a matching expression of one
or several bytes within a certain word of a header. This is
easy to realize due to the shifting and labeling of the data
words by the Protocol Layering Decoder. For the user, this
makes the definition of criteria easy and compact. The clas-
sification criteria are defined on behalf of different charac-
teristics. They can refer to specific bit patterns or byte
values, e.g. a port number or protocol type, but also to
numerical ranges of certain byte fields, e.g. ranges of IP ad-
dresses or subnets.

The packet data is processed word by word, as illus-
trated in Fig. 4. By taking the metadata of each word into
account, the Criteria Matching unit of the Classifier



Et
h

3

Et
h

4

IP
1

Protocol TCP Rule r
Protocol Eth,

Index 1, Crit. D

Protocol Eth,
Index 1, Crit. B

Protocol Eth,
Index 1, Crit. I

Rule 2
Rule 1

Protocol Eth,
Index 1, Crit. D

Protocol Eth,
Index 1, Crit. E

Protocol TCP,
Index 1, Crit. C

Protocol Eth,
Index 1, Crit. E

Match Accu Rule Matching unit

Protocol Eth,
Index 1, Crit. D

Criteria Matching unit

Rule x

Index 1 Crit. A Crit. B

Protocol 2 IP
Protocol 1 Eth

Index 2 Crit. A Crit. B

Index 1 Crit. A Crit. B

Index m Crit. A Crit. B

Et
h

2

Match?Match?

X
X

X
X

Fig. 4. Functionality of the Classifier: criteria and subsequent rule matching.

DOff DPort Prot HLen Type

Et
h

1

Et
h

2

Et
h

3

Et
h

4

IP
1

IP
2

IP
n

TC
P

1

TC
P

2

0960487280096 32100 16
IPTCP Eth

1st hdr
2nd hdr
3rd hdr

start
0
96

256

length
96

160
160

meta
data

shifted
packet

to Classifier to Filter

incoming
packet

protocol stack descriptor

X
X

X
X

X
X

X
X

X
X

Fig. 3. Generation of metadata by decoding the protocol data.

816 D. Saß et al. / Computer Networks 53 (2009) 810–820
compares each word only to those criteria that correspond
to the current protocol and position within the current
header. All relevant criteria are compared in parallel to
the data word. This can be done by using TCAM (ternary
content addressable memory) technology. While compar-
ing all data words of the packet to their corresponding cri-
teria, the Match Accumulator records all matching criteria.

After this criteria check the Rule Matching unit of the
Classifier compares the record with all matching criteria
to all rules in the rule database, again using TCAM technol-
ogy. By this it finds the rule with the highest priority that is
fulfilled by the packet. The category associated to this rule
is then forwarded to the Filter unit as well as to the follow-
ing stage of the HW-unit, the Assembly unit, to be recorded
for post-processing steps. For a more technical description
of the Classifier and its classification process please refer to
[17].

3.3.3. Filter
Based on the found category of the Classifier and the

metadata from the Protocol Layering Decoder the Filter re-
duces the amount of packet data to the required data
blocks. The Filter selects specific parts of the packet to be
further processed in succeeding stages of the measurement
platform and discards the rest.

The classification category is used to look up which
parts of the packet to select. The table containing the selec-
tion ranges is realized as random access memory and thus
easily configurable by the user of the measurement plat-
form. The definitions which parts of the packet to select
are expressed as Byte positions relative to protocol bound-
aries. This has the advantage of being independent of var-
iable header lengths, inserted shim headers or protocol
tunnels. The exact location of these protocol headers with-
in the packet is conveyed by the metadata from the Proto-
col Layering Decoder.

3.4. PC-unit

The main tasks of the PC-unit are the reception of the
data containers, post-processing of the data records and
storage of the final trace. As these different tasks underlie
different time and throughput constraints the PC-unit
works in different modes: online and offline.



D. Saß et al. / Computer Networks 53 (2009) 810–820 817
During the online mode, the PC-unit receives the data
containers sent by the HW-unit and stores them without
any processing. Furthermore, several statistics and coun-
ters are maintained to validate the completeness, integrity
as well as to prepare plausibility checks of the data records
which will be done in the offline mode.

In the offline mode, the PC-unit post-processes the
stored data in order to build the compressed final trace.
This contains validation and plausibility checks, format
conversion and anonymization of the data stored during
the online mode. These post-processing steps are configu-
rable and adaptable to the needs of the current measure-
ment scenario, especially anonymization and format
conversion. The plausibility checks are performed to vali-
date the completeness and correctness of the trace mainly
by means of sequence numbers of the data containers and
byte counters of processed data-records at different pro-
cessing points.

The checked records with their corresponding metadata
are converted to the widely used trace format pcap [20].
The pcap format enables the application of a large number
of different, widely available post-processing tools work-
ing on the trace.

The anonymization ensures that the final trace contains
no payload beyond the transport layer. Furthermore, the
addresses (IP addresses and transport layer port numbers)
are anonymized configurably either in prefix-preserving
manner or according to their appearance in the trace. The
prefix-preserving anonymization enables a consistent
anonymization across multiple measurement sessions
and is based on a keyed-hash method [21]. Finally, the
checked, converted and anonymized trace is compressed
and stored on hard disks.

Beyond its main tasks, the PC-unit controls the HW-unit
during online and offline modes. It starts and stops the col-
lection of data records of the HW-unit, reads out statistic
counters and configures the Classification and Filtering
unit by setting the criteria and rule definitions as well as
filtering sections.

4. Scalability

Network data rates will continue to increase so it is
important to examine the presented architecture with re-
spect to its capability to support higher data rate process-
ing. Also, more and more protocols and network services
emerge. This means more filtering categories and conse-
quently more criteria to check in the Classifier of our mea-
surement platform.

In the following we show the theoretical scalability of
our architecture concerning both the above mentioned is-
sues. After that, results from a numerical scalability analy-
sis are shown, that support the theoretical results.

4.1. Theoretical scalability

In the following we will first discuss the theoretical sca-
lability of the throughput. In the second subsections we
detail the effects when scaling the number of classification
rules within the Classification and Filtering unit of our
measurement platform.
4.1.1. Throughput
The throughput of a measurement platform character-

izes the data rate, measured in bits per second. Both the
HW-unit and the PC-unit (in online mode) of the I2MP have
to support the required throughput.

The PC-unit is easily scalable to higher data rates, by
simply attaching several PC-units to the HW-unit using a
switch. In this configuration the HW-unit has to distribute
its data containers evenly between the attached PC-units,
e.g. in a round robin fashion, and recombined in the offline
mode based on the containers’ sequence numbers.

For scaling the HW-unit to a higher throughput three
approaches or a combination of them can be considered.
In the following we summarize the results of our detailed
scalability analysis presented in [17].

One approach to speed up the throughput of the system
is to increase the clock rate fclk of the system. An ASIC solu-
tion would allow clock rates up to one GHz whereas future
high performance FPGAs support several hundreds of MHz.

The other approach is to increase the number of bytes
processed in each clock cycle. This can be done in two
ways: increasing the internal word width or parallelization
of entire units.

The possibility to use a larger internal word width is not
indefinitely, reasonably applicable, especially for the Clas-
sification and Filtering unit. The reason for this is, that this
unit processes the packet data of two consecutive proto-
cols in two consecutive words, even if they would fit into
one single word. Therefore, increasing the word width is
only reasonable up to a width comparable to the length
of usual packet headers (e.g. 20 Bytes).

The other possibility to process more data per clock cy-
cle and therefore to increase the system’s throughput is to
replicate the entire system (or those parts of it that limit
the overall throughput) on the chip and to distribute the
packets evenly between the replicated units. No changes
have to be made to the processing units as the processing
of each packet is independent of the other packets. This ap-
proach would only necessitate additional buffers after
splitting the packet stream and before recombining the
measured data.

Another possibility to increase the supported line rate
of the platform, would be to only process the first part of
each packet (e.g. the first 64 Bytes). By this the internal
data rate does not have to be as high as the external line
rate. However, this would only increase the average
throughput of the platform, not its worst case perfor-
mance, when only small packets are received.

All of the above approaches are good candidates for
increasing the system’s throughput. However increasing
the parallelism by replication is the most promising ap-
proach to scale the throughput of the measurement plat-
form to very high data rates, as this approach is neither
limited by the clock speed, nor architecturally, nor
statistically.

4.1.2. Classification criteria and rules
Another important aspect, when evaluating the scala-

bility of a measurement platform is its ability to support
a high number of classification rules, and thus also a high
number of classification criteria.



818 D. Saß et al. / Computer Networks 53 (2009) 810–820
Our detailed scalability analysis in [17] shows that the
architecture of the I2MP can be easily scaled with respect
to the number of classification rules and criteria. Increasing
those parameters does not deteriorate the system’s
throughput. Its delay increases only slightly.

We also analyzed the effect on the required hardware
resources when scaling to more rules and criteria. We
found that the resource utilization of the Classification
and Filtering unit scales linearly with the number of rules
or criteria, respectively.

4.2. Numerical scalability analysis

In order to validate the scalability analysis of our Classi-
fication and Filtering unit we configured several differently
dimensioned variants of our VHDL implementations of the
Protocol Layering Decoder and the Classifier. We synthe-
sized, mapped, placed, and routed these variants for the
configuration of a Xilinx Virtex IV FPGA [22] and compared
their resource utilizations.

In our experimental implementations we varied the
number of classification criteria between 64 and 512 and
the number of rules between 16 and 256. In order to
achieve a high throughput we used a word width of 16 By-
tes in all tests.

The results we obtained support our theoretical state-
ments in Section 4.1. The resource utilization of the Classi-
fication and Filtering unit increases linearly with the
number of supported criteria. Also, the resource utilization
shows a linear dependency on the number of supported
rules. For more details refer to [17].

All our experimental implementations supported a
maximum clock rate fclk of 60 MHz. This also supports
our claim from Section 4.1.

This clock rate results in an internal data rate of approx-
imately 7 Gb/s. Assuming Internet traffic with a mean
packet size of 200 Bytes our traffic measurement platform
I2MP would support a throughput of approximately 20 Gb/
s, when processing only the headers (Ethernet, IP, TCP) of
the packets [17]. Furthermore, by replicating the slowest
modules within the measurement platform even higher
throughputs should be achievable.

5. Prototype and deployment

We built up the described measurement platform I2MP
and used it for traffic measurements in one of our campus
student networks. In the following we will first detail the
prototype implementation of the HW-unit on our FPGA-
based hardware platform. Then we describe the realiza-
tion of the PC-unit using a PC and several hard disks.
Finally we give a short overview about the deployment
of the I2MP.

5.1. Implementation of the Hardware unit

The functionality of the HW-unit has been imple-
mented in VHDL. We developed the VHDL design to be as
generic and modular as possible. This allowed us to easily
synthesize differently scaled versions for the numerical
scalability analysis (see Section 4.2). Further, we could
synthesize the design for the FPGA families from both
major vendors Altera and Xilinx.

We built up the HW-unit on our FPGA-based universal
hardware platform (UHP) [23]. The version of the platform
used provides a rather old FPGA from Altera (APEX20K
400CB652-C7, [24]) and several communication interfaces,
like electrical and optical Gigabit Ethernet interfaces. We
used two Gigabit Ethernet interfaces, one for capturing
the traffic and one for communicating with the PC-unit
for the transmission of the captured measurement data
and control tasks.

The time stamping unit in the HW-unit uses a 64-bit
counter, incrementing at a frequency of 125 MHz. This re-
sults in a time resolution of 8 ns which corresponds to the
byte-time of Gigabit Ethernet.

The following parts of the measurement platform, i.e.
the Classification and Filtering unit and the Assembly unit,
operate at a clock frequency of 35 MHz and use a word
width of 32 bits. The Classifier supports 32 classification
categories based on 32 different criteria, which is an ample
amount for the pre-processing within a measurement
platform.

With this configuration more than 2 million minimum-
sized Ethernet/IP packets can be recorded per second. Thus
with our architecture of the measurement platform it is
still possible to perform all processing tasks, including
the classification, at more than full Gigabit Ethernet line
speed, despite the rather old FPGA technology. The com-
plete HW-unit fits well even on the outdated FPGA we
used, only occupying two thirds of the available resources.

As modern Altera FPGAs do not support an efficient
realization of TCAMs within the FPGA anymore, higher
throughput Classifiers cannot be implemented easily on
Altera FPGAs. So future versions of the I2MP will be based
on Xilinx FPGAs, that we have already used successfully in
our numerical scalability analysis.

5.2. Implementation of the PC-unit

On the PC-unit, a stripped Linux distribution runs
where only the needed services and applications are active.
Also, we adapted kernel and NIC variables mainly to en-
large the networking related kernel buffers. The PC-unit
used is equipped with an 2.53 GHz CPU, 3 GB RAM, multi-
ple removable HDs and a Gigabit Ethernet NIC. We use a
DCF77 receiver for time synchronization.

The online tasks, i.e. the reception, processing and stor-
age of the data containers, are performed by in-house,
thread-based software. The reception thread receives the
data containers sent by the HW-unit via a low-level packet
socket and places them in a large cyclic buffer located in
the RAM. To each HD in the PC-unit a separate dumping
thread is associated. Each dumping thread writes the data
containers contained in the cyclic buffer to the associated
HD where the buffer is processed in a round robin fashion.
We use Linux raw-devices to write the data block-oriented
and unbuffered to the HDs, thus, avoiding additional delay
and potential loss by the file system.

The offline tasks are correctness checks, format conver-
sion and anonymization which are realized by a tool chain
producing a pcap [20] trace file. We realized the first two



D. Saß et al. / Computer Networks 53 (2009) 810–820 819
tasks by in-house software. This software reads the previ-
ously dumped data records from the HDs and performs
checks to verify the completeness of the data records. Fur-
ther, the software converts data records to the pcap format
where pcap time-stamps are used in nanosecond resolu-
tion. For anonymization, we used an in-house modified
tool based on TCPdpriv [25]. We extended the software
to add prefix-preserving IP address anonymization based
on a keyed-hash method [21] and the additional possibility
to apply different anonymization methods independently
to source and destination addresses. Finally, the resulting
trace in pcap format is compressed by a standard compres-
sion tool of the Linux distribution.

5.3. Deployment

We deployed the measurement platform I2MP in the
large dormitory network ‘‘Selfnet” of the University of
Stuttgart with approximately 1000 actively connected stu-
dents. The students extensively use a wide variety of ser-
vices (e.g. web, email, e-learning, gaming, e-commerce,
voip, video conferencing) and new emerging Internet ser-
vices are quickly adopted. Each student has a 100 Mbit/s
access rate and, at the time of the collection, the uplink
bandwidth was 100 Mbit/s. We measured the traffic at
the Internet uplink of the dormitory network over multiple
days. These captured traces where also used in the IST pro-
ject NOBEL [26].
6. Conclusion

We presented a scalable architecture for a high-speed,
passive measurement platform that can be used for obtain-
ing highly accurate packet traces for traffic characteriza-
tion and modelling.

In order to achieve an optimal performance, we allo-
cated the required functional blocks for traffic measure-
ment to a specialized HW-unit and a commodity PC-unit
according to the requirements concerning temporal accu-
racy, throughput, flexibility and storage capability. Both
units are interconnected by standard network interfaces.

The HW-unit features high-precision time stamping as
well as highly adaptable classification and filtering. The
latter is used for mapping each packet to a category and,
based on this, to select certain sections of the packet while
discarding the rest for reducing the data volume to be
stored. This unit is easily adaptable to new or changed pro-
tocol definitions as well as user-defined classification cate-
gories and filter rules. Its protocol awareness allows the
easy classification of arbitrarily tunneled protocols and
protocols with variable header lengths. Furthermore, it
simplifies the definition of classification and filter rules
as they can be described relative to protocol boundaries in-
stead of absolute positions within the packet. The PC-unit
receives and post-processes the measured data, ensures
its anonymity, and stores the results on hard disks in a
standard trace format.

We implemented the measurement platform using an
FPGA-based hardware board and a standard server PC.
The logic design of the HW-unit could be easily fitted even
into an outdated FPGA and supports the measurement of
Gigabit Ethernet links at full line speed. The platform was
deployed for long-term measurements of the traffic of a
large local dormitory network.

The architecture presented is easily scalable to higher
data rates. Furthermore the classification unit is also scal-
able to larger numbers of classification categories and is
therefore also suited for other classification purposes be-
sides its current application in the measurement platform.

Our numerical scalability analysis by exemplary config-
urations of the HW-unit for higher data rates and different
numbers of classification categories supports the results of
our scalability analysis. Furthermore it shows that with cur-
rent FPGA technology the architecture presented is in prin-
ciple capable of handling data rates of up to 20 Gigabit/s.

Therefore an implementation of the measurement plat-
form for measuring links with 10 Gigabit Ethernet is
planned. Furthermore we see no principle limitation of our
architecture to be scalable even to 100 Gigabit/s data rates.

Acknowledgements

The authors would like to thank Sascha Junghans for his
support, contributions, and the valuable discussions. This
work was partly funded by the European commission
through IST NOBEL (FP6 507509) and by the German Min-
istry for Research and Education (BMBF) within the EI-
BONE Project Under Contract 01BP566.

References

[1] G. Eilenberger (Ed.), Multi-layer transport networks with integrated
control, Position paper by the EIBONE working group on network
aspects, 2008.

[2] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the self-
similar nature of ethernet traffic (extended version), IEEE/ACM
Transactions on Networking 2 (1) (1994) 1–15.

[3] D. Veitch, N. Hohn, P. Abry, Multifractality in TCP/IP traffic: the case
against, Computer Network Journal, special issue Long-Range
Dependent Traffic 48 (2005) 293–313.

[4] C. Park, F. Hernandez-Campos, J.S. Marron, F.D. Smith, Long-range
dependence in a changing Internet traffic mix, Computer Networks
48 (3) (2005) 401–422.

[5] T. Karagiannis, M. Molle, M. Faloutsos, Long-range dependence: ten
years of Internet traffic modeling, IEEE Internet Computing 8 (5)
(2004) 57–64.

[6] M. Burke, Ellacoya data shows web traffic overtakes peer-to-peer
(P2P) as largest percentage of bandwidth on the network, Media
Alert, June 2007. <http://www.ellacoya.com/news/pdf/2007/
NXTcommEllacoyaMediaAlert.pdf>.

[7] J. Micheel, S. Donnelly, I. Graham, Precision timestamping network
packets, in: Proceedings of the ACM SIGCOMM Internet
Measurement Workshop (IMW-01), ACM Press, New York, 2001,
pp. 273–280.

[8] H.-G. Hegering, S. Abeck, B. Neumair, Integrated Management of
Networked Systems: Concepts, Architectures, and their Operational
Application, Morgan Kaufman Publishers Inc., San Francisco, CA, USA,
1998.

[9] L. Burgstahler, Bewertung von Mess- und Abschätzverfahren zur
Unterstützung dienstgüteorientierter Verkehrslenkung in
verbindungslosen Datennetzen, Dissertation, University of
Stuttgart, Stuttgart, 2007.

[10] J. Coppens, S.V. den Berghe, H. Bos, E.P. Markatos, F.D. Turck, A.
Øslebø, S. Ubik, SCAMPI: a scalable and programmable architecture
for monitoring gigabit networks, in: A. Marshall, N. Agoulmine
(Eds.), MMNS, Lecture Notes in Computer Science, vol. 2839,
Springer, 2003, pp. 475–487.

[11] D.E. Comer, Network Systems Design using Network Processors,
firstst ed., Prentice Hall International, 2006.

[12] L. Deri, Improving passive packet capture: beyond device polling,
August 12, 2004.

http://www.ellacoya.com/news/pdf/2007/NXTcommEllacoyaMediaAlert.pdf
http://www.ellacoya.com/news/pdf/2007/NXTcommEllacoyaMediaAlert.pdf


820 D. Saß et al. / Computer Networks 53 (2009) 810–820
[13] L. Deri, Passively monitoring networks at gigabit speeds using
commodity hardware and open source software, in: Proceedings of
the Passive and Active Measurement Workshop (PAM), 2003.

[14] Endace Measurement Systems, DAG cards. <http://www.endace.
com/>.

[15] J. Coppens, E. Markatos, J. Novotny, M. Polychronakis, V. Smotlacha,
S. Ubik, SCAMPI – a scalable monitoring platform for the internet, in:
Second International Workshop on Inter-Domain Performance and
Simulation (IPS 2004), 2004.

[16] S. Vassiliadis, S. Wong, S. Cotofana, Microcode processing:
positioning and directions, IEEE Micro 23(4) (2003) 21–30.

[17] S. Hauger, S. Junghans, M. Köhn, D. Sass, A scalable architecture for
flexible high-speed packet classification, Technical Report,
Universität Stuttgart, Institute of Communication Networks and
Computer Engineering (IKR), 2006.

[18] D.E. Taylor, Survey and taxonomy of packet classification techniques,
ACM Computing Surveys 37 (3) (2005) 238–275.

[19] T.V. Lakshman, D. Stiliadis, High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,
SIGCOMM Computer Communication Review 28 (4) (1998) 203–214.

[20] V. Jacobson, C. Leres, S. McCanne, pcap – Packet Capture library,
2003. <http://www.tcpdump.org>.

[21] J. Xu, J. Fan, M. Ammar, S. Moon, Prefix-preserving ip address
anonymization: measurement-based security evaluation and a new
cryptography-based scheme, in: Proceedings of the 10th IEEE
International Conference on Network Protocols 2002, 12–15
November, 2002, pp. 280–289.

[22] Xilinx, Inc., Virtex-4 Family Overview, 2007. <http://
www.xilinx.com/support/documentation/data_sheets/ds112.pdf>.

[23] Institute of Communication Networks and Computer Engineering,
The Universal Hardware Platform (UHP), 2005. <http://www.ikr.uni-
stuttgart.de/Content/UHP/>.

[24] Altera Corporation, Apex 20K Programmable Logic Device Family,
2004. <http://www.altera.com/literature/ds/apex.pdf>.

[25] G. Minshall, TCPdpriv Command Manual, 1996.
[26] IST Project NOBEL. <http://www.ist-nobel.org/>.

Detlef Saß received his Diploma degree
(dipl.math.) in mathematics from the Uni-
versity of Stuttgart in 2000. During 2001–
2002, he was with DeTeLine (a subsidiary of
Deutsche Telekom), as a member of the
technical and consulting staff focused on the
area of IP telephony systems. Since 2003 he
joined the Institute of Communication Net-
works and Computer Engineering, University
of Stuttgart, as member of the research staff.
His major research interests include the
modelling, charaterization and measurement

of network traffic in transport networks and in the Internet.
Simon Hauger received his MSc degree on
Artificial Intelligence and Signal Processing
from the University of Surrey, UK in 2003 and
his Diploma degree (Dipl.-Ing.) in Electrical
Engineering and Information Technology from
the University of Stuttgart, Germany in 2004.
Since then he is a member of the research staff
at the Institute of Communication Networks
and Computer Engineering, University of
Stuttgart. His major research interests include
the realization of high-speed network nodes,
in particular with Field Programmable Gate

Arrays and network processors.
Martin Köhn received his Diploma degree
(Dipl.-Ing.) in Electrical Engineering and
Information Technology from the University
of Stuttgart in 2002. Since then he is a mem-
ber of the research staff of the Institute of
Communication Networks and Computer
Engineering, University of Stuttgart. Since
2006, he is head of the research group on
optical high-speed networks. His major
research interests include traffic engineering
and network dimensioning of dynamic multi-
layer transport networks.

http://www.endace.com/
http://www.endace.com/
http://www.tcpdump.org
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.ikr.uni-stuttgart.de/Content/UHP/
http://www.ikr.uni-stuttgart.de/Content/UHP/
http://www.altera.com/literature/ds/apex.pdf
http://www.ist-nobel.org/

	Architecture and Scalability scalability of a High-Speed Traffic Measurement Platform high-speed traffic measurement platform with a highly flexible packet classification
	Introduction
	Traffic measurement
	Principles
	Functional Blocksblocks
	Platforms

	I2MP— Concept MP – concept and Architecturearchitecture
	Concept and Overall Architectureoverall architecture
	Hardware Unitunit
	Classification and Filtering UnitFiltering unit
	Protocol Layering Decoder
	Classifier
	Filter

	PC UnitPC-unit

	Scalability
	Theoretical Scalabilityscalability
	Throughput
	Classification criteria and rules

	Numerical Scalability Analysisscalability analysis

	Prototype and Deploymentdeployment
	Implementation of the Hardware unit
	Implementation of the PC-unit
	Deployment

	Conclusion
	Acknowledgements
	References


