Service Placement in Network-aware Cloud Infrastructures

"Visions of Future Generation Networks" (EuroView2009)

Andreas Reifert andreas.reifert@ikr.uni-stuttgart.de July, 28th 2009

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter

Agenda

Motivation

- Can the Cloud host telecommunication services?
- Integrated infrastructure

Service and infrastructure model

Service placement

- Algorithms
- Evaluation methodology

Results

Conclusion

Telecommunication service requirements

Maximal network delay guarantees / Maximal response time guarantees

- Due to
 - Interactivity
 - State lookup
 - Data synchronization
- \rightarrow Particular locations of components
- \rightarrow Specialized components
- \rightarrow Replicated components

Bandwidth guarantees

- Due to
 - Stream transfers
 - Large content transfers
- \rightarrow Particular locations of components
- \rightarrow Specialized components

Telecommunication service requirements

Maximal network delay guarantees / Maximal response time guarantees

- Due to
 - Interactivity
 - State lookup
 - Data synchronization
- \rightarrow Particular locations of components
- \rightarrow Specialized components
- \rightarrow Replicated components

Bandwidth guarantees

- Due to
 - Stream transfers
 - Large content transfers
- \rightarrow Particular locations of components
- \rightarrow Specialized components

Telecommunication services in the Cloud?

Cloud = Infrastructure as a Service Cloud

Decoupling of

- Service Provider
 - is customer of
- Resource Infrastructure Provider (Cloud Provider)

Components

- Loosely coupled
- Placement / location not relevant
- Usually one location
 - Sufficient bandwidth
 - Low inter-component delay

No Network View

- \rightarrow No delay guarantees
- \rightarrow No bandwidth guarantees

5

Service

Resource Infrastructure

IMS – Another real world telecommunication service

Source: Wikipedia

Integrated Infrastructure and Network

BMBF Project MAMS/MAMSplus

- Simple communication service creation and execution environment for non-experts
- ..., Intelligent Service Oriented Network Infrastructure, ...
- Concepts and prototype

Service AND resource management

Integrated view of services, infrastructure, and network necessary

Placement

Strategies

	RAND	NODE	ТОР	OPT
Туре	Random	Greedy	Greedy	Optimal
Principle	Uninformed	Node-based (Only Node resources)	Topology-based (Service and Network inc. resources)	MILP (Mixed Integer Linear Program)

Placement

Evaluation Methodology

Monte Carlo Simulation

- Independent samples with random service placed on random infrastructure/network
- Parameters
 - Allocated resources in infrastructure/network
 - Characteristic of service

		Тороlоду	
		Centralized	Distributed
Total Resource Demand	Heavy-weight 80%		
	Light-weight 20%		

Performance Metrics

- Ability Fraction of non-placed services (Rejection)
- Quality Comparison of total link bandwidth allocation w.r.t. OPT allocation

© 2009 Universität Stuttgart • IKR

A. Reifert. "Service Placement in Network-aware Infrastructures"

0% (Empty) ◀ ► 100% (Full)

Ability to Find Placement – Centralized, heavy-weight service

Centralized heavy-weight service

© 2009 Universität Stuttgart • IKR

Allocated Resources [%]

Ability to Find Placement – Centralized, heavy-weight service

Centralized heavy-weight service

 Low optimization potential

Ability to Find Placement – Centralized, heavy-weight service

Centralized heavy-weight service

 Low optimization potential

Ability to Find Placement – Centralized, heavy-weight service

Centralized heavy-weight service

- Low optimization potential
- TOP close to OPT

→ Service- and networktopology matter

Ability to Find Placement – Distributed, light-weight service

Distributed, light-weight service

- Significant observed differences in algorithmic behavior
- High optimization potential
 - Up to several orders of magnitude
 - Even between TOP and OPT
- → Service- and networktopology matter
- → Simple algorithms leave significant room for improvement

Quality of Found Placement – PRELIMINARY RESULTS

Centralized, heavyweight service

TOP almost optimal

Distributed, light-weight service

- TOP with "acceptable" placements
 If found!
- Behavior of NODE not yet understood
- Improved performance in high occupancy region due to few possible placements

Improvements without modification to routing!

Conclusion

- Current laaS Clouds not prepared for telecommunication services
- Network view essential for channels between components and towards end-systems
 - Delay requirements
 - Required bandwidth guarantees
- Integrated view "Service/Infrastructure/Network" necessary for system management
 - \rightarrow Detailed model
- Placement of components has significant impact on
 - Number of running services
 - Bandwidth consumption
- Good placement algorithms must match service- and network-topology
 - Especially for distributed services
 - TOP leaves room for improvement