
Copyright Notice
c© Springer-Verlag Berlin Heidelberg 2010. This is the authors’ version of the

work. It is posted here for your personal use, not for redistribution. The
definitive version was published in: Networked Services and Applications –

Engineering, Control and Management – 16th EUNICE/IFIP WG 6.6
Workshop, EUNICE 2010, Lecture Notes in Computer Science (LNCS)

6164/2010, Trondheim, Norway (June 28–30, 2010), DOI
10.1007/978-3-642-13971-0 7

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

On Force-based Placement of Distributed
Services within a Substrate Network

Laurie Lallemand? and Andreas Reifert

Institute of Communication Networks and Computer Engineering (IKR),
University of Stuttgart, Pfaffenwaldring 47, D–70569 Stuttgart, Germany

{llallem,reifert}@ikr.uni-stuttgart.de

Abstract. Network Virtualization Environments have great potential
for overcoming the current ossification of the Internet, fostering innova-
tion, and allowing several concurrent architectures to run on the same
physical network. This paper presents a novel physically inspired algo-
rithm for efficiently solving the virtual network embedding problem of
placing a virtual network over a substrate network. Compared to a ref-
erence heuristic, our algorithm shows lower rejection rates and improved
substrate network utilization.

1 Introduction

Internet research is at a crossroads of how to develop, deploy, test, and evaluate
new architectures for next generation infrastructures that address current and
future challenges. Researchers already attribute the current Internet as “ossified”
[TT1] or as an “impasse” [AP1] where network architects can only suggest small
deployable changes due to the Internet’s multi-stakeholders principle, develop
new architectures on a laboratory scale only, or must fall back to overlays with
their inherent limitations.

Network Virtualization Environments (NVEs) [CB1] are new architectural
approaches to overcome the ossification. A large-scale physical substrate net-
work enables the research community to conduct experiments on a similar scale.
Virtualization is the key technology, which offers and isolates the physical re-
sources in form of slices, i. e., partitions of virtual resources. Whether an NVE
is only means (base for architectural research) or end (architectural principle in
itself) is undecided yet. Projects like GENI [PA1] develop such an environment
with the former notion in mind, but the latter not excluded. Such an archi-
tecture would also simplify the deployment of distributed services like video-
conferencing, IPTV, or content-distribution.

The survey of NVEs in [CB1] lists many more related projects and research
directions. One challenge identified is the virtual network embedding problem
that assigns virtual networks to slices over the substrate network. Good al-
gorithms to solve this NP-hard problem are crucial for efficient use of the sub-
strate’s resources. There exist no recommended way on how to solve this problem

? At the time of writing, Laurie Lallemand was a student at the IKR.

best so far. Adaptation of graph theory heuristics of similar problems, application
of simulated annealing, or use of integer linear solvers are current approaches.
Our novel approach translates the problem into the physical domain of an n-
body problem with different force types between the bodies and solve it there.
The resulting algorithm scales polynomially with the problem’s size and yields
good results fast.

2 Problem description and related work

The (virtual) network embedding problem (NEP or VNEP) consists of finding a
mapping of a virtual network Gv = (Vv, Ev) with components Vv and connec-
tions Ev onto a substrate network Gs = (Vs, Es) with nodes Vs and links Es.
The mapping places components onto nodes (mV : Vv 7→ Vs) and implements
connections through paths in the substrate network (mE : Ev 7→ P (Es)). The
sources and destinations of the paths correspond with the respective locations
of components’ nodes.

The substrate network offers resources for the virtual network. In our case,
we consider offered capacity resources of nodes (caps) and offered bandwidth
resources of links (bwl). Components and connections have corresponding re-
source demands (capv and bwe). Our optimization goal is to minimize the used
resources on nodes s and links l, individually weighted with wv,s and we,l:∑

v∈Vv

wv,mV (v) · capv +
∑
e∈Ev

∑
l∈mE(e)

we,l · bwe (1)

The mapping must not exceed the offered resources of the nodes and links:∑
v:mV (v)=s

capv ≤ caps and
∑

e:l∈mE(e)

bwe ≤ bwl (2)

The virtual network is attributed with additional constraints on components
and connections:

– Anchor locations Av ⊂ Vs of component v. Proxy components for ingress/
egress user traffic may only be positioned at certain nodes (mV (v) ∈ Av).

– Max. delay ∆tu,v of a connection (u, v). The corresponding path must not
exceed this delay (∆tmV (u),mV (v) ≤ ∆tu,v).

Figure 1 gives an example of an NEP instance. Both networks are overlaid on
each other. The substrate network consists of the graph with the squared boxes.
The numbered labels indicate the offered resources. The virtual network con-
sists of the graph with the circles. The numbers indicate the resource demands.
Black components are anchored to the specific nodes (|Av| = 1). The remaining
components can have arbitrary locations (Av = Vs). The connection between
components requiring capacities of 3 and 5 has an additional delay constraint.

In our approach we assume equally weighted node and link resources and
precomputed shortest or equal cost multi paths, and thus can transform the

3

0

3

0

3 8

0

2 3

5

5

1

1 5

1

1 1

12

1

1

1

1

1

1

2
0

0

0

2

3
5

3 3

3 8

0 0

0

2 3

5

3 3

3 8

Problem instance Physical model Solution of problem instance

Fig. 1. Example of a network embedding problem instance (left), the corresponding
physical model (middle), and its solution (right)

problem into a physical model with attracting forces between components and
nodes (middle) through charges, springs, and elastic bands. The components
move according to the forces until they find their final locations (right).

NEP algorithms employ various methods. [YY1] begin with a greedy com-
ponent mapping and subsequently solve a multicommodity flow problem for the
connections. They do not take topological information into account in the first
step. [ZA1] apply a similar strategy to individual topological clusters with better
results, but only consider components and connections units as resources in an
unbounded environment. Others, such as [RA1], use simulated annealing. [HL1]
propose an innovative distributed algorithm, but it cannot achieve competitive
performance yet [CB1].

Very recent works take an integrated approach. [LK1] adapt an algorithm
for finding subgraphs in the substrate topology. [CR1] model the problem as
an integer linear program and approximate the solution with LP-relaxation. We
take an integrated approach as well, which adapts a physical force-based model.

Graph drawing algorithms make successfully use of physical force-based mod-
els for finding layouts that intuitively visualize explicit or inherent graph prop-
erties like edge lengths, edge weights or vertex distances in the best possible
way. The model in [KK1] replaces the graph with a rings-and-spring system and
finds a configuration with minimal potential energy. The model in [FR1] applies
attractive forces on edges’ endpoints and repulsive forces on each vertex pair on
a system of particles representing nodes. Our model combines both approaches.

3 Physical model

We replace vertices with charged particles and connections with springs and
elastic bands. Our model is general enough to host additional forces if further
constraints arise.

3.1 Particles

For each node s ∈ Vs with offered capacity caps, we introduce a negatively-
charged particle p−caps (anion). For each component v ∈ Vv with capacity de-
mand capv, we introduce a positively-charged particle p+capv (cation). We denote
the set of anions and cations as P− and P+. Particles are arranged within an n-
dimensional Euclidean space. Currently, we use two dimensions, but our method
applies to arbitrary ones. The space has an Euclidean norm ‖ · ‖ and defines
a distance dp,q between two particles p and q according to their positions. We
overlay the space with a grid of squared cells with identical cell dimensions. The
grid enables efficient lookup of short-distance neighboring particles.

The anions occupy the fixed node positions in the space. Initially, all cations
with only one anchor location are bound to their anchor anion and will stay
fixed there. The remaining cations are free, randomly positioned, and mobile.
We denote the sets of bound and free cations with Pbound and Pfree .

In this physical system, charges express the capacity resources. A p+capv

cation may bind with any sufficiently charged anion q−caps through an reduction-
oxidation reaction if capv ≤ caps. After the reaction, the charge of the anion is
reduced by capv. We will later specify the exact conditions when a cation can
bind (see subsection 4.2).

q−caps + p+capv → q−(caps−capv) + p (3)

3.2 Springs and elastic bands

For each connection e ∈ Ev with positive bandwidth demand bwe, we introduce
a spring between the corresponding endpoints’ cations. The static equilibrium
of such a spring is the unextended state, i. e. the spring has length zero and the
cations are superposed. Its spring constant is the respective bandwidth demand.
Thus, components with a large bandwidth demand come closer: the connection
consumes less bandwidth in the substrate network.

On a real world partially-meshed network, the Euclidean distance between
two nodes is correlated with the shortest path delay between those two nodes.
Using statistical estimation, we can thus model a maximum allowed Euclidean
distance between two delay-restricted components p and q with a linear function
on ∆tp,q. We introduce an elastic band between the respective cations, of length
of the maximal allowed distance between the particles, denoted d∆tp,q . The band
is unstressed when the constraint is not violated. When it is violated, the band
is stressed with global spring constant c.

3.3 Forces and potential energy

The model elements “charged particles”, “springs”, and “elastic bands” exert
forces on the cations components in Pfree. We can consider each individual force
between each individual pair of particles. We have three types of forces FT =

{cap,bw,delay} referred to as capacity-based type, bandwidth-based type, and
delay-based type.

In the following, we consider one special free particle p ∈ Pfree. We denote

the force of type t that another particle q exerts on p with f
(t)
p,q. The force in

the electrical central field of q points to q; the force of the spring or elastic band
points to q, too. The resulting force on a particle is:

f (t)
p =

∑
q∈N(t)

p

f (t)
p,q , F p =

∑
t∈FT

f (t)
p (4)

The magnitude ‖f (t)
p,q‖ depends on the force type, the particle distance, the

charges, and the spring or elastic band constants. Also, not all particle pairs
are relevant. Bandwidth and delay forces only apply between spring and elastic-
band-connected cations. For capacity-based forces we only concentrate on free
cation-anion pairs with the possibility to bind. Thus, each type defines for each

particle p a neighborhood N
(t)
p ⊂ P of relevant counterparts q. Table 1 gives

the magnitudes and neighborhoods for the different force types. wcap, wbw and
wdelay serve to weight the relative effect of forces. Equalling wcap to the area of
the grid and the other weights to unity gives good results.

Capacity-based forces make compatible particles to be attracted to each other.
The formula is inspired from Coulomb’s Law: it is proportional to the product
of charges between the two particles and diminishes quadratically with their
distance. Thus, components are drawn to high capacity nodes, but only within
a certain radius. Components with larger demand reach them faster. As there
is no reason for two components to be spread apart, this capacity force is never

repulsive: N
(cap)
p does not contain other cations. The averages of all negative

and positive charges normalize the force so that its magnitude does not depend
on the problem instance.

Bandwidth-based forces are spring-like interactions between any two cations
that share a connection. The formula is Hook’s Law, for a spring whose static
equilibrium is to be completely retracted and whose spring constant is the nor-
malized bandwidth of the shared connection.

Delay-based forces are the interactions exerted by elastic bands which gets
stretched at the maximum delay distance between any two particles: it is zero
until the delay distance is exceeded; then, it acts as a spring with global spring
constant c, whose static equilibrium is obtained at the delay distance.

Table 1. Forces magnitudes, neighborhoods and associated potential energies

t ∈ FT ‖f (t)
p,q‖ N

(t)
p u

(t)
p,q

cap wcap ·
cappcapq

capavg+capavg−
· 1

d2
p,q

{
q ∈ Ap | capq ≥ capp

}
−dp,q · ‖f (cap)

p,q ‖

bw wbw · bwe
bwavg

· dp,q

{
q ∈ P+ | (p, q) ∈ Ev

}
1
2
· dp,q · ‖f (bw)

p,q ‖
delay wdelay · c ·

(
dp,q − d∆tp,q

) {
q ∈ P+ | dp,q ≥ d∆tp,q

}
1
2
·
(
dp,q − d∆tp,q

)
· ‖f (delay)

p,q ‖

Table 1 also gives the partial potential energies that constitutes the system’s
potential energy differentiated by force type. The potential energy is a relative
measure of the energy stored within the system. The difference in potential
energies between two configurations of a system indicates the work necessary
to get from the first configuration to the second one. If the potential energy is
minimal and the particles are not moving the system is stable.

It derives from the positions of the physical bodies and forces that are ap-
plying on them. In our case, it is calculated as the sum of the individual partial
potential energies that are defined between pairs of particles exerting forces on
each other. Those individual potential energies only depend on the magnitude
of forces and distance between the cation and the force-inducing particles.

u(t)
p =

∑
q∈N(t)

p

u(t)
p,q , Up =

∑
t∈FT

u(t)
p , U =

∑
p∈P+

Up (5)

4 Force-based placement algorithm

The forces determine the dynamic behavior of our system of particles over time.
We consider individual discrete time steps. At each step we calculate the move-
ment of each particle according to the forces, determine the new positions and
reset all velocities to zero.

4.1 Displacement

The linear equations of [KK1] does not apply to our model because we have other
types of forces than spring-based forces. [FR1] describes a simplified model of
displacement with one attractive and one repulsive force types. The displace-
ment step is proportional to the resulting force applying on the particle and is
limited by a temperature. The value of the temperature acts as a cut-off for
the displacement step of each particle. A geometrically decreasing temperature
series T(n) leads to the final configuration, avoiding infinite oscillations.

We take a similar approach to displace free cations, except that our temper-
ature is a scaling factor instead of a cut-off value and that we also use it to avoid

infinite displacement due to infinite-magnitude forces. ∆x
(n)
p is the normalized

displacement of p at time step n:

∆x(n)
p =

T(n)

|P+|
· F p

maxq∈P ‖F q‖
(6)

If one delay constraint is too much violated, i.e. if ‖f (delay)
q ‖ exceeds the cell

length of the grid, then only delay forces apply in the calculation of the next
displacement steps of all particles:

∆x(n)
p =

T(n)

|P+|
· f

(delay)
p

maxq∈P ‖f (delay)
q ‖

(7)

Table 2. Reaction conditions

Condition Description

Charge compatibility capv ≥ caps

Anchoring s ∈ Av

No delay violation ‖f (delay)
p ‖ = 0

Enough underlying bandwidth Connections between all components that correspond
to a cation in Pbound∪{p} must be supported on links.

Proximity dp,q ≤ cellsize
Stability Displacement due to non-electrical forces must be

small (free cation slows down near a good position).

4.2 Reaction conditions

At any time, any couple of particles that meet the requirements of Tab. 2 can

react according to (3). This determines the set P
(n)
react of all free cation-anion

pairs that can react at time step n. Each reaction actually places the component
of the cation on the node of the anion. The electron transfer corresponds to a
reservation of node capacity.

4.3 Stages

Due to the dominance of charge-based forces in the short range, activating all
forces at once leads to mediocre results. Thus, our algorithm consists of two
stages during which free particles move into equilibrium through Alg. 1. The
only difference between the two stages are the forces activated, the temperature
cooling schedule, and that particles can only bind in the second stage.

The first stage starts with all free particles randomly placed. Only band-
width and delay forces are activated. Bandwidth forces leads to the equilibrium
of a spring system. Delay forces ensure that no delay requirement is broken.
This stage is cooled down with positive rate α1,cool < 1 by means of a simple
geometrically decreasing temperature (T(n+1) = α1,coolT

(n)).
The second stage starts from the end position of the first stage. All forces

are activated and cations/components are drawn to anions/nodes. At the end of
each time step, the couple of particles that meet the reaction conditions of Tab. 2
and whose particles are closer to each other react. Because the electrical state
of anions change, cations have to reorganize after each reaction. Hence we need
a more aggressive temperature cooling schedule that cools down very fast (rate
α2,cool < α1,cool) and reheats with factor α2,heat > 1 after one cation has bound
or no cation has found any suitable anion during the current cooling round:

T(n+1) =

{
α2,coolT

(n) if T(n) > thresh ∧ |P (n+1)
free | ≥ |P (n)

free|
α2,heatT

(n) otherwise
(8)

At the end of the second stage, remaining cations, if any, are classified by
charge in decreasing order and greedily forced to react with the nearest anion

Algorithm 1 Displacement algorithm for both stages

Input: P , the set of all particles
Input: x

(0)
p , the initial position of particles

Input: T(n), a series of temperatures
Input: C(n), a series of stopping conditions
1: n← 0
2: repeat
3: n← n+ 1
4: for p ∈ P do {calculate forces and potential energy}
5: for t ∈ FT do
6: Calculate f

(t)
p according to (4)

7: end for
8: Calculate u

(t)
p according to (5)

9: end for
10: if not C(n) is met then {displace particles}
11: for p ∈ P (n)

free do

12: Calculate ∆x
(n)
p according to (6) or (7)

13: x
(n)
p ← x

(n−1)
p +∆x

(n)
p

14: end for
15: end if
16: if P

(n)
react 6= ∅ then {bind particles}

17: Choose random (p, q) ∈ arg min
(p,q)∈P (n)

react

{dp,q}
18: Bind p to q according to (3)
19: end if
20: until C(n) is met

for which all reactions conditions except the last two are fulfilled. If some cations
are left after this process, the placement fails.

Each stage must stop once all forces are equilibrated. When this happens, the
system is near a stable state of low potential energy, which means that the current
position of particles is a satisfying compromise regarding initial requirements.
In [KK1], the algorithm stops when the potential energy is under a not further
specified threshold. In [FR1], it stops after an experimentally found fixed number
of moves. Unfortunately, both thresholds are problem-specific in our model.

Thus, we stop a stage when the magnitude of the averaged resulting force
for the last moves is low for most particles. This condition has the advantage of
treating particles that are not moving anymore and particles that are infinitely
oscillating equally. Sometimes, particles have not enough time to arrange them-
selves so that this first condition is met. To avoid loosing time while the system
does not evolve anymore, we also end a stage when the average variation of po-
tential energy for the recent last moves is low enough. C(n) aggregates all those
conditions into one stopping criterion.

cap 50v
cap 25v

Fig. 2. Comparison of rejection rates (grey) and bandwidth consumption (black) of
our force-based algorithm (FB) with a best-node-first heuristic (BNF) and optimal
solutions (OPT)

5 Evaluation

Our evaluations compare the performances of our force-based algorithm (FB)
in different scenarios with the greedy best-node-first heuristic (BNF) of [YY1]
and, for small instances only, with the optimal solution (OPT). For OPT we
developed a mixed integer linear program formulation and solved it with SCIP
[Ko1], with almost prohibitive running times for the generated instances already.

5.1 Evaluation scenarios

We based our evaluations on Monte-Carlo simulations with 100 or 500 problem
instances per diagram value. Our networks are undirected graphs.

For each problem instance, we generate random substrate network graphs Gs

of 10 or 50 nodes according to the Waxman model [Wa1] with parameters α = 0.1
and β = 0.9. Node capacities are uniformly distributed integers within [10, 50].
Links have infinite available bandwidth. Our virtual network Gv is an Erdös-
Rényi [ER1] random graph with a variable number of non-anchored components
from 2 to 80 and a 25% connection probability between two components. Com-
ponent capacities are uniformly distributed integers within [10, 25] or [10, 50].
Each of those non-anchored components has a 30% chance of being connected
to a proxy, modeled by an additional component anchored to a single node.

5.2 Comparison

Both diagrams of Fig. 2 display the results of our experiments, in particular
rejection rates, as light grey markers with associated logarithmic axis on the
right, and bandwidth consumption, as blacks markers with associated axis on
the left. OPT results appear as upwards triangles, FB results as diamonds and
BNF as downwards triangles. The capacity consumption is always the same
regardless the algorithm, and therefore not included.

Our first scenario concerns small problem instances (Fig. 2, left). We inde-
pendently compare FB and BNF with the optimal solution and thus only can use

100 problem instances per diagram value. Independent means that for bandwidth
consumption we consider non-rejected instances of any algorithm irrespective of
any other. In our case, for FB we always consider at least the same instances as
for BNF. Each substrate network has 10 nodes. There are 2 to 20 components
with required capacities in the interval between 10 and 25.

With increasing virtual network size, we observe a growth in the rejection
rates, the rejection rate of FB being much lower than that of BNF. The rejection
rate of FB is actually closer to OPT than to BNF. Rejection is low – below 10%
– for at most 8 components in BNF, for at most 11 components in FB, and for
at most 12 components in OPT. In this area, FB’s rejection rate is below one
fifth of BNF’s one.

With increasing virtual network size, the averaged normalized bandwidth
consumption with respect to OPT decreases. The main contributing factor for
this decrease is the reduced probability of finding really bad placements. For this
reason, meaningful bandwidth consumption results concerns only areas with a
low rejection rate. The bandwidth consumption of FB is 2 to 4 times higher than
the optimum value, and at most 75% that of BNF in independent comparison.
Further investigation revealed that if we compare only problem instances that
have been accepted by both BNF and FB directly, FB bandwidth consumption
even drops below 40% of that of BNF.

Our second scenario deals with large problem instances and compares FB
and BNF directly (Fig. 2, right). We could not run OPT anymore in reasonable
time. We use 500 problem instances per diagram value. Each substrate network
has 50 nodes. There are 4 to 80 components with required capacities between 10
and capv with capv = 25 or 50.

Again, FB rejects significantly less problems than BNF. For the small capac-
ities configuration, the rejection rate of FB is below 10% as long as the number
of components is below 72. BNF already exceed this threshold with more than
40. For the high capacity configuration, the limit is 4 components for FB, while
BNF always rejects more than 10% problems. Concerning bandwidth consump-
tion, the bandwidth consumption of FB is always less than 80% that of BNF in
low rejection areas for both components’ capacities configurations.

6 Conclusion

Network Virtualization Environments are a promising approach for large-scale
Internet network architecture experimentation and can also form the base of a
future Internet architecture on its own. One challenge there is solving the NP-
hard network-embedding problem. We transposed such problem instances into a
physical system with charged particles, springs and elastic bands, and designed
a force-based placement algorithm inspired from graph layout algorithms. How-
ever, our model introduces more attractive force types. Therefore, our algorithm
runs in two stages instead of just one. Our approach currently supports capac-
ity and bandwidth offers/demands as well as delay constraints. It can be easily
extended through additional force types.

Monte-Carlo simulations indicate that our algorithm improves the rejection
rate and the bandwidth consumption over a BNF heuristic, while still being
scalable to large problem instances in terms of running time. In particular our
force-based algorithm rejects less instances of hard problems than the heuristic,
and significantly less instances of average difficulty. In the latter case, average
bandwidth consumption obtained by the force-based algorithm is at least 20%
lower than the independent results of the BNF heuristic. In direct comparison, it
is even at least 60% lower. In small simulation scenarios where we could obtain
the optimum solutions, our algorithm consumes twice the optimal bandwidth.

References

[AP1] Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet Impasse
through Virtualization. IEEE Computer 38(4), 34–41 (2005)

[CB1] Chowdhury, N.M.M.K., Boutaba, R.: A survey of network virtualization. Computer
Networks 54(5), 862–876 (2010)

[CR1] Chowdhury, N.M.M.K., Rahman, M.R., Boutaba, R.: Virtual Network Embedding with
Coordinated Node and Link Mapping. In: IEEE Conference on Computer Communications
(INFOCOM 2009), April 19–25, pp. 783–791 (2009)

[ER1] , Erdös, P., Rényi, A.: On Random Graphs. Publicationes Mathematicae Debrecen 6,
290–297 (1959)

[FR1] Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exper., 21(11), 1129–1164 (1991)

[HL1] Houidi, I., Louati, W., Zeghlache, D.: A Distributed Virtual Network Mapping Algo-
rithm. In: IEEE International Conference on Communications (ICC 2008), May 19–23, pp.
5634–5640 (2008)

[KK1] Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs.
Inf. Process. Lett. (1), 7–15 (April 1989)

[Ko1] Konrad-Zuse-Zentrum für Informationstechnik Berlin: SCIP—Solving Constraint Inte-
ger Programs, http://scip.zib.de/

[LK1] Lischka, J., Karl, H.: A Virtual Network Mapping Algorithm based on Subgraph Iso-
morphism Detection. In: Proceedings of the 1st ACM workshop on Virtualized infrastructure
systems and architectures (VISA 2009), August 17, pp. 81–88 (2009)

[LT1] Lu, J., Turner, J.: Efficient Mapping of Virtual Networks onto a Shared Substrate (2006)
[PA1] Peterson, L., Anderson, T., Blumenthal, D., Casey, D., Clark, D., Estrin, D., Evans, J.,

Raychaudhuri, D., Reiter, M., Rexford, J., Shenker, S., Wroclawski, J.: GENI Design Prin-
ciples. IEEE Computer 39(9), 102–105 (2006)

[RA1] Ricci, R., Alfeld, C., Lepreau, J.: A Solver for the Network Testbed Mapping Problem.
ACM SIGCOMM Computer Communications Review 33(2), 65–81 (2003)

[TT1] Turner, J. S., Taylor, D. E.: Diversifying the Internet. In: IEEE Global Telecommuni-
cations Conference (GLOBECOM 2005), November 28–December 2, pp. 755–760 (2005)

[Wa1] , Waxman, B.M.: Routing of Multipoint Connections. IEEE Journal on Selected Areas
in Communications 6(9), 1617–1622 (1988)

[YY1] Yu, M., Yi, Y.,Rexford, J.,Chiang, M.: Rethinking Virtual Network Embedding: Sub-
strate Support for Path Splitting and Migration. ACM SIGCOMM Computer Communica-
tion Review 38(2), 17–29 (2008)

[ZA1] Zhu, Y., Ammar, M.H.: Algorithms for Assigning Substrate Network Resources to Vir-
tual Network Components. In: INFOCOM 25th IEEE International Conference on Computer
Communications, Proceedings, pp. 1–12 (2006)

