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Abstract—In cellular OFDMA networks, there exists a fun-
damental trade-off between the achievable cell capacity and the
degree of fairness among the users in the cell. Several scheduling
algorithms have been proposed which try to balance this trade-
off. The parameterization of these scheduling algorithms to
achieve a certain desired fairness level is non-trivial. We show
that the optimal fairness parameter settings depend on the system
state, such as the current cell load. Our main contribution is
a design of a self-optimizing scheduler architecture which in-
cludes a controller element that dynamically adjusts the fairness
parameters of the scheduler. We demonstrate that with this
design, an operator-defined reference fairness level is maintained
in scenarios with fluctuating load and thus cell throughput can
be improved. It is applicable for a class of proportional fair
scheduling algorithms and can be adapted to other algorithms
allowing to influence the fairness level.

I. INTRODUCTION

In modern cellular networks, such as the 3GPP LTE net-
works, channel-aware schedulers allow to exploit user diversity
by preferably serving users that experience good channel con-
ditions. A recent classification of such opportunistic schedulers
can be found, for example, in [1]. A further possibility to
increase throughput in OFDMA networks is achieved with
frequency-selective scheduling [2]. In addition, operators seek
for solutions to achieve a frequency reuse close to one to obtain
a high spectral efficiency. Proposals in this direction include
soft reuse schemes, reuse partitioning and other forms of inter-
cell interference mitigation [3].

While all of these techniques undoubtedly increase the
system capacity, care has to be taken that this improvement
is not realized at the expense of users in unfavorable channel
conditions. A prominent example is the max-C/I scheduler,
which only allocates resources to the user with the best chan-
nel conditions. This allows achieving large gains in system
capacity, but usually leads to a starvation of users at the cell
borders, where channel conditions are worse than in the center
area of a cell. Therefore, the max-C/I scheduling algorithm is
generally considered unfair. There is thus a fundamental trade-
off between a fair allocation of resources and an increase in
system capacity from opportunistic scheduling.

In commercial networks, the degree of fairness is an op-
erator’s choice. Finding the parameter setting for a given
scheduling algorithm such that the operator’s requirements
are met is non-trivial. The parameters usually depend on

scenario constraints such as the current cell load and other
cell-individual boundary conditions.

In this paper, we show that the optimal scheduler param-
eterization for a certain class of proportional fair schedulers
depends on the cell load. We argue that a base station shall
be able to dynamically adapt the scheduler’s parameterization
to the current boundary conditions and present a design of a
control element which carries out this adaptation. We show
that the desired fairness level is maintained under various
system conditions, irrespective of the initial parameter settings
of the scheduler.

The remainder of this document is structured as follows:
Section II introduces the scheduling algorithm considered
here. Section III reviews some related work in this area and
section IV describes our simulation model. In section V, we
first present simulation results for an LTE cell with static
scheduler parameterization and show the influence of varying
system load. Section VI then describes the proposed controller
algorithm and demonstrates that a pre-configured degree of
fairness is maintained under changing load situations. Finally,
section VII concludes this article.

II. SCHEDULING ALGORITHM AND FAIRNESS

The scheduling algorithm considered here is a modified
version of the Proportional Fair with Minimum/Maximum
Rates (PFMR), as proposed in [4]. The key characteristics of
the algorithm are briefly reproduced here:

Users are selected for a time-frequency resource (e.g. LTE
resource block) by maximizing the respective scheduling
weight in the following formula:

user = argmax
j

(
eγjTj

Rj

Rj
α

)
(1)

with j being the user index. The modification of the
algorithm proposed by [4] consists in the introduction of the
α parameter to the proportional fair term in equation (1)
to achieve tunable fairness. The α-fairness parameter was
initially proposed by [5] for transport layer protocols.
Rj is the achievable rate in the current transmission time

interval (TTI). Rj is the exponential moving average of the
rate per resource block in previous TTIs, with forgetting factor
β and µj being the rate at which user j was served in the last
TTI:
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Fig. 1. Cumulative distribution function of normalized user throughput
showing fairness for different α-values and MBR = 0 kbps (30 Users)
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Fig. 2. Cumulative distribution function of normalized user throughput
showing fairness for different α-values and MBR = 200 kbps (30 Users)

Rj(t+ 1) = (1− β)Rj(t) + βµj(t) (2)

As proposed in [4], the minimum bit rate (MBR) constraint
is implemented with a token counter Tj and a parameter γ > 0,
which contribute to the scheduling weight in equation (1). The
token counter is updated according to:

Tj(t+ 1) = max {0, Tj(t) +MBR− µj(t)} (3)

Please note that the minimum throughput requirement does
not need to be met for all users at a time. It is a flexible
mechanism which allows ensuring the minimum bit rate on
longer time scales, i. e. multiple TTIs.

The motivation for combining PF with an MBR constraint
is to allow operators to ensure a minimum degree of service
to all users. The MBR has to be chosen such that basic
communication is possible. This improves the availability of
the operator’s service even for users under unfavorable channel
conditions and thus increases user satisfaction. Note that for
MBR = 0 kbps the algorithm is the same as a pure PF
algorithm.

While the scheduling algorithm contains several other pa-
rameters, we focus on the parameters α and MBR, which both
influence fairness. We expect the MBR parameter to be a fixed
value that is predefined by the operator, e.g. per QoS class.

Fairness can be defined in a number of ways. Frequent
assumptions on fairness constraints are a resource-fair or
throughput-fair allocation of resources, meaning that all users
get the same amount of frequency-time resources, respectively
that all users achieve the same throughput, independent of
their long-term average channel quality. The Next Generation
Mobile Networks (NGMN) alliance, a consortium of different
mobile network operators and vendors, has formulated a
different fairness requirement [6]. It can be expressed as:

“A system is fair, if 100-x% of the users achieve at least
x% of the normalized user throughput”

This metric has also been adopted by 3GPP as one of the
performance metrics for the verification of the LTE perfor-
mance gains compared to HSPA [7]. For the work presented
here, we use the NGMN fairness metric as our reference.

III. RELATED WORK

The task of a well known PF scheduler proposed e.g. in [8]
is the balancing of the trade-off between fairness and system
capacity: the current channel quality is weighted with a long-
term average of the channel quality seen by a user. Such
a scheduler is considered long-term fair. The authors of [9]
extend a PF scheduler by additional weighting factors to
adjust the level of fairness. They discuss the trade-off between
fairness and system throughput for an OFDMA system, but
do not adapt these weighting factors in a running system.
In [4], the authors show that the parameterization of PF-like
schedulers depends on cell load, but also do not consider
dynamic adaptation of these parameters.

Within the work item Self-Organizing Networks (SON),
3GPP is currently studying and specifying concepts for self-
configuring and self-optimizing of the Evolved Universal Ter-
restrial Radio Access Network (E-UTRAN) [10]. Base station
internal algorithms, i.e. the problem addressed here are not yet
covered by 3GPP or NGMN.

The EU funded project Socrates presented the results
of scheduler parameter optimization to the NGNM SON-
subgroup [11]. They analyzed the impact of the moving
average parameter β and came to the conclusion that the
potential for self-optimization of β is not very significant.
This is consistent to the findings of the authors and the reason
why we focus on α and MBR parameters. To the best of our
knowledge, so far no other publication deals with adaptive
configuration of α-fairness parameters for wireless schedulers.

IV. SIMULATION MODEL

Our simulator is based on the IKR Simulation Library [12].
We use a seven-site scenario consisting of a center cell and
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Fig. 3. Mean user rate for varying MBR and α (30 Users)
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MBR = 200 kbps)

one tier of hexagonally arranged interfering cells. In the
simulation, we evaluate the scheduling in the center cell. We
assume omnidirectional antennas and a reuse one scenario with
full buffers, which means that all base stations transmit at
full power and always have enough data to occupy the whole
bandwidth. As we want to analyze the scheduling behavior in
the base station, only the downlink is considered. Feedback
which is sent in the uplink direction is assumed to be ideal.

The simulation is organized in so-called “drops”. For each
drop, user locations in the center cell are chosen randomly with
uniform distribution. The simulation time of a drop consists of
a warm-up phase of 150 ms and a measurement phase of 1 s,
respectively 1000 TTIs. On this short time-scale, it is possible
to assume a fixed user location, while user mobility is modeled
for the radio channel by means of the Doppler shift. To get
statistically meaningful results, a large number of drops (60)
are simulated for each parameter setting.

The channel is modeled by path loss, shadowing and fast
fading. Hereby, path loss and shadowing are constant during
one drop. Fast fading is modeled by a varying Rayleigh fading
trace and the assumption of the ETSI Vehicular A model [13].
A summary of simulation parameters can be found in table I.

In LTE, the number of users which can be scheduled in one
TTI is limited due to signaling overhead. For our simulations,
we assume that at most 10 users can be scheduled in the
same time-slot for a system bandwidth of 10 MHz. For all
users, a scheduling weight is calculated for each resource
block depending on the channel quality the respective user
perceives in the current resource block. The mechanism to
select the users to be scheduled in a TTI compares the top five
resource block weights of all users. The users with the largest
sum of these weights are selected for scheduling. Resource
allocation is done in a subsequent step and compares just the
weights of the respective resource block.

TABLE I
SIMULATION PARAMETERS

Parameters Model Assumptions
Baseline parameters 3GPP [14] / NGMN [6]
Inter-site distance 1000 m
Channel model COST 231 HATA path loss

Gudmundson shadowing
Rayleigh Fading (Vehicular A)

Shadowing std. deviation 8 dB
Bandwidth 10 MHz
Central frequency 2 GHz
Doppler shift 10 Hz
SINR clipping -5 dB < SINR < 26 dB
Scheduling granularity 1 ms · 180 kHz

(1 resource block)

V. SCHEDULER PERFORMANCE WITH STATIC
PARAMETERIZATION

Before describing the design of a controller which is able
to adjust the scheduling parameters, we first evaluate the
influence of the parameters MBR and α on the scheduler
performance, especially throughput and fairness.

A. Influence of scheduling parameters

The selected scheduling algorithm has two parameters,
namely MBR and α, which both influence fairness and which
complement each other. This behavior can be seen in Fig. 1
and 2 which show the cumulative distribution function (CDF)
of the user rates, normalized to the mean user rate. In the CDF
plot of the normalized user throughput, the NGMN fairness
requirement is represented by a line through the origin (dashed
line in Fig. 1). A CDF lying completely on the right hand side
of the NGMN fairness requirement is considered fair.

Fig. 1 shows the results for a pure PF scheduler without
MBR-constraints and 30 active users in the center cell. We
can see that fairness increases with increasing α. To achieve a
fair system in this scenario, α ≈ 1.2 is needed. For Fig. 2, the
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Controller

Scheduler

Controlled Scheduling Parameters

Measured Values

User Rates

Fairness Quantiles

Decision Block
 (contains fairness policy) Resource allocation

External disturbances

Fairness
Determination

(e.g. system load,
   channel conditions)

Reference fairness
requirement
(operator/NGMN)

Fig. 6. Design of controller internal blocks and the closed-loop
feedback system

MBR parameter has been changed to 200 kbps. This largely
influences the impact of α on the system’s fairness. With this
MBR setting, α = 0.8 is already sufficient for a fair system.

Fairness always comes at the cost of a loss in overall cell
throughput. This can be seen in Fig. 3, where the mean
user rate for different MBR settings is plotted against α.
Both, an increase of MBR and α, lead to a reduction in the
mean user rate and thus also to a reduction of the total cell
throughput. The different slope of the curves in Fig. 3 shows
the interworking between MBR and α. The more fairness
is ensured by a higher MBR, the lower is the impact of
an increased α (and the other way round). For a pure PF-
scheduler, the influence of increasing α is still visible but less
dominant.

B. Influence of system load

System load here is defined as the number of active users
in the cell. With an increasing number of users, the scheduler
has more difficulties in satisfying all user demands.

Fig. 4 demonstrates what happens, if the scheduling param-
eters remain constant while the load changes. The influence
of the MBR constraint increases with the number of users,
because the amount of granted resources, given by the product
users ·MBR, increases. This means that for a constant α and
MBR, the system tends to get fairer with increasing number
of users. As a consequence, the operator-defined fairness
requirement is exceeded and the cell throughput is lower than
it could be with a smaller value of the α parameter.

System load is just one boundary condition. Other boundary
conditions like cell geometry, user distribution or sudden
changes in channel conditions, for example, can influence
the optimal parameter setting as well. The set of boundary
conditions is individual for each cell.

C. Estimated Gain from Adaptive Parameterization

For the case of changing system load, we can derive a rough
estimate of the potential gain in terms of system throughput
from adaptive parameterization under the assumption that the
operator wants to ensure a certain fairness level all the time.
To get a reference value of α in a static system for a given

MBR, we choose the α-value that showed to be fair for
all user configurations we simulated. This corresponds to a
very conservative parameter setting, such that the system is
fair over a wide range of scenarios. We calculate the gain
of adaptive parameterization as the ratio between the cell
throughput achieved with optimal parameter setting αopt and
the cell throughput of the static setting αref .

The estimated gains for various system loads in terms of
different numbers of users are given in Fig. 5. Please note
that these gains constitute an upper bound due to idealized
signaling assumptions and the rather conservative choice of
the reference α-value.

VI. SCHEDULER PERFORMANCE WITH ADAPTIVE
PARAMETERIZATION

From section V, we have seen that the optimal value of α for
a given MBR depends on the system load. The results suggest
that significant gains in cell throughput can be achieved with
an adaptive α parameter. In this section, we demonstrate the
design of a controller that dynamically adjusts α and present
simulation results showing its benefits.

A. Controller Design

Fig. 6 shows the basic structure of our controller. An
important issue is to design the algorithms to be robust against
external disturbances. It is thus designed as a closed-loop
feedback system.

The scheduler constitutes the executing and observing en-
tity. It reports the user rates to the controller, which in-turn
adapts the parameter setting of the scheduler.

The advantage of measuring the user rates is that no addi-
tional measurements are needed, given that the user rates are
already known to the scheduler. The user rates are processed in
the controller to obtain the fairness metric. For the evaluation
of the NGMN fairness requirement, the quantiles of the user
rates are needed, but other metrics are imaginable, too. The
fairness metric is then forwarded to the decision block, where
it is matched against the fairness policy which is provided by
the operator. The decision block reacts on a fairness mismatch
by changing the α parameter of the scheduler.
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It is important to state that the controller operates on a
longer timescale than the scheduler. The controller’s task is
to adapt the scheduler’s parameters to changes in cell load
and other external constraints. It should hence operate on
a timescale comparable to the variation of these external
constraints. If both the scheduler and the controller were
operating at the same timescale, the whole system would be
prone to instability and oscillations.

A further possible enhancement of the controller is the
handling of different traffic classes with different fairness/QoS-
requirements. In this case, multiple instances of the controller
exist in parallel and the scheduler instance has to perform the
reporting of user rates on a per traffic class basis.

B. Fairness determination & regulation

In our implementation, we transform the observed user rates
into rate quantiles to check them against the fairness require-
ment. This is done continuously by dividing the observations
into sampling intervals. At the end of an interval, the quantiles
of the user rates measured in this interval are calculated and
matched against the fairness requirement. If necessary, α is
decreased or increased.

During one sampling interval it may occur that only very
few users (e.g. in the order of ten) are active in the cell.
This means that the obtained empirical distribution function
is very coarse-grained. To cope with this problem, we do a
linear approximation of the CDF between the 40%-ile and
the 70%-ile, where the slope of the CDF is known to fit
rather well to the fairness requirement. The approximation is
done by determining the linear function minimizing the mean
square error to the observed quantiles in the specified range
as demonstrated in Fig. 7. The advantage of this method is,
that outliers of very good and very bad channels are neglected,
which makes the controller decision more robust.

We determine the step size for changes of α in relation
to the area between the fairness observation and the fairness
requirement. If the approximated line crosses the fairness

requirement between the specified quantiles or lies completely
left of the fairness requirement, the area left of the requirement
is considered and α is increased relatively. If the line lies
completely right of the fairness requirement in between the
regarded quantiles, α is decreased proportionally to the lowest
distance between observation and requirement. This way, it is
possible to stabilize the control-loop around the optimal point
of operation.

C. Simulation Results

To evaluate the performance of our controller, we conducted
simulations with different load situations. The controller sam-
pling interval is 100 ms. In order to allow the feedback system
to stabilize, we simulated each drop with 1 s warm-up phase
and 10 s simulation time. The scenario considered for the
CDFs in Fig. 8 is identical to the one of Fig. 4, except for
the adaptive parameterization. It can be seen that the controller
achieves a fairness level very close to the NGMN requirement,
irrespective of the initial settings.

Figure 9 demonstrates the capability of the scheduler to
adapt to changing load situations. It shows the evolution of
α over the simulation time with a sampling interval of 1 s.
After 50 s, the number of active users changes from 15 to 30,
requiring a different fairness setting. For a pure PF-scheduler
(without MBR), α needs to be increased to maintain the
fairness requirement. For an MBR of 200 kbps or 400 kbps,
α can be reduced, which increases system throughput while
the fairness requirement is preserved. The gain with respect
to a static configuration ranges between 7% and 14% in this
scenario. This is because a static configuration is sub-optimal
half of the time.

The evolution of the controlled α-parameter shows that the
controller is able to adapt the scheduler to changes in the
load situation and to long-term changes in radio propagation
conditions.
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D. Stability of the Controller

In order to test the stability of the controller, we also
simulated fluctuating traffic instead of full buffer traffic. It
showed that fast fluctuations of users, i.e. many users being
switched off and new users being switched on, may impair
the fairness measurement and lead to a distorted regulation.
To cope with this problem, our simulations showed that it
is sufficient to increase the sampling interval to a reasonable
value. It is enough to have the sampling interval in the order
of seconds. Then, all channel oscillations and user fluctuations
will be attenuated sufficiently.

Furthermore, the stability of the controller depends on the
stability of the scheduling algorithm. If the fairness adjusting
parameter of the scheduler is not able to increase or decrease
fairness as expected anymore, also the controller actions will
not have desired effect anymore. In this case, however, this
will not lead to an unstable behavior. If the system is very fair
(e.g. because all users have comparable channel conditions), α
will be decreased to zero where it is bounded. This means the
scheduler behaves as a max-C/I scheduler, which is the best
choice in this case. In the other direction, a larger α always
leads to a fairer system up to equal-rate scheduling (which
is inherently fair), so the controller will remain stable. If the
controller is to be applied for different scheduling algorithms,
the stability of the respective scheduler needs to be considered.

VII. CONCLUSIONS

The parameterization of a scheduler has strong impact
on the fairness perceived by the users. In accordance with
other authors, we showed that the optimal parameterization
of a scheduler that meets certain operator-defined fairness
requirements depends on external, cell-individual constraints
such as the current number of users.

We proposed the application of a controller that is able to
automatically adjust the scheduler parameters and estimated
the potential gain from such an adaptive parameterization.
We presented a basic implementation of a controller which

continuously adapts fairness parameters of an α-fair scheduler
to the current load situation of a cell. This allows a cell
to always deliver maximum throughput, while the service-
class dependent fairness requirements set by the operator are
preserved. The estimated gains were in good accordance with
the results of the actual controller implementation. Please note
that the demonstrated controller concept is not limited to the
specific scheduling algorithm considered here. Any scheduling
algorithm offering parameters to control the shape of the
fairness CDFs can be controlled in a similar way.

This self-optimization of scheduler parameters is especially
advantageous in actual network deployments with irregular
cell shapes, where the optimal parameter setting differs from
cell to cell. Consequently, high gains can be expected for the
overall system throughput while still maintaining a predefined
fairness level.
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