
Titel / Title

Verfasser /
Author(s)

Interner Bericht / Internal Report

Datum / Date

Umfang / Size

Quelle / Source

Schlüsselworte /
Keywords

Kurzfassung / Abstract

Beitrag der Arbeit / Achievement

Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Andreas Kirstädter

Nº 57

Batch-Level Parallelism with the IKR SimLib

M. Proebster, C. Blankenhorn, C. M. Mueller,
J. Sommer, T. Werthmann

15.04.2010

7 Seiten / Pages

SimLib, Batch-Mean, Parallel Simulation

Different possible levels for parallelization of simulations are introduced and explained shortly. An

overview of the SimLib is given and the concept of batch-level parallelism is explained.

A current trend in the performance evaluation of communication networks is the increasing com-

plexity of simulation models. This particularly applies to wireless communication networks, where

effects on different lower layers cannot be decoupled anymore. This results in higher computation

cost and thus leads to longer execution times. Nowadays, single processor cores do not become

significantly faster anymore. Only integrating more and more cores in a single processor can

further increase the processing power. Parallelization can utilize the multi-core environment to

reduce the simulation running times.

We discuss multiple levels of parallelism in event-driven simulations. We then focus on batch-level

parallelism, which is a convenient way to distribute batches to several processor cores without the

need for synchronization. We present the implementation of batch-level parallelism in our insti-

tute's simulation library.



Batch-Level Parallelism with the IKR SimLib

Magnus Proebster, Christian Blankenhorn, Christian M. Mueller,
Jörg Sommer, Thomas Werthmann

Universität Stuttgart
Institute of Communication Networks and Computer Engineering

Pfaffenwaldring 47, Stuttgart, Germany

magnus.proebster@ikr.uni-stuttgart.de

ABSTRACT
A current trend in the performance evaluation of commu-
nication networks is the increasing complexity of simulation
models. This particularly applies to wireless communication
networks, where effects on different lower layers cannot be
decoupled anymore. This results in higher computation cost
and thus leads to longer execution times. Nowadays, single
processor cores do not become significantly faster anymore.
Only integrating more and more cores in a single processor
can further increase the processing power. Parallelization
can utilize the multi-core environment to reduce the sim-
ulation running times. In this paper, we discuss multiple
levels of parallelism in event-driven simulations. We then
focus on batch-level parallelism, which is a convenient way
to distribute batches to several processor cores without the
need for synchronization. We present the implementation of
batch-level parallelism in our institute’s simulation library.

1. INTRODUCTION
Discrete, event-driven simulation often is the only way to
evaluate the performance of new communication protocols,
algorithms, or systems. In many cases, lab experiments with
prototypical implementations are unfeasible, either because
the technology under evaluation is not yet available, or be-
cause the scale of the experiment exceeds the capabilities
of the lab environment. Analytical evaluation also quickly
becomes intractable, e. g. if the variables and parameters
are too numerous, the system is highly non-linear, or the
distribution functions are unknown. The key to a sound
simulation study that provides valuable insight is to create
a credible simulation model at the right level of abstrac-
tion. The researcher has to decide which aspects of a com-
plex real-world system to consider in the simulation model.
Guidelines for modeling and validation of the models can be
found in chapter 5 of [12] and the references therein.

Recent developments in wireless and wireline networks re-
quire simulation models that span over large parts of the
protocol stack. In wireless networks, techniques such as

channel-dependent scheduling, coordinated multi-point trans-
missions, interference coordination, and others couple effects
on the physical layer with actions on the MAC and radio re-
source management layer [16]. Furthermore, performance
gains of promising physical layer algorithms need to be in-
vestigated under different traffic patterns and in scenarios
with multiple base stations and users. In wireline networks,
the development of new transport protocols for the Inter-
net often requires integrating the whole protocol stack of an
operating system in the simulation model, e. g. the Network
Simulation Cradle [1] follows this approach.

The necessity to take additional cross-layer effects into ac-
count leads to more complex simulation models. This trans-
lates to higher computational cost, which results in longer
execution times when no counteractions are taken. While in
the past, the continuously increasing computation power of
general purpose CPUs helped to deal with this complexity,
the situation today is different. The computation power of a
single processor core does not increase at the same speed as
it used to in the past. Instead, chip designers integrate ad-
ditional processor cores on a single die. However, the simu-
lation of communication networks cannot benefit from more
cores as straightforward as simulations in other disciplines,
such as fluid dynamics or climate models.

In this paper, we discuss different levels of parallelism for
event-driven simulation with their advantages and disad-
vantages. We then focus on what we call batch-level paral-
lelism, which allows distributing multiple batches of a single
simulation run to a number of processor cores or different
machines. Batches here refer to the widely applied batch-
means-method, where a simulation is composed of a tran-
sient phase and the actual measurement phase, which is fur-
ther subdivided into several intervals [12]. These intervals,
denoted as batches, are treated as independent observations
of the desired measurement value, from which a mean value,
confidence intervals, and other statistical properties can be
calculated.

While a simulation study usually consists of several simu-
lation runs, each of which is composed of several batches,
batch-level parallelism makes sense if the number of pro-
cessor cores exceeds the number of simulation runs or if
there are specific parameterizations that require significantly
longer execution times. Another possible field of application
is the design phase of algorithms, which usually is an itera-
tive process. Here, quick performance estimates are desired



without having to wait for hours or days until an entire sim-
ulation study completes. A simulation tool that supports
batch-level parallelism is particularly useful if the simulation
model, its implementation, and the output data analysis re-
main unchanged, irrespective of whether the simulation is
run on a single or on many cores. Another important prop-
erty is the flexibility in the number of cores, i. e. whether a
simulation run with 20 batches can be distributed to one,
two, or a dozen of cores.

The remainder of this document is organized as follows: In
section 2, we discuss possible levels of parallelization for dis-
crete, event-driven simulation of communication networks.
In section 3, we give an overview of the IKR SimLib, which
is our institute’s simulation library. Our main contribution
lies in section 4, where we focus on batch-level parallelism
and describe how it is integrated in our simulation library.
Finally, section 5 concludes this work.

2. PARALLELIZATION CAPABILITIES
As discussed above, parallelization can be utilized to reduce
the runtime of simulation studies in comparison to a sequen-
tial execution. It further makes efficient use of distributed
processing resources, e. g. in multi-core environments. Par-
allelization can be performed on different layers. Without
touching the simulation model itself, different parameteri-
zations can be evaluated in parallel. If the method of in-
dependent replications [12] is used, the execution of these
independent replications can also be distributed onto differ-
ent processing cores. Further parallelization can be achieved
by distributing the simulation model by components or even
single algorithms of the simulator. The advantages and dis-
advantages of these approaches will be discussed in the fol-
lowing paragraphs. A good reference for parallel simulation
can be found in [9].

2.1 Parameter Level
Most simulation studies evaluate performance criteria in de-
pendence on parameters. Therefore, it is common to per-
form multiple experiments with different parameter sets.
These experiments are independent and can therefore be
executed in parallel on multiple processor cores or different
computers without additional synchronization overhead. A
parallelization limit on this level is the number of parameter
sets.

2.2 Batch Level
To obtain statistically significant results from a simulation,
a sufficiently large share of the space, which is span by the
influencing random variables, has to be covered. In addition,
multiple independent results are required to calculate confi-
dence intervals of the estimated results. Two approaches to
this problem exist. In the first approach, many independent
replications are simulated, each replication starting with a
different initialization of the pseudorandom number genera-
tors. The second approach, the formerly mentioned batch-
means method, splits one single simulation into batches.
The batch results can be assumed to be independent if the
correlation between the batches is sufficiently low. It’s also
possible to mix both approaches, so that each independent
run is split into batches. [5] discusses the advantages and
disadvantages of independent replications and batch-mean
methods.

Which approach is preferable depends on the system prop-
erties. If the time correlation of the observed values is high,
the length of the batches has to be increased to get suffi-
ciently independent batch results. In this case, independent
replications are more efficient, as there is no correlation be-
tween the runs per definition. Usually, we are interested
in the steady state of the investigated system. Therefore,
the initial transient (ramp-up) phase, when starting with an
empty system, needs to be neglected. For independent repli-
cations, each run has to start with an own transient phase.
If the length of this phase is in the order of magnitude of the
length of the whole run, this method leads to a high amount
of overhead.

The parallelization of the independent runs does not intro-
duce synchronization overhead. Without transient phases,
nearly ideal speedup can be achieved independent of the sim-
ulation model. Long transient phases reduce the efficiency
of this approach, but the simulation runtime may still be re-
duced. An additional degree of freedom is introduced by the
possibility to mix independent replications with the batch
means method. This is supported by our simulation library.
We further detail this in section 4.

2.3 Model Component Level
To further parallelize the simulation, the model itself has
to be split and distributed. This introduces synchroniza-
tion overhead and an additional source of errors. Thus, the
splitting has to be planned carefully. In a typical simula-
tion of a communication network, the behaviour of multiple
nodes is modeled, while each node comprises multiple layers
of a protocol stack. Two approaches to split the model arise
from this architecture: Either distribute the nodes, includ-
ing all their layers (vertical cut), or cut between the layers
and distribute the processing of the layers (horizontal cut).

Horizontal splitting of the model often corresponds to a
modularization of the simulation code. The interfaces of
the modules are well defined, which makes synchronization
less error-prone in this case. If there is only forward com-
munication between two layers, the output of the first part
can be stored to disk. This allows multiple simulations of
the second part without simulating the first part again. For
example, this is applicable for the simulation of mobile com-
munication networks. There, the communication network
usually does not influence the movement of the users and
the channel attenuations. Therefore, the movement can be
calculated in advance and stored to a trace file, which is
then read during the simulation of the network under study.
To get a high degree of parallelization, the model has to be
split into many components. This increases the implemen-
tation overhead. If the model components do not have the
same complexity, horizontal splitting leads to an unequal
distribution of load on the processing cores.

In contrast to that, vertical splitting leads to a more even
distribution of load, because the simulation blocks are of the
same type, which results in equal computational complexity.
If the nodes are instances of the same program code, dis-
tributing them can achieve a higher degree of parallelization
with less implementation effort in comparison to horizontal
splitting. In a typical model of a communication network,
communication between nodes should only happen by using



the lowest layer of the modeled protocol stack, which simpli-
fies the separation of the nodes. However, often idealizations
are implemented that allow direct communication of entities
of the same protocol in multiple nodes. The approach of ver-
tical splitting is used e. g. by the simulator OMNeT++ [17].

Independent of how the simulation model is split into parts,
these can be parallelized using multiple techniques.

Shared Memory
Most common is the use of multithreading in combination
with shared memory communication. All common program-
ming languages and standard computers with multiple pro-
cessor cores support this type of multithreading. It provides
fast synchronization and very high bandwidth. As it is usu-
ally restricted to a single computer, the degree of paralleliza-
tion is limited.

Distributed Memory
To increase the degree of parallelization, the simulation can
be distributed to multiple computers. As these do not share
a common main memory, the communication between the
processes of the simulation has to be performed over a com-
munication network. E. g. , this can be implemented by
using message passing or remote procedure calls. The per-
formance of this approach is limited by the performance of
the network. Although a high degree of parallelization may
be achieved, this approach is not feasible if the simulation
requires much synchronization.

Job-Offloading
While the preceding approaches are most suitable for sym-
metric computer architectures, an additional approach can
make use of asymmetric architectures with specialized hard-
ware. This can be a device designed for floating point cal-
culations, as the OpenCL architecture [13] or the IBM Cell
processor [10], or a hardware implementation of a special
functionality. By splitting the model horizontally and mov-
ing computational costly parts of the simulation to such a
device, the flexibility of a standard computer can still be
utilized for the greater part of the simulation. However, this
approach requires porting some part of the simulation to a
different architecture. In addition, this approach is useful
only if the simulation has a central bottleneck. It has been
used, e. g. for the calculation of a radio channel model in [2].

In general, splitting and parallelizing the model can increase
the degree of parallelization significantly. However, a high
synchronization overhead is introduced if the model is not
coupled loosely. The necessity of synchronization increases
the complexity of the whole simulation program. This in-
troduces new sources of error and makes debugging difficult.
Because of these drawbacks, parallelization on the level of
model components is only sparely used by the authors.

2.4 Algorithm Level
If the main computational effort is caused by calculations
of single algorithms, it may make sense to parallelize them.
The mechanisms explained above for parallelization on model
component level are also applicable. Besides, vectorization
is an additional approach that can be utilized without great
expense.

Most modern general purpose processors support instruction
set extensions for vector operations. This Single Instruc-
tion Multiple Data (SIMD) functionality allows executing
the same instruction on multiple operands in parallel. The
most popular implementations are SSE and its extensions for
the x86 architecture [18] and AltiVec for the Power architec-
ture [8]. They allow operating either on four single precision
or on two double precision numbers in parallel. An exten-
sion to double the register width and thereby the number
of operands is planned [4]. Special architectures, e. g. the
NVidia CUDA platform, support much wider vectors.

To utilize vectorization, it is possible to hand-tune the al-
gorithms by implementing central parts in assembler code.
As this results in a high implementation effort and is error-
prone, compiler support is often used. Vectorization can
either be configured with special intrinsics, or be used auto-
matically whenever the compiler detects suitable blocks [7].
On the one hand, manual configuration requires the pro-
grammer to have special knowledge of the architecture. On
the other hand, it does achieve a higher efficiency, because
common compilers have only limited support for automatic
vectorization. A convenient way to use all capabilities of the
architecture is to use specially tuned libraries like ACML [3].
However, these do not always support all the required func-
tionality.

To use vectorization to speed up a certain algorithm, the
algorithm has to be inherently parallelizable. If this is the
case, a maximum speedup of 4 (for single precision) or 2 (for
double precision) can be achieved on current main stream
processors. Whether the vectorization can be performed by
the compiler or special libraries can be used depends on
the respective algorithm. Even if it has to be implemented
manually, this parallelization approach has an outstanding
advantage: While other approaches require additional pro-
cessing cores to reduce the total simulation runtime, the vec-
torization blocks usually are idle and can be utilized without
additional hardware expenses.

3. THE IKR SIMULATION LIBRARY
The Simulation Library (SimLib) of the Institute of Commu-
nication Networks and Computer Engineering (IKR) at the
Universität Stuttgart is a tool for event-driven simulation of
complex systems in the area of communications engineering.

3.1 Overview
The first version of the IKR SimLib was released in the
1980s. Since that time, we have improved the library contin-
uously. The continuous improvements lead to a wide field of
application, also outside of the institute. The IKR SimLib
was used and is still used for several publicly and privately
funded research projects, as well as student projects. Up to
now, more than one hundred of these student projects have
been finished. Furthermore, IKR’s industrial partners use
this library for complex simulations.

In 2008, we ported the IKR SimLib to Java while keep-
ing all concepts and mechanisms of the predecessor C++
class library. Today, two editions of the IKR SimLib are
available: The C++ edition and the Java edition. Each edi-
tion comes as a separate class library. We developed both
editions in consideration of modern object-oriented design



principles and clean software architecture. Both editions
are publicly available under the GNU Lesser General Pub-
lic License (LGPL). This allows changes within the libraries
itself as well as proprietary programs to use it.

The design objectives of the IKR SimLib were manifold. The
IKR SimLib is problem-oriented in a sense that it supports
an effective implementation of an abstract communication
system model. Each simulation model component can con-
sist of submodels and other components. This leads to a
hierarchical modeling approach. The components are en-
capsulated and communicate with each other by exchanging
messages using ports. This offers a high reuse and an evolu-
tionary redefining of new components by modifying existing
ones.

Since the launch, the IKR SimLib has proved its applica-
bility for performance evaluation in a multitude of com-
munication areas, e. g. for IP, photonic, mobile, signaling,
in-vehicle, and P2P networks. For getting the latest ver-
sion of the IKR SimLib, a more detailed list of examples,
and getting selected publications, please visit our website at
http://www.ikr.uni-stuttgart.de/IKRSimLib.

Writing a simulation program based on the IKR SimLib
requires a basic understanding of the library. The simu-
lation libraries come along with extensive documentation,
comprehensible tutorials, and examples. These help to get
a quick insight on the library. The philosophy of the IKR
SimLib is that the challenge lies in the appropriate mod-
eling. The model has to reflect the object of investigation
in an abstract, but specialized manner. Therefore, the li-
brary does not include ready-to-use implementations such
as a HTTP/TCP/IP protocol stack or a WDM network.
Instead, the library offers basic components such as queues,
statistics, and generators that enable an easy and fast im-
plementation of a pre-designed model.

3.2 Architecture and Conceptual Structure
The IKR SimLib is structured into three main parts as
shown in Figure 1. The basic concepts include simulation
support mechanisms as well as I/O concepts. Besides, the
modeling concepts support a hierarchical modeling approach
to create individual components that communicate with each
other by exchanging messages. The standard components
are composed entities like a traffic generator, which provide
a simple model implementation. In the following sections,
we describe each part in more detail.

3.2.1 Basic Concepts
The basic concepts support mechanisms and components
that are necessary to control and execute an event-driven
simulation. One of these mechanisms is the simulation con-
trol that handles the initialization, e. g. when to stop the
transient phase and begin with the actual performance eval-
uation phase and finally when to stop the simulation batches.
The control also signals the according changes to all objects
needing this information. Furthermore, the basic concepts
offer inherent support for event handling, e. g. by providing
a calendar. While processing an event, it is possible to post
new events, which are entered into the calendar. After pro-
cessing of an event is finished, the next event in the calendar
is processed.

basic concepts
simulation 

control
event

handling
random

distributions
statistical
evaluation I/O concept

modeling concepts
basic
entity

port
concept

filters & 
meters

standard components
model

components utilities

user's simulation model

Figure 1: Basic structure of the IKR SimLib

The IKR SimLib supports stochastic processes and on-the-
fly statistical evaluation. An important aspect is the distri-
bution-oriented random number generation. The IKR Sim-
Lib implements many continuous and discrete distributions.
Statistical evaluation is supported by many different statis-
tics, too. Examples are the sample counter, conditional
mean and correlation statistic. During a simulation run,
the IKR SimLib computes statistical data, e. g. confidence
interval. Therefore, a complex post-processing step is un-
necessary. One distinguishing feature from many other sim-
ulation tools is the provisioning of metrics dealing with the
statistical significance, which is in case of the IKR SimLib a
student t-test based confidence interval. In addition, the li-
brary includes a flexible I/O concept which consists of a file
parser for reading parameters and an XML-based output
concept for printing results.

3.2.2 Modeling Concepts
The next main part of the IKR SimLib provides modeling
concepts. In general, a model has a hierarchical structure
and consists of several components and entities that com-
municate with each other. Entities are able to post and
handle events. Each entity is derived from the base class
Entity and has a unique local name which is chosen arbi-
trarily. This base class defines the common properties of
all entities and methods for dealing with ports and events.
The name helps to identify the entity and to locate it via a
central component manager.

The hierarchical decomposition of an entity into a hierarchy
of components or entities decreases the complexity. It en-
ables a separate handling and treatment of each entity. This
principle corresponds to the divide-and-conquer approach
and leads to a tree structure of entities and components
with the model itself as the root entity [11]. All entities are
strictly encapsulated and communicate with each other by
exchanging messages. This message exchange works by us-
ing so-called ports, which define a generic external interface
of an entity. This port concept enables the interconnection
of entities in a plug-n-play manner.

Furthermore, filters and meters are connected to ports. Fil-
ters inspect and may change messages based on certain rules,
e. g. changing specific fields within the message. In contrast
to this, meters primarily update statistics with values de-
rived from the messages, e. g. the message length or time of
arrival.



Simulation Model

Traffic
Generator

Network Model
Traffic
Sink

Queue Server

Filter 1 Filter 2 

Time Meter 

msg
Simulation Messages

msg msg msg

Figure 2: Example simulation model

3.2.3 Standard Components
The standard components are the third part. Model compo-
nents like traffic generators, queues, servers, multiplexers,
traffic sinks etc. are provided to ease model implementa-
tion. They also have a hierarchical structure. This offers a
reuse of submodels and components that can be further re-
defined. Together with further utilities, they allow a simple
model generation, especially for queuing networks.

3.3 Simple Simulation Model
For illustrating the concepts of the IKR SimLib, Figure 2
depicts a model of a simple single-server queuing network
which comprises the network model, a traffic generator, and
a traffic sink. The port concept and a message transfer pro-
tocol enable that the simulation messages are passed from
component to component. After a component recognizes
a new message at the output port, this port notifies the
corresponding input port. For example, in Figure 2 each
time when the traffic generator generates a new message, its
output port informs the input port of the queue. Then, the
receiving component decides if the message will be accepted.

Because of the flexible port concept, the integration of filters
and meters into the model is easy. They read and evaluate
the flow of messages at various points within the model. In
Figure 2 the integrated Time Meter measures the processing
time in the network model including the waiting time in the
queue and the holding time in the server. For this purpose,
the time meter adds a time stamp to the message when it
passes the output port of the traffic generator. When the
message passes the input port of the traffic sink, the time
meter reads and removes the time stamp. The two other
filters in this figure observe the messages that are passing
by the input port of the queue. For example, one of these
filters might record a trace of messages of a defined traffic
class.

3.4 Extensions
Today additional libraries exist that are built on top of the
IKR SimLib. An example is the IKR Emulation Library
(IKR EmuLib) [14, 15]. This library can emulate a system
that is specified as a simulation model, i. e. we can use the
same model in simulation and emulation in an efficient and
lightweight manner. Consequently, the effort for enhanc-
ing an existing simulation tool with emulation capabilities
is minimal. The IKR EmuLib is also available in two edi-
tions: The C++ edition and the Java edition.

A further example is the IKR TCP Library (IKR TCPLib) [6].
This library offers a basic implementation with all important

Figure 3: Principle of batch parallelism

TCP mechanisms (e. g. , flow and congestion control) and
allows simulation of elastic applications and elastic traffic
flows. The TCP components, which are included in this li-
brary, enable to model unidirectional TCP connections. The
simulations results of the IKR TCPLib are comparable to
other simulation environments, such as ns-2 (UC Berkeley,
LBL, USC/ISI, and Xerox PARC). At the moment, the IKR
TCPLib is only available in C++. We are working on port-
ing the library to Java. The usage of the extensions, namely
the IKR EmuLib and the IKR TCPLib, is optional.

4. BATCH-PARALLELISM

IN THE IKR SIMLIB
In many network simulations, we want to know the steady-
state mean of a certain value (e. g. queue length). This
means that the initial transient phase, when starting with an
empty system, needs to be neglected as this would impose a
bias on the simulation results. For this type of simulations
either the independent replications or the batch-mean meth-
ods are common. The design of the IKR SimLib supports
the batch-mean method, but it can also be configured to run
independent replications.

When trying to reduce the runtime of a simulation, the fol-
lowing questions arise:

• Which processing time is needed to achieve the same
accuracy with either of the approaches?

• To what extent can the simulation be parallelized with-
out the need for synchronization?

As shown before, parallelization is one way to reduce simula-
tion runtime. If we use a fixed number of processor cores in
the simulation environment, we can obtain results after the
shortest time, when all the cores are busy during the whole
time. This is easily possible when the number of simulation
points is a multiple of the number of available cores. Then,
without synchronization, each simulation point can be exe-
cuted with the batch-mean method on a different processor.
However, when this is not the case, another parallelization



Figure 4: Workflow of batch parallelization with

IKR SimLib

dimension comes in handy. It is obvious that the indepen-
dent replications method can be run on several different pro-
cessing cores. However, for the pure batch-mean method,
this is not as easily possible. Therefore, the IKR SimLib
offers the flexibility to combine both approaches, i. e. doing
some independent runs with multiple batches. This means
that a single simulation point is divided into multiple runs,
each containing a fraction of the desired number of batches.
Figure 3 shows the principle of the simulation flow and the
difference to the conventional batch-means method. While
in the case of sequential simulation the is just one process
with a transient phase and each batch simulated after the
other, with parallel simulation each process needs an indi-
vidual transient phase to reach the stable state before the
first batch starts. We can do this batch parallelization with-
out changing anything to the post-processing steps, as it
is already integrated within the statistical processing frame-
work of the IKR SimLib. It is worth mentioning, that, when
applying batch-parallelism, it is very important to have a
reasonably defined transient phase. Otherwise, the initial-
ization effects would influence the statistical properties of
the simulation outcome.

4.1 Preparing the Simulation
After model implementation and testing, the execution of
simulations is the next step. The defined simulation param-
eters span the parameter space. An extra tool called IKR
SimTree generates a directory structure according to these
parameters. Within this, it controls the whole workflow of
the simulation, including the distribution of the simulation
processes and the collection of the results. It also allows
evaluating the results, which are written to an XML log file,
in a user-friendly way.

The workflow of batch-parallelization with the IKR SimLib
is depicted in Figure 4. Multiple processes of the simulation
program are started from the command line or called by
SimTree. Each process reads the topology of the system
under study from a parameter file (.par-file) and creates the
model. The results of each batch are written to a separate
batch-export-file and collected and summarized in a final
results file after all processes have finished.

Each component of the model may define one or several
statistics about its values that shall be observed during the

simulation. For example, a message queue reports statistics
on waiting time and queue length by default. Also, meters
between ports come with predefined statistics. These statis-
tics are already specified in the source code of the simulation
program.

The IKR SimLib provides a rich set of statistics for dif-
ferent purposes. For example, there are simple counting
statistics just reporting the sum of observed events. More
complex statistics like the so-called SampleStatistic give
the mean, confidence interval, deviation and covariance with
the respective confidence intervals, as well as the maximum
and minimum of the observed samples. These measures
also include applying statistical testing like the Student’s
T-test which is implemented in the library. Another exam-
ple is the DistributionStatistic reporting the distribution
function of a system property through predefined quantiles.
All statistics are already prepared to be used with batch-
parallelism.

4.2 Running the Simulation
After defining the model, we start the first simulation phase,
which comprises running the actual simulation on one or
several processing cores. If we simulate with the batch-mean
method, this means we have one simulation process with a
transient phase and serially executed batches (see Figure 3).
For the case of independent replications or the combination
of both methods, each process starts with a different seed for
the random number generator and an own transient phase.
So there is no correlation between the replications.

In the case of a distributed simulation, the results of each
batch are stored in an intermediate log-file after the end of
that batch. The purpose of these files is to export the state
of a statistic concerning a certain observed value and making
it possible to import this state again for merging the final re-
sults from all the batches. Hereby, it is important to export
the exact floating point representation of the data in bi-
nary format. This is because the exact state of the statistics
needs to be reproducible in order to avoid rounding errors.
Otherwise, when simulating with many batches, the round-
ing errors could sum up and distort the overall simulation
outcome. Which values to export depends on the respective
statistical property. E. g. for a mean value, just this value is
reported at the end of each batch. In contrast, when con-
sidering the quantile of an observed measurement value, it
is not sufficient to export the batch-quantile because this
cannot be combined with the results from the other batches
anymore. Instead, all samples have to be exported in order
to be able to determine the resulting distribution function.

4.3 Post-Processing
When the simulation of all desired batches is complete, a
processing of the batch results needs to be done. The simu-
lation program is started again with the command line op-
tion to collect the batch-results and to combine them into
the final results. Note that in the case of the serial execution
of batches on a single processing core, no intermediate files
are written by default. Instead, the simulation framework
holds the batch-results in memory and combines them au-
tomatically at the end of the simulation run. In both cases,
IKR SimLib calculates the desired statistical properties of



the observed values automatically and writes them to an
XML-file.

5. CONCLUSIONS
The performance evaluation of current communication net-
works requires the combined modeling of several network
layers and results in long simulation running times. The IKR
SimLib addresses this problem by supporting the evaluation
of abstract system models and by supporting batch-level
parallel simulation. The latest implementation of the IKR
SimLib is freely available in both C++ and JAVA. Beside
the well-known batch-means and independent-replications
methods, it supports any combination of both methods,
which allows for adapting the number of used processing
cores to the available computing infrastructure. Since the
IKR SimLib does the statistical evaluation of the batches,
the user does not need to care about this complex post-
processing stop. Our framework provides an easy way to
perform batch-level parallelism for simulations by avoid pit-
falls in the implementation which allows the user to focus
on modeling.

6. ACKNOWLEDGMENTS
The authors would like to thank Joachim Scharf and Matthias
Kaschub for many fruitful discussions.

7. REFERENCES
[1] Network Simulation Cradle.

http://research.wand.net.nz/software/nsc.php.

[2] A. Abdelrazek, M. Kaschub, C. Blankenhorn, and
M. Necker. A Novel Architecture using NVIDIA
CUDA to speed up Simulation of Multi-Path Fast
Fading Channels. In Proceedings of the 69th IEEE
Vehicular Technology Conference (VTC 2009), April
2009.

[3] Advanced Micro Devices, Inc. AMD Core Math
Library (ACML). Technical report, 2008.

[4] Advanced Micro Devices, Inc. AMD64 Architecture
Programmer’s Manual Volume 6: 128-Bit and 256-Bit
XOP, FMA4 and CVT16 Instructions. Technical
report, May 2009.

[5] C. Alexopoulos and D. Goldsman. To batch or not to
batch? ACM Trans. Model. Comput. Simul.,
14(1):76–114, 2004.

[6] S. Bodamer, M. Lorang, and M. Barisch. Ikr tcp
library 1.2 user guide. Technical report, University of
Stuttgart, IKR, June 2004.

[7] S. El-Shobaky, A. El-Mahdy, and A. El-Nahas.
Automatic vectorization using dynamic compilation
and tree pattern matching technique in jikes rvm. In
ICOOOLPS ’09: Proceedings of the 4th workshop on
the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems,
pages 63–69, New York, NY, USA, 2009. ACM.

[8] Freescale Semiconductor, Inc. AltiVec Technology
Programming Environments Manual. Technical report,
April 2006.

[9] R. M. Fujimoto. Parallel and Distribution Simulation
Systems. John Wiley & Sons, Inc., New York, NY,
USA, 1999.

[10] IBM. Cell broadband engine technology. Technical
report, 2007.

[11] H. Kocher and M. Lang. An object-oriented library for
simulation of complex hierarchical systems. In
Proceedings of the Object-Oriented Simulation
Conference (OOS ’94), pages 145–152, 1994.

[12] A. M. Law and W. D. Kelton. Simulation Modeling
and Analysis. McGraw-Hill Inc., December 1990.

[13] A. Munshi. The OpenCL Specification. Technical
report, Khronos OpenCL Working Group, 2008.

[14] M. C. Necker, C. M. Gauger, S. Kiesel, and U. Reiser.
Ikremulib: A library for seamless integration of
simulation and emulation. In Proceedings of the 13th
GI/ITG Conference on Measurement, Modeling, and
Evaluation of Computer and Communication Systems
(MMB 2006), 2006.

[15] M. C. Necker and U. Reiser. Ikr emulation library 1.0
user guide. Technical report, University of Stuttgart,
IKR, December 2006.

[16] A. Osseiran, E. Hardouin, A. Gouraud, M. Boldi,
I. Cosovic, K. Gosse, J. Luo, S. Redana, W. Mohr,
J. Monserrat, T. Svensson, A. Tolli, A. Mihovska, and
M. Werner. The road to imt-advanced communication
systems: state-of-the-art and innovation areas
addressed by the winner + project. Communications
Magazine, IEEE, 47(6):38–47, June 2009.

[17] Y. A. Sekercioglu, A. Varga, and G. K. Egan. Parallel
simulation made easy with omnet++. In European
Simulation Symposium, volume 15, 2003.

[18] S. Thakkar and T. Huff. The internet streaming simd
extensions. Technical report, Microprocessor Products
Group, Intel Corp., 1999.


