Performance Comparison of Router Assisted
Congestion Control Protocols: XCP vs. RCP

Magnus Proebster, Michael Scharf, and Simon Hauger
Institute of Communication Networks and Computer Engineering
University of Stuttgart, Germany
E-mail: {magnus.proebster, michael.scharf, simon.hauger}@ikr.uni-stuttgart.de

ABSTRACT

In the current Internet, network overload is prevented by
the congestion control of the Transmission Control Protocol
(TCP). The traditional TCP congestion control is an end-
to-end mechanism that suffers from some inherent short-
comings. A design alternative for the Future Internet is to
use more feedback from the routers. Such router-assisted
congestion control schemes can achieve a more efficient uti-
lization of network resources and better fairness, even in
environments with large bandwidth-delay products. Two
promising proposals are the eXplicit Control Protocol (XCP)
and the Rate Control Protocol (RCP).

This paper evaluates the performance of XCP and RCP
and compares them with the existing TCP congestion con-
trol. In order to verify previous work, a new simulation tool
has been developed independently of the existing ns-2 code
basis. This simulator is used to study the basic behavior
of the algorithms and to analyze several degrees of freedom
in the protocol design. Furthermore, the performance of
the different approaches is compared using realistic Internet
traffic scenarios. The results show that indeed both XCP
and RCP efficiently utilize the link capacity without requir-
ing packet loss. Unlike XCP, RCP improves the reactivity of
data transfers by reducing the flow completion time. These
results confirm previously published results and show that in
particular RCP has the potential to replace TCP congestion
control in the Future Internet.

1. INTRODUCTION

The Transmission Control Protocol (TCP) is the standard
transport protocol for reliable, elastic traffic in the Inter-
net. One major TCP function is the congestion control [1].
TCP’s traditional loss-based congestion control algorithms
have inherent shortcomings, in particular if the bandwidth-
delay product of the path is large. In general, for any end-to-
end congestion control it is challenging to efficiently utilize
the bandwidth, to minimize the delay, and to maintain fair-
ness at the same time [2]. The root cause for this problem is

QoSim 2009, March 6, 2009, Rome, Italy
Copyright 2009 ICST, ISBN 978-963-9799-45-5

that end-systems lack precise information about the current
path characteristics.

New router-assisted congestion control schemes address
this issue by using additional feedback from the routers along
a path, which can monitor the actual link utilization more
accurately and which can detect congestion faster. How-
ever, in order to convey this knowledge to the end-systems,
additional signaling mechanisms are needed. This router
assistance could be realized by TCP extensions such as the
Explicit Congestion Notification (ECN) [3] or Quick-Start
TCP [4] that use sporadic coarse-grained feedback from rou-
ters in certain situations. An alternative, radically new ap-
proach is to use fine-grained per-packet feedback, which al-
lows to achieve both efficiency and fairness even in TCP-
unfriendly environments. Recently, several approaches have
been proposed for such a congestion control in the Future
Internet. The two most elaborated mechanisms are the eX-
plicit Control Protocol (XCP) [5] and the Rate Control Pro-
tocol (RCP) [6].

Both XCP and RCP claim to significantly outperform
the existing TCP congestion control. These statements are
backed by simulation studies as well as some testbed exper-
iments [5, 6]. However, most published studies rely on the
implementation in the ns-2 simulator only. This paper tries
to verify the published performance results using the newest
protocol specifications (e.g., [7]). We have implemented
both XCP and RCP from scratch in a new simulation tool,
which also allows a comparison with state-of-the-art TCP
stacks. With this simulator, we study these router-assisted
congestion control protocols both in simple and complex sce-
narios and quantify the potential improvement compared to
standard TCP. In addition to confirming previous studies,
our simulation results also reveal new effects that have not
been reported so far.

The rest of this paper is structured as follows: Section 2
gives an overview of router-assisted congestion control mech-
anisms and introduces XCP and RCP. In Section 3, our
new simulation tool and our evaluation methodology is pre-
sented. Section 4 verifies the basic function of the different
protocols and discusses several design and implementation
alternatives. Then, in Section 5, the performance of TCP,
XCP and RCP is compared for realistic Internet traffic sce-
narios. Finally, Section 6 concludes this paper.

2. ROUTER ASSISTED CONGESTION
CONTROL

Router-assisted congestion control schemes have recently
been discussed as an approach to replace the TCP conges-

Sender ACK Receiver

?eedbaDcelxasMbgs
RTT R
—_—

paTA

Delta: 6 Mbps
|Delta: 7 Mbps_| Feedback
Feedback RTT
RTT

Figure 1: Principal function of an explicit congestion
control with dedicated packet headers changed on
the path

tion control that does not scale well for large distance, high
capacity links. In the following, we give a short overview of
the basic principle of these schemes. Afterwards, we detail
on two of the most popular protocols, namely XCP [7] and
RCP [6], which are investigated in this paper.

2.1 Overview

It is difficult to efficiently use large distance links with a
high capacity by only taking into account lost packets (as
in TCP) [1] or single header bits (as with ECN) [3]. On
the one hand, packet loss is not a very reliable congestion
indication as packets can get dropped for reasons other than
congestion. Packet loss, or a single notification bit, only give
binary and imprecise congestion indication. On the other
hand, the absence of packet loss or ECN marks does not
give any information whether an increase of the data rate is
possible. These inherent shortcomings of today’s end-to-end
congestion control are addressed by recent research propos-
als like Quick-Start [4], XCP [5], RCP [6], or JetMax [8]. All
these protocols use explicit, multi-byte congestion notifica-
tions from the routers on the path to improve the efficiency
of the congestion control.

The basic idea of all these schemes is to place extra header
fields between the IP header and the transport protocol
header, which contain some form of rate request as well as
other connection information from the sending end-system.
These header fields are processed by all routers on the path.
Depending on their egress load, the routers either accept the
requested rate or decrease it, without keeping per-flow state
information. The receiving end-system receives a rate that
is accepted by all routers on the path and echoes this rate
to the sender in another special header field. So, the sender
can efficiently use the available bandwidth by always adjust-
ing its sending rate according to the accepted rate, e.g. by
resizing the congestion window in a window-based scheme.

In the following, we give a short overview of the protocol
functions of XCP and RCP.

2.2 eXplicit Control Protocol (XCP)

XCP is one of the earliest and most well-known router-
assisted congestion control approaches. A recent protocol
specifications can be found in [7]. The objective of XCP is
on the one hand to efficiently use the available link capacity,
and on the other hand to distribute the available bandwith
fairly between concurrent connections. These objectives are
realized in a decoupled way on the routers by a so called
efficiency controller (EC) and a fairness controller (FC),
respectively. While the EC periodically computes an aggre-

gate feedback, denoting the required change of the conges-
tion window of all flows, the FC distributes this aggregate
feedback fairly between packets, without keeping any per-
flow state.

For its functioning, XCP requires a header in each packet
which contains an RTT field, a Throughput field, a Delta
field and a Feedback field. The RTT field contains the round-
trip time (RTT) estimated by the end-system. The Through-
put field denotes a measure for the actual injected data rate
and contains the average inter-packet time. The Delta-field
is initialised by the sending end-system with the desired
change of the current sending rate, which is expressed on
a per-packet basis and is calculated as follows:

desired_rate — actual_rate

packets_per_rtt

This field is decreased by the routers according to their out-
going load. The Feedback-field is used to echo the finally
granted rate change back to the sending end-system.

The XCP routers measure the traversing traffic by keeping
per-link statistics about the sum of outgoing traffic and the
average RTT of all traversing flows. With these statistics the
EC calculates the aggregate feedback in a periodic control
interval of the order of the observed average RTT. At the
beginning of each control interval, the aggregate feedback is
calculated from the following equation:

F=a(@-y) - 54)

C' is the capacity of the outgoing link, y(¢) the rate of its
outgoing traffic, ¢(t) the persistent queue during the previ-
ous control interval and d the average RTT. The first sum-
mand weighted by « shall adapt the traffic to the link ca-
pacity and the second summand weighted by 3 drains any
standing queue.

The resulting aggregate feedback F' can be positive or
negative and is distributed among the traversing flows by
the FC. Positive feedback is distributed equally among all
flows and negative feedback is distributed in proportion to
their current throughput. This implements the Additive
Increase-Multiplicative Decrease (AIMD)-law which is taken
from T'CP and ensures the convergence to a fair allocation
of bandwidth among all flows.

Another mechanism called Traffic Shuffling allows newly
arriving flows to obtain bandwidth in a fully loaded system.
If the aggregate feedback from equation 1 is approximately
zero, 10% of the link capacity is redistributed during the
next control interval.

2.3 Rate Control Protocol (RCP)

The design objective of RCP is to achieve very short flow
completion times, i. e., that all flows are completed as fast as
possible. In order to accomplish this goal RCP approximates
the processor sharing scheduling algorithm when distribut-
ing the link capacity among all flows.

Unlike XCP, which signals rate changes, RCP always re-
ports the target sending rate to the end-systems. Further-
more, the same rate is signalled to all flows bottlenecked
at the respective link. This makes RCP inherently fair and
simplifies the underlying algorithms. The proposed packet
header only contains the RTT and Feedback fields as well
as a Rate field with the allowed rate at the most congested
link on the path, instead of the Delta field in XCP.

Initiator

Acceptor

Flow Completion Time

time

Figure 2: Visualization of the ATBT-model with one or several epochs; definition of the Flow-Completion-
Time as the period from the initial handshake to the reception of the last packet

In the routers, the common maximum allowable rate is
updated periodically with an interval corresponding to the
average RTT of traversing flows. The calculation is derived
from the following iterative equation:

(a(C—yt)) - 844)
N ()

R(t)=R(t—d) + (2)

where R(t) is the common feedback rate, d is the average
RTT and C' is the capacity of the outgoing link. y(t¢) is the
aggregate outgoing traffic which was measured during the
last control interval, ¢(t) is the current queue occupation,
and N(t) is the estimated number of active flows.

In RCP, the number of flows is estimated as N(t) =
ﬁ, assuming that the traversing flows occupy the link
with the signalled data rate. This estimation does not need
to represent the exact number of flows but rather an effec-
tive number of flows in order to ensure the max-min fairness
of the protocol. This is explained in more detail in [6]. With
this estimation the feedback rate is obtained as follows:

(atc- y(é)) - 1) “

Rt)=R(t—d) [1+

2.4 Comparison

All router-assisted congestion control schemes need ad-
ditional packet processing in the end-systems and also in
all routers. These changes result in deployment challenges.
However, there are proof-of-concept implementations that
show that router-assisted congestion control can indeed be
implemented at high link speeds [9, 10, 11]. The results
show that XCP needs very complex processing steps in rou-
ters, whereas Quick-Start and RCP have lower processing
requirements. Furthermore, in particular the performance
of XCP capable routers might be limited due to synchro-
nization issues [10]. RCP does not have this drawback.

Furthermore, several simulation studies have been per-
formed by the authors of the respective protocols [5, 6]. In
general, these simulations are based on the ns-2 simulator
and its TCP implementation.

3. SIMULATION METHODOLOGY

We developed an independent simulation environment in
order to verify the published results and to compare XCP
and RCP in scenarios that have not been studied so far. In
the following sections, we briefly present our network and
traffic models.

3.1 Simulation Tool

All the functions related to congestion control in the XCP
and RCP protocols were implemented in a network simulator
that uses the IKR simulation library [12]. It is a C++ class
library with a compact and clear design. It offers several
network components which can be enhanced by the required
functionality and connected arbitrarily through the under-
lying message-port concept. Simulations are conducted on
an event-based calendar and, in our case, the results are
extracted by post-processing from recorded traces. Differ-
ences between ns-2 and the simulation library are elaborated
in [13].

Our TCP implementation is based on the network sim-
ulation cradle (NSC) [14] which has been adapted accord-
ingly [15]. The NSC allows us to simulate a whole Linux
stack including recent congestion control like CUBIC [16] as
well as legacy mechanisms like the Reno algorithms. For our
simulations, we use the Linux kernel version 2.6.18 with its
default configuration. This means that Selective Acknowl-
edgement (SACK) and window scaling are activated. By set-
ting the sending and receiving buffer space to a large value (8
MiB), we effectively switch off the flow control because we
are only interested in congestion control.

XCP and RCP are implemented in combination with an
idealized transport protocol and its own signalling state ma-
chine. It implements connection setup with a three-way-
handshake and a simplified two-way connection release. This
abstract modeling ensures that congestion control is studied
without interactions of other transport control mechanisms.

For XCP, we developed two implementations. One with
the ordinary window-based behaviour derived from TCP
and another rate-based variant which controls the inter-
packet time to adjust the signalled rate change. The dif-
ferent behaviour of these implementations is discussed in
Chapter 4. Apart from that, both implementations follow
the specifications in [7].

Our RCP implementation realizes the algorithms described
in [6]. It differs from the ns-2 implementation of RCP. There,
so-called REF packets are used to signal the allowed sending
rate with a constant delay, when the time interval between
two consecutive packets becomes large due to a low send-
ing rate. To the best of our knowledge, this feature is not
mentioned in any description of RCP. However, such REF
packets unnecessarily increase the traffic volume and don’t
scale with an increasing number of flows. Instead, we define
a minimal rate the routers may specify in order to avoid the
starvation of flows. Furthermore, we use the ACK packets of
a receiving end-system to update the allowed sending rate
on the reverse path and return this information with the
next data packet from the sender. So the receiver knows the

Central link

Endsystems Endsystems

Figure 3: Simulated dumbbell topology with a cen-
tral bottleneck link

sending rate it may use when it enters the sending mode.
At the same time, the RTT measurement on the receiver
side can be taken from the sender side as it is a symmetric
property.

The topology used in the simulations is illustrated in Fig-
ure 3. It is a simple dumbbell topology where the central
link represents the common bottleneck of all flows. The
delay and bandwidth of each link can be configured indi-
vidually to create e.g. scenarios with a common RTT or
a dedicated RTT distribution. This topology is a standard
test case for congestion control [17].

A flow is modelled by a modified version of the representa-
tion used for TMix tool [18] which we call the ATBT model
shown in Figure 2. A flow is defined by a start time denot-
ing the sending time of the first SYN-packet followed by one
or several so-called epochs which consist of a data amount
A in one direction followed by a “think time” or “process-
ing time” t1, a data amount B in the reverse direction, and
a second think time t2. Here, we define the flow comple-
tion time (FCT) to be the difference between the time of
reception of the last data packet at its destination, and the
moment when the SYN packet is sent (see Figure 2).

3.2 Traffic Model

We model the workload either by stochastic distribution
functions or by replaying measured traffic traces. In the for-
mer case, flows are automatically generated with a negative-
exponentially distributed inter-arrival time and a Pareto dis-
tribution for the flow length. The Pareto distribution re-
produces the typical characteristic of Internet traffic with a
heavy-tailed distribution. For simplicity, the synthetically
generated traffic in our simulation is unidirectional.

The traffic generated from traces reflects a more realistic
situation. As proposed in [17], we use the bidirectional traf-
fic traces from [19] and the specified distribution of RT'Ts for
this scenario. The concurrent flows were removed from the
files and all other flow-vectors converted to be compatible
with the developed simulator.

3.3 Performance Metrics

We investigate two different kinds of scenarios: First, sce-
narios with few flows are used to investigate the protocol be-
haviour in detail, in particular, when a flow enters or leaves
the network. Second, we consider scenarios with many flows
that model typical Internet traffic.

In the scenarios with few flows, we measure the conver-
gence time to reach the equilibrium point, i. e., the time for a
new flow to reach its fair share of the bandwidth, or the time
to reallocate spare bandwidth, when a flow leaves. Further-
more, we study the queue occupancy and the throughput.
The throughput is determined with an appropriate sampling

[N
n
=]

I
L

h aggregate! traffic)

=
® O
S O

L -
=3

o2}
o

S

3 e
(i

IN
o
X

Injected data rate [Mbps]
8

= ——

<}

B

=

T |

-
o
o
S o
T
|

1000 — =

Queue length [packets]
a
8
—
[

)
b

20 30 40 50 60
Simulation time [s]

o
=
o

Figure 4: Behaviour of TCP with Reno; flow arrivals
at t = {0, 10,20} s; droptail buffer of 400 packets

rate. For most scenarios, the sampling rate was chosen to
be the same as the RTT.

In the scenarios with many flows, statistical properties like
the flow completion time (FCT), the average number of ac-
tive flows, the link occupation or the mean queue length are
of interest. In particular, we analyze the FCT as a function
of the flow length.

4. PRINCIPAL FUNCTION VALIDATION

In the following, we investigate the transient behaviour of
the different protocols after the arrival or departure of flows.

41 TCP

Figure 4 shows the principal behaviour of the TCP Reno
congestion control. Here, the central link has a capacity
of 100 Mbps and a delay of 50 ms. The access links in the
topology of Figure 3 are delay-less, i. e., the round-trip time
(RTT) is 100 ms for all flows. The central link has a droptail
queue with a size of 400 packets. At t = 0s the first flow,
which has an unlimited length, enters the network. At ¢t =
10s and t = 20's, two further flows with limited length start.
These flows leave the network after some time. In Figure 4,
the injected data rate of the sending end-systems is plotted
as a function of the simulation time. Also, the respective
evolution of the queue occupation is illustrated.

The result illustrates the inherent problems of the stan-
dard TCP congestion control. There is no deterministic con-
vergence to fairness, i.e., the three concurrent flows do not
reach the same bandwidth. Furthermore, after flows 2 and
3 leave the network, the free bandwidth is reallocated very
slowly. The queue is filled when a new flow arrives. The
resulting packet loss is detected at the end-systems and the
rate is reduced to avoid link congestion. This process is
rather slow, and it takes the whole system rather long to
utilize the whole bandwidth.

4.2 XCP

Figure 5 presents the same scenario for XCP. The only
difference is, that we now have unlimited buffer space to

i

n

=]
I
L

aggregate traffic

[N
o
=]

®
o
i

o2}
o
T

-
L

Injected data rate [Mbps]

n
(=}
1

TR N N1

-
o
o
S o
T
|

1000 — =

Queue length [packets]
a
8
—
[

P

10 20 30 40 50 60
Simulation time [s]

Figure 5: XCP behaviour with the window-based
approach; a = 0.4, § = 0.226

prevent eventual packet losses, because XCP falls back to
TCP congestion control when losses occur. Parameters are
chosen to be a = 0.4 and 8 = 0.226 as proposed in the spec-
ifications [7]. This scenario uses the ordinary window-based
approach as described in the XCP-specifications. XCP con-
verges rather slowly to a fair allocation when the link is fully
loaded. The transition takes place in the order of 50 RTTs.
In the steady state, however, perfect fairness is achieved,
i.e., all flows send with the same data rate. The slow con-
vergence can be ascribed to the traffic shuffling mechanism
which reassigns only 10% of the total capacity. This alloca-
tion is not given exclusively to the flow with a lower send-
ing rate. Instead it is distributed anti-proportional to the
current sending rates. Thus the convergence flattens more
and more as the flows get closer to the equilibrium point.
In contrast, when a flow leaves the network and free band-
width becomes available, it is allocated very quickly to the
remaining flows.

The queue occupation remains small during the whole sce-
nario. There are short peaks in the queue which are caused
by the bursty behaviour of a window protocol. When a new
flow arrives, it receives a large feedback value in just one
packet, which is used at once. Instantaneously, the link ca-
pacity is exceeded, but averaged over one RTT, there is no
persistent queue. However, queueing occurs when a flow
leaves the network. This is mainly due to microscopic syn-
chronisation effects in this scenario, which are caused by the
same RTT of all flows.

In order to eliminate the effects of a window-based proto-
col, we also study a rate-based implementation of XCP. One
would expect that adjusting the rate eliminates the peaks in
the queue and the synchronisation effects and thus makes the
protocol behaviour smoother. However, the results for rate-
based XCP, which are shown in Figure 6, reveal a detrimen-
tal behavior: The throughput oscillates significantly, and
the queue is also utilized to a larger extent. Now, there are
peaks in the queue occupancy on a longer time scale of the
order of many RTTs.

The oscillation is caused by an unwanted prolongation of

-

)

=]
T
|

aggregateitraffic

H
® ©
S o
—

<

I "

o2}
o
T

:
L

! ;s
/

Injected data rate [Mbps]

N
o
T

TR N N1

flowl Iflow2 flow3

o LMoW 2 ‘ ‘ ‘
‘@’ 1500
@
(]
x L 4
[}
@
1000
£
(=) - 4
c
8
o 500
35
3] L 4
>
o oUla A L L L A L A L

0 10 20 30 40 50 60

Simulation time [s]

Figure 6: The rate-based XCP variant shows oscil-
lating properties; o = 0.4, 3 = 0.226

the XCP control loop. In the window-based variant, feed-
back becomes effective instantaneously, whereas in the rate-
based case it is distributed equally over a whole RTT. As a
consequence, the delay between the feedback calculation and
the point in time when the rate change becomes effective at
the routers is increased. This leads to a stronger overshoot-
ing of the aggregate traffic. In particlular, when a flow leaves
the network there is a significant difference between available
bandwidth and actual throughput, which causes significant
oscillation. The throughput oscillation leads to intermediate
packet buffering and a slightly lower overall link utilization.

The observed behaviour can be eliminated by setting the
protocol parameter o to a smaller value of 0.2. However, a
smaller « also increases the convergence time of XCP. These
results indicate that there are no advantages of implement-
ing XCP with a rate-based throttling mechanism.

43 RCP

In Figure 7, the transient behaviour of RCP can be seen.
Again, we have an unlimited queue size because the reaction
of RCP on packet losses is not specified yet. a and 3 are cho-
sen like in the XCP scenario to make them comparable. As
to be expected, all active flows have the same sending rate all
the time. When a new flow arrives, it is signalled the same
data rate as existing flows. This means that if there is only
one active flow when a new flow starts, the initial aggregate
traffic is two times the link capacity. Of course, it is reduced
quickly to match the link capacity. Nevertheless, a signifi-
cant amount of buffering is needed during a short period. In
the used simulation configuration, the queue length exceeds
the Bandwidth-Delay-Product (BDP) by about 70%.

This effect makes RCP vulnerable to flash crowd effects,
which is discussed in detail in [20]. It can be mitigated by
choosing a bigger # and smaller «, but there is a trade-off
between queue length and convergence speed. However, if
the arrival rate of new flows does not increase drastically,
RCP remains stable although some packet losses might oc-
cur. Apart from that, RCP is inherently fair and quickly
allocates free capacity.

i

n

=]
I

aggregateitraffic

[N
o
=]

[

®
o

o2}
o
I
=

-
T

Injected data rate [Mbps]

n
o
T

[flow 1 flow 2 flow 3
o L2 £ | , n L
T : : : T T

‘@’ 1500 - —
@

13}

x L 4
Q

g

1000 - —
s

(=) L 4
c

<@

o 500 —
>

[} L]
>

O 0 L L L L L

0 10 20 30 40 50 60

Simulation time [s]

Figure 7: RCP behaviour for the same scenario with
a=04, 8=0.226

S. SPEEDUP COMPARISON

To evaluate the expectable speedup of an explicit con-
gestion control protocol in a realistic network environment,
we simulate scenarios with many synthetically created flows
as described in Section 3.3. In a second scenario, traffic is
replayed from traces.

Our main performance metric is the flow completion time.
Of course, other metrics, such as link utilization, are also
important characteristics of a congestion control algorithm,
in particular from the viewpoint of network operators. Still,
the end-user is mainly interested in a fast completion of data
transfers, in particular when using interactive applications.
The speedup of data transfers can be best quantified by the
FCT [21].

5.1 Synthetic Flow Size Distribution

In the following, the central link has a capacity of 100 Mbps
and the RT'T is 100 ms for all flows. For the TCP simulation,
we use CUBIC with an RED-Queue limited to 1,000 packets
with a threshold value of 250 packets and a maximum drop
probability of 0.1. XCP and RCP operate on an unlimited
queue, as motivated before. For XCP we take the window-
based variant with parameters « = 0.4 and g = 0.226. RCP
parameters are set to « = 0.1 and § = 1.0, to reduce queue
occupation and FCT (these parameters are also chosen in
some scenarios in [6]).

The mean flow length is 25 packets, whereas the size of
a packet equals 1500 bytes, corresponding to the maximum
transmission unit (MTU) in most networks. Flow lengths
are distributed according to a truncated Pareto distribution
with shape 1.2 and cut-off at 40,000 packets. The mean
inter-arrival time was chosen to be 3.33ms. These param-
eters result in an overall link utilization of approximately
90% for the central link. This is a relatively high value, but
a highly loaded link is the key challenge for any congestion
control.

The resulting flow completion times are presented in Fig-
ure 8. The simulation duration was 3700s, neglecting sam-
ples during the first 100s in order to avoid effects of the

T
@ 10
E r
=
8
k5
£
S 17 T T
5 F 1 TCP 1
£ | Tﬁﬁﬁﬂ,,
L o minimal FCT
L £
0.1———+~ EE— B E———

10 100 1000 10000
Flow length [packets]

Figure 8: FCT study comparing TCP, XCP and
RCP; for comparison, the analytically determined
minimal FCT and PS curves are also shown

ramp-up phase. Because the flow length ranges over several
orders of magnitude, we depict them on a logarithmic scale.
To get a sufficient amount of samples, the values of similar
flow lengths are aggregated. The range of each aggregation
is chosen to get points of equal distance on a logarithmic
scale. We calculate the average as well as 5%- and 95%-
quantiles of each aggregation. Due to the characteristics of
the Pareto distribution, the number of samples per point
decreases for large flow lengths.

In this scenario, RCP has the shortest flow completion
time. It is much smaller than the FCT of TCP that is
mainly dominated by the slow-start. XCP performs even
worse than TCP. This can be explained by the slow allo-
cation of bandwidth to new flows in a situation with high
link utilization. Due to the XCP algorithms, new flows may
even starve when there is temporary overload and there is
few positive feedback. This effect, which has already been
identified in [6], increases the flow completion time of short
flows. As a side effect of the larger FCT, XCP accumulates
many flows in the network (Little’s law). When there are
more active flows in the system, the bandwidth of an indi-
vidual flow is also smaller. Simulation results that are not
shown here indicate that in a system with lower load XCP
is faster than TCP, because there is in average more free
bandwidth that can be assigned to new flows.

These results confirm that RCP is indeed better suited
for such situations, since RCP provides a fast start for short
flows. Its performance comes closest to the minimum possi-
ble FCT. With the chosen parameters, RCP approximates
processor sharing (PS). An interesting effect is that TCP
has a shorter FCT for very long flows. But this comes at
the cost of larger delays for short flows which are limited by
slow-start and results in a longer average FCT.

5.2 Trace-driven Evaluation

In order to study the three protocols in a realistic traffic
scenario, we simulated our network model with real traffic
traces from [19]. This means that unlike the previous case we
now have bidirectional traffic with very different burst sizes.
The load was controlled by adapting the arrival times with
a negative exponential distribution with a mean value of

1000

100

Flow-Completion-Time [s]
=
o

[

—TcP |1
a—a %P | |
o—o RCP

01 10 100 1000 10000

0
Flow length [packets]

Figure 9: FCT for the simulation of bidirectional
real internet traffic traces

12ms. This gives us a load of about 2% in forward direction
(upstream) and a load of about 17% in backward direction
(downstream). The simulation time was 1100s.

The results of this scenario can be seen in Figures 9 and 10.
They are depicted in two different ways. The curves in Fig-
ure 9 contain the overall FCT which is largely dominated
by the think or processing times contained in a flow. This
also explains the big difference between the 5%- and 95%-
quantiles. In Figure 10, the think times have been sub-
tracted from the FCT in order to get the absolute transmis-
sion times.

The average FCT including think times in Figure 9 does
not significantly depend on the congestion control mecha-
nism. Only for large flow sizes one can observe a slight
advantage for RCP. There are also some differences in the
5%-quantiles, which correspond to flows with small think
times. In this case, RCP greatly reduces the FCT in com-
parison to TCP and XCP, which perform almost equal.

The results in Figure 10 for the transmission times with-
out think times are very clear: RCP definitively outperforms
TCP and XCP. For large flow sizes, the transmission times
are reduced by almost an order of magnitude. Also, the 5%-
quantiles and 95%-quantiles are significantly smaller. On
the other side, XCP offers no performance gain in compar-
ison to TCP. Thus, there is no justification for the high
additional complexity of XCP in this case.

The scenario shows the great potential of RCP to reduce
the FCT with real Internet traffic and designates it as a
candidate for Future Internet congestion control.

6. CONCLUSIONS

Router-assisted congestion control is a promising solution
for the Future Internet. The new protocols XCP and RCP
can utilize links more efficiently and fairer than state-of-
the-art TCP mechanisms, since they do not only rely on
packet losses to signal congestion. However, they require
some limited additional processing in routers. This paper
studies whether these new congestion control mechanisms
indeed reveal the claimed performance benefits. We verify
the basic protocol functions with a new and independent
simulation tool. Basic experiments show that some imple-

1000

o
o

=
o

Pure Transmission Time [SL

[

2—4 XCP | 4
G—o RCP
o

10 100 1000 10000
Flow length [packets]

o | I L L

Figure 10: Pure transmission times for the traffic
replay scenario; think times are stripped from the
FCT

mentation design choices can have a significant impact on
the operation of these protocols. Furthermore, we test the
protocols in realistic traffic scenarios. The results of our
simulations indicate that RCP outperforms XCP. In partic-
ular, the flow completion time is significantly reduced, and
RCP has also a lower implementation complexity. As a con-
sequence, RCP is certainly a candidate for Future Internet
congestion control. Still, our performance comparison is not
complete so far. Further work is needed to compare XCP
and RCP to other congestion control schemes, such as the
Quick-Start TCP extension.

7. REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control. RFC 2581 (Proposed Standard),
April 1999.

[2] M. Welzl, D. Papadimitriou, M. Scharf, and
B. Briscoe. Open research issues in Internet congestion
control. IRTF Internet Draft, work in progress, 2008.

[3] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168 (Proposed Standard), September 2001.

[4] S. Floyd, M. Allman, A. Jain, and P. Sarolahti.
Quick-Start for TCP and IP. RFC 4782
(Experimental), January 2007.

[5] D. Katabi. Decoupling Congestion Control and
Bandwidth Allocation Policy with Application to High
Bandwidth-Delay Product Networks. PhD thesis, MIT,
Dept. of Electrical Engineering and Computer Science,
March 2003.

[6] N. Dukkipati. Rate Control Protocol (RCP):
Congestion Control to Make Flows Complete Quickly.
PhD thesis, Stanford University, Dept. of Electrical
Engineering, October 2007.

[7] A. Falk, Y. Pryadkin, and D. Katabi. Specification for
the Explicit Control Protocol (XCP). Internet Draft
(Work in progress), July 2007.

[8] Y. Zhang, D. Leonard, and D. Loguinov. Jetmax:
Scalable max-min congestion control for high-speed

[16]

[17]

18]

[19]
[20]

[21]

heterogeneous networks. Computer Networks,
52(6):1193-1219, April 2008.

M. Scharf and H. Strotbek. Performance evaluation of
Quick-Start TCP with a Linux kernel implementation.
In Proc. IFIP Networking 2008, Springer LNCS 4982,
pages 703-714, May 2008.

S. Hauger, M. Scharf, J. Kogel, and C. Suriyajan.
Quick-Start and XCP on a network processor:
Implementation issues and performance evaluation. In
Proc. IEEE High Performance Switching and Routing
(HPSR), Shanghai, China, May 2008.

N. Dukkipati, G. Gibb, N. McKeown, and J. Zhu.
Building a RCP (rate control protocol) test network.
In Proc. IEEE Symposium on High-Performance
Interconnects (HOTI), pages 91-98, 2007.

Institute of Communication Networks and Computer
Engineering. IKR Simulation Library.
http://www.ikr.uni-stuttgart.de/Con-

tent /IKRSimLib/, 2008.

F. Querzola. ns-2/IKRSimLib comparison.
http://www.ikr.uni-stuttgart.de/IND-
SimLib/Resources/IR47_TCP_Querzola.pdf, 2004.
Network Simulation Cradle.
http://research.wand.net.nz/software/nsc.php.

C. Zeeh. Integration of the Linux-TCP/IP Protocol
Stack into an Event-Driven Simulation Environment.
Diploma thesis, IKR, University of Stuttgart,
November 2006.

I. Rhee, L. Xu, and S. Ha. CUBIC for Fast
Long-Distance Networks. Technical report, August
2008.

L. Andrew and S. Floyd. Common TCP Evaluation
Suite. Internet Draft (Work in progress), July 2008.
M. C. Weigle, P. Adurthi, F. H. Campos, K. Jeffay,
and F. D. Smith. Tmix: a tool for generating realistic
TCP application workloads in ns-2. SIGCOMM
Comput. Commun. Rev., 36(3):65-76, 2006.

WAN in Lab - Traffic Traces.
http://wil.cs.caltech.edu/suite/TrafficTraces.php.

F. Abrantes, J. T. Aratdjo, and M. Ricardo. Flash
Crowd Effect in RCP. Proc. PFLDnet, March 2008.
N. Dukkipati and N. McKeown. Why flow-completion
time is the right metric for congestion control.
SIGCOMM Comput. Commun. Rev., 36(1):59-62,
2006.

