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Abstract—Mobile phones offer a large range of different
communicating applications, e.g. pure voice services, web surfing,
video downloads. Most of this traffic does not have real-time
delay requirements. By serving all flows under equal delay
constraints, transmission resources are used very inefficiently.
In this paper, we propose a scheduling framework which allows
balancing the diverse application requirements by exploitation of
the current users’ context. First results demonstrate the feasibility
and flexibility of our approach.

I. INTRODUCTION

Today, users request high throughput and real-time trans-
mission even in cellular networks. This tremendous demand
mainly results from the increased capabilities of current User
Equipments (UEs) and from the range of applications that use
these capabilities. Supporting multitasking, the latest genera-
tion of Smartphones allows to transmit and receive multiple
traffic flows at once, thus, providing smooth operation and
high flexibility to the users.

However, serving such up-to-date UEs is a challenge for
network operators. With modern applications, users can gen-
erate a heterogeneous traffic mix where data, voice, video, and
other interactive services have to be delivered simultaneously.
All these services compete for the same wireless resources
and can, thus, put high load peaks and heavy congestion to
the wireless link.

In this paper, we cope with such heterogeneous load sit-
uations by Context-Aware Resource Allocation (CARA). This
new approach combines two techniques:

o Context awareness provides the wireless scheduler with
information about the applications’ environment. It is
then possible to signal various context information from
the UE to the scheduler in the base station. While a
scheduler may be aware of many context features, in
this paper we focus on the application’s foreground/
background state. Assuming that the scheduler knows if
the traffic is generated by an application in the foreground
or in the background of the UE’s operating system, allows
us to demonstrate that exploiting new context information
is worth the effort.

o Transaction-based scheduling handles the additional
complexity added by context awareness. This is done
by managing traffic flows as fransactions — each with
finish time, Quality of Service (QoS) requirements, and

context information attached. Transaction-based schedul-
ing provides the framework to organize the additional
information and to build efficient schedulers. Unlike
previous approaches, such a scheduler directly accounts
for the transactions’ finish times to meet real-time re-
quirements. By knowing the size and the requirements
of a transaction, the scheduler can extend its allocation
decision to multiple Transmission Time Intervals (TTIs)
in advance.

We will demonstrate that, by joining both techniques, CARA
efficiently exploits new context information at feasible com-
plexity. We do so by formulating CARA as Network Utility
Maximization (NUM) problem. Unlike previous work [1]-[4],
our analysis is based on time-variant network utility functions.
That is, rather than formulating network utility as a function
of rate, we use functions of TTI. By directly accounting for
finish times, this new analytical approach allows us to study
the trade-off between different traffic requirements.

Our paper is structured as follows. In Sec. II, we compare
our approach to the related work. Sec. III describes the system
model and the notation. In Sec. IV, we briefly recapitulate pro-
portional fair scheduling that is a foundation of our approach.
Sec. V presents our transaction-based scheduling framework.
Here, we formulate our approach as optimization problem and
discuss its complexity. After that, in Sec. VI we compare our
approach to Proportional Fair (PF) scheduling by simulation.
Finally, we conclude the paper and discuss future work.

II. RELATED WORK

Comparing CARA to previous work shows two major
differences. First, CARA allows the scheduler to exploit any
type of information. Traditional schedulers are either only
aware of the channel state information and of the requested
rate [5]-[7] or additionally consider the QoS class [2], [3] for
their decision. CARA, however, exploits more information at
the scheduler than these previous approaches. One example is
the background/foreground state of the application generating
the traffic. This context feature has not been exploited for
wireless resource allocation so far.

CARA’s second major difference to previous work is its
focus on deadlines. Analyzing our approach with time-variant
network utility functions is completely new in the field. Previ-
ous work [1]-[7] has formulated network utility as a function
of average rates. While this focus on time-averages made it



TABLE I
SYSTEM MODEL PARAMETERS

Property Value

Cellular layout 19 sites, 3-sector with wraparound
Inter BS distance 1000 m

BS TX power 46dB

BS/UE height 32m/1.5m

Antenna model
Shadowing
Multipath propagation

3D, from [8], Table A.2.1.1-2
8 dB log-normal

Rayleigh (mod. Jakes’ model [9]),
Veh. A channel taps [10]

UE velocity 10km/h
Carrier frequency 2GHz
Frame duration 1ms

difficult to study the temporal performance of a scheduler, our
analysis in Sec. V and VI directly accounts for the deadlines
met with traditional schedulers and our new approach. The
definition of QoS requirements in terms of TTI is much more
flexible because it does not need pre-defined QoS classes
but can be derived from context information. Furthermore,
our metric is directly observable by the user, e.g., when
considering the time it takes to load a web page.

III. SYSTEM MODEL

To compare our approach to PF scheduling, we use the
following system model. We evaluate the downlink data trans-
missions of 10 active UEs. Each UE transfers exactly one
transaction as specified below. We repeat each evaluation 100
times with independent radio channels and UE positions. Each
realization is evaluated for 10 seconds.

Our model for radio propagation corresponds to [11]. UEs
are placed uniformly in a multi-sector scenario as defined in
Tab. I. Only the communication in one sector of the central
base station is evaluated, the other sectors are producing
interference under full buffer assumption. All UEs connect
to the base station with the highest average SINR. While the
evaluated channels suffer from frequency-selective fading, the
interfering channels are assumed to be frequency-flat. Due
to the short evaluated time span (10 seconds), shadowing is
assumed to be constant. The throughput of a UE corresponds
to ideal Shannon capacity for 50 orthogonal 180kHz sub
carriers, clipped at 20dB (comparable to a 10MHz LTE
system).

We create a synthetic traffic scenario for evaluation. The
traffic scenario differentiates two classes of transactions: Fore-
ground and background. The traffic mix contains 50% fore-
ground traffic. As representative applications for our evalu-
ation, we choose interactive web-browsing on modern web
pages with many embedded objects as foreground traffic and
file-downloads as background traffic. Following from that,
we assume an average transaction size of 2MBytes where
background transactions are assumed to be five times larger
than foreground transactions in average. With a log-normal
size distribution, we derive the following transaction sizes in

— Interactive
- - File-Download |

Transaction utility

4000 6000
Transaction finish time [ms]

8000 10000

Fig. 1. Transaction utility against transaction finish time for different traffic
classes (typically foreground and typically background)
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The values in the exponent are obtained by inserting the
assumed average transaction sizes into the formula for the
mean of the log-normal distribution.
The utility functions for the finish time ¢ of foreground and
background traffic are demonstrated in Fig. 1 and calculated
from:

Ut)) 500 - % — % - atan (% — 5ms)) foreground

t =

d 100 (1 —t%; - min (%(;0, 5)) background
2

The following considerations lead to this exemplary choice
of utility functions. An important feature of the function is
its slope, because it denotes the penalty or gain when post-
poning or advancing the respective transaction. Foreground
or interactive traffic should take no longer than one second to
complete, otherwise the utility for the user drops sharply. This
is expressed by the chosen atan-function. Background traffic
such as file-downloads, for example, has a more continuous
utility decay over time. However, a user expects a small file to
arrive earlier than a large file. Thus, the slope is proportional
to the transaction size Br down to a certain minimal slope.
The scaling factors and offset parameters are chosen such that
we obtain a reasonable weighting between foreground and
background traffic. Hereby, the absolute parameter values have
no further meaning than the shape and relative position of the
utility functions.

IV. PROPORTIONAL FAIR SCHEDULING

In this section, we recapitulate PF scheduling. This widely-
employed approach provides the basis for our context-aware
resource allocation strategy in Sec. V. Before describing a
practical PF scheduler, let us formally introduce proportional
fairness and the underlying NUM problem.

To each usern = 1,..., N we allocate a vector of resources
7. Our objective is to find the allocation » = ry1,...,ry that
maximizes the sum of the network utility function U, (r,)
over all users. Formally, this well-known NUM problem can



be stated as

Yoy Un(rn) 3)
SN <R, 0<r,<RVn

maximize,

subject to

where R stands for the total amount of resources in the cell.
We call an allocation r feasible, if it fulfills the constraints
in (3) and we call a feasible allocation r optimal, if for any
other feasible allocation +/, U (r) > U(r'). We denote such an
optimal allocation by r*.

Any feasible resource allocation r is proportionally fair if
for any other feasible allocation 7’ the aggregate change is
zero or negative, i.e., ZTILI(T;L — 1)/ < 0. In [12] it
was shown that the solution of (3) is proportionally fair if
Uy (rn) = log(ry,). Therewith, we incorporate proportional
fairness into (3) by choosing a logarithmic utility function for
each user. This strictly concave function and the linear sum
constraint in (3) now allows to apply standard methods of con-
vex optimization [13]. Typically, a Lagrangian decomposition
of (3) is solved either by gradient projection or by a penalty
algorithm [3].

Coupling proportional fairness to logarithmic utility func-
tions becomes handy to derive a low-complexity heuristic.
Such strategy was introduced in [5] by allocating all resources
to the user n* with largest weight w,, = r,, /7. It was shown
that this simple strategy solves (3) if U,,(r,,) = log(r,,) and if
7y, 1s a long-term average. Hence, even an optimal PF solution
is provided when 7, is perfectly known. In practice, however,
7n, 1S @ moving average over a finite time-window of duration
T.. Then, the above scheduling strategy provides suboptimal
solutions that converge to proportional fairness [6].

Being simple and practical, this PF heuristic is still the
de facto standard in scheduling wireless resources. Several
variants have been proposed that differ in how 7, is calculated
[7] or that trade-off remainder and numerator in w,, [6]. Nev-
ertheless, all these algorithms follow the above PF heuristic.
To this end, we chose this strategy as the fundament of our
following proposal and studies.

V. TRANSACTION-BASED, CONTEXT-AWARE SCHEDULING
A. Transaction Framework

Our goal is to bring context-information to resource al-
location in order to increase the system-wide QoS. On the
UE side, we have the application knowing about its network
traffic requirements and the current situation it is running
in. This information makes it possible to determine if an
application is running in the foreground or in the background
and allows a prioritization of the transmitted data. To transport
the information to the base station, we use the notion of a
transaction. A transaction contains all network activity that
follows from a user action (or background operation) until the
required content is shown. For example, a user clicks on a
web link and waits to see the new content in his web browser.
Then, the web page itself and all embedded objects belong to
this transaction.
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Fig. 2. Advantage from knowing remaining transaction sizes. Comparison

between equal rate scheduling and transaction-aware scheduling.

Information on a transaction not only contains its QoS
requirements. Also the size of the data needs to be signaled
to the base station. In real systems, the client application or
base station can deliver sufficient size estimates, e.g., by
evaluating the content headers. In our evaluation, we assume
that transaction sizes are known at the base station. How
to express the requirements depends on the application. For
streaming applications, a certain data rate should be sustained.
In our example of interactive web browsing, however, the
reactiveness and QoS is expressed best by the time required to
finish a transaction. This finish time is a good metric to reflect
the user satisfaction with his network connection. While rate
metrics only result in a certain finish-time over multiple TTIs,
the transaction finish time does not introduce unnecessary rate
constraints but directly describes the QoS observed by the user.
Therefore, we define a transaction utility function (TUF) in
dependence of the transaction finish time. Fig. 1 shows an
example of such TUFs. It is important that these TUF are
monotonically decreasing. A transaction that finishes earlier
shows a higher reactiveness and has a higher value for the
user.

This new utility function allows us to consider context
knowledge to plan resource allocation on a larger time scale
instead than just for one TTI. By knowing the transaction sizes,
it is possible to predict traffic for the near future. As depicted
in Fig. 2, the scheduler can postpone longer transactions in
favor of short transactions in order to improve the finish time
of the short transaction without disturbing the long one. In
this example, transaction 77 has twice the amount of data of
transaction 75 to transmit. 73 starts its transmission at ¢ = 0s
and 75 at ¢t = 50s. The optimal choice for fair scheduling
is equal rate. This means both transactions get half of the
bandwidth and complete their transmission at ¢ = 150s (if
we assume equal and constant channels). We assume that the
scheduler knows the transaction sizes of both transactions.
Thus, it serves 15 first and then continues to serve 7;. While
T has the same finish time as with equal rate scheduling,
T, completes its transmission at ¢ = 100s. This simple
example demonstrates the gain achievable with knowledge of
transaction sizes.

Also, the differentiation between application requirements
allows a higher scheduling flexibility. While file downloads or
other background tasks can accept a certain delay, interactive



applications in the foreground have stricter delay constraints.
These different delay constraints allow us to choose the utility
curves as in Fig. 1. Other applications like software updates
or periodic tasks may again be represented by different utility
functions. Consequently, urgent traffic can be scheduled more
flexible by prioritizing it against non-urgent traffic.

The next step is to map transaction finish times to actual
resource allocation. To demonstrate the advantages of our
transaction framework, we formulate it as an optimisation
problem for a predefined duration (see Sec. V-B).

In contrast to that an implementable scheduler needs a
transformation or heuristic for this task. While transactions
usually last for several TTIs, the scheduling decision has to
take place for each individual TTI. On the one hand, we
have the TUF, which is a decreasing function over time. On
the other hand, the actual resource allocation can be done
with utility-fair scheduling algorithms (e. g. [2]). For this, an
instantaneous utility function (IUF), which is an increasing
function with respect to the user rate, is needed in each TTIL.
A transformation between the TUF and IUF considers traffic
prediction and channel information in order to exploit the
given context information. In effect, we will get IUFs which
vary over time. So far, we do not have a heuristic doing this
transformation for an actual scheduler.

The achievable gain of our framework originates from two
advantages: By knowing the expectable size of a transaction,
the scheduler can prioritize short transactions. The second
advantage is that it is possible to relax latency requirements
in certain transactions where this is possible without reducing
the QoS perceived by the user. With this, channel-dependent
scheduling gets a larger degree of freedom which makes it pos-
sible to increase multi-user diversity [5], e. g. , by additionally
exploiting channel-variations from shadowing.

It is worth to mention that in cellular wireless systems,
the base station has to memorize the state of active mobiles,
e.g. , for mobility management and opportunistic scheduling.
Therefore, the additional overhead introduced by buffering
transaction information is small. Also the signaling effort,
which has to be done only once for a transaction, is reasonable.

B. Optimization Problem

To realize resource allocation with the transaction-based
framework, we formulate it as an optimization problem. The
goal of this first step is to maximize

Utotal = Zt ZT UT(t)fT,t (4)

where Ur is the utility function of transaction 7. This function
depends on the transaction finish time ¢¢. fr, € {0,1} is a
“flag” which is one for the finish time ¢ = ¢ of transaction T’
and zeor for all other ¢. The transaction index is T' € {1,...n}
for n transactions in total.

The decision variables of the above objective function
represent the searched resource allocation. The resources 77
are allocated to transaction 7" in TTI ¢ and lead to a certain
order of the finish flags fr ;. This optimization problem has
the following constraints:

VT : Y, fre = 1 5)
VIt fra < g (Shorrera) o ©)
Vi: R > Sprry (7)

VI': Br = > ,rruoyr(t) )
Vi<tor:rry = 0 ©))

Hereby, 77 (t) is the channel quality of transaction T at time
t in bits/resource. By is the size of transaction 1" in bits. The
time slots are ¢ € {1,...TT1I}. tor is the start of a transaction
and R is the total amount of resources.

Constraint (5) enforces that there is exactly one finish flag
for each transaction. The finish flag is defined by (6) stating
that a transaction can only be finished after all of its data has
been transmitted. Hereby, the data transmitted in each TTI
is calculated by the product of channel quality and allocated
resources. With (7), we constrain the resource allocation to the
available bandwidth. With (8), it is ensured that all transactions
have to be finished. Finally, (9) introduces the possibility to
model traffic with transactions that start at TTI ¢gp.

The presented optimization problem implicitly leads to a
channel-aware resource allocation. A high sum rate of the
system by opportunistic scheduling leads to shorter transaction
finish times and thus maximizes the optimization goal.

C. Algorithm Example

In a first step, we implemented the optimization problem in
a Linear Program (LP). Unfortunately, it is very complex to
solve. The decision variables comprise the resource allocation
of all transactions in each TTI from which the transaction
finish times are formed. This means that the number of
decision variables has a complexity of O(n-nrry) where nyr;y
is the number of considered TTIs. Furthermore, the scheduling
decisions have to be tried out one after the other by the LP-
solver without much room for simplification. As a result, the
optimization problem cannot be solved anymore already for
relatively small problems.

To cope with such complexity issues, we adjust the under-
lying approach to the optimization problem. We designed a
Genetic Algorithm (GA) which is more feasible with respect
to runtime and computational complexity. Additional simpli-
fications further reduce the complexity. First, the reduction
to R = 1 removes frequency selectivity from our scheduling
problem which is not severe because the gain from frequency
selectivity is a well understood behaviour. The second sim-
plification is to reduce the number of scheduling decisions.
We restrict the algorithm to assign resources to a transaction
once in every 20 TTIs. This coarser granularity still lies in the
order of the channel coherence time for the evaluated scenario.
While these simplifications are not enough to make the LP
solver feasible, we get a fast convergence behavior for the
GA.

In the GA, each resource allocation for the whole problem
represents one individual. The fitness of different individuals
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Fig. 3. Comparison of the resource allocation between proportional fair and
transaction-based scheduling.

is calculated as the sum of the transaction utilities. If a
transaction does not terminate in a solution, the solution is not
valid and the individual’s fitness is zero. In each generation,
all individuals are evaluated and the best individuals are
recombined randomly for the next generation.

For the first generation, the individuals of the GA are
initialized randomly with the possibility to have one individual
to be the solution of the PF scheduling scheme. This makes it
easier to find an initial valid solution which is the starting point
for the evolution. After each generation, the crossover operator
combines two parent individuals into two offspring individuals
by randomly selecting a scheduling decision for either of
the siblings. Additionally, two mutation operators exist which
either change the resource allocation in a TTI or interchange
the allocation of two TTIs of the same individual. These
mutation operators are applied randomly to the individuals of
the new generation. As a last step, each solution is changed to
be a work-conserving allocation. This means that allocations
to a transaction that already transmitted all of its data are given
to an unfinished transaction.

The results of the GA are presented in Sec. VI and compared
against PF scheduling.

VI. EVALUATION RESULTS

We compared the GA for a small problem with the optimal
solution from the LP. It showed up that the GA achieves up to
about 97 % of the sum utility of the optimal solution. As the
number of variables grows linearly with transaction number
and duration, we can expect a good convergence of the GA
for the evaluated scenario.

To evaluate the performance of the proposed context-aware
resource allocation, we compare the results of our GA against
the PF scheme. For each scheduling scheme, traffic is com-
prised of the same transaction sizes. For the PF scheduling,
we take the heuristic mentioned in Sec. IV, 7,, initialized
with the long-term average of the channel quality and then
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transaction aware(TA) scheduling.

evolving with an exponential moving average with window
size T, = 1000 (PF). To compare the effect of different
utility functions between PF and transaction-aware scheduling,
we introduce static priorization in the PF case (denoted by
PFprio). This prioritization means that no background traffic is
served until all foreground transactions are finished. Finally,
we have the transaction-aware (TA) resource allocation which
is determined by the GA with 10,000 generations.

The setup is equal to Sec. III. Simulation duration is 10s
with 10 active transactions. The utility functions are assigned
in an interleaving manner. This means 7' = 0,2, ... have an
interactive utility function, whereas 7' = 1,3,... have the
file-download utility function with the slope depending on the
transaction size.

Fig. 3 shows an example of the resource allocation with
PF and TA. While the PF scheduler targets a high system
capacity while maintaining a certain fairness level, the TA
aware scheduling directly tries to minimize the transaction
finish times. As a consequence, PF scheduling is mainly
guided by channel variations, which is good for the sum rate
of the system. For the case of TA scheduling, we can observe
that mostly interactive traffic is served first. However, if the
GA detects that an interactive transaction has no chance to
meet its deadline (as for 75), it postpones this transaction in
favor of the file-download transactions, because it can gain
more from the constant slope of these transactions. In a real
system, this would mean a drop of the respective service.

In Fig. 4, we show the average utility obtained in 100
optimizations with random traffic. The error bars represent
the 95% confidence intervals in all figures. It can be seen
that TA scheduling improves the overall average utility in
comparison to the PF scheme. In contrast, static prioritization
cannot improve this overall transaction utility. This is due
to the fact that static prioritization obtains a high utility for
the interactive traffic at the cost of file downloads. Large
interactive transactions block even the small file-download
transactions, so that they suffer from a very bad utility. TA
scheduling on the other hand achieves to improve the utility
of both traffic types in comparison to PF scheduling.

Fig. 5 demonstrates the utility gains in terms of average
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transaction finish times. Static priorization increases the aver-
age finish time of PF by a reduction of multi-user diversity
from ten users to five users, because maximal five transactions
are selectable at any given TTI. TA scheduling achieves
slightly smaller average finish times than the PF scheme.

The left plot in Fig. 6 compares the sum of the finish times
for the different scheduling schemes. It can be seen that TA
achieves to reduce this sum. It tends to keep the transmis-
sions of one transaction together, whereas the PF scheduling
fragments the transmissions due to channel variations. This
is advantageous for the sum finish time as also illustrated in
the schematic of Fig. 2. Again, PF with static prioritization
performs worst.

On the right side of the figure, the sum rates are compared.
Here, TA performs slightly worse than the PF scheduling
schemes because it focuses on finishing transactions early.
Consequently, we have less multi-user diversity for the re-
maining transactions in this traffic scenario.

VII. CONCLUSIONS

We demonstrated that context-aware resource allocation is
worth the effort. While context awareness, naturally, improves
resource allocation, so far it was not clear how to system-
atically integrate this new approach into scheduling. Our
proposed transaction-based scheduling is one method to do
so. We picked one context feature, foreground/background dif-
ferentiation, and demonstrated with two representative traffic
classes that large utility gains are possible. However, CARA is
not restricted to this feature. Many more, like the environment
of the UE or application knowledge, are thinkable to deliver
information on transaction urgency. Furthermore, CARA does
not need pre-defined QoS classes. Utility functions can be
derived directly from context information. This new approach
offers a great flexibility and extensibility.

Studying a single cell shows that using transactions to
exploit context information improves resource allocation with
respect to QoS and transaction finish times. Nonetheless, these
gains are based on knowing the users’ traffic requirements and
application states. This knowledge has to be reliably obtained
which comes at a cost. Accounting for this cost, extending
signaling protocols to efficiently gather context information, as
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Fig. 6. The left plot compares the sum of finish times of active users, the
right plot compares the average sum rate of the evaluated sector.

well as designing feasible scheduling heuristics is our current
work in this new field.
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