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1. Introduction

Real-time conditions arise in computer systems
where a quick response is required as for automatic
control, centralized reservation, banking trans-
actions, man-machine communication, and shared
computer use. In many cases there is a great num-
ber of users and each of them will communicate with
the computer system either on-line or off-line via
buffering facilities.

The great number of requests, their individual dif-
ferences, and the real-time conditions cause in gen-
eral a complex computer structure in hard- and
software. For example, let us consider the flow of
data in a typical multi-thread real-time system [1];
Fig. 1. ‘
At the line control equipment messages are received
which were sent from remote terminals, concentra-
tors, or computers. After having analyzed the mes-
sages according to their urgency, real-time requests
are led to the new input queue, non-real-time re-
quests are stored and will be put into the non-real-
time queue later on when it is convenient. During
programme executing an interrupt may occur if
there is either a message of higher priority or if
some data are needed from the peripheral memories.
Interrupted requests are waiting in the work-in-
progress queue until the main scheduling routine
gives service to them. After total service of a request
the outgoing message waits in the output queue until
the input/output schedule gives way to transfer it
to the request origin.

During service the various requests have to pass
different bottlenecks within the system which turn
out to be critical with respect to response time and
throughput requirements. Bottlenecks can be formed
by limited storage capacity in core memory, periph-
eral files, and buffer divices, by limited utiliza-
tion of terminals, communication lines, multiplex
channels, and access mechanisms as well as by lim-
ited speed of precessing units, memory actions, and
transfer media.

For better utilization of such systems they are not
only fed by high priority real-time tasks but also by
low priority batch programmes. To run such systems
economically proper structures and organizations
have to be found. The main features a system de-
signer is concerned with are

1. Waiting and response times should be as small as
possible.

2. Optimum utilization of the capacity of the ser-
vice system, i.e. maximization of throughput without
delaying the important requests. A bottleneck in the
processing unit, for example, can be reduced by in-
troduction of parallel processing; the total response

*) According to a paper read at the “International Computing

Symposium 1970 organized by the European Chapters of the
Association for Computing Machinery (ACM) in cooperation
with Gesellschaft flir Mathematik und Datenverarbeitung, Bonn,
Germany, 21.-22. 5. 1970.

times with respect to all requests can be minimized
by an organization (discipline) which serves the short
jobs with a higher priority. Taking the statistical
behaviour of arrival times and service times into
account, dimensions have to be laid such that there
are no longer critical factors in the system.

A great difficulty for this procedure is the fact that
data needed to implement a system are not available
until the system is implemented. In many cases, how-
ever, systems have to be laid out for some future
conditions so that investigation of bottleneck mech-
anisms is worth while in order to find proper
structures and efficient disciplines to meet the
prescribed requirements.

The best known tool for the investigation of such
systems is the simulation technique. A somewhat
simplified mechanism is drawn from reality and
compressed into a mathematical model. This model
can be simulated on a digital computer. As a result
answers can be found as
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— distributions of waiting and response times
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Fig. 1. The flow of data in a real-time computer system.
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Fig. 2. Basic multiqueueing models.
a) full available servers,
b) limited available servers.
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— utilization of various devices
— throughput of the model.

Parameters for the simulation programme can be
changed easily so that an iterative process for opti-
mization of the system can be performed.

Simulation techniques, however, involve a great dis-
advantage: for each new combination of parameters
a relatively long computer run is necessary so that
simulation proves to be unhandy for complex com-
puter structures. For such cases mathematical anal-
ysis can form an alternative or, at least, a supple-
mentation to simulation. Knowing the relations be-
tween input and output of separated subsystems the
variation of parameters for 51mulat10n can be limited
drastically.

The single server system with pne queue is the most
investigated queueing model. Extensions to that mod-
el are many server systems with one queue, tan-
dem queueing systems w1thout or with different in-
put feeds, feedback queuemg systems, and parallel
waiting line systems without or with feedback.

This paper focuses on systems with parallel waiting
queues. A distinction will be made between systems
where requests of a certain input queue have access
to all servers (full availability) or only to a limited
number out of all serves (limited availability).

Fig. 2 shows two basic structures of a 3-server sys-
tem with ‘full (a) and limited availability (b). The
number of servers is m=3. Each model has g=2
limitéd input queues with s;, j=1, 2, waiting places.
‘Requests arrive at each queue accordmg to aPoisson-
process with mean arrival rates 1;, j=1,2. The
service times are negative exponentially distributed
with mean h;=1/¢ for the i-th server, i=1, 2, 3.
(Markovian assumptions).

The queue disciplines are “first-come, first-served”
service (D1), “random-served” service (D2), and
“last-come, first-served” service (D3) within the
queues. The service of a certain queue occurs with
probability pj;, j=1,2. For special values of p; the
cases of nonpre-emptive priorities with fixed prior-
ity class waiting capacity, of cyclic order service,
and of service according to the queue lengths are
obtained.
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Fig. 3. State space and transition coefficients for the full
available n-server system with two queues.

The characteristic values to be calculated are the
probabilities of waiting and loss (overflow), the
mean queue lengths, and the mean waiting times.
The most important information, however, is given
by the distribution function of waiting times
(d.f.w.t.), which will be dealt with separately.

The aim of this paper is to demonstrate calculation
methods for dimensioning of such systems with re-
spect to a prescribed grade of service.

2. Stationary probabilities of state and characteristic
values

2.1. Full available servers

For simplicity all the n servers are supposed to have
the same mean service time h. A state (x; zi, z2) is
defined by “x servers are busy and z; waiting places
are occupied within the j-th queue, j=1,2". Fig. 3
shows the state space with the transitions in the gen-
eral case. The following abbreviations are used:

821/}&, (1a) 2211—}«/‘12, (1d)
u=mn-¢, (Iby Adj= Ak, 1=1,2, (le)
p=pep j=1,2 (le) A=2-h. (1f)

The total state space consists of two subspaces, a
one-dimensional subspace with the states (x; 0, 0),
x=0,1,...,n—1, when no item is Waiting, and a
two-dimensional subspace (n;zi,22), 2z;=0,1,2,...,
sj, j=1, 2, when all the servers are busy

In the general case the service times of the various
servers have different means h;, i=1,2,..., n. Then
we have an n-dimensional subspace when no item
is waiting. This case will be considered in an exam-
ple of limited availability.

For each state (x; z1,z2) a probability p(x; zi, z2) for
its existence is defined. In the stationary case the
probabilities of state p(x; z1, z2) are independent of
time t and the initial conditions. For the probabilities
of state the Kolmogorov-forward-equation [2] holds
which reads in the stationary case as shown with
Eqgns. (2a) — (2j) on page 578.

Finally, a normalizing condition for the probabilities
of state is given by

pr00+zozpnzl,zg) 1.
22=0

In general, the inhomogeneous linear equation sys-
tem must be solved as a whole. In the above case
the solution for the probabilities of state of the one-
dimensional subspace can be given explicitly. There-
fore, only the two-dimensional subsystem must be
treated as a whole. Because of the large number of
unknowns the solution must be carried out on a dig-
ital computer by iterative methods (overrelaxation
method). Below, some special cases will be discussed
for which the solution can be given either in terms
of recursion formulas or explicitly.

The stationary probabilities of state are not used
directly to judge a service system. For this purpose
characteristic values are calculated from the prob-
abilities of state. It should be noted that the prob-
abilities of state are not affected by the various queue
disciplines, whereas the characteristic values and,
above all, the distribution function of waiting times
depend on the order a waiting request is served from
a certain queue.

(2k)
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Eqns. (2a) — (2j)
zep(x;0,0) = Aplx —1;0,0)
x=1,2,...,n (2a)
A p(n; 0,0) = upn;1,0) + ppn; 0,1) (2b)
(A4 ) p(n;21,0) = Aipn;z1—1,0) +upm;zr 4+ 1,0) + pe p(n;z, 1)
21:1,2,...,81‘1 (20)
(A2 + ) p(n; s1,0) = Ay p(n;s1—1,0) + pe p(n; 51, 1) (2d)
(4 -+ p)pn;0,23) = do p(n; 0,20 — 1) + up(n; 0,22 + 1) + p1 p(n; 1, 22)
ZZ:1,2,...,82—1 (26)
(A1 + p) p(n; 0, s2) = A2 p(n; 0, 82 — 1) + w1 p(n; 1, s2) (21)
(A -+ p) pn;zy,z0) = dipn;zr — 1, 22) + Ao p(n; 21,22 — 1) + w1 p(ns e + 1, 22)+ pe p(n; 21, 22 + 1)
z1=1,2,...,s1 —1 (2g)
29 = 1,2, ey 8o — 1
(A2 4 p) p(n; s1,22) = A p(ns s — 1, 22) + A2 p(n; 51,22 — 1) + uz p(n; s1, 22 + 1)
2‘@31,2,...,82»—1 2h)
(A1 4 p) p(n; 21, 82) = A p(n; 21 — 1, 82) + A2 p(n; 21, 82 — 1) + pa p(n; 21 + 1, s2)
; an=1,2,...,51—1 (21
@ p(n; s1, 82) = A p(n;s1— 1, 83) + Az p(n; s1,82 — 1) 2J)

The definitions for the most important characteristic
values are given by Eqns. (3a) — (8).

a) The probability of waiting at arrival (1-items) Wy

s1i—1 s2

Wi = ZO 2 p(n; 21, 22) (D1, 2), (3a)
21=022=0

Wi= Z SZ P (n; 21, 22) (D3). (3b)

21=0 22=0

b) The probability of waiting successfully (1-items)
*

Wl
Wi =W (D1, 2), (4a)
81—~l 82
Wi = ZO > p(n; 21, 2) (D3). (4b)
21=0 2,=0

¢) The probability of waiting at arrival and being
pushed out (1-items) Wi*

Wi = (D1, 2), (ba)

82
Wi = 2 pnsiz)

22 =

(D3). (5b)

d) The probability of loss or overflow (i-items) Bi
1% { )
83

By = > p(n;s1,2)

22=0

(D1, 2, 3). (8)

e) The mean queue length of the first queue 1 £y

81

82
D= 3 2 zpnz,z) (D1,2,3) (7)
21=0 22=0
f) The mean waiting time for waiting at arrival
(1-items) twi
(o
== D1,2,3). (8
Wi (D1,2,3). (8)
The corresponding values for 2-items are obtained
in the same way as shown above for 1-items by sub-
stituting the index numbers.

th

2.1.1. Generalizations

By a more specified description of the busy sources
and servers the model can be extended in two ways:

2.1.1.1. Allowing a finite number of sources

In this case the arrival rates 1;, j=1, 2, have to be
replaced by the arrival rates of the remaining non-
busy sources of type j.

2.1.1.2. Allowing different mean service times for
the different servers

This is the case when the servers symbolize different
fast computers or different fast transmission lines.
An example will be given below in case of limited
available servers.

2.1.2. Special cases

Above, no special assumptions were made for the
probabilities p;, j=1, 2, which stand for selection of
the j-th queue when a server becomes idle (inter-
queue discipline). Some special values for these
probabilities will be considered now.

2.1.2.1. Priority type discipline

The case of nonpre-emptive priority type discipline
with a fixed number of waiting places for items of
each priority class is obtained if

pr=1, pa=0 forz;>0,20 =0,

9
pr=0, pa=1 forz; =0, 20> 0. )

This case differs from the usual nonpre-emptive
priority models [3], where the items of all priority
classes have a fixed maximum number of waiting
places. The above model holds for all applications,
where each priority class is associated with an own
storage array, or where the items are associated
with a certain incoming queue, as in real-time dia-
logue systems.

For the priority type discipline a simple recursion
algorithm can be given to calculate the probabalities
of state. All transitions of Fig. 3 with coefficient ug
vanish, Taking p(n; 0, ze) as unknown, all the prob-
abilities p(n; z1, z2— 1), z1=1, .. ., 81, can be expressed
in terms of p(n; 0, z2). The equilibrium for the state
(n; s1,2e—1) allows to calculate the unknown



NTZ 1970 Heft 11 Parallel waiting queues in computer systems 579
101,50 == 0L =20 ) =2 0115,20 =7 <o TT011,28) T2 == (1110 55=(010,0, 5) 100 1
NNON N T T " "
\(\?3170 \\(\120 - \\1\12{/ /2’/ Fonnd? /%-—_ <
SOI2M =T =T 2, D= S0 220,1.4.2) =
\\”3&83 N&ua w,%f/wa / // tu.
Va
: +Dyye & B /
muo-z_mnnp_m miﬁ“fnn‘im 13,07) / 7 /
Epbey 2 -1 0
10 4 10
2| |erees 29 61+83//2 (I gl |egrey / tus
10700 :; 00 011,00 ? //
it o]
24/ les 11800) 7| W; —===
& 7 B] twl
2 1
(100,009 (00100; (81,0,00] —_
\ / 0 =1 ~~107
(00000} 1
Fig. 4. State space and transition coefficients for the
limited available 3-server system with two queues.
p(n; 0, 22). This is true for all ze=1, 2, ..., se. By this
method all probabilities of state can be expressed 1073 102
by p(0;0,0). (Note that all p(x,0;0), x=12..., n 0 L
S 2~ U

follow from Eqn. (2a) by recursion). Eqn. (2k), finally,
allows to calculate p(0; 0, 0), which is the parameter
the recursion starts with.

2.1.2.2. Cyclic type discipline

In some applications queues are served alternatively.
If

1

p1L = Py = 5 for z1, 29 > 0, (10)

we obtain approximate probabilities of state from

the system (2a-k). Below, an approximate solution

for the d.f.w.t. will be given, too.

2.1.2.3. Queue length type discipline
For this discipline we define

&
71+ 2’

This discipline serves the longer queue with a grea-
ter probability. Additionally, it can be shown, that
Eqn. (11) holds also for the disciplines D1, D2, D3
with respect to all waiting items. In this case the
probabilities of state can be given explicitly:

pj = j=1,2, z1+2>0. (11)

n—le
p(0;0,001 = 3 =
p(0; ) A -+ ‘
An s 8 fAN (Ag\® (21 22)!
e S S0 G
21==0 2a=0 )\, Z1- %2
Aw
P (x;0,0) = p(0;0, 0)'; (12)
) o ) Anr [A\2m [Ax\*= (21 - 22)!
p(n; 21, 22) = p(0; 0, 0) T (7{) ("{) “eilzal
z=0,1,2, ..., n; zr=0,1,2, ...,8; j=1,2.

These formulas can be extended easily to the gen-
eral case of an arbitrary number of queues.

2.2, Limited available servers

In Fig. 2 the simplest model of a service system
with limited available servers and two input queues
is shown. It is assumed that the mean service times
hi, i=1, 2, 3, are not identical. The interqueue disci-
pline for the i-th server is described by the prob-

Fig. 5. Characteristic values for a 3-server system with
limited availability and two input queues.

priority type discipline (queue 1 has nonpre-
emptive priority),

queue length type discipline.

abilities pi;, j=1, 2, which stand for service of the
j-th queue, if server i terminates its occupation. In
this example only for server 3 exists an interqueue
discipline probability ps;, j=1, 2.

Let be (x1, x9, x3; 21, 22) the state defined by

- {0 server number i is idle i=1,2,3,

1 server number i is busy

z; waiting places are occupied within the j-th queue,
i=1,2.

In Fig. 4 the state space for the model of Fig. 2b is
shown. Note that queues can be built up already
when there are still servers which are not busy.

The equations of state can be written ina similar way
as in the case of full available servers. In any case,
the whole linear equation system is to be solved by
an iterative method. From the stationary probabili-
ties of state the corresponding characteristic values
can be obtained by a somewhat more complicated
summation as in case of full availability.

Computer programmes have been developed for cal-
culation of arbitrary systems with full and limited
availability from the input datas g, n, s(j), type of
server arrangement, type of interqueue discipline,
A(j), €(i).

Fig. 5 shows the characteristic values Wj, Bj, twj,
j=1, 2, for the example of the 3-server system with
limited availability according to Fig. 2b.

The example was chosen such that 1-items represent
real-time requests whereas 2-items stand for non-
real-time batch requests. Server j serves only j-re-
quests, j=1, 2, where server 3 (e.g. a fast remote
computer for safety and overload reasons) serves both
queues. The third server, which is considerably fas-
ter than servers 1 and 2, serves queue 1 (real-time-
requests) with nonpre-emptive priority (solid cur-
ves), or both queues according to the queue length
type discipline (dashed curves). The queue disci-
pline within the queues was assumed as D1 or D2.
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- The curves of Fig. 5 are given for a constant non-

real-time input rate and a variable real-time input
rate. By means of such curves one can study the
influence of both inputs to each other as well as the
influence of system parameters and service discipli-
nes on the characteristic values, i.e. how to di-
mension a system to meet a prescribed grade of ser-
vice.

3. Distribution function of waiting times
3.1. Abstract of the general theory

For Markovian queues with only one queue and full
available servers R. Syski [2] has given a method to
calculate the d.f.w.t. Further investigations on such
systems were made by the author [4]. This theory
can be extended to multiqueueing systems. In the
following a short summary of the method to calcu-
late the d.f.w.t. for multiqueueing systems will be
given. The results will be applied to two examples
of a full available n-server system with different
queue disciplines.

A j-test item arrives at the j-th queue and starts a
special waiting process. This process terminates
when the j-test item is either served or being pushed
out. A random variable {;(t) is defined as a random
occupation pattern, containing only those items in
the system after the waiting time t, which may in-
fluence the waiting time of the j-test item, the j-test
item being excluded. The special definition of j(t)
depends on the system structure and on the queue
discipline. It can be shown, that the {;(t)-process is
a Markovian process.

A (complementary) conditional d.f.w.t. for the j-test
item which starts waiting from the occupation pat-
tern i will be defined by

wi(t | ) = P{t; >t ];(0) =1}, e ¢ H;. | (13)

In Egn. (13) t; means the waiting time of the j-test
item, H; means the set of absorbing states for the
j-test item, i. e. all those occupation patterns, where
the j-test item will either be served or pushed out.

The differential equation system (Kolmogorov-back-
ward-equation) for the complementary conditional
d.f.w.t. is given by the following

duwy(t [4)

theorem: & — qi{(8) wylt | 3y +
+ kZ q;(1, k) w;t | k), © ¢ Hy, (14a)
k;&;
. day( | 7) . .
lim ]—dt]“ = — q;() wj(0 | 4) +
1—0+]
(14D)

k¢1;1;

In Eqn. (14a, b) g;(i), g;(i, k) are the conditional tran-
sition coefficients for the (;(t)-process. The initial
conditions w;(0]4), i¢ Hj, are calculated from the
linear equation system (14b), where the expression
duy(t | 7)

— lim  —— = g(1),

04 db #H;

(14c)
denotes the conditional transition coefficient for ter-
mination of the ;(t)-process at the instant of reach-
ing the state i.

It should be noted that the differential equation
system (14a) holds for the quantities w;(t li), w} (t]i),
and w;*(t|1) which refer to j-test items waiting from
initial state i, waiting from initial state i successfully,
and waiting from initial state i in vain, respectively.
The difference lies only in the quantities &), & | (i),
and &]*(i) of Egns. (14b) and (14c).

Finally, the total d.f.w.t. for all j-items is given by

Wi>t) = 2 Pje) wylt | 9), (15)
i¢Hj

where P;j(i) =P{(;(0)=14}. P;(i) can be calculated from
the stationary probabilities of state. Eqn. (15) holds
also for the corresponding quantities W}, w}, and
Wi, v

‘To treat Eqns. (14a—c) we use the Laplace-transfor-

mation [5] and obtain from the above theorem:

[s -+ g5(0)] Wy(s |4) ﬁ;c; qs(i, k) - Wils | k) =
k¢1ﬁj

= w0 i), i¢H;,  (16)
where Wij(s|i) denotes the Laplace-transform of
wj{t]i), and s a complex variable. By this method
the waiting time problem can be reduced to an
eigenvalue problem. Eqgn. (16), written in matrix no-
tation, is the starting point to investigate the eigen-
values. For systems with only one queue the eigen-
values have been investigated [4] for several queue
disciplines. This method can also be applied to
multiqueueing systems. The eigenvalues prove in
any case to be negative-real. The location of the
eigenvalues on the negative-real axis of the s-plane
reflects the influences of the various queue and in-
terqueue disciplines on the d.f.w.t.
The solutions of Eqn. (16), W;(s|i), are rational func-
tions of s. Partial fraction expansion of the Wj(s|4)
and the inverse Laplace-transformation lead finally
to the quantities w;(t|i) and, hence, to W;(>t).
The conditional mean waiting times for waiting of
a j-item from an initial state i, tw,(i), from an initial
state i successfully, tiy,(i), and from an initial state i
in vain, ti(i), can be obtained by integration of
w;(t]4), wi(t]i), and w*(t]i), respectively. Using the
definition of Laplace-transformation it can be shown
that

tw,(i) = W;0 i 1), Z§§ ;.

and tw;(i) the corresponding relations
hold. The conditional mean waiting times can be
calculated from Eqn. (16) at s=0. The total mean
waiting time of a waiting j-item, t,w , is obtained by
integration of W;(>>t)/Wj, i. e.

1 . X
tw, = —Wj igﬂj Pj(2) tw,(3) .

Eqn. (18) holds also for t¥, and ti;, when tw, (1) is
replaced by t¥, (i) and tiW,(i), and W; is replaced by
W and W;*, respectively.

(17)

For tiy, (i)

(18)

3.2. Applications

The above theorem will be demonstrated for two
queue disciplines, D1 and D3. For example, 2a
double-queue many server system with full avail-
ability will be considered. In both cases it is assumed
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that the interqueue discipline probabilities p;, j=1, 2,

are constants.

3.2.1. First-come, first-served service

For 1-items a conditional d.f.w.t. wi(t|z, 2z2) is de-
fined, where (n;zi, 2z9) is the state the j-test item
found on its arrival. For this discipline all customers
which were accepted once will wait successfully.
From the equation system (14b,c) follows that

w1(0]2z1, z2)=1 for z=0,1,...,s1—1, 22=0,1,..., sa.
The equation system (16), in matrix notation, is
shown by Eqn. (19):
Wilsl0,0) Walsi0 1)+ ~W1(slﬂ,sz):w1(sﬂ,[])W1(s[1,1]-~- W1(s|1,sz); [Wq(s{s,-lﬂ)-"Wg[slsﬂ,sz)
(s*Azt) “h i ! : 1
‘l‘zﬂ(s*}*ﬂu) A : E ! !
RN | H
\\H o _12 : i : :
SO 20 €/ N N I T .
-u H]I (s+ArHh) A, ]\ ! ]
w4 |
SN ! N ; :
s S 0 M s | 1
S T T s S s o o S o T '-___.‘._—;—"_“‘_.1__—:1‘;‘::‘_“:::::::::
! P - Hs+Ao4) 4 ]
| “ HstArul
: \’ “H 1R S -
| i S~ : \\ Sl ). :
EANE) i ! e RONEE

From the special structure of this matrix one can see
that the Wi(s]z1, z2) can be determined sectionwise,
as shown by the dashed lines. In any case, only a
system of (sz+1)st order is to solve instead of a sys-
tem of s+ (s2+1)st order.

Having calculated all the quantities wi(t|zi, z2) the
total d.f.w.t. for l-items is given according to Eqn.
(15) by

s1—1 sz

Wi>ty= > > pn;z,ze) wilt | 21, 22).

21=0 22=0

(20)

Items of type 2 can be treated in a similar way as
items of type 1.

For priority type discipline Eqn. (19) assumes a
somewhat simpler form, because all uz vanish. Then
all the unknowns can be calculated recursively,
starting with Wi(s]0, sz), which ean be determined
directly, up to Wiy(s]0,0), then starting with
Wi(s|1, s2) up to Wi(s!|1, 0), and so on.

3.2.2. Last-co
As an example we only want to consider the d.f.w.t.

for l-items which wait successfully. Let wi (t|i, i)
be the conditional d.f.w.t. for waiting items of type 1.

me, first-served service

*

Clearly, wi(t]0, ig) is the d.f.w.t. for the whole wait-
ing time of 1-items, because new l-items are allowed
to occupy the first waiting place in their queue. The
quantities w;i'(t |1y, 49), 1>>0, are the d.f. for partial
waiting times for waiting for a server from the
(i1+1)st waiting place in the 1st queue. i denotes
the number of waiting 2-items at the instant when
the 1-test item becomes (i1+1)st in its queue.

The system for the determination of d.f.w.t. is given
by Eqn. (21).

Before starting the solution of Eqn. (21) the initial
values wi(0/i1, is) must be calculated from a linear
equation system according to Eqns. (14b, c).

The matrix shows that the system has to be solved
as a whole, no sectionalization is possible.
According to Eqn. (15) the total d.f.w.t. for success-
fully waiting 1-items is given by

Wity = X P1 0, i) wi(t | 0, 13) , where (22)
Zz 0
81
n; 21, 22) for ’il = 0,
Pl(il, 7/2) = 212=0 P(
0 for i1 > 0.

For priority type discipline again all w2 vanish in
Eqn. (21). Then a sectionalization of the total matrix
is possible: beginning at the lower right, only sys-
tems of si-st order are to solve. Additionally, the
eigenvalues of the subsystems can be given ex-
plicitly, because the matrices of the subsystems can
be reduced to difference matrices [4].

For random service (D2) a similar structured
matrix can be derived as above for last-come, first-
served service. Assuming other rules for the
interqueue discipline, e.g according to
Eqgn. (11), in general a more detailed pattern of occu-
pations has to be chosen to differ the items according
to the dispatching rule.

3.3. Approximate calculation of the d.f.w.t. for
cyclic type service
For serving both queues alternatively the prob-
abilities of state can be calculated approximately by
p; according to Egn. (10). Assuming the discipline
D1 within the queues in the following a very simple
method is given for calculation of the d.fw.t.
approximately.
For demonstration let us consider 1l-items as test
items. Fig. 6 shows the two possible cases when a
1-test item arrives at queue 1.

1
W(s\sﬂ,sz)

\ * ! * i
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For both cases a lower and an upper bound for the
conditional d.f.w.t. wi(t]z1, 22) can be given. Since the
termination process of the fully occupied server
group is also Poissonian, the probability p,(t) that
during the time interval (0, t) x terminations occur is

palt) = M et (23)

X!

For the lower bound of the total d.f.w.t. we have

s1—1 sa
Wi>t)= 3 3 pn; 2, 2) wilt | 21, 20),
21=0 22=0
> pilt), 21 = za,
i=0
where wi(t | 21, 22) =

21+22

ZO pilt), 21 > 22.
=

The upper bound is given by

— s1—1 s2
Wi>1) = 2 X p(n;z1,22) Wit | 21, 22),
=0 22=0
22141
where Wit |21, 20) = 2 pi (B).
i=0

The exact d.f.w.t. must be included between both the
lower and the upper limit.

Now an interpolation is made between both limit
curves such that the interpolated curve yields the
right mean waiting time. From both limit functions
the lower and the upper mean waiting times tw, and
tw, are calculated by integration of Wi(> t)/W; and
Wi(>> t)/W; respectively. On the other hand, from
Eqgn. (8) we know the value tw,. The linear inter-
polation

Wi(>t) =~

1 .
e Wi> 1) + Wi> 8], (24)

tw, — tW1
Wi b,

where o = s

in LAZ lm l;.z
—_— T-test item  resmm
1-test item  memm =} 2 E} 2

=ZW ==

E}Zz
o1

" i .
casel: 2>z O3

cosel: z1S 7,

Fig. 6. For derivation of an approximate formula for the
distribution function of waiting times in case of cyclic
type service.

vields just the mean value tv;;l . For practical esti-
mations this method allows a simple calculation of
the d.f.w.t. for cyclic type service.

4, Conclusion

Service systems with parallel waiting queues and full
or limited available servers have been investigated.
Under the Markovian assumptions the equations for
the stationary probabilities of state and the condi-
tional distribution functions of waiting time have
been derived. The solvability of the linear equation
systems and the linear differential equation systems
has been discussed for several queue and interqueue
disciplines. Curves of the characteristic values are
given for an example of a 3-server system with lim-
ited available servers.
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Dissertationen

Die Wendelleitung als Laufzeitverzogerungs- und Reso-
nanzleitung. Von Gerhard Rotter. Dissertation TH
Aachen (14.2.1970). Berichter: Prof. Dr.-Ing. H. Déring;
Mitberichter: Prof. Dr. rer. nat. H. Lueg.
Die Arbeit untersucht die Eigenschaften von koaxial ab-
geschirmten Wendelleitungen im Bereich kleiner Fre-
quenzen bis zu einigen 100 MHz, wobei die vorgelegte
Theorie sich auf Wendeln sehr geringer Steigung be-
schrénkt. Aufgrund der Existenz eines Wellentyps mit
kleiner Phasen- bzw. Gruppengeschwindigkeit hat die
Wendelleitung den Vorteil, daB Leitungsbauelemente
wie Laufzeitverzogerungs- und Resonanzleitungen ver-
kiirzt aufgebaut werden konnen.
Ausgehend von einer Berechnung der Feldstruktur die-
ses Wellentyps werden die Leitungskenngréfien in Ab-
héngigkeit von der Frequenz und den verschiedenen
geometrischen Abmessungen angegeben. Bei den aus
Wendelleitungen aufgebauten ILeitungsresonatoren ist
vor allem die A/4-Resonanz von Interesse, die im
Schrifttum auch als Spulenresonanz bezeichnet wird. Die
Resonatorfelder, insbesondere die an den Leitungs-
enden entstehenden Streufelder, werden diskutiert und
unter ihrer Berticksichtigung Resonanzfrequenz sowie
Gilite bestimmt. Eine Untersuchung der kapazitiven Ab-
stimmung dieser Resonatoren schlieBt sich an. In einer
Reihe von Messungen konnten die vorgelegten theore-
tischen Ergebnisse bestiitigt sowie geeignete MeBmetho-
den zur Bestimmung der KenngroBen angegeben werden.
(3813)

Bau und Erprobung einer sfrahlungsgeheizten Hoch-
temperaturanlage zur Kristallziichtung. Von Eike
Schwarz Dissertation Universitdt (TH) Karlsruhe,
1970. Berichter: Prof. Dr. H. Friedburg; Mitberichter:
Prof. Dr. H. G. Kahle.

Die Arbeit beschreibt den Aufbau und die Erprobung
einer Kristallzlichtungsapparatur, mit der in oxidierender
Atmosphére Einkristalle im Temperaturbereich zwischen
1400 und 2000 °C nach dem Czochralski’schen Ziehverfah-
ren geziichtet werden konnen, ohne die mit der tiblichen
Verwendung eines Tiegels aus Fremdmaterial zur Auf-
nahme der Schmelze verbundenen Nachteile aufzuwei-
sen.

Bei dem angewandten Verfahren wird die Schmelztem-
peratur mit einer Hochleistungs-Strahlungsheizung er-
zeugt, die mit einer konventionellen Widerstandsheizung
kombiniert ist. Das Prinzip der Strahlungsheizung be-
steht darin, die von einer Xenonlampe ausgehende Strah-
Iung so stark zu bilindeln, daf3 eine begrenzte Schmelze in
dem im Brennfleck befindlichen Tiegel entsteht.

Nach einer Untersuchung des Einflusses der verschiede-
nen Ziehparameter auf Gréfe und Temperatur der
Schmelze wurden Einkristalle aus CaWos gezogen. Die
bisher durchgefiihrten Untersuchungen an den Kristallen
lassen erkennen, dafl das angewandte Verfahren zu einer
mit sonstigen Ziichtungsmethoden vergleichbaren XKri-
stallqualitdt, aber mit geringerer Moglichkeit der Ver-
unreinigung fiithrt. (3627)



