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ABSTRACT

In this paper an approximate method for the analysis of
complex queuinyg networks is proposed. The queuing network
is of the open network type having N single server gueuing
stations with arbitrary interconnections. There is only one
class of customers (calls) which arrive acc.to general ex-
ogenous arrival processes. The sexrvice times of the queue-
ing stations are generally distributed. The analysis is
based on the method of decomposition, where the total net-
work is broken up into subsystems, e.g., gqueuing stations
of the type G/G/1. The subsystems are analyzed individu-
ally by assuming renewal arrival and departure processes.
All related processes are congidered with respect to their
first two moments only. An analysis procedure is reported
which reduces the total problem to a number of elementary
operations which can be performed very guickly with the
aid of a computer. Numerical results are reported to dem-
onstrate the accuracy of the method. The paper concludes
with a discussion on extensions of the method.

1. INTRODUCTION

The traffic flow within computer systems and data networks
can be described sufficiently accurate by queuing networks.
The analysis of complex gqueuing networks, however, results
often in difficultieés because of a too large number of sys-~
tem states or the lack of exact methods at all so that

there is a need for sccurate approximate methods, too.

Exact methods are known by J.R.Jackson {1] and W.J.Gordon
and G.F.Newell 2] for open and closed networks with expo-
nential interarrival and service time distributions, re-
spectively. These solutions have a closed product form for
the stationary multidimensional state probabilities whare
the single product terms are the solutions of isolated
exponential queuing stations . These basic solutions were
extended recently by F.Baskett, K.M.Chandy, R.R.Muntz, and
F.G.Palacios [3] tc open, closed, and mixed networks with
different classes of customers for exponential service
times under FCFS (first-come, first-served) or phase-type
service times under PS (processor-sharing) and preemptive-
resume LCFS (last-come, first-served) strategies. It has
also been shown that a parametric analysis can be performed
in that cases by reducing the network to a suitable sub-
system, cf. K.M.Chandy, U.Herzog, and L.Woo [4]. This
principle was also extended to general queuing networks
approximately [5]. )

Another class of solution techniques is that of decomposi-
tion where the network is broken up into subsystéﬁg which
are analyzed in isolation. This can be done either by con-
sidering the related input and output processes of sub-
systems or by separation of the total system into a hier-
archy of "aggregate systems" with only few interactions
between the various levels, c¢f. R.L.Disney and W.P.Cherry
[6} or P.J.Courtois L7 . respectively.

The solution technigue used in this paper belongs to the
decomposition method considering only input and output
processes of the related subsystems. In the second Chap-
ter, the general cueuing network model will be defined.

The third Chapter describes the analysis method in detail.
In the fourth Chapter, numerical results are shown to dem-
onstrate the accuracy of the propos method. The fifth
Chapter summarizes the results, relates them to other known
results, and discusses extensions with respect to multi-
server stations, multi-class customers, and subnet-configu-
rations. Special derivations are given in the Appendix.

2. QUEUING NETWORK MODEL
2.1 NETWORK STRUCTURE

The queuing network consists of various elements as servers,
queues, transition paths, feedback loops, decomposition
points (random branching), and composition points (super-
position). Fig.l shows an elementary queuing station (a).
and a network example (b). '
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Fig.l. Queuing network structure
a) Elementary queuing station no.i
b) Network medel (example with 4 stations)

The elementary queuing station no.i consists of a single
server, a single queue with unlimited capacity, a composi-
tion point C; at the input, and a decomposition point Dj
at the output. The general gqueuing network is built from N
elementary queuing stations acc.to Fig.la by arbitrary in-
terconnections. It is assumed that exogenous arriving cus~
tomers may enter the queuing network at an arbitrary com-
position point in the most general case. At the other hand,
customers may depart from the network at an arbitrary de-
composition point having a path to the outside world. There
is at least one exogenous arrival process and at least

one station from which customers can leave the network to
the outside world (open network).

The following parsmeters define the network structure with
respect to the network topology and the branching of cus-
tomers:

Total number of queuing stations

Z

= (qij) Transition matrix, where’

10

transition probability for customers branching
from station i to a station j,
i=1,2,...,N, J =0,1,...,N.

fia}

ij

Herewith, station no. O represents the outside world of

the queuing network. .y
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2.2 ARRIVAL AND SERVICE PROCESSES

Customers arrive from the cutside world acc.to general
exogenous arrival processes and they are served at the
various stations acc.to general service processes:

GIO =(GIOj) Vector of exogenous arrival processes

A o :(Aoi) Vector of exogenous arrival rates, where
aoi=1/)\oi is the mean exogenous interarrival
time at station i

cO =(c ) Vector of variation coefficients of the

hand 0L :
exogenous arrival processes

G  =(G,) Vector of service processes

n :(ui) Vector of serylce Fates, wherg hifi/ui is
the mean service time at station 1

Cy =(cHi Vector of variation coefficients of the

service processes

At each station i the exogenous interarrival times T,y and
service times Ty are mutnally independent and identically
distributed with probability distribution function (df)
Anq (t) and Hj(t), respectively, i=1,2,...,N. The latter
assumption includes the independence assumption that suc-
cessive service times of the same customer are independent
of each other [8]. The following notations will be used
for the df, the k-th ordinary moment, and the variation
coefficient of a random variable T:

F(e) = plr S ¢} (1a)
E[Tk] = f th'(t)dt, k=1,2,... (1b)
c = (1c)

These notations are used for interarrival times Tp, service
times Ty, interdeparture times Tp, and arbitrary interarri-
val times in transitio& paths analogously. For a short no-
tation of the process type, the usual abbreviations are
used as M and D for Markovian and deterministic processes,
Eyx and Hy for Erlang and hyperexponential processes of the
order k, respectively. Finally, we assume that the network
is in the stationary state.

2.3 OPERATIONAL STRATEGIES

All customers in the network are treated equally (one class
of customers only). A customer leaving station i is branch-
ed to a station j independently acc.to the transition prob-
ability qiqjs i=1,2,...,N, 3=0,1,...,N. Queuing customers
are scheduled for service acc.to an arbitrary queue disci-
pline which does not depend on the service time (e.g.,FCFS,
LCFS, RANDOM).

3. ANALYSIS BY DECOMPOSITION
3.1 OUTLINE OF THE BASIC PRINCIPLES

The analysis method was developed acc.to the following
principles:
1. Decomposition of the queuing network into subsystems,
e.g., single gueuing stations or subnetworks

N2

Analysis of the subsystems in isolaticn. The subsystems
are related to their network surroundings by input
(arrival) and output (departure} processes

3. Approximation of all nonrenewal processes by stationary
renewal processes

4. Consideration of only two moments (mean, variation
coefficient) of all processes

5. Reduction of the total analysis to few elementary oper-
ations to be performed very guickly by a computational
algorithm.

The key points of the analysis method are principles 3 and
4. Stationary renewal processes are used because of their
mathematical tractability for the necessary operations.
Additionally, principle 3 is motivated by an analogy argu-
ment between Markovian gueuing networks (i.e. networks with
Markovian processes for exogenous arrivals and service
times) and networks with more general arrival and service
processes. Markovian networks can be decomposed into sub-
systems exactly, where the arrival and departure processes
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of the subsystems can be assumed to be Markovian despite
the fact that they are not (with exception of networks
without feedbacks LQ}). In other words, for Markovian net-
works the global product solution [1~4] is not affected by
the nonrecurrence of processes. This phenomenon is trans-
ferred to general networks approximately.

Principle 4 rests on a number of observations in queuing
and teletraffic theory where characteristic mean values are
mainly (sometimes only) influenced by the mean and variance
of a random variable. As an example, consider the queuing
station M/G/1 where the mean waiting time depends on the
mean and the variance of the service time only (Pollaczek-
Khintchine) . Additionally, the following procedures dre
much better to perform for two moments than for whole pro-
cesses.

3,2 ELEMENTARY STANDARD OPERATIONS

In the following sections, basic operations are discussed
which are elements of the analysis algorithm in Section 3.3.

3.2.1 Mean Arrival Rates

Under the assumption of stationarity, the mean arrival rate
Xi of queuing station i is obtained from the following set
of linear equations representing the conservation of flow

[ICJ:

N
A, =A .+ EAq

i=1,2,...,N. (2)
i oi j=1 3

i’
In the stationary case, for all stations it must hold:
Ai = )\i/ui < 1, i=1,2,...,N. (3)

A; is called the offered traffic to station i. The transi-
tion rate A;. of the path from station i to station j
follows acc.%o

i=1,2,...,N,

(4
0,1,...,N. 4

Ay m A%y j

3.2.2 Mean Valués of the Queuing System G/G/1

In the general network case we consider queuing stations
acc.to Fig. 2: ‘

Input Waiting Service Qutput
process (G) process process (G)  process
ﬂ Di
Tai Twi Tui Toi
S i Bcug Asepg

Fig.2. The general queuing system G/G/l

The input (arrival) process is a renewal process with gen-
eral 4df G, mean arrival rate ki, and variation coefficient
cpi- The service process is also general (G) with mean
service or holding time h; and variation coefficient cyj.
We are interested in the mean values of the waiting time
Ty and flow time Tpy = Tyi+Ty; of an arbitrary customer
and the number of customers Xi at that station, viz.

w, = B[r,] (5a)
g, = B[] = w oy - (5p)
N,o= E]}%J = kifi = Qi + B (5¢)

In eq.(5c), Qi defines the mean queue length at station i.

Exact values are known only for special cases as, e.g.,for
the queuing systems M/G/1 and G/M/l. For the general case,
2 new approximate formula has been developed heuristically
which includes the case M/G/1 exactly, cf. W.Kradmer and M.
Langenbach~Belz Dl :

A
_ . i 2 2. 2 2
w, = hi oA (CAi+LHi) g(Ai’cAi’LHi)' . (6)
S 2.2
where 2(1-A,) (l-c )
exp{ - i By e <y
5 9 384 r‘2V+CZ ' Tl
g(a,,cc ,ct) = “ALTYHAL
1" AL THi cé,
exp{ -(1-a,) 221 ) 21
%P i e 1 :

Cpitioyy



Analogously, an expression was found For the probability of
walting wi:P{Twi> o}, cf. B]J joth formulas were checked
by intensive simulations.

3.2.3 Cutput Process of the Queuinyg System G/G/1

o T

The output process of a queuing station acc.to rig.2 is
basically characterized by the df of the interdeparture
tines Tpys viz.

D, (t) = P{TDiz t}. (7)

Ooutput processes are known explicitly for systems M/M/n
and M/D/1, cf. P.J.Burke DQJ and C.D.Pack h3}, respec-
tively. Apart from some special cases, little is known for
more general systems, cf. [14]. Whereas the output of M/M/n
is again Markovian, in almost all other cases the cutput
processes are no longer recurrent.

Because of these difficulties we concentrate on the varia-
tion coefficient Cpi of the output process given that the
input process is recurrent. K.T.Marshall US] gives a ge-
neral expression for the variation coefficient cp; of the
queuing system G/G/1:
2 2 22

== + 2A
°pi T Cai T %%

- 28 (1A 5T . (8)
1

Substituting eq. (6) into eqg.(8) we obtain:

2 2 22 2,2 2 2 2
c ., = -, - +e. ). )
pi = Cap ¥ Pi%m T Bi(Caitohs) "Iy CaCus) (9a)
or with some simplifications
2 2 2,2 2
= + — .
cDi CAi Ai(cHi cAi) (90)

The solutions eq.(9%a,b) include the known exact results
for M/G/1, cf. T.Makine [16], as well as for G/G/1 for

A, >0 and A, > 1, respectively. It was shown by a num-
ber of simulditions that eq. (9a) fits extremely well with
respect to a wide range of arrival and service processes,
cf. Chapter 4. Even the simpler result eq. (9b) is suffi-
ciently accurate for a first chavacterization.

3.2.4 Decomposition of Renewal FProcesses

Given a stationary renewal point process as a sequence of
events (arrivals of customers). The time between two suc-
cessive events is a random variable T with df F(t). At the
decomposition point D an arriving customer is branched in-
to direction j acc.to a fixed probability q., 3=0,1,...,N,
cf. Fig.3. We want to know the characteristics of the com-
ponent processes, i.e. the df Fj(t) of the interarrival
times Tj, 3= 0,1,...,N.

FO:(:) Fto) ‘I;*T—.l
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a . ~ | ]
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Fig.3. Decomposition of a renewal process into (N+1)
component processes

time =g €

Rs shown in App.l, the Laplace-Stieltjes (LS)-transform of
Fj(t) of the component process j is given by

qj.gb(s)

TR (10)

¢j(s)

where ¢(s) the LS-transform of F(t). From eq.(10) the tran-
sition rate A4 and the variation coefficient <y of the com-
ponent process j are derived:

-1

Aj = E [rj] = kqj (11a)
2 2 ) .

ey = e + (1-qj), 3=0,1,...,N. (11b)

Whereas AO+X1+...+AN = A reflects the law of the conserva-
tion of flow in node D, an interesting relation is found
from eq. (11b):

2 2 2 2
Cp T Cp F e Foy =t N. {llc)

The results hold exactly only in case of a recurrent pro-
F(t). For nonrecurrent (output) progesses these rela-
tions were also proved to be in good accordance with simu-
iations, cf. Chapter 4. If F(t) is a Markovian process, all
component processes Fj(t) are Markovian processes again,

3.2.5 Composition of Renewal Processes

The dual problem to the decomposition of a process is the

composition (superposition) of a number of independent pro-
cesses. Given (N+1) component processes which are station-
ary renewal point processes with df Fy(t), j=0,1,...,N. We

_are now interested in the characteristic of the resulting

process when all component processes are superpesed. For

the sake of clearness, we will solve the more basic prob-
lem of two component processes Fy(t) and Fy(t) at first,

cf. Fig.4.

F o (t) i
1 |
(ay-ep) i IR A T
* 1 ' S
) | i T |
Fy(e) — ' o
2 T i 1 1
A,c) : ' ,[ T2 \ H i : |
e s
Fz(g) Flt) i 1 i i
(AZ'CZ) -’—-—l———-'[j :
T, time -~
v

)

Fig.4. Composition of two renewal component processes

The resulting process is in the general case nonrecurrent.
As shown in App.2 by means of the forward recurrence times

Tvl’ Tyor and Ty, the df F(t) of the resulting process is
A )\2 o @
Fle) = 1 - 2% (&) - SFC () au + FC (£) +SFS (w)au} , (12)
A, Tt 2 27

where F?(t) =1 - Fj(t) the complementary df of Fj(t),j=1,2.

From eq.(12) it follows for t=0 the plausible result for
the resulting rate A\ which reflects again the law of the
conservation of flow in node C:

A= E[r]Th = e (13)

The calculation of the variation coefficient, however,

turns out to be rather laborious. For this reason, a concept
of simple substitute component processes is introduced by
which the operations for the calculation of ¢ are tractable.
These substitute processes are as follows:

< 5
© I T
t-exp{-e., (t-t, )}, t = t. ! h cj N
iz L it (14a)
F () =
3
1 p(-€.,t) exp (=€, ,t) 2 1
- p,,expl{-€, - p. ~€ , ¢, = 1.
REE i 32 29 %57

Both substitute processes are simple combinations of phases.
Eq. (14a) represents a series of a constant phase le and an
exponential phase Tip, eq.(14b) the alternative of two ex-
ponential phases T., and Tj2, respectively, cf. Fig.5. Both
Af allow the approXimation of arbitrary hypo- and hyperex-
ponential component processes exactly with respect to their

first two moments.
o £ e e
. T“

[, T, 1 ,
b ]
J2 ;
o
o A
a) b)

Fig.5. Representation of substitute processes by phases

a) Hypoexponential df [{e} S 5 b 1)
b) Hyperexponential df (Cj; 1)



= 1/€:V,v = 1,2, the

Using the abbreviation & [“.L’j\)]
are as follows:

parameters of the cubstitute proce

< < g
o= ¢, 2 1: €., = A,/{l-c €. = A./c, (15a)
3 g1 N T Rg2 175 ’
- 21 . = A {12} -3, p. €. m 15b
4 j1,2 J \ ! Py1,27751 / - (150)
J ; =
P31ty ijtj2)

The superposition acc.to eq. (12) is carried out with these
two basic substitute processes yieiding the variation co-
efficient ¢ straightforwardly. If the component processes
are Markovian, the resulting process is Markovian again.

The extension from two component processes to the general
case of (N+1) processes is performed recursively in N steps
acc.to Fig.6:

02 D DN
Folt) Fo e .-
(.) (t) «——%? F—(—t.)a.
: 0 £y (1) e
Fi(o) res o e
Fy(8) e
Fy(0) Fy(t) =

Fig.6. Composition of (N+1) component processes by N re-
cursive compositions of two processes in each case

3.2.6 Reconfiguration by Substitution of Stage-Internal
Feedbacks

It turned out that stage-internal feedbacks may affect the
assumption of renewal processes in a negative way since in-
put and output processes of such a gueuing system are cor-
related strongly. To eliminate this effect, a substitute
queuing system without feedback is formed acc.to ¥Fig.7.

T I
%o e “fo
¥ ¢ N : " &i’f
S E TN 544,-M*’°—*:TDQ
iai : LA :
Qirend lpoey) ’ e M
9y Gy

Fig.7. Substitution of stage-internal feedbacks

In the original system a customer is served acc.to a geo-

metrically distributed number of service phases which may

be interleaved by phases of other customers. In the substi-
tute system a customer gets its total service time contin-

uous]v As shown in App.3, the substitute service time Af
lft) is given by its LS-~transform

i (16)

where V (s) the LS-transform of H; (t).
Fig.7 follows{

From eq. (16¢) and

*. = -

W= Ui(l qii) (17a)
* 2 2

Cpi q;, * (l*q ) Sy (17b)
* - _ P .

qij qij/(l qii)' j o+ i. (17c)

By this procedure, the stage-internal feedback loop is eli-
minated and the queuing system i is considered only ‘with
respect to customers arriving from or departing to other
stations via the input and output ports Cj and D respec-
tively. Applying this procedure to each stage WL%h internal
feedback, the queuing network becomes reconfigurated. The
reconfigurated network differs fram the original one with
respect to arrival rates, service time distributions, and
the transition matrix. After that reconfiguration proce-
dure, the usual guantities without asterisk will be used

to describe the reconfigurated network.

It was shown by intensive simulations, that the reconfigu~
ration step yields acceptable accuracy, whereas the ana-
lysis without that step results into considerable differ-
ences compared with simulations.
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3.2.7 Mean Number of Visits at a Station

To calculate the mean flow times, the expected number of
visits ‘at a certain station must be known. These are:
e Expected number of visits at station i with respect
to an arbitrary customer

Expected number of visits at station 1 with respect
to those customers entering the network at
station a

e, (a)
1

e {a,b) Expected number of visits at station i with respect
- to those customers entering the network at station
a and leaving the network via station b,

wvhere i,a,b = 1,2,...,N. Defining Xi, Xi(a), and A;(a,b)

as total or partial arrival rates at station 1 with respect
to all customers, all customers entering the network at
station a, or all customers entering the network at station
a and leaving the network via station b, respectively, we

have:
N
e; = Xi/k , whexe A = I Aoa ' (18a)
a=1
ei(a) = )\i(a)/loa: (18b)
ei(a,b) = Ki(a,b)/kbo(a),where Ai(a,b) = Ai(a)‘pb(i),

i,a,b=1,2,...,N. (18¢)
It remains to calculate the various arrival rates in eq.
(18a-c). The arrival rates Ai are the solutions of eq.(2).
The same procedure acc.to eq.(2) can be used to calculate
the rates Aj(a) by setting A,y = O for j % a, cf. Fig.8b.
The arrival rate Xi(a,b), finally, is that proportion of
li(a) leaving the network via station b. This proportion
is given by the probability pb(i) for customers entering
at station i and leaving the network via station b, cf.

ed. (19b) .

2

7‘Oa

Ayofa)

Aon b ‘ -0, j Ho
a) I AO}—O’ Jj#a b)
Fig.8. Total and partial arrival rates at station i

a) Network with complete exogénous arrivals

b) Network with excgenous arrivals only at input a
From Fig.8a,b the probabilities py and pb(a) are derived
which define the probability that an arbitrary customer
leaves the network via station b or that a customer of in-
put & leaves the network via station b, respectively:

(19a)

Py = A A ‘ -

(19b)

L

pb(a) Aho(a)/xoa’ a,b =1,2,...,N.

3.2.8 Mean Flow Times

The flow times Tp, TF(a), and TF(a,b) define the random
life time of an arbitrary customer, a customer of input a,
or a customer of input a who leaves the network via station
b, respectively. The mean values are found directly by con-
sidering a "test customer" moving through the network:

N

£(a,p) = E[T (a,p)] = I e (ab)f , (20a)
i=1
N N

f£(a) = EEPF(aﬂ = 'Z ei(a)fi‘z x f(a,b)pb(a),(ZOb)
i=1 b=1

- N Aca N 1 N

£ =efr] = I $%e@ = fes =5 LE[x]. (200

a=1 i=1 i=1

The latter expressions in eq.(20c) are found by insertion
of egs. (20b), (18b), (18a) ,and (5¢); the last expression is
identical to Little's theorem applied to the total network.



3.3 QUEUING NETWORK ANALYSIS ALGORITHM
3.3.1 standard Procedures

the algorithm is based on a number of procedures for stand-
ard operations as discussed in Section 3.2. These are:

MEANRATE Calculation of the mean arrival rates Ai of all
queuing stations, i=1,2,...,N

RECONF Reconfiguration of the gneuing network by substi-
tution of stages wit dback through stages
without feedback and transformation of the
network parameters

COMPOS Composition of (N+1) cemponent processes (Aji'cji)
at Ci of station i, j=CG,1,...,N

DECOMP Decomposition of the departure process (%i,cDi)
of queuing station i into (N+1) component pro-
cesses (Xij,cij) at D; of station i, j=0,1,...,N

CDEPART Calculation of the variation coefficient cp; of
the departure process of station i

QVALUE Calculation of the characteristic values Wi, Nj,
wi, and fi of queuing station i

FLOWTIME Calculation of mean flow times between arbitrary

input and output ports of the network as well as
means of total flow times with respect to all
customers or all customers of a certain input,
respectively.

3.3.2 Analysis Algorithm

In networks without feedback the analysis can be carried
out straightforwardly. There exists always a sequence for
analyzing the network stage bv stage starting from one of
those stages having only exogencus arrivals.

Start,

{ Read Input data l

i

I Procedure MEANRATE }

AN\ <)

true

R —
false

[ Procedure meconr |

[ procedure meAnRATE |

i iieitl i

I

Procedure COMPOS
Procedure CDEPART
Procedure DECOMP

C e D

I true .

(k) (k-1) @10)%
PR IR L

L

true

Procedure QVALUE
i=1{1)N

[ Procedure FLOWTIME |

[ Print output data I

Fig.9. Principal flow chart of the deccmposition analysis
algorithm

Y. RUnNn -

[n the general case of networks with feedback, the composi-
tion operation at a station i cannot always be carried out
nce there are not all component processes known with re-
eot to their variation coefficients Cyir i,3 = 1,2, ..,N.
Ihis problem is solved by iteration having the additional
advantage to be applicable without regard to the sequence
of stations to be analyzed.

The principal flow chart of the algorithm is shown in Fig.9
(details are omitted). The algorithm is very fast and needs
about 5N2 storage capacity for data. It has been implemented
by an ALGOL computer progran 19}, and its results were
checked by a simulation program for general gueulng networks
20|. Finally, we state that in the special case of pure Mar-
kovian networks the algorithm yields the exact results.

4, NUMERICAL RESULTS

In this chapter, several results are reported to show the
accuracy of the algorithm for basic operations and whole
networks, as well. .

4.1 STANDARD OPERATIONS

4.1.1 Mean Values and Output Process of the Queuing System
G/G/1

The mean values w; and Wj cited in Section 3.2.2 have been
checked by intensive simulations yielding an acceptable ac-
curacy, cf. [lﬂ , and will not be reproduced here.

Concerning the output process, in Fig.10a,b the functions
c%(A) are given for queuing systems of the type E,/G/1 and
H2/G/1 acc.to eq. (9a), respectively. The simulation results
with a 95% confidence interval show a reasonable accuracy
of the approximate solution.

3 T 3
2 { === Calculation
Sp { Simulation
f
) ]
cy=1.5 1
J W2
0
1 1
1
1/42
3 5
[} 2
0 0.5 = A1 0 2.5 — [V
a) b).

Fig.10. Variation coefficient cp versus the offered
traffic A (parameter cp)
a) Queuing system E5/G/1
b) Queuing system Hp/G/1

4,1.2 Decomposition of Point Processes

In Fig.11 the functions c%(c2) are given for the decomposi-
tion of a renewal process or a nenrenewal process with va-
riation coefficient ¢ and branching probability g4 as para-
meter acc.to Section 3.2.4, respectively. The results of
the decomposition operation are shown in Fig.lla for rene-
wal processes and in Fig.l1lb for nonrenewal processes. The
nonrenewal processes were represented as output processes
of queuing systems of the type M/G/1 for A = 0.6 (note,that
the output process is renewal again for A > O and A » 1 ).
The curves hold exactly only if the original process is re-
newal, cf. Fig.lla. For nonrenewal processes the calculated
curves are still within the confidence intervals of the
simulation, cf. Fig.1lb. The accuracy does not depend re-
markably on the parameter qy-
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Fig.13. Equivalence of substitute systems without stage-

Fig.11l. Variation coefficient cy of decomposed processes
versus variation ccefficient ¢ of the original
process (parameter q+)

a) Decomposition cf renewal processes
b) Decomposition of nonrenewal processes

4,1.3 Composition of Point Processes

The results of the composition operation on two ccmponent
processes acc.to Section 3.2.5 are shown in ¥ig.,12. The
figures represent the squared variation coefficient c2 of
the superposed process dependent on the variation coeffi-
cients ¢y (abscissa) and ¢y (parameter) for two renewal
component processes (cf. Fig.l12a) or nonrenewal processes
(cf, Fig.12b), respectively. The nonrenewal processes were
realized as output processes of M/G/1 at A = 0.6. Whereas
the composition of renewal processes fits extremely well
with simulation, the composition of nonrenewal processes
yields errors up to 15% in the worst case of the superposi-

tion of two output processes of two M/D/1 stations.
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Fig.12. Variation coefficient ¢ of the superposed process
dependent on variation coefficients ¢y and ¢y of
the component processes
a) Composicion of renewal processes
b) Composition of nonrenewal processes

4.1.4 Substitution of Stage-Internal Feedbacks

In Fig.13 the calculated results of the reconfigurated
queuing station without stage-internal fecdback acc.to
Section 3.2.6 are compared with simulations for the origi~
nal system (the subscript i is omitted). The figures show
the variation coefficient cg of the output process of cus-
tomers leaving the station (cf. Fig.13a) as well as the
mean total flow time f of all outside arriving customers
(cf. Fig.13b) versus the variation coefficient cy of serv-
ice times of the original system with.parameter c::of the
arrival process of outside arriving customers. Both results
are in good accordance with the simulation results. Simi-
lar results were obtained for the comparison of both sys-
tems by simulations only, although the eguivalence is ex-
act only in case of Poisson arrivals [Hﬂ‘

internal feedback

a) Variation coefficient CE 05 the output process
versus cy with parameter cp

Mean total flow time f'versus cy with
parameter c§

b)

4.2 ANALYSIS OF QUEUING NETWORK

The accuracy of the decomposition method will be demonstra-
ted by a network example consisting of N=9 gueuing stations
with some interconnections including several feedbacks, cf.
Fig.l4. Exogenous arrival processes are assumed to be Mar-
kovian whereas the service times are generally distributed.
The figures at the transition paths represent the transi=
tion probabilities.
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Fig.14. Queuing network example with 9 queuing stations

The network example was investigated for homogeneous ser-
vers (h1“9=1, 19 identical) as well as heterogeneous ser—
vers (h1~ =1, cy1-3 different to Chg-g9) . In Fig.15 the mean
total flow time f and the mean flow time f4 of the interior
station number 4 are drawn (solid curves) versus the varia-
tion coefficient cyy g in case of homogeneous servers (cf.
Fig.l5a) or versus Cyj_g with parameter cyq_3 in case of
heterogeneous servers (cf. Fig.15b), respectively.

In Fig.15a two more curves are shown for comparison with
different analysis methods when all arrival processes at
each station are assumed to be Markovian (dashed curves),
or when all arrival and service processes at each station
are assumed to be Markovian (dotted curves), respectively.

Compared with the simulation results, the proposed two-mo-—
ment method yields acceptable results wheras the neglection
of the second moment of the arrival processes or both of the
arrival and service processes yields principally worse re-
sults. The comparatively small difference between the solid
and dashed curves results from the fact that in a complex
network with many compositions and decompositions of pro-
cesses the component processes tend to become Markovian
again. Then, the renewal assumption is also better justi-
fied as in special cases as closed networks or, e.g., series
of queues with constant service times.
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Fig.15. Mean flow times £ and £, versus the variation co-
efficient cg of network service stations
a) Homogeneous servers
b) Heterogeneous servers

5. GENRERALIZATIONS OF THE MBETHOD

The suggested decomposition method allows the analysis of
open queuing networks with general exogenous arrival pro-
cesses and general service processes. The method does not
allow state-~dependent arrival rates or closed networks with
a fixed number of customers within the network as in the
network theorems for Markovian arrival and service proces-~
ses, cf.[2—3}. The network analysis algorithm has been de-
scribed for the case of single-queue, single-server sta-
tions with only one class of customers. The modular concept
of the algorithm, however, allows easily a number of gener-
alizations as briefly discussed in the following sections.

5.1 MULTI-SERVER QUEUING STATIONS

Any single server queuing station no. i can be replaced by
a multi-server station acc.to Fig.l6a. The analysis is per-
formed analogously by inserting the corresponding results
for a G/G/n; queue with respect to the variance coefficient
cp; of the output process and mean values w;, Wi, firand Ny.

5.2 MULTI-QUEUE STATIONS WITH SEVERAL CLASSES OF CUSTOMERS

A further extension is the introduction of R > | classes of
customexs arriving from the outside world. Customers are
classified acc.to their origin, preceding path, urgency, or
importance and may also change their class membership, cf.
[3 . At each queuing station i, arriving customers are sep~
arated into distinct queues acc.to their class index x,
r=1,2,...,R, cf. Fig.l6b. Waiting customers are selected
for sexvice by a scheduler with any nonpreemptive strategy,
e.g., a nonpreemptive priority. A customer of class r leav-
ing station i is branched to station j and changes into
class s with probability rsqij, r;s = 1,2,...,R, 1 =1,2,,
..,N, j =0,1,...,N.

For the analysis, in a first step the arrival rate rAi of
class ¥ customers at station i must be determined from a
system of NR equations analogously to eg. (2). Herewith, the
total arrival rate A, and the transition rates rski. are de-
termined, too. Then, the general R-class queuing SQStem
G/G/1 must be analyzed considering only two moments of pro-
cesses and the underlying scheduling discipline. The con-
sistency of the variation coefficien of all processes in
the network must be achieved again by iteration as described
in Section 3.3.2. For the expected number of visits at a
station, a test customer of a certain class is considered
moving through the network as described in Section 3.2.7
analogously.

5.3 SUBNETS

Up to now, the elementary subsystems of the network were
single-stage service stations. In a further generalization,
subsystems can also be subnets with one input port and one
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6utput port as shown in Fig.l6c. The only difference to the
ibed analysis algorithm is the analysis of the subnet
ing two moments of the input and output pro-

desc
itself consider

Cesses.

The concept of subnets is favourable in cases where the
global subnet behaviour with respect to input and output
processes is sufficient to describe its influence on the
residual network behaviour, or in special cases when the
decomposition method becomes worse if it is applied to the
elements of the subnet. As an example for the first case,
let the subnet be a queuing network model of a computer

_system and the residual queuing network the model of a

large scale computer communications network. As an example
for the second case, consider subnets with strong depend-
encies between their stages as, e.g.,in case of closed loops
or series stages with constant service times, cf.{}i], where
the decomposition method yields too bad results. For these
reasons, it is useful to analyze such "aggregate systems"

in isolation and to put them into the algorithm as a whole.
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Fig.16. Generalized subsystems
a) Multi-server queuing station
b) Multi-queue (multi-class) station
c) Subnet

APPENDIX
APP.1. DECOMPOSITION OF RENEWAL PROCESSES

Given a stationary renewal point process with a random in-
terarrival time T between successive events (arrivals) with
df F(t) = P{T £ t}. At the decomposition point D an arriv-~
ing customer is branched into direction j with probability
qs, cf. Fig.3. The random interarrival times Ty of the com-
panent process are constituted as sums of a random number

X of successive realizations of the random interarrival
time TV of the original process, i.e.

X w
T, = Y T . (A.1)
J v=1
Be
(e] ; x =0
p, = P{x=x} = Y )x~1 L2 (A.2a)
5% '
with generating function
0 q.2z
Z) = % — 2
G(z) b p .z T g7 ¢ (A.2b)
X=0 3
and o
$dls) = [ exp(-st)F'(t)dt , (A.3a)
o-
0
¢j(s) = [ exp(—st)Fg(t)dt , (A.3b)

o-
the LS-transforms of the df F(t) or Fj(t) of the random
variables T ox Tj, respectively,



‘Then,

o

Lo pir, B ttX = %},
® J

X=O

(A.4a)

where P {r, £ tix = %} the conditional df of the sum of ex-—
it

actly x miutually independent x variables TV ,yu =1,2,

with identical 4f F(t).

e X,
5op o] (A.4b)
el . .

X=0

INORE

Compared with eq. (A.2b) we find:

(1>3.(S) = G{p(s)) = ’ (A.5)
with mean EEfj] and variance VAREPiEaS follows:
Blr] = ele] - elx] (a.6a)
VAR [Tj] = E[T}ZoVAR{X] + var[r] E[x] . (A.6D)
Inserting
elx] = 1/qj, var[x] = (1qu)/q§ , (3.7a)
elr] = 1/, warlr] = %, (A.7Db)

in eqg.{(A.6a,b), the result eq.(lla,b) is obtained.

APP,2, COMPOSLTION OF TWO RENEWAL PROCESSES

Given two stationary renewal point processes with random
interarrival times Ty and Tj and df Fl(t) and Fg(t), re-
spectively. Both processes are superposed at the composi-
tion point C. The df of the resulting process be F(t) =
p{r & ¢ }, where T the interarrival time of the superposed

process, cf. Fig.4.

Following the theory of renewal processes acc.to D.R.Cox
and H.D.Miller {17}, the forward recurrence times Tyy, Typy
and Ty are introduced being the intervals between an arbi-
trary instant t, and the following event of the component
and superposed processes, respectively. In the stationary
case, the forward recurrence times Tyj are independent of

ty and their density function is given by

c

vi(t) = A.:F.(t j o= 1,2 A.8a

j ) 5 3( Y. 3 . ( )

where F?(t) =1 - Fj(t) the complementary df of Fj(t). From
eqg. (A.83) the complementary df of ij follows by integra-

tion
I

v$() = f AFo(wdn , 3§ =1,2.
3 et 3

(A.8b)

Since

P{Tv>t} = pir >t}-P{TV2>t} , (A.9)

vl
the 4f of TV is given by

< c “ c ]
1= L/ ap an) - ] A F (wauk . (A.10)

u=t u=t
Inserting the general relation

MO
vi(e) = A-FC() (.11)

between V(t) and F(t) of the superposed point process into
eq. (A.10), we find the final result acc.to eq.(12):

X1A2 ) =
F(t) =1 - —2{r"(t) -/ rC(wdu + FS(0) - [ F. (wdu}.
A, A 1 T2 2 1
172 u=t u=t
C(AL12)
Unfortunately, we are not able to giwve the moments of F(t),
viz.
k1 ok 1% x
glr"]= J efrmae = -5 S Eve mae (A.13)
o~ o~

in terms of the moments of the component processes except in
case of k=1. Then, we obtain from eq.{A.12),(A.13) the plau-
sible result A2K1+A2, which reflects the law of the con-
servation of flow in node C.

The second moment E[TZJ of the superposed process, and here-
with its variation coefficient ¢, can be calculated from

eq. (A.12), (A, 13) straightforwardly using the concept of
hypo— and hyperexponential substitute processes acc.to
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ec. (14a,b). For the algebraic manipulations, three subcases
of hypo-and hyperexponential combinations must be distin-
guished., The explicit results are somewhat extensive and
will be omitted here.

APP.3. SUBSTITUTION OF STAGE-INTERNAL FEEDBACKS

Given a queuing atation i with stage-internal feedback acc.
to Fig.7. Arriving customers from the outside of that station
sive a geometrically distributed number of random service
phases possibly interleaved by phases of other customers.

A reconfigurated station without feedback is formed by
giving each customer arriving from the outside its total
service time continuously. Thus, the substitute service
time Téi is the sum of a random number X of mutually inde-
pendent service times THi(V), v; 1,2,...,%, with identical
arg Hi(t). The service time df Hj(t) is found by the same
arguments as in case of the decomposition procedure, cf.
App.l, considering the counterparts qj and (1-qji), re-
spectively.

The proof of the exact analogy between the stations with
and without feedback was given by L.Takacs L18] in case of
Poisson arrivals. The analogy holds for the distribution
of queue size and the mean flow time. The same argument
has been adopted heuristically for the general case above.
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