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T ABSTRACT

This paper deals with the problem of waiting times in
delay systems having n graded servers with accessibil-
ity k<n and g »1 parallel input queues. Various tyres
of gradings sre considered with respect to wiring mode
and mean interconnecting number M. The servers within
a grading group are hunted sequentially. Various oper-
ation modes are considered for the service of a cer-
tain queue (intergueue discipline) and for the service
of & certain waiting call within a queue (quene disci-
pline) when a server becomes- idle. For both interar-
crival times and service times negative exponential
distributions are assumed.

The exact calculation is carried out by multidimen-
sional state descriptions and application of the Kolmo-
gorov-forward and backward-equations. Examples of exact
evaluations are given to demonstrate the influences of
accessibility, mean interconnecting number, and wiring
mode on the grade of service. The approximate calcula-
tion is based on the "Interconnection Delay Formula®,
which has been adapted to gradings of various type
with arbitrery mean interconnecting numbver and two
different interqgueue disciplines. For the approximate
calculation of the distribution function of waiting
times, two models are suggested based on approaches

by exponential and gamme distribution functions, re-
spectively. All approximate celculation methods were
checked by extensive event-by-event simulations.

Besides the development of analytical tools for the
exact and approximate calculation of multi-queue delay
systems, the guestion of optimum gradings for delay
systems is answered by means of exact calculations as
well as simulations.
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1. INTRODUCTION

Delay mechanisms can be found in automatic telephone
or data switching systems for reasons of an economic
use of centralized devices (servers) as trunks, reg-
isters, markers, and procesgsors for common contral.
The connection with these centralized servers is done
either by single stage connecting networks with full
or limited accessibility or by multi-stage connecting
networks (l1nk systemu) respectively. Single stage
systems with limited access and link systems are
applied for reasons of a more economic number of
crosspoints.

In single stage connecting systems with limited acces-
sibility,the outgoing servers of several selector
multiples are partially interconnected according to

an interconnection scheme (grading). Compared with
full accessibility (full intewconnection), this method
results in a smaller number of crosspoints at the
expense of the grade of service.

During the past, gradings have extensively been stud-
ied for loss systems, cf. the sunvey of A. LOTZE [1].
Delay systems with fully saccessible servers wvere
investigated first by A.K. BRLANG [2]. Por graded

.delay systems, an interpolation method was proposed

by E. GAMBE [3] using results of full accessibility.
M. THIERER [4,5] derived expressions for the proba-
bility of waiting and the mean waiting time on the
basis of a two-dimensional state description using
the combinatorial blocking probability for ideal
gradings ("Interconnection Delay Formuls IDF"). Com-
bined delay and loss systems with gradings have been
investigated by the author [6,7,8]. Multi-stage
connecting networks with waiting were studied by

E. GAMBE [9] and L, HIEBER [10].

The studies made in [3,4) were focused mainly on mean
values as the provability of delay, ths mean queue
length, and the mean waiting time. In this paper,
these investigations are extended to exact and approx-~
imate calculations of the probability distribution
function (pdf) of weiting time which is a more de-
tailed criterion with respect to the grade of service
than the mesn waiting time. This criterion must be
taken into consideration in those cases where impa~
tient customers cause defections when the waiting
time exceeds a certain amount, or where the time con-
ditions in successive processing phases become
critical.

Another problem occurs by the fsct that the efficiency
of gradings can be quite different depending on the
wiring mode, mean interconnecting number, and opera-
tion mode (hunting and interqueue disciplines). For
this reason, the results of the “"Interconnection
Delay Formula' were extended to gradings of various
types with arbitrary mean intevconnezting number and
two types of interqueue disciplines. Moreover, the
resulis should also be applicable to delay systems
with link arrangements which behave similar to a
grading.

After & more detailed statement of the problems in
Chapter 2, the exact calculation of multi-gueue delay
sysiems with gradings is outlined in Chapier %,
Appreximate celculation methods are described in Chape
ter 4. Examnples of exact and approximate evaluations
are given for demonstration of the influences of
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accessibility, mean interconnecting number, viring and
opzration mode on the grade of service. Besides the
velopment of analytical tools for the exact and
proximate calculation of multi-queue delay systems,
the question of optimum gradings for delay systems is
ansvered by means of exact calculations and simula-
tions in this paper.

2. STATEMENT OF THE PROBLEM

A gueuing problem can generally be defined by the sys-
tem structure, the operation modes, the input process,
and the service time characteristic. In this chapter,
the basic assumptions and problems will be discussed
more in detail,

2.1 System structure of multi-gueue delay systems
2.1.1 General structure

The multi-gueue delay system consists of g input
queues (grading group queuves), each of them is as-
signed to an input process of calls. The cells are
served by n servers which are fully or partially in-
terconnected (commoned). For partially interconnected
servers, calls of 'each group can only hunt k out of n
servers (k- accessibility). The interconnection scheme
‘is also called as grading. In Fig. 1 an example is
given having n = 8 servers, accessibility k = 4, and
g = 4 greding groups.
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Fige. 1. Lxample of a multi-queue delay system
with limited accessibility

In & pure delay system, the maximum number of storage

~places s, in queue J must be sufficiently large. such
that no “loss occurs (J = 1,2,..0,8)¢ A combined delay
and loss system is generally obtained by limitation of
the queues.

In case of full accessibility, all servers are fully
intercennected. Full accessibility can therefore be
considered as a limiting case (k = n) of a grading.

2.1.2 Types of gradings

/ special interconnection scheme (wiring) has an
weportant influence on the efficiency of a grading
and has been intensively studied for loss systems,
cf. [11-21]. Generally, three main wiring methods are
applied for the construction of gradings:

-~ Commoning

- Skipping

-~ Slippinge.
Applying these wiring methods on the above example
(n =8, k =4, g=4) leads to following gradings,
cf. Fige. 2. 7
Besides these structural criteria, the properties of a
grading are furthermore reflected (for given n and g)
by the following criteria [15}:

-~ Accessibility k

-~ Mean interconnecting number M = gk/n

- Matrix for the distribution of busies (bj.),
where b, . the number of interconnections” 9
between “grading groups i and J.

In general, the efficiency of a grading increases with
k and M. The criteria, which were found for efficient
gradings in loss systems with respect to the probabil-
ity of loss and traific balence, cf. [15], can be ex-
tended to delay systems in principle. However, addi-
mal criteria have to be taken into consideration
the influence of the service disciplines on
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Fig. 2. Types of gradings with various wiring methods
Exemple: n = 8, k = 4, g = 4, (M = 2).

1 Straight homogeneous "grading"

2 Straight homogeneous grading with skipping

%3 Homogeneous grading with skipping and slipping

«4 Straight inhomogeneous grading {"0'Dell-Grading")

5 Straight inhomogeneous grading with skipping

6 Inhomogeneous grading with skipping and slipping

mean values and the influence of the mean interconnec-
ting number M on the higher moments of the pdf of
waiting time, cf. Chapter 4.

The effects of the various grading types of Fig. 2 on
the mean values will be investigated in Chapter 3.
Another study made in Chapter 3 shows the dependence
of the grade of service from the accessibility k for
gradings having n = 6 and g = %, as shown in Fig. 3.
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Fig. 5. Types of gradings with various sccessibilities
Example: n = 6, g = 3, k = 3 up to 6.

In the examples Figs. 2.1 and 3.4 fully accessible
service systems were oblained as limiting cases. An-
other limiting case, the "Ideal Erlang-Grading", is
obtained for g = (P)k!. Por practical systems g as-~
sumes too large values. This case, however, is of
great theoretical interest as the blocking probabil-
ity of this grading is explicitly known {[2].

In practical switching systems, only few types of
gradings are applied which have economic advantages as
simple manufacturing and low costs for installation
and extension. Two examples are given in Fig. 4, a
straight inhomogeneous grading ("O'D@lln@fading”) of
the BP0 and & standard grading of the German GPOQ.

Por comparison, another example of a "high-efficiency
grading" with skipping and gonod traflfic balance is
given, too (high-efiiciency gradings are individnally
constructed while gradings of the 0'Dell-~type, stand-
ard gradings end simplified standard gradings are
regularly constructed), s

2,2 Operation modes
2.2.1 Hunting disciplines

Servers can be hunted sequentially (with or without
homing) or in rendom order. For gradings with progres-
sive commoning the sequential hunting method (with
homing) i® optimal and hes, therefore, been assumed
for exacl calculations and simulations throughout this
paper.
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Pig. 4. Examples of practical gradings

4.1 0'Dell-grading, n=30, k=10, g=6, M=2
4.2 Standard grading, n=30, k=10, g=6, M=2
4.% High-efficiency grading, n=40, k=6, g=20, M=3

2.2.2 Interqueue disciplines

The interqueue discipline controls the service of
(non-empty) queues in a multi-queue system with full
or partial common servers. For the exact calculation
& general probabilistic discipline has been intro-
duced [6,7,8) which yields some special cases as, €.ge

- priority service of queues
~ rendom service of queues
- gqueue lengths-dependent service of gqueues.

The influence of the intergueve discipline on the
grade of service has been studied by means of exact
caleulations, cf. [6,7,8]. For graded nulti-queue
delay systems, the RANDOM service of queues seems %o
- be the most realistic interqueue discipline; this
interqueue discipline will be compared with the ide~
alistic interquene discipline FIF0 in Chapter 4.

2.2+% Queue disciplines

The gueue discipline controls the service of waiting
calls within & certain queue. Except for displacing
priorities, the queue discipline has no effect on the
mean values but on the pdf of waiting time. These
effects have been studied by exsct calculations for
FIFO, RANDOM, and LITO queue disciplines in connec-
tion with various classes of intergueue disciplines
{7}« In this paper, only FIFO is assumed for the study
of waiting time distributions.

2.3 Input process and service times

The input processes are assumed to be Poissonian with
mean arrival rate A for group j, J = 1,25¢c¢,8 The
service times are distributed according to negetive
exponentisl pdf's with mean terminstion rate €&; for
gserver i, i = 1,2;,¢..,n. For the numerical examnples,
only symmetrical conditions are assumed, i.e. A nﬁ/g,
J= 1,2,60048y & =¢ 4 1 = 1,2,sc0,n. Furthermole, the

service system i8 considered in the stationary state.

2.4 Grade of Sexvice

The grade of service of a multii-queue delay system may
be given by the main characteristic values as

~ probability of w&lt;ng

- probability of loss (finite quhueu)

~ carried traflfic

- mean gueue length

- mean walting time

~ pdf of waiting time

-~ higher moments of the pdf of waiting time.
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In the following, these more detailed values will be
regarded for the service quality.

Another important quality parameter of a grading cen
be derived by consideration of unbalanced load as it
vas suggested for loss systems by A. LOTZE [13].
Studies of the influence of unbalanced load as well as
extremely uneven intergueue disciplines (priority
service) in delsy systems have been reported in [6,7,8]
end will not be dealt with in the following.

3¢ EXACT CALCULATION OF MULTI-QULUE DELAY SYSTEMS
WITH GRADINGS

The exact calculation of multi-queue delay systems
with gradings is based on methods of state equations.
In principle, the analysis can be performed in two
steps (6,7,8]:

1. Solution of & system of linear equations for the
stationary probabilities of state
(Kolmogorov~forward- or eguilibrium-state-eguations)

2. Solution of & system of linesar differential equa-
tions for the conditional pdf's (cpdf) of weiting
time
(Xolmogorov-backward-equations).

The main traffic values which characterize the grade

of service can ve derived from these values subseguent-
lye In the following two sections, only the fundamsntal
way of solution will be outlined; for a more detailed
discussion it is referred tol7].

In pure delay systems, the number of states tends to
infinity for an infinite number of sources. Therefore,
numerical examples will be confined to combined delay
and loss systems with & finite number of states.

5.1 The stationary state
%:1.1 Probabilities of state

A system state & may be defined by a (n+g)-dimensional
vector

gm(u.gy.“;”eﬂj”.d,gegy (%.1)
where x = 0(1) if sevver i is idle(busy), i=1,2,...,n,
and z.="0,1,¢¢.,8, the number of occupied storage pla-
ces within quete j, j=1,2,...,g. The set 5 of sys=
ten states includes only those states which are physi-
cally possible (& queue j can only be built up if at
least all accessible servers within grading group J
are busy).

The stationary probabilities of state, p(g), can be

determined from the Xolmogorov-forward-equations con-
sidering the service system in equilibrium state

qu(l‘” - >J JLgp(JL =0, E C) ’ (5"29’)

m
I

completed by the normalizing relation

S - (3.20)
fe=

In Eq.(3.2a), Uy Means the coefficient for the transi-
tion from state ~JU ¢ &£to state &,and Qg the coeflficient
for leaving state §, where qg = éj Qs *
Rk

The general state representation of the process of sys-
tem states is illustrated in Fig.5. Examples for spe-
cial multidimensional state repreccntations were given
in {6,7,8) and will not further be discussed in this
paper. Bg.(%.2a) can be formulated in detail regarvding

3 (?f)

egﬁr\ gn W;\
K\%m% Q\\%

Iig. 5. Process of system stales:

General state represcntation with transitions
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formal descriptions for gradings and operation modes.
The general formulation was reported in [8] for se-
“antial hunting. Por the practical evaluation of sgs.
.2a,b), a computer program has been developed which
generates the equations for arbitrary grading struc-
tures, queue lengths, arrival and termination rates,
and various types of interqueue disciplines; the numer-
ical calculations are carried out by the method ol suc-
cessive overrelaxation. By this method, service sys-
tems can be calculated with a total number of states
up to the available computer storage capacity.

5.1.2 Characteristic mean values

The most important mean valucs can be obtained from the
probabilities of state by following definitions:

a) Probability of waiting for group J

X
=S, S_)ﬂ Grg )12 (®)

Eelm ’

(3.%)

b) Probability of loss for group J

=>4, s, 8 (3.4)
ge=
¢) Carried traffic on server i
Y, = > x;0(€) (3:5)
fe&
d) Mean queue length of queue j
Q= . ap(E) (3:6)

Eer
e) Mean waiting time referred to all waiting j-calls

tyy = /(A0 (37)

where J,, the Kronecker symbol, k, the number of acces-
sible servers from group J, and 8hj the number
of that server which is hunted at step h 3in group jJ,

h = 1’2’“°°’kj' Jo= 1,250c0,8¢

3.2 Distribution of waiting time
5.2.1 Conditional pdf's of waiting time

For the exact celculation of waiting time distribution,
the waiting process of a test call is considered with-
in the j~th queue« 4 j-~call enters the queue j and
starts a waiting process; this process is being "alive"
g~ long as the j-call is waiting and "dies"™ at that

' ent the j-call is selected for service. This waiting
p.ocess can be constructed from the process of systen
states by neglecting all those transitions which do not
influence the "life-time" of the j~call under consider-
ation.

For the iormal description of the waiting process in
queve j, & waiting state £, is introduced which consid-
ers all those calls in the“system which may have an in-
fluence on the waiting time of the considered j-call.
Thereiore, {5 is built up by the statcu x; of all those
servers ‘hl@h have no access to group J, and the states
zy of 8ll queues ( The walting process for j-calls can
only exist if at lesst all servers are busy which are
accessible from group J) he states z, must be defined

dependent on the special queue and interqueue disci-
plines,

In the simplest case, the intergueuve discipline does
not depend on the actual lenghts of the various queues
(e.g., vendom selection of gueues), eand the queue dis-
czplxnv is FIPO. Then, the waiting time of the j-test
intfluenced by subscquent arriving j-calls.
case, the waiting state ¢ . can be defined by a
(n»kj4g)»dimensional vector

(3.8)

. = (.u.,xi,«mﬁ;.,.,zy,c‘e), gbezzj,

where x, = 0(1) if sexver i is idle(busy), i % g,

h = 1 2,»,.,k y 2y = number of waiting calls in ~queue
oY J, and z = number of cslls walting in front of
the Jj-test CQIf set Z, includes all possible waiting
states for a tcst

J

call.

If the gueue discipline were RANDOM, the
state acc. to Eg.(3%.6) could be used when z, is defined
as the number of competitors to the j-test Ycall in
gueue Jj. For LIFO ( with displacing priority in case of
finite queues ), 7. represents the number of calls in
gqueue J which havé arrived subseguently to the 3 test
call.

same waiting

For other interqueue disciplines (e.g., selection of
queues according to their lengths), the state z, must
be composed by two components, the numbers of pre-
decessors and successors of the j~test call, and so on.

The distribution of waiting time for j-calls which met
an arbitrary state £. at their arrival is defined by a
conditional (compleméntary) pdf (cpdf)

wi(t]g,) = P{ij> tle’j} 5z

The cpdf's of waiting time, w.(t|£.), can be determined
from the Kolmogorov-backward-* equationss

ety 1E) + 2 ag v (tlny)s (5410)

7234’:7]

a5 (416y)

Qﬁ!% ? Zj’

where 9 the coefficient for the transition from

3,723
waeiting,;stete £y to waiting state 7y,

and Ye, the co-
efficient for leaving the state “f. J

(includ~
with coefficient

«9% s wj(oig)=1.

ing "death" of the waltwng groccss

q
&

&, ), according to
2 Y. n.
7te; 53 15

death of
waiting process

daath of
walting process

Fig. 6. Waiting process: Ceneral random walk diagram

representation with transitions

The random process of walting can be represented illus-
tratively by multidimensional random walk diagrams, &s
generally shown in Fig. 6 [7,8]+ B9.(3.10) can be for-
mulated in detail using a formal doscrlptlon for grad-
ings and regarding the oper&tlon mode . For practicsal
evaluations, the systems of linear differential equa-
tions can be suitably solved by methods of successive
power series expansions up to orders of one third of
the available computer steorage capacity with a pre-
scribed sccuracy [7]

%3.2.2 Total pdf of waiting time

The total pdf of waiting time can be obitained .by aver-
aging over all cpdft's regerding the probabilities of
states met at arrivel (initial states) p(ﬁﬁ):

wj(>-t) = y{TWJ_ >t} Z p(gj)wj(t{gj) . (301
53625
The probabilities ol initial states, p(F.), are iden-
tical with the corresponding probabilitives of state
p{g). In the limit case =0, W_(>0) agrees with W,k of
Ege{3.3)0 J J
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502.% Mean waiting times and higher moments

From Bg.(3.10), corresponding systems of linear egua~
tions for the r-th ordinary moments of the cpdfts
o

_'thrdwj(tlga)

t=0

mjr(k ) = (3.12)

.Jj

can be derived, including the mean waiting times
tw3(§}> = mj1(§3) for waiting from initial state gj.
The totel moments of waiting time referred to all
waiting j-calls, m._, are obtained from the correspond-
ing tetal pdf of Y waiting time referred to all wait-
ing j~calls:

W.(st)

= e T,,Jmm - ,_l__ }‘M’ { e 2, z,
By = b =L L p\gj)mjr(gh)" (3.13)
£20 J J &yez;s
The first moment m., agrees with the mean waiting time

t.,. according to a Ege(3.7)

Studies of the influence of grading parameters
on the grade of service

In this section, two examples of exact calculations
are given to study the influences of wiring methods
and accessibility on the service characteristics.

3¢3¢1 Influence of wiring methods

‘As an example, the 6 main wiring methods shown in Fig.2

will be studied for a service system with n = 8 ser-
vers, accessibility k = 4, g = 4 grading groups, and
s. = 1 storage place for each grading group,j=1,2,5,4.
Tﬁe servers are hunted sequentially, the interqueue
discipline is RANDOM.

The efficiency of the wiring method can be shown by
comparison of the total probability of loss B versus
the occupancy A/n (4 = 2/5 offered traffic, occupancy
A/n = offered traffic per server), cf. Fig. 7 (Similar
results hold also for the mean total queue length

end the total probability of wziting W).

1%

1‘11.
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13

22

2.3 2.4
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12

1.4

10

08

ag . :
o 023 05

Fige. 7. Efficiency of wiring methods acc. to Pig. 2
with respect to loss probability B

(Bpep & Fige 2.5)
As shown by Fig. 7, for small cccupancies (&< 0.4) the
straight inhomogeneous grading with progressive common-
ing and skipping is best, wheress for higher occupan-
cies (Y'>O°4) the straight homogeneous grading with
skipping is best, Similar effects are already known
from loss systems [11-21].For delay systems with small
occupencies, the optimum grading for a loss system will
ve the best, too. For higher occupancies, calls queue
up and the termination process of all servers deter-
mines more and more the service guality: in this case,
a grading with the best traffic balance is optimal;
for given M, the optimum graeding is a homogeneous one
with & best possible traffic balance. Purthermore, the
comparison of Figs. 2.2 and 2.5 shows that for sequen-
tisl hunting slipping is wowrse than skipping. The op-
timum grading for a delay system, dirrespective of the
offered traffic, should therefore be a grading vwith
certain progression and a considerable homogencous
port with skipping. Grading 2.5 forms a good compro-
mise (cf. also simulation results Section 4.71.3%)

3.3.,2 Influence of accessibility k

The accessibility has the most important influence on
the characteristic traffic values. This effect will be
demonstrated for the various service systems shown in
Fige % having n = 6 servers, g = % grading groups,
accessibilities k = 3 up to 6, and s. = 4, j=1,2,%,
with respect to the probability of whiting W and the
mean waiting time of waiting calls referred to the
mean service time ?ﬁ = tw/h, cf'e Fig. 8.

0

!

9 a1 AR A
W W
G 05 é? esmmsona o b

Fig. 8. Infiuencé of the'&ccessibility k
W snd T, versus A/n

Service systems acce to Fige 3

In Fig. 9, the pdf's of veiting time foxr waiting calls
w(st)/w, ape shown for the accessibilities k = 4 and
k = 6 for = = 0.9, 1, and 1.5. The interqueue disci-
plineg is n RANDOM, the queue discipline FIFO.

B

Y 5"@«& i
Influence of the sccessibility k
on the pdf of waiting tiue
e = 4 (Fige 3023

e ko= 6 (Fige 3l

Parameter: A/n



4. "APPROXIMATE CALCULATION OF MULTI-QUEUE DELAY
f SYSTEMS WITH GRADINGS

For practical gradings, the number of unknowns is too
large for exact calculations so that efficient approx-
imation procedures are necessary. In this chapter, ap-
proximetion methods are reported for mean values as
well as for the pdf of waiting time.

4.1 The stationary state
4.1.1 The "Interconnection Delay Formula" (IDF)

For graded delay systems, M.THIERER[4] suggested a
calculation method based on a two~dimensional state
description (x,z), where x the number of busy servers,
and z the total number of waiting calls, A part of the
two~dimensional state space ie shown in Fig.10.

\. {x,z 01}
AN !

N\

Altecle-yil 1Y
(Red2) T (e oI (et u b
welnzl

&
1]
AL

Gl L \%
< || '\@ymmer}'
| . assumption

{521

Fig. 10. Two-dimensional state space (x,z)
and transitions

In Pig.10, c¢{x) mesns the blocking probability of the
grading in state x, and r(x,z) a conditional probabil-
ity indicating that no waiting call is served when a
server becomes idle. By application of a special sym-
metry assumpiion for the statistical equilibrium, cf.
fig. 10, recursive equations were derived which led to
explicit expressions for p(x), W,.2, and Tw:

Coox=1 X
p(x) = p(O)AXE[‘i—c(i)]/ﬁ{i-—Ac(i)], (4.1)

i=1
n \
W= ) p(xje(x) (4.2)
Xk
ERE A (4:3)
- — b £§%1~Ac iy o ‘
G, = f2/w) (4.4)
with blocking probability
o(x) = (1)/() » k£xEnm, (4+3)

according to Ideal Erlang-~Gradings [2]. As proved by
extensive event-by-event Simulations[@,Zi}, abvove for-
mulas yield good results for ideal gradings, ideally
homogeneous gradings, and nonideal gradings with a
relatively high mean interconnecting number M. More-
over, in these cases the simulstion results turned out
to be nearly independent of the interqueue disciplines
FIFO and RANDOM, respectively.

4.1.2 Adaptation of the IDF to gradings of various type

Simuiation results have shown that the results obtained
by the IDF are too optimistic for real gradings with
small M (M~2). Additionally, the more realistic RAN-
DOM~interqueve discipline even increases the results
for W, ., end Iy compared with the idealistic FIFQO-
irterqueue discipline in case of gradings with pro-

z sive commoning. Both effects led to adaptation
“Ganulas for practical grading types with progressive
commoning, cf. Figs. 4.1, 4.2, and 4.5.
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The adaptation principle is based on & modification of
the blocking probability c(x) in a graded delay system
by means of a reduced accessibility k* F k. In delay
systems with gradings, the storage effect increases
the probabilities of blocking occupation patterns com-
pared to loss systems. Because of the progressive com-
moning, the servers al the last hunting steps with a
large intercomnecting number are less available for
calls of unblocked grading groups which csnbe described
approximately by a reduced mean accessibility k*. In-
sertion of k* into Eq.(4.5) leads to the modified
blocking probability for delay systems:

o(x) = o)/ Gow) (4.6)

The .principle of reduced mean accessibility has already
been applied successfully to loss systems [22].

Intensive simulation runs for a large number of grad-
ings with progressive commoning have shown that k* is
closely correlated with k, M, A, type of grading, and
the interqueue discipline. By approximation of the
mean queuve length ), the following approximation for-
mules have been found:
2.2 k
* k- .’i,.;}&h.[}i Ay, k=2ANT ke 4}”1w y
k* ¥ k 2 5(n)+ > (n)4 + 35(n et (4e78)
for standard gradings, simplified standard gradings,
and high-efficiency gradings,

2 .2 g,
ey o Rk T3 A ety 4
kX =k - 2 LT+ ags(y) ]Mu’l (4.7m)

for O'Dell-gradings, where a =0 for the FIFO~-, &nd
a = 1 for the RANDOM-interqueue discipline. Both for-
mulas hold for M 2 2,

Remark:

The efficiency of the method by the reduced mean acces-
sibility will be demonstrated by the practically inter-
esting probability of waiting, W, and the mean waiting
time referred to weiting calls, Ty. Differences between
calculations and simulations originate mainly from that
fact, as k* has been adapted to the mean queue length O
(or the mean waiting time referred to all calls). The
influences of k* on W,.2, and Ty are indeed slightly
different. The adaptation to Q, however, yields the
best results for the triple W,JS), andffw. Another
adaptation has been carried out to Uy, by which the
probability of waiting W got too much overestimated

f23].

4e1.3 Studies of the influence of grading parameters
and intergueue disciplines on the grade .of
service

In this section, the efficiency of gradings and the

adaptation methods will be demonstrated for some

examples.

Example 1: Influence of mean interconnecting number M,
cfe Fige 11

In the first example, two standard gradings having

n = 50, k =10, M = 2 and M = .33 are compared with

each other, respectively. The intergueue discipline is

FIFO.

The dotted lines indicate the results obtained for a

c(x) for ideal gradings. The simulation resulte (with

95¢% confidence intervals) show the accuraty of the

method.

Example 2: Influence of the grading type, cf. Fig& 12

This example showe the efficiency of & simplifiéd
standard grading comparcd with an 0'Dell-grading, both
having n = 60, k = 10, and M = 2. The interqueue disci-
pline is FIFO.

Example %: Influence of the interqucue discipline,
cfe Figs 13

This example demonstrates the influence of the two
intergueue disciplines, -FIF0 and RANDOM, on ¥ and T~
for a gsimplified standard grading with n = 120,

k = 10, and ¥ = 2. The RANDOM-interqueue discipline
yields, as usual for gradings with progressive common-
ing, values worse than FIFQ for higher occupancies,

W
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Fige 11. Influence of the mean interconnecting number I
W and Tw versus A/n
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Fig, 12. Influence of the type of grading
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SIFUFIED STANDARD GRADING i

'f n=i20, k=310, M=2 [‘
FIFO -interqu.disz. (Sim. §) %
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i i
. 2
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Fig. 13%. Influence of the interqueue disciplines
FIFO and RANDOM
W oend T versus A/n

Example 43 Study on optimum gradings for delay systems

Por the study of the influence of the wiring method on
the efficiency of & grading, various grading types hav-
ingn = 30, k = 10, g = 6 (M = 2) vere investigated by
simulations, namely

- 0'Dell-grading acce. to Fige 4.1

-~ Standard grading acc. to Fig. 4.2

- Homogencous grading -with slipping acc. to Fig. 14.1

- Homogencous grading with skipping acc. to Fig. 14.2
-~ "Optimum grading for delay systems¥acc.to Fig. 14.3

4.1 4.2 a3

Veea s

N

"o ]

Fige 14. Purther grading types with
no= 30, k=10, g =6 {14 =2)-

14+1 Homogeneous grading with slipping
14.2 Homogeneous grading with skipping
14.% "Optimum grading for delay systems!

The grading type Fige 14.3 was constructed eccording
to the results of exact calculations, ci. Section
5:%.1, with certain progression and a large homogene-
ous part. This grading forms a compromise between lhe
other gradings end yields the best efficiency over the
vhole range of occupancies ("optimum grading for delay
system"), cf. Fig. 15.
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Fig. 15. Efficiency of various grading types
with respect to J2 (Simulation)
n =30, k=10, g =6 (M = 2)
Interqueue discipline: FIFO
(O L Fige 14.%)

ret

Finally, it may be remarked that the interqueue disci-
7" es FIFO and RANDOM yield practically the same re-
& .s in case of homogeneous gradings (including ideal
gradings!) while RANDOM is worse than FIFO in case of
gradings with progressive commoning.

4.2 Distribution of waiting time

For the study of waiting time distributions in multi-
queue delay systems, two different interqueue disci~
plines are considered: FIFO and RANDOM. Since the
queue discipline is FIFQ, there are two operation
nodess FIFO/FIFO (¥/F) and RANDOM/FIFO (R/F); the
first one is identical with "FIFQ with respect to &all
accessible walting calls',

4.2.1 Approximation by exponential functions
4¢2.1.1 Operation mode F/F

In delay systems with full accessibility, the waiting
times referred to all waiting cualls are negative-expo-
nentially distributed according to

¥ ZEQ. = exp(~ %t) . (4.8)

In & first approximation {4], this law can also be as-
sumed for graded deley systems inserting the value for
Iy obtained from Eq.(4.4) for the considered grading
7 . Simulations have shown, however, that the actual
pe of walting time is slightly hypoexponential, cf.
Sections 4.2.2 and 4.2.5.

4<2.1.2 Operation mode R/F

This operation mode yields generally pdf's of waiting
time with a hyperexponential character. To achieve
larger values of the higher moments, it is assumed
that not the total but the conditional waiting tinmes
for waiting from initial state x are negative-expo-
nentiglly distributed each so that

n
‘V'J'({‘Q B 375- p(x)e(x)exp(- =) (4.9)
’ Ry (%
x=k %
where N
1 7 efd)
tx - c(x) g}g i-Ac(a) (4.10)

the conditional mean waiting time fox waiting from

initial state x. Compared with sinulation results,

this solution tits well [or practical purposes; the
higher moments, however, are still underestimated,

cl's Bections 4.2.2 and 4.2.5.

As a result, both approximations can be used for prac-
ti 1 purposes. For & more detailed insight, however,
14 yvigher moments of the pdf of waiting time have
beun investigated and used for another approximsition
described in the following section.
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402.2 Approximation by moments

Besides the mean waiting time T3 (or first moment my),
the pdf of waiting time is essentislly characterized
by the higher moments my and m;. These moments have
been studied for various gradifig types and resulted
in the following general characteristics.

4.2.2.1 Higher moments for operation mode F/F

For full accessibility, the pdf of waiting time and
its moments are explicitly known, cf. Bge(4.8). Within
gradings, the following effects were observed by

simulationss

-~ The pdf of waiting time behaves hypoexponential
with increasing occupancy A/n and increasing
ratio n/k,

= The higher moments my end my show only little
(if at all) dependence on tée nean inter-
connecting number M.

~ The higher moments mp and mz are closely cor-
related.

When the first moment m, is known, the second moment
my, can be well approximated for sll grading types by
m

2 i -
o~ U R (4.11)
mf 4+ [1u %}‘(%))

which yields the exact limit value 2 for %—4»0 or k=n,

For full accessibility, the exponential distridbution
of waiting times originates from an exact balance be-
tween the hypoexponential characteristic, given by the
Erlang-distributions for waiting from an initial state,
and the hyperexponential characteristic which is rep-
resented by the various possibilities for meeting ini-
tial states. In a graded delay system, it may happen
that & quecue exists evén if there are idle servers;
this effect increases the mean waiting time and the
hypoexponential influence, as well,

4.2.2.2 Higher moments for operation mode R/F

For full accessibility, only two limiting cases are
explicitly known for the pdf of waiting time: g = 1,
which yields the noxmal FIFO-queue, and g {or M)—w ,
which is equivalent to a normal RANDOM-quele. Simula-
tions for full and limited accessible servers yielded
the following effects:

~ The pdf of waiting time behaves hyperexponential
with increasing occupancy Aﬁi.
- The hyperexponential behavior increases with
increasing mean interconnecting number M.
~ The higher moments o, and m, are closely cor-
related, ?
For all grading types, the following formula approxi-
mates the second moment m, by

m
NP 4 s (4.42)

2. (%)E {1—1\1”‘%]

-2 D)

which yields the exact limits for %uw»o or k=n and M=1
or M—weon, respectively.

By the RANDOM-selection of gueues, the waiting times
clearly vary more than in case of FIFO-selection; this
effect is further enforced for increasing values of M.

4.2.2+3 Approximate pdf of waiting time
Knowing the first and second moments, the pdl of wait~
ing time cen be approximated for both opersation modes
by & gamma pdf:

RG> R (4.13)

where [ (p) the complete, and #(p,z) the incogplote
gamma functions with p = 1/(m?/mi ~ 1) and b = p/m,1l

Bg.(4.15) yields the first and second moments, mq ond
mp, exactly as they were spproximated. Investigations
of the third moment of Fq.(4.13), ms=p(p+1)(p+2)/v?,

3.
. . : ERP N . o
have shown, that the retics m4/m,) obtained from Eg.

(4+13) and simulations, diffe? less than 10% in most
cases, respectively., Therefore, the most critical point
for the accuracy of the approximated pdf of waiting

time is the mesn waiting time TQ =Moo
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4.2.3% Numericael resulis

The influence of the grading on the pdf of waiting
time and the eccuracy of the various spproximation
methods will be demonsirated for two examples. First,
in Fige. 16 the pdf's of waiting time are shown for a
simplified standard grading with n = 30, k = 6, and
M = 2, In the second example of & standard grading
having n = 30, k = 10, snd M = 5, the first three mo-
ments of the pdf of waiting time are given in Tadle 1
together with the simulation results. Both examples
show sufficient accuracy for the purpose of applica-
tions.

10°
T
wen
e (NG P
FIE .. exponential pdf
how 2742, Sim, o
wme e arammg pdf
RIF .. exponsntial pdf
bw 2778, Sim a
107! |
0 05 L et O

Fig. 16, PAL of waiting time
o Simplified stendard grading n=30, k=6, M=2
Operation modes F/F and R/F

P/T 7 R/F
A m, mz/m§ mﬁ/mi A m, mg/mﬁ mﬁ/m?
S11491|oi0ne | 1:96] 2ud0 || 15-9%(00156| Bea2) 7.00
512095 |0:1551 | 1190| :25 ||29-1%| 011608 2:35] 1-ad
12795 olan0] 1ice| aras || 7740 0%hses| 2enlrico

Table 1. Moments of the pdf of waiting time

T Standard grading, n o= 30, ko= 10, M =
Appr. Celculation (C) acc. to Section 4.2.2
Simulation (S)

CORCLUSION

Por multi-queue delay systems with gradings,methods
have been reported for exact and approximate calcule~
tion of mean values and the pdf of waiting time, as
well. It has been shown that delay systems with grad-
ings of various type can be calculated sufficiently
accurate by the "Interconnection Delay Formula' intro-
ducing & modified blocking probsbility. The pdf of
waiting time can be well approximated by a gamme pdf
by the aid of its second moment. A number of examples
has been given to study the influences of grading
paraneters and operation modes on the grade of serv-
ice, Finally, for graded delay systems with & much

varying load sn optimum grading type has been suggested.
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