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ABSTRACT

Queuing theory deals mostly with systems having
only one input queue and a group of fully acces-
sible servers. In telephone exchanges, data
switching networks, and computer systems there
are often structures which camnot be treated by
a single gueue model.

This paper deals with systems having in general
g >1 input queues. The j-th input queue has 83
waiting places, j = 1,2,...,g. There is a group
of n servers which can be reached with full or
limited accessibility. The traffic offered is
Poissonian with mean arrival rate A; for the j-th
input, j = 1,2,...,g. The service times are neg-
ative exponentially distributed with different
means for the different servers, i.e. the mean
terminating rate for the i-th server is £,
i=1,2,...,n.

As disciplines for the service within the queues
{queue disciplines)

D1 : first-come, first-served service,
D2 : random order of service,
D3 : last-come, first-served service

will be distinguished. In addition, the follow-
ing assumptions are made for the service of a
certain queue (interqueue disciplines):

A : service within the whole waiting room
which has access to a certain server,

B : service of the j-th queue with an
arbitrary but constant probability,
i=12,...,8,

C : service of the j-th queue with a proba-
bility which depends on the different
queue lengths, j = 1,2,...,g.

The linear equation system for the stationary
probabilities of state will be derived.The char-
acteristic values, such as the probabilities of
walilting and loss, the traffic carried, the wait-
ing traffic, and the mean waiting time, will be
calculated from the stationary probabilities of
state. Curves are given to demonstrate the in-
fluence of traffic offered and interqueue dis-
ciplines on the characteristic values.

The method for the exact calculation of the dis-
tribution function of waiting times (d.f.w.t.)
will be treated in general and applied to some
selected examples. Differential equations for
the conditional d.f.w.t. are derived and dealt
with in matrix notations. Algorithms for the so-
lution are discussed.

For the special cases of symmetrical systems,
which are characterized by identical traffic
loads and identical numbers of waiting places

for all incoming grading groups, algorithms are
given for approximate calculation in case of
ideal gradings and standardized gradings. Further-
more, it can be shown that the obtained results
hold exactly for fully accessible servers. By
these methods it is made possible to calculate
relatively large systems which occur in practice.
Results of the calculation of large systems will
be given and compared with those results obtained
by a traffic test on a digital computer.
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1. STATIONARY PROBABILITIES OF STATE
1.1 Pull Accessibility

In service systems with full accessibility,calls
of each input have access to each server. The
rule for selection of a waiting call from a cer-
tain queue is given by the interqueue discipline.
Fig.la shows a simple example of a double-queue
system having 3 servers and 83 waiting places,
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Fig.1, Example of a multiqueuing system with
(a) full accessibility and
(b) limited accessibility

Let (Xl’x2’x3;z1’22) be the state defined by

_ [0 server number i is idle , _
Xy = {1 server number i is busy’ ©~ * 1,2,3,

-4 waiting places are occupied within the

J j-th queue, j = 1,2.

The interqueue discipline can be described by a
probability piy, j = 1,2. D3 is the conditional
probability tgat the queue j will be served,
under the condition, that the occupation of a
server terminates. For the described model the
disciplines within the queues need not be dis-
tinguished for the stationary probabilities of
state but for the d.f.w.t..

Fig.2 shows the state space and the transition
coefficients, where the abbreviations are:

A = }\1 + }\2 (1a)
o= £ o+ £, &y (1b)
SR R (1e)

The stationary probabilities of state - for the
above example p(xl,xg,x3;zl,zz) - can be calcu-
lated from a linear equation system %he SO~
called Kolmogorov-forward-equation TlJ

Q) - ) GLpk) = 0, (2a)
KEv
where a, = qu .
K=y

In eq.(2a) p(y) denotes the stationary probabil-
ity of the state (v), q., denotes the transition
coefficient for the transition from state (K) to
state (¥).

Eg.(2a), applied to the state (1,1,1;1,1) in the
above example, leads to

(M Ag*Hy *E2 PO =Ap(HIS01) = App(11110)

“p P2 - pop(in12) = 0.
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Fig.2. State space and transition coefficients
for a fully accessible 3-server system
with two queues

The normalizing condition is
2Pt = 1. (2Db)
F

In the general case the linear equation system
(2a,b) will be solved by iterative methods on a
digital computer. In some special cases,however,
the solution can be given either in terms of
recursion formulas or explicitly.

Special cases
a) Identical servers
In this case

g, =€,1=1,2,...,n. (3)
Then, the subset of states with no waiting calls
can be reduced to & one-dimensional state space
defining a state (x) by "x servers are busy".For
one-dimensional state spaces the solution of the
probabilities of state can be given explicitly
by means of recursion. Thus, only the linear
equation system for the remaining subset of mul-
ti-dimensional states is to be solved.

b) Priority type discipline

The case of nonpre-emptive priority type disci-
pline with a fixed number of waiting places for
calls of each priority class is -obtained if

=
Py = 1, Py = 0 for z2,>0, z, = 0, (%)
Py = o, Py = 1 for z, = 0, 2z, > 0.

In this special case of the interqueue disci-
pline B, calls of type 1 have nonpre-emptive pri-
ority over calls of type 2. For the two-dimen-
sional subspace of states in fig.2, a recursion
algorithm can be given to calculate the probabil-
ities of state because all quantities fp vanish.
Taking p(1,1,1;0,z5) as unknown, all the proba-
bilities p(l 1,1;29,22-1), z4=1, 2,...,81, can
be expressed in terms of p(l 1,1;0,22) .| The
equilibrium for the state (1,1,1; 51,22 1) allows
the calculation of the unknown p(l 1,1;0,2p) and
thus, the probabilities p(1,1,1;21,20~ 1) Zq =
1,2,...,81. This holds for zp = 1,2,...,52. By
this method all probabilities of the two-dimen-
sional state space can be expressed in terms of
p(1,1,1;0,0). In the special case of identical
servers, all probabilities of state can be cal-
culated by recursion.

¢) Queue length type discipline

This discipline is defined by
pj = Ez%i” S22y v 2,50, (5)
172
The longer queue will be served with a greater
probability. This interqueue discipline is a
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special case of (. Additionally, it can be shown
that eq.(5) holds also for the interqueue disci-
pline A with respect to D1,2,3 within the whole

waiting room.

In case of identical servers the probabilities of
state are known explicitly:

p(x,0,0) = @OO) ,x:omzqu (6a)
pnz,2,) = pO,00-AT(AL (52)22(221*,?' , (6b)
2

zj :OmZW,%,J:LZ

n-1 Sq Sy
-1 X n Z2 (zg+ 29)t
POOO) = Zi%7 ¢ %ZZ Ay ST (60)
x=0 'z1=072=0
where A =NE, Aj= A/E, =12 (7)

The formulas (6a-c) can be extended easily to the
general case of an arbitrary number of queues.

d) Cyclic type discipline

When queues are served in cyclic order approxi-
mate solutions for the probabilities of state
can also be calculated by the aid of the above
model [2].

1.2 Limited Accessibility

Limited accessibility exists in a service system
when calls of at least one input have only access
to a number k<n of servers. The interqueue disci-
pline now refers to each individual server. In
fig.1b the simplest example of a double-queue
system with limited accessibility is shown. Ser-
ver i serves only i-calls, i = 1,2, where server
3 serves both calls of type 1 and 2.

In general, the interqueue discipline for the i-
th server is given by the probabilities pjji, J§ =
1,2,...,8, which stand for service of the g-th
queue if server i terminates, i = 1,2,...,n. In
the above example there only exists an interqueue
discipline p3j, j = 1,2, for server 3.

In fig.3 a part of the state space is shown for
the system of fig.1b. The definition of states
and transition coefficients is the same as in
the case of full accessibility.
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Fig.3. State space and transition coefficients
for a limited accessible 3-server system
with two queues

The equations of state can be written in a simi-
lar way as in the case of fully accessible ser-
vers. In any case, the whole linear equation
system is to be solved, e.g. by iterative
methods.




1.3 The Number of States - Programming

The computability is closely related with the
number of states. Multiqueuing systems can lead
to an immense number of states so that the exact
calculation will be either impossible (because
of too many unkrowns) or outside the scope of
economy (because of too long computation times).
There are three possibilities to cope with that
problem:

1. Exact description of the system by a
smaller number of states (macrostates),

2. Development of efficient approximation
methods,

3. Simulation on a digital computer.

In any case, the solution should be tried in this
order., Simulation techniques, however, have
gained another importance in checking results won
by approximate calculation methods. For this pur-
pose the flexibility of special simulation lan-
guages (as SIMULA, SIMSCRIPT, GPSS) can be of
advantage.

a) Number of states in case of full accessibility

For the general system comsisting of g input
queues and n servers the number of states is

9
z=2%1 ¢ Jlsen (8a)
1

By declaration of an array according to the defi-
nition of states the programme needs

]
z7- 2" ]"[(%+1) >z (8b)
):
places of working storage.

b) Number of states in case of limited
accessibility

The number of states cammot be given in general
because it depends on the type of grading. For
the example given by fig.lb we have

Z = 2323 + (sq+1) + (sp+1) + (s3+1)-(sp+1).

Computer programmes have been developed for cal-
culation of arbitrary systems with full and lim-
ited accesgsibility from the input datas

{g,n,s{j], type of grading, type of discipline,
OREINE

An example of the exact calculation will be given
below. Examples for approximate calculations for

systems with ideal and standardized gradings are

treated in chapter 4.

2. CHARACTERISTIC VALUES

The characteristic values are quantities which
give an answer to the grade of service of a serv-
ice system. They are used to dimension such sys-
tems. The grade of service can be characterized
by the probabilities of waiting and loss, the
traffic carried, the mean queue leéngth, the mean
waiting time, and the distribution function of
waiting times (d.f.w.t.).

As an example, the characteristic values will be
defined for a n-server system with full accessi-
bility and 2 queues (queue disciplines D1 or D2).

2.1 The probability of waiting (1-calls)

-1
W, = i i p(n;z,,2,) v (9)

£ =0
z1 [} z2

2.2 The probability of loss or overflow (1l-calls)

52
B, = Z p(n; s, 2,) (10)
22=0

1 p(n;zl,zz) is an abbreviation ﬂp(lpng;zl,zz),
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2.3 The traffic carried

1 15 Sy

Y :ZZ ZZO(x,*'..+xn)p(x1,m,xn,»z,,22) (11)

><,E =0 xn=0 z1=0 22=

2.4 The mean queue length {(queue 1)

Sy S

[oF! :ZE EZZVMH;QJQ (12)

z_.=0 22=O

2.5 The mean waiting time (1l-calls)

ty = 0 . (13)
"W,

The results hold also for 2-calls when the index
numbers are changed. The d.f.w.t. will be treated
separately in chapter 3.

For systems with limited accessibility the char-
acteristic values can be obtained from the prob-
abilities of state in a similar way by a some-
what more complicated summation as above.

2.6 Example of a 3-server system with limited
accessibility

Fig.4 shows the characteristic values for the
system of fig.ib. The traffic offered in the
first incoming grading group is variable,in the
second one constant. The solid curves are shown
for priority type discipline according to eq.(4)
{queue 1 has priority over queue 2), the dashed
curves are shown for queue length type disci-
pline according to eq.(5).
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Fig, 4. Characteristic values for a 3-server
system with limited accessibility

priority type discipline

---- queue length type discipline

By means of such curves the influences of

1. system parameters

2. system disciplines

3. system loads (input and service time
parameters)

on the characteristic values, 1.e. the grade of
service, can be studied. Vice versa, from a pre-
scribed grade of service one can dimension a
system to meet all requirements.




3. DISTRIBUTION FUNCTION OF WAITING TIMES

3.1 General Theory

fully accessible servers R. Syski has given
a general theory to calculate the W.t., Fur-
ther investigations on such systems were made by
the author [3]. This theory can be extended to
multiqueuing systems.

For Markovian systems with only one gqueue and
1i

A j-test call arrives at the j~th queue and
starts a special walting process. This process
terminates immediately when the j-test call gets
either service or is pushed out. A random varia-
ble ¥i(t) is defined as a random occupation pat-
tern which exists after the waiting time t of
the j-test call. Xj(t) contains only thosecalls
in the system which'may influence the waiting
time of the j-test call, the j-test call being
excluded. The definition of ?j depends on the
system structure, and on the queue and inter-
queue discipline. The fa(t)wprocess is a Marko-
vian process.

A (complementary) conditional d.f.w.t. for the
Jj-test call which starts waiting from the pat-
tern i1 is defined by

wtl) = P{tj>tl3°}-(0):i}, P €Hj 12,9, (14)

where t; denotes the waiting time of the j-test
call, afhd H; the set of absorbing states for the
j-test call, i.e. all those occupation patterns
where the j-test call will either be served or
pushed out.

The differential equation system, the so-called
Kolmogorov-backward-equation, is given by the
following theorem:

Q.WC%Q 2= ) wj(ti) + ; QR IWER), i ¢ Hj,j=12,,9, (158)
kGHj

where qj(1), q3(i,k) are the conditional transi-

tion coefficients for the ¥j(t)-process. The

initial conditions w;(oli), i¢I{jifcan also be

calculated from (15a) for t = O
Sim D Gy , P& H, 2129, (15b)
tw0e dt i j

where £3(1) denotes the conditional transition
coefficient for instantaneous termination of the
¥i(t)-process, under the condition, that the
sgate i is reached. Eq.(15a) then reduces to an
inhomogeneous linear equation system.

It should be noted that the equation systems
(15a,b) hold first of all for j-test calls which
wait after their arrival, under the condition,
that state 1 had been found. Defining the condi-
tional d.f.w.t. wi(tli) and wi*(tli) for j-test
calls which wait after their arrival successfully
and in vain, under the condition, that state i
had been found, the equation systems (15a,b) hold
also for wi(tli) and wi*(t|i) when E£:(i) is sub-
stituted by 83(1) and ég*(i), respecgively.

From the conditional d.f.w.t. the total d.f.w.t.
for all j-calls, wjbt), can be calculated by

wi(>t) = Z Pj(i)wj(t!i), (16a}
i¢w

where P = P{‘fj(O):i}, 1212000 (16Db)

Ps(1i) can be calculated from the stationary prob-
abilities of state. Eq.(16a) holds also for the
corresponding quantities w3(>t), wi(tli) and

* * ok j
wj*(>t), W} (tii), 1¢Hj.
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To treat eq.(15a,b) the tool of Laplace-trans-
formation is used. From eq.(15a,b) we obtain by
that transformation

[mqj(I)}Vv'j(sii) - qu(i,k)'wj(slk) = WOl g H, (17)
Kk, 21209,

where Wy(sli)is the Laplace-transform of w (tli);
s denotés a complex variable. Eq.(17) contgins
all the information about the waiting time proc-
ess, the initial conditions included.

Solving of the system (17) is mainly an eigen-
value problem. The eigenvalues of (17) proof to
be negative-real. As solution for the Wi(sli),
1 ¢H;, rational functions of s are found. With
the “aid of the eigenvalues the Wi(sli) can be
written in form of partial fractidn expansion.
The partial fractions can be transformed into
the time domain by the inverse Laplace trans-
formation. The expressions for the conditional
d.f.w.t. are weighted sums of exponential dis-
tribution functioms or Poisson distribution
functions (this depends on whether the eigen-
values are single and different or multiple).

For the single-gueue system with fully accessiblk
servers the total d.f.w.t. is known for gueue
discipline D1[4,5]. For D2 and D3 approximations
are also known [6]. Further investigations on the
exact calculation of the d.f.w.t. for D2 and D3
were made by the author which yield the exact
d.f.w.t. explicitly for D3 and proofs about the
location of the eigenvalues for D2 [3].

The conditional mean waiting times for waiting
of & j-call from initial state i, twj(i), from
initial state i successfully,tﬁj(i), and from
the initial state 1 in vain, t%(1), can be
obtained by integration of wi(tli))d w3(t|i),

and wg*(tli), respectively. By this we get

iy = w.(Oliy, i sz 18
ty() = WOID, 14H, j=12..,0. (18)

(For tﬁ.(i), t&*(i) the corresponding relation
nolds)? Hence!l the conditional mean waiting

times can be calculated from eqg.(17) at s = 0.

The total mean waiting time for j-calls, tw s

is obtained by integration of eq.(16a). j
Thus,
‘wj = Z Pj(i)twj(i), j=1,2,...,9. (19)
i¢w

Eq.(19), again, holds also for tﬁj and tr*, when
ty, (1) 1s replaced by ty (i) end byt (1)5d
) respectively. J J

3.2 Application to Intergueue Discipline A

The interqueue discipline A serves waiting
calls throughout the whole waiting room which
has access to a certain server according to the
dispatching rule (D1,D2,D3). In case of full
accessibility the waiting time problem can be
reduced principally to that of a single-queue
gsystem, because the information about the order
of arrival must be stored in & central memory.
Thus, the solution method will be the same as
for a single-queue system [1,3]. For limited
accessibility the walting time problem can also
be solved when the order of arrival is known for
all those calls which have access to a certain
server.

The interqueue discipline A4 needs a maximum of
control information so that this discipline is
rarely realized (except of D2, the random order
of service).

3.3 Application to Interquéeue Discipline B

The intergueue discipline B serves a certain
queue with a certain probability without regard
to the actual number of waiting calls within
this gueue.




a) Full accessibility, queue discipline DI

For example, a double-queue system will be con-
sidered now. For l-calls wi({tlzq,zp) is defined,
where (n;zq,z) 1s the state which the l-test
call found on its arrival. For this discipline
all customers which were accepted at their ar-
rival will wait successfully. From the eguation
system (15a,b) follows that wy(0lz1,25) = 1,

for z1=0,1,...,8¢~1, 25=0,1,...,8,. The equation
system (17) - in matrix notation -~ is as follows:

1 .
vq(sto,m WLsloA) e v~/1(s|o,s2) :vq(sno) w1(s|1,n w1(’""2’! \ha(s[s{t(l)--- W;(slsﬂ,s;)
Gog) <N ! ; 1
T Y i P k
A ~ S i i 3
“~. \\\-)‘2 ' | :
. 3 SR S .
“¢ Hsery) g ! '
i 1
i
: .
ey
Toepl | 1
{Gsingrpl <2y 1
[T RS
! Fz\ . o
o g Oop |

(20}

From the special structure of eq.{(20) one can
see that the system need not be solved as a
whole; the Wq(slz1,2z3) can be determined sec-
tionwise, as shown by the dashed lines. In any
case, it is only necessary to solve sq systems
of (sp+1) st order instead of one system of
sl(sz+1)st order.

For priority type discipline eq.(20) takes on an
even somewhat simpler form, because {, = 0. Then
all the unknowns can be calculated recursively
starting at W,(s|0,s5), which can be determined
directly, up To W (S%0,0), then starting at
wl(sll,sz) up to %i(sll,o), and so on.

The total d.f.w.t. for l.calls according to eq.
(16a,b) is

-1 s
w,(>t) = 2 ﬁp(n;z1,ze)w1(tl2,,za). (21)

z1=0 z2=0

b) Full accessibility, queue discipline D3

For the above system let us now consider last-
come, first-served service for 1-calls which
wait successfully. Let wi(tlis,i,) be the cor-
responding conditional d.f.w.t.. Clearly,
w%(tlo,iz) is the conditional d.f.w.t. for the
whole waiting time of a 1-test call, because
new l-calls are allowed to occupy the first
wgiting place in their queue. The quantities
w%(t]il,ig), i1>0, are the conditional 4.f.

of partial waiting times for waiting for & ser-
ver from the (11+1)st waiting place in the first
queue., The condition i, denotes the number of
waiting 2-calls at the arrival of the 1l-test
call.

The system for calculation of the d.f.w.t. is
given by eq.(22). At first, the initial values
wi(0liq,1) must be calculated from a linear
equation system. The matrix eq.(22) shows that
the system must be solved as a whole.

The total d.f.w.t. for l-calls walting success-~
fully is given by

S2
* - ) )
W1(>t) = Zﬁ(O,'g)w1(th,l2) . (23a)
in=0
where

51

E: p(nz,z,)  for 20,0 =z

P 1 reTt2
Pilipip) = { *° (23b)

o for i1>0.
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¢) Limited accessibility, queue discipline D2

The d.f.w.t. for limited accessible server sys-
tems can be calculated in a similar way as for
fully accessible servers when the different ser-
vers are taken into account. For demonstration,
let us consider the system according to fig.lb.
For 1-calls a conditional d.f.w.t.
wl(tlxl,xz,x3;21 zp) will be defined , where
(x1,%,, x ;zl,z25 is that state the l-test call
met on itg arrival. A walting process starts
only when at least %y = x3 = 1.

For demonstration, eq.(17) will be applied only
to two states the l-test call met on its arrival.

1) The i-test call met (1,1,1;2,0) on its
arrival:

(s+Ag+Ap+E +Ex+E3) W (811

1
1
1

® v w

- MWi(sl1
- %’( €1+€3p33wl(s|1,1
-(€,+€4p42)W, (811,0,1;2,0) = 1.

H
9
?
?

2) The 1-test call met (1,1,1;2,3) on its
arrival:

(84N + Mo+ E +Ex+ER) W1 (5 11,1,1;2,3)
! 2 AWi(s11,1,13,3)

) - AWi(s11,1,1;2,8)

- 5(e1+€303,7W1(s11,1,151,3)

_(€2+€3p32)w1(s!1,1,1;2,2) = 1,

The solution of such systems is obtained in a
similar way as in case of full accessibility.

3.4 Application to Interqueue Discipline C

The interqueue discipline C serves a certain
queue with a probability depending on the actual
queue lengths of the different queues.

For demonstration, let us consider a fully acces-
sible server system with 2 queues according to
fig.la. The queue discipline is first-come,first-
served service {D1). For the interqueue disci-
pline eqg.(5) is assumed.

A 1-test call arrives and starts waiting in the
first queue. A1l those l-calls which arrive after
the 1-test call and are accepted (i.e. there is
still a waiting place available) cannot be served
prior to the l-test call, because of D1. In con-
trast to a single-queue system, however, those
i-calls also influence the waiting time of the
1-test call because of the interqueue discipline:
the longer queue is served with a greater proba-
bility (acceleration effect). According to the
definition of the ¥,(t)-process above, those
calls also have to be considered for the calcu-
lation of the d.f.w.t..

Computer programmes have been developed for ex-
act calculation of the d.f.w.t. for systems with
full and limited accessibility. Because of the
high order of those differential equation sys-
tems only relatively small systems can be cal-
culated exactly. Further investigations are belng
carried out on approximate calculation of dJf.wite.




4. SYMMETRICAL SYSTEMS AND THEIR APPROXIMATE
CALCULATION

4,1 Definition of Symmetrical Systems

A symmetrical system with g input queues will be
defined by

1. Each input has access to the same number k
out of n servers.

2. Each input queue has a maximum of s waiting
places.

3, Each input has the same intensity A/g of
offered calls.

4, Each server has the same terminating
intensity €.

No special assumptions are made about the inter-
gueue disciplines and the disciplines within the
gueues.

4.2 Number of Blocked Grading Groups

The grading shall be described by the number of
grading groups g, the number of servers n, and
the accessibility k.For ideal gradings according
to Erlang {4,7] the number of grading groups is

given by n
g= (D . (24)

When x gervers are busy then the blocking proba-
bility ©(x) can be calculated by

(o) -
6(x) = ey , X = K. (25}
The number of blocked grading groups for ideal
gradings is %
blx) = (}) = g 6(x) . (26)

For standardized gradings in general g<K(E).The
blocking probability 6(x) according to eq.(25)
holds approximately also for standardized grad-
ings [7 . A mean value for the number of blocked
grading groups is given by

b(x) =g » 6(x) . (27)

For ideal gradings b(x) is an integer and holds
exactly. For standardized gradings b(x) is a
real number.

The number of blocked grading groups is identi-
cal with the maximum number of possible input
queues. For the present only ideal gradings will
be considered.

4,3 Definition of States

There are two possibilities to describe symmet-
rical systems; first, the description by "grad-
ing group input queues®, and second,by "waiting
place rows" [8].

a) Description by "grading group input queues'

A state (x;zl,zz,...,z Jis defined by "x servers
are busy and z; waiting places are occupied with-
in the j-th input queuwe, J=1,2,...,g".The total
number of states is given by

n
&1(x)
z,= k *Z:(sw)g . (28)
Xz

b) Description by "waiting place rows"

The waiting calls which are waiting at the Yth
waiting place within their queue form the »th
"waiting place row", ¥= 1,2,...,s. A state
(x;u1,...,ug) is defined by "x servers are busy
and uy waiting places are occupied within the
vth waiting place row, V= 1,2,...,8.

Clearly, in the (¥+1)st row there cannot wait
more calls than in the yth row. This leads to a
restriction condition:

v

gG(x)zulzuzz...=us. (29)

The description by waiting place rowg needs fewer
states than the description by grading group in-
put queues. This is a typical example of a de-
scription by macrostates.
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The total number of states is

22:k+i{ﬁ g (30)

xX=k v=1

The proof of this formula is given in [81. For
large systems, especilally Z, is far smaller than
Z4. Thus, the approximate cdlculation of symmet-
r%cal systems starts with the description by
waiting place rows.

4,4 Equations of State

In fig.5 part of the (s+l1)-dimensional state
space is shown.

(x;..,,uv»‘l,...)

(0,09 \ T Y (x;u1,.”,us+1)
(x—1,~u1,...,us) / T \

] (x;u_l,...,us-‘!)

LY (X 1‘) °

o Uy

Fig.5, (s+1)-dimensional state space for sym-
metrical systems

The transition coefficients for the following
transitions are:

(Kitdgy oy Ug) i 6L, i) T Sy M) XE (31a)
O g o) e (it ) Gyl ) XE, ¥212,0 8 (31b)
XUy Ug) e () 2 [1- B x1)) A (31e)
03Uy, lig) s (Xt U ) [gG(x)—(u1—1 )}-S—- (31d)

R = (¢ ) [uvq-(u,,»-‘l)]'—S',Y:Z,B,,.,,S. (31e)

In eq.(31a,b) §yp(x;uy,...,ug), »= 0,1,...,8, de-
notes a conditional transitfon probability which
contains the information about the interqueue
disciplines. In any case, the relation

S

D8ty = (32)
V=0

holds for ail possible states.

The statistical equilibrium for the state
(x;ul,...,us) with regard to eq.(32) leads to

{xe+2f1-6tx] « 2a60x) ~ug] }-poouy,-tg)

= A1-8x-1)]
+ %[g@(x) - (uy-1)]

x S
* §Z{“v-1'(”v'1)]

*(xzﬁe-go(xﬂ,-uv,“,us) -p(x+1;u1,...,u5)
+ XE- 97(X;...,uv+1,...)

The equﬁ%ﬁon system (33) must be solved as a
whole when the conditional transition probabili-
ties are known and if exact calculation is wanted.
The aim of an approximate calculation, however,
is to find a recursion algorithm.

To realize this,an assumption of "half-symmetry"
within the multi-dimensional state space ls made,
i.e. it is presumed that the state(x;uq,...,ug

is already in statistical equilibrium with the
"lower" neighbour states. An assumption of this
kind was made first for the calculation of the
pure waiting system with limited accessibility[gL

P-Tiy,..., Ug)
POx; U, ug)

(33)
'p(x,»...,uy—‘!,...)

-p(x;..,uyn,".x

By this assumption the equations of state take
on a simpler form

plx;ug,. Ug) = %[1—6(»4)] PO Uy, UG )
+§‘§[ge(x)-(u14)] XUy, lig ) (34)
S
A
tgx [uy_;(uy"ﬂ] POy, )
=2
where A = A/E denotes the "traffic offered".




From the equation system (34) two main conclu-
gions can be drawn:

1. The system does not contain information
about the intergueue disciplines, i.e.
the quantities Spare eliminated.

2. The probabilities of state can be solved
altogether recursively.

Because of restriction (29) there do not exist
all states within the multi-dimensional space.
A programme has been developed which allows the
transformation of the multi-dimensional states
onto & one-dimensional space without any gap[lo
By this, the whole working storage of a digital
computer can be used for the unknowns.

From the probabilities of state the characteris-
tic values can be calculated in a guite similar
way as shown above. Distinctions need not be
made between calls of different inputs because
of the symmetrical system. Below, results will
be given for some examples.

4.5 Remarks on Systems with Full Accessibility
and Systems with Nonideal (Standardized)
Gradings

a) Full accessibility

Full accessibility is a limiting case of a grad-
ing. Because of k = n from eq.(25) follows:
for x <n

0
elx). = {1 for x =n ° (35)

it can be shown that the results obtained by re-
cursion from eq.(3%) with regard to eq.(35) hold
exactly for an interqueue discipline according

to 4
— s
pj = Zl+22+'°'+zg v 3=1,2,...,8, (36)

i.e. for A and C.

b) Nonideal (Standardized) gradings

As mentioned above, for standardized gradings the
number of blocked grading groups is in general a
real number if there are k ® x<n servers busy.
The above theory can be applied also to stand-
ardized gradings if the real number b(x) is
properly rounded up or rounded off [11].

4,6 Results

The following figures 6 and 7 show results of
the approximate calculation of symmetrical sys-
tems with ideal gradings and nonideal gradings.
The results of traffic tests which were made on
a digital computer are given for comparison
(confidence interval 95%).

10° )
\d
B TRAFFIC
ot L mest W
T T
. WL e ,
10 ////i/’ 10°
IDEAL GRADING
nz 9
ks 6
10 o w°
g:(k)s 84
s= 2
W PROBABILITY OF WAITING
B PROBABILITY OF LOSS
‘tw=tw~€ MEAN VALUE
FOR WAITING TIME
’0‘3 l !
o 5 10 i A 15 18

Fig.6. Characteristic values of a gymmetrical
gservice system with ideal grading
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LOSS SYSTEM

20 40

Fig,7, Characteristic values of a symmetrical
service system with standardized grading

CONCLUSION

For combined delay and loss systems exact methods
were investigated for the calculation of the sta-
tionary probabilities of state and the d.f.w.t.

in case of different disciplines within the
queues and different interqueue disciplines. An
approximate calculation method was given for sym-
metrical systems with ideal and nonideal gradings.
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