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Approxunate Analysis of General Queuing Networks by
Decomposition

PAUL J. KUEHN, MEMBER, IEEE

Abstract—In this paper an approximate method for the analysis of
general queuing mnetworks is proposed. The queuing network is of the
open network type, having N single server queuing stations with arbi-
trary interconnections. Customers may enter the network at any
queuing station. The interarrival times of the exogenous arrival processes
and the service times at the queuing stations are generally distributed.
The analysis is based on the method of decomposition where the total
network is broken up into subsystems; e.g., queuing stations of the type
GI/G/1 or subnets. The subsystems are analyzed individually by as-
suming renewal arrival and departure processes. All related processes are
considered with respect to their first two moments only. An analysis
procedure is reported which reduces the total problem to a number of
elementary operations which can be performed efficiently with the aid
of a computer. Numerical results are reported together with simulation
results to demonstrate the accuracy of the new method. The paper con-
cludes with a short discussion of possible extensions of the method.

1. INTRODUCTION

HE global traffic flow within computer and computer

communications systems can be described by queuing net-
works. The analysis of complex queuing networks, however,
results often in difficulties because of a too large number of
system states or the lack of exact methods so that there is a
need for accurate approximate methods.

Exact solutions are known by Jackson [1] and Gordon and
Newell [2] for open and closed networks with exponential
interarrival and service time distributions, respectively. These
solutions have a closed product form for the stationary multi-
dimensional state probabilities where the single product terms
are the solutions of isolated exponential queuing stations.
These basic solutions were extended by Baskett ez al. [3] to
open, .closed, and mixed networks with different classes of
customers for exponential service times under FCFS (first-
come, first-served) or phase-type service times under PS (proc-
essor-sharing) and preemptive-resume LCFS (last-come, first-
served) strategies Further generalizations and properties of

" this class of networks are ﬁayuued in {4 5}.
shown that a parametric analysis can be performed in these
cases by reducing the network to a suitable subsystem, cf.
Chandy, ef al. [6]. This principle was also extended to general
queuing networks approximately [7].

Another class of solution techniques is that of decomposi-
tion, where the network is broken up into subsystems which
are dﬁdlyLed in isolativn. This can be cone either by consider-

It has also been
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ing the related input and output processes of subsystems or by
separation of the total system into a hierarchy of “‘aggregate
systems” with only few interactions between the various levels,
cf. Disney and Cherry [8] or Courtois [9], respectively.

Among the approximation methods for queuing networks,
the diffusion approximation has been intensively studied in
recent years [10-13]. This technique is based on the assump-
tion that the number of events in a given time interval is ap-
proximately normally distributed. Generally, this method
yields good results in case of heavy traffic.

The solution technique used in this paper belongs to the de-
composition method considering basically input and output
processes of the related subsystems. In the second Chapter, the
general queuing network model will be defined. The third
Chapter describes the analysis method in detail. In the fourth
Chapter, numerical results are shown to demonstrate the ac-
curacy of the proposed method. The fifth Chapter summarizes
the results, relates them to other known results, and discusses
extensions with respect to multiserver stations, multi-class
customers, subnets, fixed delay elements, cyclic queues and
synchronously operated switches.

2. QUEUING NETWORK MODEL
2.1 Network Structure

The queuing network consists of variouselements as servers,
queues, transition paths, feedback loops, decomposition points
(splitting of processes), and composition points (superposition
of processes). Fig. 1 shows an elementary queuing station (a)
and a network example (b).

The elementary queuing station no. i consists of a single
server, a single queue with unlimited capacity, an input termi-
nal (composition point C;), and an output terminal (decompo-
sition point D;). The general queuing network is built from N
elementary queuing stations according to Fig. 1(a) by asbitrary
interconnections. It is assumed that exogenous arriving cus-
tomers enter the queuing network at arbitrary composition
points and that customers may depart from the network at an
arbitrary decomposition point having a path to the outside
world. There is at least one exogenous arrival process and at
least one station from which customers can leave the network
(open network).

The following paramiste:s define the network structure with

respect to the network topology and the routing of customers:
N Total number of queuing stations.
0 =(gy;) Routing matrix,
qij Routing probability for customcrs leavmg
station 7 and changing to station j, 7 = 1,2,"
N j=0,1,-, N

0090-6778/79/0100-0113500.75 © 1979 IEEE
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Fig. 1.

Herewith, “station 0 represents the outside of the queuing
network.

2.2 Arrival and Service Processes

Customers arrive from the outside of the queuing network
according to general exogenous arrival processes and they are
served at the various stations according to general service proc-
© esses, where:

Gly = (Gly;) Vector of exogenous arrival processes.

Ao = (Noy) Vector of exogenous arrival rates, where
ay; = 1/Xg; is the mean exogenous interar-
rival time at station i

co = (co;) Vector of the coefficients of variation of
the exogenous arrival processes.

G =(Gy) Vector of service processes.

w= () Vector of setvice rates, where h; = 1/y; is
the mean service time at station i

= (cy;) Vector of the coefficients of variation of

the service processes.

At each station i the exogenous interarrival times To; and
service times Ty; are mutually independent and identically
distributed with probability distribution function (df) Ag;(z)
and H;(t), respectively, i = 1, 2, -, N. The latter assumption
includes the independence assumption that successive service
times of the same customer are independent of each other
{14]. The following notations will be used for the df, the kth
ordinary moment, and the coefficient of variation of a random
variable T

F@)=P{T<{} (1a)

oo

_E[mz/_ﬂe dF (), .k=1,2,-~'

(1b)

(b)

Queuing network structure, (2) Elementary queuing station no. i. (b) Network model (example with 4 stations).

[E[TZ]
c= - 1. (ic
E[T12

These notations are used for interarrival times T, servi
times 7Ty, interdeparture times T'p, and interarrival times i
arbitrary network paths analogously. For a short notation
the process type, the usual abbreviations are used as M and
for Markovian and deterministic processes, £, and H, fi
Erlangian and hyperexponential processes of order &, respe
tively. The network is considered to be in the stationary state

2.3 Routing and Queuing Disciplines

All customers in the network are treated equally (one class
of customers only). A customer leaving station 7 is routed to
station j independently according to the probability g, 7
1,2, =, N j=0,1, -, N. Queuing customers are schedule
for service according to an arbitrary queue discipline whic
does not depend on the service time (e.g., FCFS, LCF
RANDOM). '

3. ANALYSIS BY DECOMPOSITION
3.1 Outline of the Basic Analysis Principles

The analysis method was developed according to the fo
lowing principles. ,
1. Decomposition of the queuing nietwork.into subsystem

“e.g., single queuing stations or subnetworks.

2. Analysis of the subsystems in isolation. The subsystem
are related to their network surroundings by input (arrival
and output (departure) processes.

3. Approximation of all nonrenewal processes by stationar
renewal processes.

4. Consideration of two moments (mean, coefficient
variation) of all processes consistently.
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5. Reduction of the total analysis to few elementary opera-
tions to be performed efficiently by a computational algo-
rithm.

The key points of the analysis method are principles 3 and
4. Stationary renewal processes are used because of their math-
ematical tractability for the necessary operations. Additionally,
principle 3 is motivated by an analogy argument between
Markovian queuing networks and networks with more general
arrival and service processes: Markovian networks can be
decomposed into subsystems exactly, where the arrival and
departure processes of the subsystems can be assumed to be
Markovian despite the fact that they are not (with the excep-
tion of networks without feedbacks [151). In other words, for
Markovian networks the global product solution [1-4] is not
affected by the nonrecurrence of processes. This phenomenon
is transferred to general networks approximately.

Principle 4 rests on a number of observations in queuing

and teletraffic theory where characteristic mean values are
mainly (sometimes only) influenced by the mean and variance
of a random variable. Examples are the queuing station M/G/1
where the mean waiting time depends on the mean and variance
of the service time only (Pollaczek-Khintchine), and overflow
systems where the blocking probability basically depends on
the first two moments of the offered overflow traffic. Although
there is an indication by counterexamples [16] or particular
computer applications [17] that a two moment approach is
misleading or not accurate enough, the two moment principle
has been chosen for reasons of tractability. For special appli-
cations, this principle has to be revised and augmented {se¢
Chapter 5 and [18]). :

We finally mention for the sake of completeness that
similar methods of decomposition have been suggested [12]
and [19]. Apart from different methods for elementary opera-
tions, the present approach differs in the consistent considera-
tion of two moments in general networks with feedback loops.

Exact methods for the analysis of general queuing networks
are only known in some special cases (e.g., 2 queues in a closed
network with one exponential and one general server). Also,
for smaller networks the exact solution can be carried out nu-
merically by using the method of phases to represent general
df’s, cf. [20].

3.2 Elementary Standard Operations

In the following sections, basic operations are discussed
which are elements of the analysis algorithm in Section 3.3.

3.2.1 Mean Arrival Rates: Under the assumption of station-
arity, the mean arrival rate A; of queuing station 7 is obtained
from the following set of linear equations representing the
conservation of flow [21]:

) N
N=Noi t Q) Ny, i=1,2, A @)
j=1 :
In the stationary case, for all stations it must hold
L =N <1, i=1,2, N 3)
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input Waiting Service Output
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Fig. 2. The general queuing system GI/G/1.

the path from station i to station j follows from
i=1,2,N

j=0319”'}N (4)

Ny = Ngyj

3.2.2 Mean Values of the Queuing System GI/G/I: In the
general network case we consider queuing stations of the type
GI/G/1 given in Fig. 2.

The input (arrival) process is a renewal process with general
df (GI), mean arrival rate A;, and coefficient of variation c4 ;.
The service process is also general (G) with mean service or
holding time h; = 1/u; and coefficient of variation ¢y;. We are
interested in the mean values of the waiting time Ty, and flow

time Tp; = Tyw; + Ty; of an arbitrary customer and the
number of customers X; at the station, viz.,
w; =E[Tw;] | (5a)
fi=FlTrid =w, +h, (3b)
Ni =E[X;] = Nfi = Q4 + ;. (5¢)

In eq. (5c), §; defines the mean queue length at station 7.
Exact results for this queuing system are only known in some
special cases as M/G/1, GI/M/1, or can be obtained numeri-
cally by using a phase-type representation for general df’s
[34]. The analysis algorithm allows any GI/G/1 results as far
as they rest on two moments of the input process and render
the mean waiting time.

In the following, we apply a new approximation formula by
Kraemer and Langenbach-Belz for GI/G/1 queuing stations
which rests only on the first two moments of the arrival and
service processes [22]. This formula is essentially an inter-
polation between known results for special systems and the
general heavy traffic result and has been validated by exten-
sive simulations for a wide range of arrival and service process
combinations. The mean waiting time of this approximation is

pi

r‘p) “(cai® +eni®) - glos, cait, cyi®) (6)
L —p;

w;=h; -

where

ox C2A1-p) (1-ch®)?
p‘ 30, caFem?|’

. Caj <1

&(pi, cai® cui®) =

Ca i2 -1
€X —(l —p) s — s
p { ( o1) («‘Aiz +40Hi2}

CA,'>I.

A similar expression has also been derived for the probability

pi is the server utilization of station i. The transition rate A; of ~ of delay W;, cf. [22].

X

y;
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Fig. 3.

3.2.3 Output Process of the Queuing System GI/G/1: Out-
put processes are generally difficult to describe since in almost
all cases those processes are no longer recurrent. Explicit re-
sults are known for queuing stations of the type M/M/n by
Burke [23], M/D/1 by Pack [24], and GI/M/n with Inter-
rupted Poisson Input by Heffes [25]. More general results are
described in [26].

Under the approximation assumption 3 in Section 3.1, the
output process is characterized by the df of the interdeparture
times Tp;, viz.,

Dty =P{Tp; <t}. (7)
Under the further assumption 4 we concentrate only on the
first and second moments of Tp;. The first moment is the
reciprocal of the arrival rate A;. For the second moment, an
exact relationship is known between the mean delay w; and
the coefficient of variation of Tp; for GI/G/1 queuing stations,
cf. Marshall [27]:

, W
epi? =ca? + 202 —2p(1 —pi) e ®)

1

Substituting eq. (6) into eq. (8) we obtain

cpi? =cai? +2p2cy? —p2(cai® +eui®)
*8(pi, cai®, cui®) (%9a)
or with the simplification g(p;, ¢4 2, cpi?) = 1

cpi? =eqi? +p2leni® —ea?) (9b)

The solutions eq. (9a, b) include the known exact results
for M/G/1, cf. Makino [28], as well as for GI/G/1 for p; > 0
and p; = 1, respectively. It was shown by a number of simula-
tions that eq. (9a) fits extremely well with respect to a wide
range of arrival and service processes, cf. Chapter 4. Even the
simpler result eq. (9b) is sufficiently accurate for a first charac-
terization. ,

3.2.4 Decomposition of Renewal Processes: Given a station-
ary renewal point process as a sequence of events (arrivals of
customers). The time between two successive events is a ran-
dom variable T with df F(#). At the decomposition point D,
an arriving customer is routed into direction j according to a
fixed and independent probability g;, j =0, 1, -, NV, cf. Fig. 3.
We want to know the characteristics of the component proces-
ses; i.e., the df F;(¢) of the interarrival times 7;, 7 = 0, 1, -, N.

The random interarrival times 7; of the component process
are constituted as sums of a random number X of successive

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-27, NO. 1, JANUARY 1979
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Decomposition of a renewal process into (V + 1) component processes.

realizations of the identically distributed random interarriva
time T of the original process. Thus, the component process i
found from the compound distribution through standard tech
niques. The Laplace-Stieltjes (LS) transform of Fj(f) of t
component processj is [21]

q;9(s)

ST Z g6

(10

where ¢(s) is the LS transform of F(¢). From eq. (10) the tran
sition rate A; and the coefficient of variation ¢; of the compo
nent process j are derived

N=EIT) T =2

Cj2 =QjC2 +(1“_Qj), jZO, 1, oy N.
Whereas Ao + Ay + - + Any = Areflects the law of the conser
vation of flow in node D, an interesting relation is found from

eq.(11b)

o2 + ey 2+ oy =c2 + N (11c

The results hold exactly only in case of a recurrent proces
F(t). For nonrecurrent (output) processes, these relations wer
also proved to be in good accordance with simulations, ¢
Chapter 4. If F(¢) is a Markovian process, all component proc
esses F(t) are Markovian processes again.

3.2.5 Composition of Renewal Processes: The dual proble:
with the decomposition of a process is the composition (supe
position) of a number of independent processes, given (N + 1
component processss which are stationary renewal point proc
esses with df F(¢), /= 0, 1, -+, N. We are now interested in th
characteristic of the resulting process when all componen
processes are superposed. For the sake of clearness, we wil
solve the more basic problem of two component processe
Fi(t) and Fo(r) at first, cf. Fig. 4.

The resulting process is in the general case nonrecurrent. A
shown in the Appendix by means of the forward recurrenc
times Ty, Tya, and Ty, the df F(z) of the resulting proces
is

=1 — Ao . e .7 -~ ¢
F([)-—l )\1 +>\2 {FI ([) /t F2 (u)du
+ () - /mFﬁ(u)du} (12
t

where F°(t) = 1 — Fj{(t) the complementary df of Fj(z
j = 1, 2. Unfortunately, the moments of F(¢) cannot be give

\

/
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F, (t)

1 o
Fo(t) —% 1 T T
1 ,
a e L
) i =Ty i
Folt) — t I o
wo T e e
I ]‘—’vz—?’_'—’* ro!
Fz(t) F(t) .* L i i i i .{
(;\Z’CZ) -‘——-—{——-T
: r—'(v time -~ ¢
%
Fig. 4. Composition of two renewal component processes.
explicitly as a function of the moments of F;(#) and Fy(?)
except for the first moment;in this case, we obtain the plausible e
result T Ti2 i
A=E[T]71 =2 +2 (13) ¢ ° o e
which reflects again the conservation of flow in node C. If the b1 .
component processes Fy(¢) and Fo(t) were known explicitly, !_ j2 __l
the higher moments could be calculated from eq. (12) straight- e
forwardly. In the context of the two-moment network analysis e ; e
approach, however, the component processes are only known . s
Fig. 5. Representation of substitute processes by phases. (a) Hypoex-

by their first and second moments. To overcome this difficulty,
we proceed as follows.

a) Construction of “substitute” component processes which
agree with the real ones in their first and second moments.

b) Calculation of the second moment from eq. (12) using
the concept a} of substitute component processes.

As substitute processes we choose a simple combination of
phases allowing the approximation of any process with respect
to their given first and second moments. Two cases of these
phase representations are shown in Fig. 5(a), (b). In case of
hypoexponential process types (0 <¢; < 1), we choose a series
of a deterministic (D) and an exponential (M) phase, and in
the case of hyperexponential process types (¢; > 1), an alterna-
tive of two exponentials (H, ). Mathematically, these processes
are described by

0, 0<r<1t;
I—exp{—€a(—1;1)}, 1215,
F)y= 0<¢ <1 (14a)
1 — .. avynl _c.. Y _n.. avnif__r~._ 1)
=P CAP Uity — Pig AP —€gl ),
¢ =1 (14b)
Using the abbreviation E[T},] = t;, = 1€, v = 1, 2, the

parameters of the substitute processes are determined from the
given parameters as follows:

0<¢<1:
g1 =N —¢), € =Nj/e (15a)
Cj =1:
_ Cj —1
G2 =N {1 ey ll~’ Dj1,2 = €1,2/2N;,
Pi1tiy =Dpjati2). (15b)

ponential df (0 < ¢; < 1). (b) Hyperexponential df (¢; > 1),

The superposition according to eq. (12) is carried out with
these two basic substitute processes yielding the coefficient of
variation ¢ explicitly (see the Appendix). We remark that the
results are slightly dependent on the choice of the substitute
process types. If there is evidence of a much different process
characteristic, appropriate other substitutes can be chosen, too.
Finally, we note that if the component processes are Markovian,
the resulting process is Markovian again.

The extension from two component processes to the general
case of (N + 1) processes is performed recursively in NV steps
according to Fig. 6.

3.2.6 Reconfiguration by Substztutzon of Nodal Feedbacks:
During the development of this method, it became clear that
strong nodal feedbacks are critical with respect to the assump-
tion of renewal processes, since input and output processes of
such a queuing system are correlated strongly. To eliminate
this effect, a substitute queuing system without feedback is
formed according to Fig. 7. In the original system, a customer
is served armnrrhno to a oegmatnnaﬂy distributed number of
service phases which may be interleaved by phases of other
customers. In the substitute system, a customer gets its total
service time continuously. As shown by a similar derivation
as in the case of decomposed processes, the substitute service
time df H;*(¢) is given by its LS transform

(1 — qi)¥i(s)
1 — q;7%;(s)

where Y;(s) is the LS transform of H,(r). From eq. ('1 6) and
Fig. 7 it follows:

Wits) = (16)

= (1 —qi;) (17a)
cen*? =qy + (1 —quen® (17b)
aii* =q;/(1 —qu),  jF#L (17¢)
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Fig. 6. Composition of (V + 1) component processes by N recursive compositioz{s of two processes.

Fig. 7. Substitution of nodal feedbacks.

By this procedure, the nodal feedback loop is eliminated and
the queuing system i is considered only with respect to cus-
tomers arriving from or departing to other stations via the in-

put and output ports C; and D, respectively. Applying this

procedure to each station with feedback, the queuing network
becomes reconfigured. The reconfigured network differs from
the original one with respect to arrival rates, service time dis-
tributions, and the routing matrix. After that reconfiguration

procedure, the usual quantities without asterisk will be used to
describe the reconfigured network.

A proof of an exact analogy between stations with and
without nodal feedback with respect to the distribution of
queue lengths and mean flow times was given by Takdcs [30]

“in the case of M/G/1 stations. The extension to general arrival

processes is an approximation. It has been shown by simulations

‘that the reconfiguration step yields good accuracy, whereas
‘the analysis without that step results in considerable inac-

curacies.

3.2.7 Mean Number of Visits at a Station and Mean Flow
Times: To calculate the mean flow times, the expected number
of visits at a certain station must be known. These are:

e;  Expected number of visits at station { with respect to
an arbitrary customer.

e;j(a) Expected number of visits at station 7 with respect to vv

_those customers entering the network at station a

where i, 2 = 1,2, -+, N.Defining A; and A;(a) as total or partial

_arrival rates at station i with respect to all customers or all cus-
_torners entering the network at station a, respectively, we have

N N
e; =N\;/\, where A= Z Noa (18a)

a=1

e;(@) = N(@)/Noa- (18b)

It remains to calculate the various arrival rates in eq. (18a-
b). The arrival rates A; are the solutions of eq. (2). The same
procedure according to eq. (2) can be used to calculate the
rates \;(a) by setting Ay; = 0 for j #a, cf. Fig. 8(b).

The flow times Ty and T (a) define the random lifetime ¢
an arbitrary customer or a customer of input a, respectively
The mean values are found directly by consideringa “test cu
tomer” moving through the network

N
f@) = E[Tp@)] =2, €@ (19
=1
N 7\00' N i N
F=E[Ts) =3 =2 flay = 3, efi = =+ 2, ELX].
: “ £ N &
(19t

The last expression is identical to Little’s theorem applied -
the total network.

3.3 Queuing Network Analysis Algorithm

3.3.1 Standard Procedures: The algorithm” is based on
number of procedures for standard operations as discussed
Section 3.2. These are:

MEANRATE Calculation of the mean arrival rates A; of
queuing stations, i = 1, 2, -, N.
Reconfiguration of the queuing network |
substitution of stations with feedba
through stations without feedback and trai
formation of the network parameters.
Composition of (V + 1) component proc
ses (\;;, ¢j;) at C; of station [, 7 = 0,1, 1
Decomposition of the departure process (
cp;) of queuing station i into (V + 1) co
ponent processes (A, ¢;) at D; of statior
j=0,1,-, N.
Calculation of the coefficient of variati
¢p; of the departure process of station i.
Calculation of the characteristic values |
N;, w;, and f; of queuing station 7.
FLOWTIME Calculation of expectations of network fl
times with respect to all customers or all ¢
tomers of a certain input, respectively.

RECONF

COMPOS

DECOMP

CDEPART

QVALUE
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o1
Ao

Xon (a) |

Fig. 8.

-
Total and partial arrival rates at station j. {a) Network with complete exogenous arrivals. (b) Network with exo-
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(b) NO

=0, j#a

genous arrivals only at input 2.

3.3.2 Analysis Algorithm: In networks without feedback,
the analysis can be carried out in a straightforward way. There
exists always a sequence for andlyzing the network station by
station starting from one of those stations having only exoge-
nous arrivals. ‘

In the general case of networks with feedback, the composi-
tion operation at a station { cannot always be carried out since
there are not all component processes known with respect to
their coefficients of variation ¢, 4, j = 1, 2, -, N. This prob-
lem is solved by iteration, with the additional advantage of
being applicable without regard to the sequence of stations to
be analyzed.

The principal flow chart of the algorithm is shown in Fig. 9
(details are omitted). The algorithm is very fast and needs
about SN? words of storage capacity for data. It has been im-
plemented by an Algol computer program [31], and its results
were checked by simulation programs for general queuing net-
works [32]. Finally, we state that the algorithm yields the
exact results in the special case of pure Markovian networks
with state-independent arrival and service rates.

4. NUMERICAL RESULTS AND VALIDATIONS

In this chapter, several results are reported to show the ac-
curacy of the algorithm for basic operations and whole net-
works. All simulations were performed with at least 100 000
events. The results are given together with their 95% confi-
dence levels.

4.1 Standard Operations

4.1.1 Mean Values and Output Process of the Queuing
System GI/G/1: The mean values w; and W; cited in Section
3.2.2 have been checked by intensive simulations yielding an
acceptable accuracy, cf. [22], and will not be repeated here.

Concerning the output process, in Fig. 10(a), (b) the func-
tions ¢p2(p) are given for queuing systems of the type £5/G/1
and Hy/G/1 according to eq. (9a). The simulation results show
a reasonable accuracy of the approximate solution.

~ 4.1.2 Decomposition of Point Processes: In Fig. 11 the
functions ¢;2(c?) are given for the decomposition of a renewal
process or a nonrenewal process with coefficient of variation
¢ and routing probability g; as parameter according to Section
3.2.4, respectively. The results of the decomposition operation
are shown in Fig. 11(a) for renewal processes and in Fig. 11(b)
for nonrenewal processes. The nonrenewal processes were gen-
erated as output processes of queuing systems of the type

M|G/1 for p = 0.6 (note that the output process is renewal
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Fig. 9. Principal flow chart of the decomposition analysis algorithm.

again for p = 0 and p = 1). The curves hold exactly only if
the original process is renewal, cf. Fig. 11(a). For nonrenewal
processes the calculated curves are still within the confidence
levels of the simulation, cf. Fig. 11(b). The accuracy does not
depend remarkably on the parameter g;.

4.1.3 Composition of Point Processes: The results of the
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Fig. 10. Squared coefficient of variation ¢ p2 versus the server utilization p (parameter ¢gy). (a) Queuing stations E5/G/1.
(b) Queuing stations Hy/G/1(c4 = 1.5).
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Fig. 11. Squared coefficient of variation cjz of decomposed processes versus squared coefficient of variation ¢2 of the
gi ss (parameter ¢;). (a) Decomposition of renewal processes. (b) Decomposition of nonrenewal processes.

composition operation on two component processes according
to Section 3.2.5 are shown in Fig. 12. The figures represent
the squared coefficient of variation.c? of the superposed proc-
- ess dependent on the squared coefficients of variation 12
(abscissa) and cy2 (parameter) for two renewal component
processes (cf. Fig. 12(a)) or nonrenewal component processes
(cf. Fig. 12(b)), respectively. The nonrenewal processes were
‘realized as output processes of M/G/1 at p = 0.6. Whereas the
-composition of renewal processes fits extremely well with
_simulation, the composition of nonrenewal processes yields
errors up to 15% in the worst case of the superposition of two
output processes of two M/D/1 stations.
4.1.4 Substitution of Nodal Feedbacks: In Fig. 13 the cal-
culated results of the reconfigured queuing station without

X

p

0.5 1.0

1.5 -——4-C22.0
)

nodal feedback according to Section 3.2.6 are compared with
simulations for the original system with nodal feedback (the
subscript 7 is omitted). The figures show the squared coef:
ficient of variation ¢p*?2 of the output process of customers
leaving the station (cf. Fig. 13(a)) as well as the mean total
flow time f of all outside arriving customers (cf. Fig. 13(b))
versus the squared coefficient of variation ¢z 2 of service times
of the original system with parameter ¢4 * of the arrival pro¢
ess of outside arriving customers. Both results for cp*? and' f
are in acceptable accordance with simulations (note that the
calculated results for c4* = 1 are exact). The comparatively
large confidence levels for f reflect the high degree of variabil-
ity caused by the nodal feedback of the simulated original
system. Similar results were obtained for the comparison
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g =05 (p = 06), cy™ =0, 1, 1.5. (a) Squared coefficient of variation ¢p*2 of the output process versus cg2. (b)

Mean normalized flow time f/k versus cg2.

both systems by simulations only, although the equivalence of
both systems with respect to f (and therefore also for cp*)
has been proved only in the case of Poisson arrivals [30] .

4.2 Queuing Networks

In this section, calculated results of the suggested decompo-
sition method for queuing networks are given and compared
with simulation results. First, we summarize general validation
experiences. Then, we give two specific network examples
with detalled results. The method has also been compared
with results of two diffusion approximation methods. Although
the decomposition method yielded in those cases a slightly
better overall accuracy than the diffusion approximations, the
sample values are too few for a representative comparison with
all existing diffusion approximation methods. This problem re-
mains for some future studies.

4.2.1 General Validation Experiences: Subsequently, we
summarize some general experiences made with the validation

of the described decomposition approach. The method yields
generally an increasing accuracy under conditions of

a) low or heavy traffic; )
b) increasing randomness in the arrival and service processes;
¢) increasing network complexity;

. d) decreasing “closedness™ of the global network.

Observation a) results from the fact that in both low and heavy
traffic regions the renewal assumption is usually better ful-
filled. Observation b) rests on the fact that the results are the
more robust with respect to the renewal assumption the closer
the network is to a Markovian queuing network: In Markovian
networks the decomposition approach yields even the exact
results, although the processes are not renewal (except in case
of networks without feedbacks). Also, more general arrival
processes have a worse effect on the accuracy than more
general service processes. Observation c) results from a general
result of renewal theory which states that the superposition of
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Fig. 14. Queuing network example with 2 queuing stations.

increasingly many component processes yields (in the limit) a
Poisson process. This effect was observed with increasing net-
work complexity (see also results of the decomposition and
composition operations). The substitution of nodal feedback
loops d) reduces the extent of the renewal assumption and re-
sults in a far better accuracy. Similarly, the closer the network
to a closed queuing network, the greater the dependence ef-
fects. Examples of smaller closed queuing networks yielded er-
rors up to 30%. With increased network extension and com-
plexity, the “closedness” becomes again less important. For
increasing numbers of input and output network terminals,
the “randomness” is enforced, yielding in turn better accuracies
of the decomposition approach.

4.2.2 Queuing Network Example with 2 Queuing Stations:
As an example of a small queuing network, we consider a
queuing network of two queuing stations according to Fig. 14
representing an interactive computer system with a CPU and a
disk-//O subsystem. Results of the decomposition technique
and simulation results are given in Table 1 for the combina-
tions of traffic and routing parameters shown in Table 2.

.The comparison shows generally good accordance between
_calculated and simulated results in case of low and medium
traffic. The inaccuracies in case of heavier traffic result in this
case from the facts of a small and relatively “closed” network
where the renéwal assumption becomes critical, especially in
case of more deterministic traffics. A further source of errors
lies in the GI/G/1 approximation (usually less than 10%) and
in the superposition of nonrenewal processes.

4.2.3 Queuing Network Example with 9 Queuing Stations:
As a last example we consider a larger queuing network of 9

queuing stations shown in Fig. 15 together with the routing
probabilities. The exogenous arrival processes are Markovian.
The service processes are varied from deterministic {cy; = Q) to
hyperexponential (cy = 2).
The network example was investigated for homogeneous
“servers (hy_.g = 1, cpq_g identical) as well as heterogeneous
servers (fy_g = 1, cpyq 3 different to cpr4_g). Fig. 16 shows
the mean normalized total flow time f/h and the mean flow time
fa/h of the interior station number 4 (solid curves} versus the
coefficient of variation ¢gq._g in case of homogeneous servers
(cf. Fig. 16(a)) or versus ¢y 4o with parameter ¢y 3 in case
of heterogeneous servers (cf. Fig. 16(b)), respectively.
*In Fig. 16(a) two more curves are shown for comparison
~with different analysis methods when the arrival process at
each station is assumed to be Markovian (dashed curves), or
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TABLE 1 . :
COMPARISON OF CALCULATED RESULTS AND SIMULATIO
RESULTS FOR THE AVERAGE FLOW TIME OF CUSTOMERS
IN A QUEUING NETWORK ACCORDING TO FIG. 14,

. £ -f
System £ £ * Confid CALC “SIM | o
Number 201 CALC ST Levels R 100%
8IM
0.15 4.509 4.26 4 0.08 6.34%
1 0.30 8.220 7.51 % 0.29 9.45%
0.45 33.474 27.27 %+ 5.63 22,757
0.15 5.937 5.95 o+ 0.89 - 0.22%
2 0.30 10.888 10,91+ 0.6¢ - 0,207
0.45 46.309 49.49 % 6.80 - 6.43%
0.15 6.108 6.09 4 0.19 ©.29%
3 0.30 11.595 11.08 % 0.63 4.65%
0.45 51.265 61.72 % 17.99 - 16.94%
0.15 4.691 45.50 + 0.16 4,247
4 0.30 8.712 7.96 % 0.55 9.45%
0.45 34.942 29.91 6.14 16.827
0.15 3.627 3.66 0.05 - 0.90%
5 0.30 4.926 5.35 % 0.16 - 7.922
0.45 12.801 18.29  + 3.27 - 30.01%
0.15 3.490 3.43 ¢ 0.04 1.757%
6 0.30 4.420 4.83 % 0.07 - 8.497
0.45 9.791 13,59 1.79 - 27.95%
0.15 4.603 4.73 ¢ 0.12 - 2.68%
7 0.30 8. 590 9.06 ¥ 0.56 - 4.98% !
0.45 35.876 46.83 %, 10.64 - 23.39% |
0.15 4.194 3.67 o+ 0.09
8 0.30 7.494 5.78 % 0.16
0.45 29.567 17,46 % 1.67
|
TABLE 2
Systes | Gl /Ll/cz o1 #y ) “m o 94 Gy
1 M/HZ/RA 1.0 1.0 1.0 1.5 0.5 0.5 0
2 M/HZ/EA 1.0. 1.0 0.5 1.5 0.5 0.5 0
3 M/, /E, 1.0 1.0 1.0 1.5 0.5 0.5 0.5
4 M]HZ/HZ 1.0 1.0 1.0 1.5 1.5 0.5 o]
5 M/E, /8, 1.0 1.0 1.0 0.5 0.5 0.5 0
6 M/D/D 1.0 1.0 1.0 0 0 0.5 0
7 nzlhz/n4 1.5 1.0 1.0 1.5 0.5 0.5 0
8 E,/H4,/E, 0.5 1.0 1.0 1.5 0.5 0.5 [
4° 2074

when the arrival and service processes at each station are as-
sumed to be Markovian (dotted curves), respectively.

Compared with the simulation results, the proposed two-
moment method yields acceptable results; whereas, neglect of
the second moment of the arrival processes or both of the ar-
rival and service processes yields principally worse results. The
comparatively small difference between the solid and dashed
curves results from the fact that in a complex network with
many compositions and decompositions of processes the com-
ponent processes tend to become Markovian again. Then the
renewal assumption is also better justified as in special cases as
closed networks, or, e.g., series of queues with constant service
times.

5. DISCUSSION AND GENERALIZATIONS GF THE
METHOD

The suggested decomposition method allows the analysis of
open queuing networks with general exogenous arrival proces-
ses and general service processes. The method does not allow
state-dependent arrival or service rates. The method has been
described for the case of open networks only. Although an ex-
tension to closed networks is possible, we do not suggest its
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stations. - - - - Markovian queuing network result.

application except for cases of larger closed networks with a
complex structure where the renewal process approximation is
justified. The network analysis algorithm has been described
for the case of single-queue, single-server stations with only
one class of customers. The modular concept of the algorithm,
however, easily allows a number of generalizations, as briefly
discussed in the following sections.

5.1 Multi-Server Queuing Stations

Any single server queuing station no. 7 can be replaced by a
multi-server station. The analysis is performed analogously by
inserting the corresponding results for a GI/G/n; queue with
respect to the coefficient of variation cp; of the output proc-
ess and mean values w;, W;, f;, and V;.

5.2 Multi-Queue Stations With Several Classes of Customers

A further extension is the introduction of R classes of cus-
tomers. Customers are classified according to their origin,

© CH4-9

Mean flow times f and f4 versus the coefficient of variation ¢y of network service stations. (a) Homogeneous

Decomposition algorithm. — — — — Markovian arrival processes at queuing

preceding path, urgency, or importance and may also change
their class membership, cf. [3]. At each queuing station i, ar-
riving customers are separated into R distinct queues according
to their class index », ¥ = 1, 2, -, R. Waiting customers are
selected for service by a schedule with any nonpreemptive
discipline; e.g., a nonpreemptive priority. A customer of class
r leaving station i is routed to station j and changes into class s
with probability gy, js, 1, s = 1,2, =, R, i=1,2,"+ N,j=0,
1, N

For the analysis, in a first step the arrival rate A;, of class »
customers at station ¢ must be determined from a system of
N + R equations analogously to eq. (2). Herewith, the total
arrival rate A; and the rates A, j; are also determined. Then,
the general R-class queuing system GI/G/1 must be analyzed
considering only two moments of processes and the underlying
scheduling discipline. The consistency of the coefficients of
variation of all processes in the network must be achieved again
by iteration as described in Section 3.3.2. For the expected
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number of visits at a station, a test customer of a certain class
is considered moving through the network as described in
Section 3.2.7 analogously.

5.3 Subnets

Up to now, the elementary subsystems of the network were
single-stage service stations. In a further generalization, sub-
systems can also be subnets having one input port and one out-
put port. The only difference to the described analysis algo-
rithm is the analysis of the subnet itself, considering two
~moments of the input and output processes.

The concept of subnets is favorable in cases where the
global subnet behavior with respect to input and output proc-
esses is sufficient to describe its influence on the residual net-
work behavior, or in special cases when the decomposition
‘method becomes worse if it is applied to the elements of the
subnet. As an example of the first case, let the subnet be a
queuing network model of a computer system and the residual
‘queuing network the model of a large-scale computer com-
‘munications network. As an example for the second case, con-
sider subnets with strong dependencies between their stations
as, e.g., in the case of closed loops or tandem queues with con-
stant service times [33], where the decomposition method
yields too bad results. For these reasons, it is useful to analyze
such “aggregate systems” in isolation and to put them into the
- algorithm as a whole.

- 5.4 Further Generalizations

The described decomposition method has been further
generalized in cases including fixed delay elements, cyclically
served queues, and synchronously operated switches in con-
nection with the investigation of network models for switch-
- ing system control structures [18]. Fixed delay elements can
- be included since the process characteristic (2 moments) is

completely maintained. Cyclically served queues with nonzero
switch-over times are again described by their input/output
behavior in terms of 2 moments of the interarrival times. For
networks with synchronously operated switches the charac-
terization of the interface traffic between subsystems has to be
augmented; in this case the traffic is adequately characterized
through the distribution (or its moments) of the batch size of
customers transferred at the switching instants. The approxi-
mation consists in this case essentially of the assumption of
independence between successively transferred batch sizes. For
such networks with such mixed types of elements as cyclically
served queues, fixed delay elements, synchronously operated
switches with “batch service” and “batch arrival” effects, and

_ priorities between classes of customers, a decomposition ap-
proach is the only successful analysis method at the current
state of the art.

APPENDIX
COMPOSITION OF TWO RENEWAL PROCESSES

Given two stationary renewal point processes with random
interarrival times 7 and T, and df Fy(¢) and F,(?), respec-
tively; both processes are superposed at the composition point
C. The df of the resulting process is F(#) = P{T <t} where T
is the interarrival time of the superposed process, cf. Fig. 4.
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Following the theory of renewal processes according to Co
and Miller [29], the forward recurrence times Ty, Ty s, an
Ty are introduced as the intervals between an arbitrary instar
to and the following event of the component and superpose
processes, respectively. In the stationary case, the forward r
currence times 7'y; are independent of 7y and their densit
function is given by '

Viey=XN-Fe@,  j=1.2 (Al
where F°(t) = 1 — Fi(t) the complementary df of Fj(¢). From

eq. (A. 1) the complementary df of T'y; follows by integration

mr>=f NE@du,  j=1,2. (A2)
u=t

Since

P{Ty >} = P(Tyy >0}« P[Tyy > 1} (A.3)i

the df of Ty is given by

7.\1F1c(u)du} : {/‘>°
. u=t

oo

Vie)=1-— [ Ao Fo(u) du } .

u=t

(Ad)

Assuming the renewal property and inserting the general
relation
V()= -+ Fe@t) (A5)
. between V(¢) and F(z) of the superposed point process into
eq. (A.4), we find the final result eq. (12):

0.

A
122 . Fye(u)du
t

A A

F)=1-— {Flc(t) .

u=

+ Foe(t) - /m Flc(u)du’ .
u=t

Unfortunately, we are not able to give the moments o

oo

—~%~ /_th"(r)dz (A‘j);

in terms of the moments of the component processes, except
in the case of ¥ = 1. Then, we obtain the plausible result A =
A1 + Ay, which reflects the law of the conservation of flow in
node C. -

The second moment E[T2] of the superposed process, and
herewith its coefficient of variation ¢, can be calculated from
eq. (A. 6), (A. 7) in a straightforward way, using the concept
of hypo- and hyperexponential substitute processes according
to eq. (14a, b). For the algebraic manipulations, a subdivision
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; o three cases of hypo- and hyperexponentiai process-type t11t922
combinations has to be considered. The explicit results are Iy =pyq ——~———-————-2- (ti1t31 T t11teg t1a1l23)
summarized below: (111 +132)

2 t; +ig ' a1 t1atap®
2 =2 *E[Ty] —1 (A.8) cexp | == | tp1g T (t12821 .
y *tg \ (t12 +122)?
where 7; = 1/N;, j = 1,2. E[Ty] can be expressed as a sum of Iy
four components +itialae Tla1lg2) eXp T
CE[Ty] ! Uy +1, + 13 +1,) (A9) [t t
¢ = . . 21
: Vg, R ' d3 =p11t143 [1 - (1 +;“> exp (”%)]
11 11
'Ifhe results of the components are as seen below. ‘ t21 fo1
- Case 1: Superposition of 2 hypoexponential processes +p1at123 |1 — <1 +— )exp (“—)}
(where 511 gtzz) t12 t12
» , : 1112159
(ta 11 Iy =piy * 5 (liatay +tyatap +1a115))
Iy =t142 (5“‘5“‘112) +i19t (13 —2t13) (t11 +10)?
I21 192295
Fl19[t12(2t91 + 2819 — 1) —121192] TexXp { —— | TP12* — (t12t21
f11 (t12 +122)
+ exp __le“f11> ‘ ;
, 21
12 +ityalan T la1ta2) EXP (";’“)
B 12
EL T (tigtg1 +t1atag +1a1t20)
2 = “Uiala 12f22 21122
(t12 +122)? Case 3: Superposition of two hyperexpornential processes
toy —t ; b
* exXp <‘“_21 11) / t11%1512 I t1121392
'z =pP11P21 * T . =Piybee T L
) 12 1 11721 (tll +I21) A (tll +t22)
- 4 12 _—}r 3
fs =2hn 3h1 11921312 t1921922
Iy =pigpey * - 1y =DP1aPs2 * :
Iy =152 [111 — 191 +»———~{g—2-———2 (f12 +121) (t12 +122)
(t12 +122) : ,
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