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On Multi-Queue Delay Systems with Gradings*™
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This paper deals with exact and approximate calculation methods for multi-queue delay
systems with gradings. The approximate calculation is based on the “Interconnection Delay
Formula‘* which has been adapted to gradings of various type. For the distribution function of
waiting time, the exact and an approximate calculation method are reported, the latter includes
only the first and second moment. In a final chapter, the efficiency of various grading types is
investigated resulting in a suggestion of an optimum grading structure with respect to delay
systems.

Uber Wartesysteme mit Mischungen und mehreren Eingangs-Warteschlangen

Es wird iiber exakte und approximative Berechnungsmethoden fiir Wartesysteme mit Mischun-
gen und mehreren Eingangs-Warteschlangen berichtet. Aufbauend auf der ,,Interconnections-
Warteformel*, wird zur approximativen Berechnung realer Mischungen ein Anpassungsverfahren
vorgeschlagen. Aufler der exakten Berechnungsmethode fiir die Wartezeitverteilungsfunktion
wird eine Niherungslosung angegeben, welche nur die ersten beiden Momente einbezieht. Schlief3-
lich wird die Leistung verschiedener Mischungstypen im Wartesystem untersucht und eine opti-
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male Mischungsstruktur vorgeschlagen.

1. Introduction

Delay mechanisms can be found in automatic

telephone and data switching systems for reasons of

an economic use of centralized devices (servers) as
registers, markers, storages, and processors for com-
mon control. The connection to these centralized
servers is realized by single-stage or multi-stage con-
necting networks with full or limited access. An
arriving request (call) which cannot be served im-
mediately occupies a storage place and waits for
service. The additional delay caused by waiting,
however, implies disadvantageous effects as dial-
tone delays or signal distortions which must be kept
properly low by an adequate dimensioning.

In this paper, single-stage connecting systems
with limited accessibility are considered where the
outgoing servers of several selector multiplies are
partially interconnected (grading). Compared with
full accessibility, a grading saves crosspoints at the
expense of a somewhat lower grade of service. The
subjects of the paper are: firstly, the calculation of
delays for given grading structures, operating mo-
des, and offered traffics and, secondly, the question
of optimum grading structures for graded delay
systems.

During the past, gradings have extensively been
studied for loss systems, cf. the survey of A. Lotze
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[1]. Delay systems with fully accessible servers were
investigated first by A. K. Erlang [2]. For graded
delay systems, an interpolation method was pro-
posed by E. Gambe [3] using results of full acces-
sibility. M. Thierer [4], [5] derived expressions for
the probability of waiting and the mean waiting
time on the basis of a two-dimensional state descrip-
tion using the combinatorial blocking probability
for ideal gradings (‘‘Interconnection Delay Formula
IDF”). Combined delay and loss systems with grad-
ings have been investigated by the author [6], [7],
[8]. Multi-stage connecting networks with waiting
were studied by E. Gambe [9] and L. Hieber {10].
After a more detailed statement of the problems
in Chapter 2, the exact calculation of state prob-
abilities, mean values, and the probability distribu-
tion function (pdf) of waiting time for multi-queue
delay systems with gradings is outlined in Chapter 3.
The studies in [4], [56] were focused mainly on mean
values (probability of delay, mean queue length, and
mean waiting time) for ideal gradings. Based on
these investigations, extensions are presented with
respect to real gradings and the pdf of waiting time
in Chapter 4. In the final Chapter 5, various grading
structures are compared with each other by means
of exact calculation and simulations from which an
optimum grading type for delay systems is derived.

2. Statement of the Problem

A queuing problem can generally be defined by
the system structure, the operating mode, the input
process, and the service time characteristic. In this
chapter, the basic assumptions and problems will be
discussed more in detail.
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2.1. System structure of multi-queue delay systems

2.1.1. General structure

The multi-queue delay system consists of ¢ input
queues (grading group queues), each of them is as-
signed to an input process of calls. The calls are
served by n servers which are fully or partially inter-
connected (commoned). For partially interconnected
servers, calls of each group can only hunt & out of n
servers (k accessibility). In Fig. 1, an example is
given having n =8 servers, accessibility k=4, and
g =4 grading groups.

In a pure delay system, the maximum number of
storage places s; in queue j must be sufficiently large
such that no loss occurs (j =1,2,...,9). A com-
bined delay and loss system is generally obtained by
limitation of the queues.
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Fig. 1. Multi-queue delay system with limited accessibility.

2.1.2. Types of gradings

The special interconnection scheme (wiring) has
an important influence on the efficiency of a grading
and has been intensively studied for loss systems,
cof. [11]—[21]. Generally, three main wiring methods
are applied for the construction of gradings:

& commoning,

e skipping,

¢ slipping.

Applying these wiring methods on the above example
(n=8, k=4, g=4) leads to following gradings, cf.
Fig. 2.
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Fig. 2. Types of gradings with various wiring methods
Example: n =8, k=4, g =4 (M = 2);

2.1. straight homogeneous “‘grading”,

2.2. straight homogeneous grading with skipping,

2.3. homogeneous grading with skipping and slipping,
2.4. straight inhomogeneous grading,

2.5. straight inhomogeneous grading with skipping,

2.6. inhomogeneous grading with skipping and slipping.
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Besides the tripel (n, k, ¢) and the wiring method,
the properties of a grading are further characterized
by the mean interconnecting number M = gk/n and
the matrix (by) of the distribution of busies, where
by denotes the number of interconnections between
grading groups ¢ and § [15].

In general, for given n and ¢ the efficiency of a
grading increases with & and M. The criteria which
were found for efficient gradings in loss systems
with respect to the probability of loss and traffic
balance hold also for delay systems to a certain
extent. Some further criteria, however, have to be
considered additionally which originate from wait-
ing.

In the limiting case of full accessibility, all servers
are fully interconnected with respect to the ¢ grading
groups (k==n). Another limiting case is the “Ideal
Erlang Grading” having g = (})k! grading groups.
For practice, g assumes too large values. This case
is, however, of great theoretical interest since the
blocking probability of this grading is exactly
known [2].

For practical switching systems, only few types of
gradings are applied which have economic advan-
tages as regular construction, simple manufactur-
ing, and easy extension. In Fig. 3, two examples are
given, namely a straight inhomogeneous grading
(““O’Dell-Grading™) of the BPO (Fig. 3.1), and an
inhomogeneous grading with skipping and slipping
(“Standard Grading™) of the German GPO (Fig. 3.2),
both with progressive commoning.

For further investigations in this paper, four more
types of gradings are shown in Fig. 3: two homo-
geneous gradings with skipping (Fig. 8.3) or slipping
(Fig. 3.4), respectively, and two straight inhomo-
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Fig. 3. Practical grading types; example: n = 30, k = 10,
g==0 (M = 2);

3.1. O’Dell-grading,

3.2. standard grading

3.3. homogeneous grading with skipping,

3.4. homogeneous grading with slipping,

3.5. high-efficiency grading (loss systems),

3.6. high-efficiency grading (delay systems).
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geneous gradings with skipping (Figs. 3.5 and 3.6).
Grading Fig. 3.5 represents an individually con-
structed “high-efficiency grading” with good traffic
balance, which is the best one for loss systems, while
grading Fig. 3.6 is preferable for delay systems, cf.
Chapter 5.

2.2. Operating mode
2.2.1. Hunting disciplines

Servers can be hunted sequentially (with or with-
out homing) or in random order. For gradings with
progressive commoning, the sequential hunting
method (with homing) is optimal and has, therefore,
been assumed for exact calculations and simulations
throughout this paper.

2.2.2. Interqueue disciplines

The interqueue discipline controls the service of
(non-empty) queues in a multi-queue delay system.
For the exact calculation, a general probabilistic
discipline was introduced and has already been in-
vestigated for special cases as priority, random, and
queue lengths-dependent service of queues [6]—[8].
For graded delay systems, the RANDOM service of
queues seems to be the most realistic interqueue
discipline and will be assumed in this paper together
with the idealistic interqueue discipline FIFO (first-
in, first-out).

2.2.3. Queue disciplines

The queue discipline controls the service of wait-
ing calls within a queue. In general, the queue dis-
cipline has no effect on mean values but on the pdf
of waiting time. The influences of queue and inter-
queue disciplines on mean values and the distribu-
tion of waiting times have been studied in [7] by
means of exact calculations. In this paper, only
FIFO will be assumed.

2.3. Input processes and service times

For the investigations, Markovian properties are
assumed, i.e. the interarrival and service times are
negative-exponentially distributed, where 1; the
mean arrival rate for arriving calls of group 7,
7=1,2,..., 9, and & the mean termination rate of
server 1, ¢ =1, 2, ..., n. For the investigations in
this paper, only symmetrical conditions are assum-
ed,ie. =419, 1=1,2,...,9, es=¢e=1/h, i=1,
2, ..., n, where 1 the total mean arrival rate, % the
mean service time, and 4 = 1A the “offered traffic’.

2.4. Grade of service

The grade of service of a multi-queue delay system
may be defined by the main characteristic values as

@ probability of waiting,

e probability of loss (finite queues),

carried traffic,

mean queue length,

mean waiting time,

pdf of waiting time,

“higher moments of the pdf of waiting time.
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These characteristic values will be studied under
stationary conditions.

3. Exaet Calculation of Multi-Queue Delay Systems
with Gradings

The exact calculation of multi-queue delay sys-
tems with gradings is based on methods of state
equations. In principle, the analysis can be per-
formed in two steps [6]—[8]:

i) Solution of a system of linear equations for the
stationary probabilities of state,

ii) Solution of a system of linear differential equa-
tions for the conditional pdf’s (cpdf) of waiting
time.

The main traffic values, which characterize the
grade of service, can be derived from these values
subsequently. In the following two sections, only
the fundamental way of solution will be outlined;
for a more detailed discussion it is referred to [7].

3.1. The stationary state

3.1.1. Probabilities of state

A system state & may be defined by a (n4-¢)-
dimensional vector

E= (., @y s i2,..), EER, (1)
where x; = 0(1) if server ¢ is idle (busy), ¢ = 1, 2,
cooomyandz;=0,1,...,s; the number of occupied

storage places within queue 7, 7 = 1,2, ..., 9. The
set £ of system states includes only those states
which are physically possible (a queue j can only
be built up if at least all accessible servers within
grading group j are busy).

The stationary probabilities of state, p (&), can be
determined from the Kolmogorov-forward-equa-
tions considering the service system in equilibrium
state '

Gep(8) = 2gnep(n) =0, feE, (22)
completed by the normalizing relation
Sp@=1. (2b)

In eq. (2a), gze means the coefficient for the transi-

Fig. 4. System state representation with transitions.

The special characteristics of system structure,
operating -disciplines, and traffic parameters are
included in the definitions of system state and tran-
sition coefficients which will not be discussed here
in detail (cf. [6]—[8]). The numerical evaluation of
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the state probabilities is carried out by solution of
eqs. (2a, b) using the iterative method of successive
overrelaxation.

3.1.2. Characteristic mean values

The most important mean values can be obtained
from the probabilities of state by following defini-
tions:

a) probability of waiting for group j:

k
W; :EZT(l - 821, Sj)k]:Il (@g,) P (&), 3)
b) probability of loss for group j:
Bj= 28,408, (4)
feX

¢) carried traffic on server 4:
Yizézwxzp(ﬂ, ()
e

d) mean queue length of queue j:

2 ZSEZ:W(&) ; (6)

e) mean waiting time referred to all waiting j-calls:
twy = £2{(23 W) , (7)

where §;; the Kronecker symbol, and g5; the number
of that server which is hunted at step % in group j,
h=1,2,...,k; j=1,2,...,9.

3.2. Distribution of waiting time

3.2.1. Conditional pdf’s of waiting time

For the exact calculation of the waiting time
distribution, the waiting process of a test call is
considered within the j-th queue. A j-call enters the
queue j and starts a waiting process; this process is
being “alive” as long as the j-call is waiting and
“dies” at that moment when the j-call is selected
for service. This waiting process can be constructed
from the process of system states by neglecting all
those transitions which do not influence the ‘life-
time’” of the j-call under consideration.

For the formal description of the waiting process
in queue §, a waiting state {; is introduced which
considers all those calls in the system which may
have an influence on the waiting time of the con-
sidered j-call. £; is built up by the states z; of all
those servers which have no access to group j, and
the states of all queues which must be defined
dependent on the special queue and 1nterqueue
disciplines.

In the simplest case, the interqueue d1sclphne
does not depend on the actual lengths of the various
queues (e.g., RANDOM-selection of queues). In this
case, the waiting state {; can be defined by a
(n — k -+ g)-dimensional vector

G (eey iy ) Gy, (®)

where x; = 0(1) if server ¢ is idle (busy), ¢ 4= gy,
h=1,2,..., k, 2 the number of waiting calls in
queue v =7, and z; the number of predecessors,

s Ry e
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competitors, or successors of the j-test call in queue
7 according to whether the queue discipline is FIFO,
RANDOM or LIFO, respectively. (For more compli-
cated disciplines cf. [7].) The set Z; includes all
possible waiting states of a j-test call.

The distribution of waiting time for j-calls (T'w;)
which met an arbitrary state {; at their arrival is
defined by a conditional (complementary) pdf (cpdf)

= P{Tw; >t|5;}, CeZy,  (9)

which are determined from a set of differential
equations of the Kolmogorov-backward-type

w; (t[Z5)

d
“’"”“’i(tiéf = —qgw;(t| &) + Zgl:;,mwj(tlﬁf), (10)
IS

0]&) =1;
Ineq. (10), q¢,, 5, is the coefficient for transition from
waiting state {; to waiting state #;, and ¢, is the
coefficient for leaving waiting state {; including
“death” of the waiting process with coefficient &,
according to

with Cj,nj EZ]'.

Z qcs. + &gy

LIRS

Death of
g,}jﬁ waiting process

.

{fj] *

waiting process

Death of

k Fig. 5. Waiting state representation with transitions.

For the numerical evaluation of the epdf’s of
waiting time, methods of successive power series
expansions or approximations using the ordinary
moments can be applied, cf. [7].

3.22. Total pdf of waiting time and its
moments

The total pdf of waiting time can be obtained by
averaging over all cpdf’s regarding the arrival state
probabilities p({;):

Wi(>1) = P{Tw; >t} = EP (&) wy(t]) 11)
&ieZs
where W;(> 0)= W;, cf. eq. (3).

The r-th ordinary moment my of the pdf of
waiting time referred to all waiting j-calls is ob-
tained by

(12)

W;(>1)
Mjp = — t’d*y——f = > p({) mpr(l;),
J W/? LieZ;

where 7, (C ;) the conditional -th ordinary moments
which are obtained from a system of linear equa-
tions corresponding to eq. (10). The first moment
my1 agrees with the mean waiting time #yy; according
to eq (7).
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3.3. Numerical example

In this example, a homogeneous grading with
n = 6 servers, accessibility k = 4, and g = 3 grad-
ing groups will be compared with the corresponding
fully accessible system (n =k = 6, g = 3), both
having s; = s = 4 storage places, j = 1, 2, 3, with
respect to means and distributions of waiting time.
The interqueue discipline is RANDOM, the queue
discipline is FIFO.

The mean waiting times of waiting calls referred
to the mean service time, Ty =tw/h, are 0.391,
0.849, and 1.319 for k=4 and 0.326, 0.798, and
1.303 for k=6 for the offered traffics per server
Ajn = 0.5, 1, and 1.5, respectively. This shows that
the differences are greatest for small loads (7w —1/k
for A—0); on the other hand, the differences vanish
for large loads (tw-—>gs/n for A o).

Fig. 6 shows the pdf of waiting time referred to
all waiting calls, W (> 7)/W, versus the normalized
time 7 = t/h.

10
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Pdf of waiting time, W{>7)/W —

e
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Fig. 6. Pdf of waiting time versus time (exact calculation);
parameters: accessibility k, offered traffic per server 4/n.

4. Approximate Caleulation of Multi-Queue Delay k

Systems with Gradings

For practical gradings, the number of unknowns
is too large for exact calculations so that efficient
approximation procedures are necessary. In this
chapter, approximation methods are reported for
mean values as well as for the pdf of waiting time.

4.1. The stationary state

4.1.1. The “Interconnection Delay Formula”
(IDF)

For graded delay systems, M. Thierer [4] sug-
gested a calculation method based on a two-
dimensional state description (z, z), where x the
number of busy servers, and z the total number of
waiting calls. A part of the two-dimensional state
space is shown in Fig. 7.

In Fig. 7, ¢(«) means the blocking probability of
the grading in state z, and r(x,z) a conditional
probability indicating that no waiting call is served
when a server becomes idle. By application of a

ON MULTI-QUEUE DELAY SYSTEMS WITH GRADINGS 57

\_ (x,z +14)
N\
N\
N\
N
Alt=cle-111 -

lx=1,2] I,
xrix,z)

N

lx+14,2)

7

\, Symmetry
_assumption

N\

N

Aclx]

xU-rix 2

=
N
-

Fig. 7. Two-dimensional system state representation with
transitions.

special symmetry assumption for the statistical
equilibrium, cf. Fig. 7, recursive equations were

derived which led to explicit expressions for p(x),
W, 2, and 7w :

x—1 z
p(@) =p(0) A”E}[l - C(i)]/lzl[i —de@)], (13)

W= ég)( Ye(), (14)
z (i)
2= Zp(x)zzk T'Ac() ; (15)
TW:—-.Q/AW), (16)
with blocking probability
‘ =@@, k=ax=n, (17)

according to Ideal Erlang-Gradings [2]. As proved
by extensive event-by-event simulations [4], [23],
above formulas yield good results for ideal gradings
and nonideal gradings with a relatively high mean
interconnecting number M. Moreover, in these cases
the simulation results turned out to be nearly in-
dependent of the interqueue discipline FIFO and
RANDOM, respectively.

4.1.2. Adaptation of the IDF to gradings of
various type

Simulation results have.shown that the results
obtained by the IDF are too optimistic for real
gradings with small M (M ~2). Additionally, the
more realistic RANDOM-interqueue discipline even
increases the results for W, @, and tw compared to
the idealistic FIFO-interqueue discipline in case of
gradings with progressive commoning. The in-
fluences of the mean interconnecting number M, the
grading type, and the interqueue discipline will
therefore be taken into account by an adaptation
of the IDF (AIDF) to practical gradings as shown
in Figs. 3.1, 3.2, and 3.5.

In delay systems with gradings, the storage effect
increases the probabilities of blocking occupation
patterns compared to loss systems. This effect can
be described by a modified blocking probability
c(z, k*) with an adapted nonintegral accessibility
k* < k for delay systems:

c(w, k*) =

(£e)/Gx) - (18)
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This principle has also been applied successfully to
loss systems, cf. [22].

Intensive simulation runs for a large number of
gradings have shown that k* depends mainly on %,

M, A, the type of grading, and the interqueue dis-

cipline. The influences of k* on W, Q, and 7w are
indeed slightly different. k* was adapted such that
the mean queue length £ fitted best possible with
simulations which yielded the best overall results.
The expressions for k* are:

n2—rk2lk (A k—3 [ A\k4
o — N .
= 5 )56
k(AN 1
+“f5‘<32) w1 P
or standard gradings,
dard grading
, n2 —k2[3 [ A)\32 E[A\2] 1
F o — e | —— e P
Wi~k —— [4k<n) +“1o<n> M—1
(19b)

for O’ Dell-gradings, where @ = 0 for the FIFO-, and
a = 1 for the RANDOM-interqueue discipline. Both
formulas hold for M = 2.

High-efficiency gradings yield in general slightly
better results as standard gradings, but the differ-
ences are not much significant so that eq. (19a)
can also be used for this case.

For homogeneous gradings similar adaptation for-
mulas can be obtained, too. The results for W, 2,
and 7w, however, are less influenced by the inter-
queue disciplines FIFO and RANDOM compared to
gradings with progressive commoning where RAN-
DOM yields generally worse results than FIFO.
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Fig. 8. Probability of waiting and mean waiting time versus -
offered traffic per server (approximate calculations and
simulations); gradings: n = 60, k = 10,

standard grading (M == 2),

- —~— O’Dell-grading (M = 2),

ideal grading;

interqueue discipline: FIFO.

P.KUHN: ON MULTI-QUEUE DELAY SYSTEMS WITH GRADINGS

AEU, Band 29
[1975}, Heft 2

4.1.3. Numerical example

To demonstrate the efficiency of the adaptation
method, some results will be presented. Fig. 8 shows
the probability of waiting W and the mean waiting
time of waiting calls 7y (referred to the mean
service time) versus the offered traffic per server 4/n
for a standard grading and an O’Dell-grading
having n = 60, k = 10, M = 2 for the FIFO-inter-
queue discipline. The dotted curves indicate the
results obtained by the original IDF for the cor-
responding ideal grading. The simulation results
(with 959, confidence intervals) show the accuracy
of the method. The same accuracy was obtained for
delay systems with gradings having different mean
interconnecting numbers M as well as for the
RANDOM-interqueue discipline [24].

4.2. Distribution of waiting time

For the study of waiting time distributions in
multi-queue delay systems, two different inter-
queue disciplines are considered: FIFO and
RANDOM. Since the queue discipline is FIFO,
there are two operating modes: FIFO/FIFO (F/F)
and RANDOM/FIFO (R/F); the first one is identical
with “FIFO with respect to all accessible waiting
calls”. »

4.2.1. Approximation by exponential funec-
tions

In a first step, the pdf of waiting time can be
approximated by exponential functions sufficiently
accurate for practical purposes [4], [24]. Compared
with simulations, however, there are still certain
differences originating from the higher moments of
the pdf which are influenced by the operating modes
and the grading types, as well. For a more detailed
insight, the second and third moments were in-
vestigated additionally to the first moment which
characterize the pdf of waiting time essentially.

422, Higher moments of the pdf of waiting
- time «

a) Operating mode F/F.

For full accessibility, the pdf of waiting time is
exponential and its moments are explicitly known.
Extensive simulations showed the following effects
in graded delay systems which can also be inter-
preted by plausible arguments:

e The pdf of waiting time behaves hypoexponential
with increasing occupancy A4/n and increasing
ratio n/k.

e The higher moments mg and mz show only little
(if at all) dependence on the mean interconnect-
ing number M.

Based on the first moment my = 7w, the second
moment mg can be well approximated for all grading
types by

Mo 8

T

n

(20a)
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which yields the exact limit value 2 for 4/n — 0 or
k—mn.
b) Operating mode R/F

For full accessibility, only two limiting cases are
explicitly known for the pdf of waiting time: g==1,
which vields the normal FIFO-queue, and ¢
(or M) -+ co, which is equivalent to a normal
RANDOM-queue. By simulations for full and lim-
ited accessible servers, the following plausible effects
were observed:

e The pdf of waiting time behaves hyperexponential
with increasing occupancy A4/n.

e The hyperexponential behaviour increases with
increasing mean interconnecting number M.

The second moment fits well with the following
approximation which holds for all grading types
including fully accessible systems:

4
ZZZ&V R : (20b)
i 2-(-” (1 M-213)

Eq. (20b) yields the exact limits for A/n -0, or
k=mnand M =1 or M — oo, respectively.

4.2.3. Approximation by the gamma distri-
bution

Knowing the first and second moments, the pdf
of waiting time can be approximated for both
operating modes by a gamma pdf: '

W _ o v@br)

S LM TR 21
W o (21)

where I'(p) the complete, and y(p,z) the incom-
plete gamma functions with :

p = 1/(mg/m} — 1) b = p/my .

Eq. (21) yields the first and second moments, m;
and mg, exactly as they were approximated. In-
vestigations of the third moment of eq. (21),

mg=p(p-+1)(p+2)/b3, have shown that the

ratios mg/m§, obtained from eq. (21) and simulations,
differ less than 109, in most cases, respectively.

and

4.24. Numerical example

T
is

The aceuracy of the approximation

demonstrated for a standard grading w1th 0 o= 30,
k=6, and M = 2 for both operating modes F/F
and R/F, respectively, cf. Fig. 9. The comparison
between calculated and simulated results shows a
good agreement.

§
2]
=4
i
)

<Y

b. Study on Optimum Grading Structures for Delay
Systems

5.1. General remarks

In this chapter, the efficiencies of the most im-
portant grading types will be compared with each
other to find out what grading type yields the best
results over the whole range of occupancies. This
study refers to a number of investigations which
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Fig. 9. Pdf of waiting time versus time (approximate cal-
culations and simulations); standard grading: =» = 30,
k=86, g=10 (M = 2);
operating modes:
FIFO/FIFO, 4 = 27.42,
gamma pdf, - -- exponential pdf;

RANDOM/FIFO, 4 = 27.78,

————— gamma pdf,
e simulation.

+—+ — - ‘exponential pdf;

were already made for loss systems, cf. [11]—[21],
[25], in order to complete this knowledge with
respect to delay systems.

For loss systems and given parameters (n, &, ¢),
two limit theorems were proved exactly [25]:
i) for A — 0, the optimum grading type has a
maximum number of individual servers, i.e. it con-
sists only of singles and commons, ii) for 4 — oo,
the optimum grading type is a straight homogeneous
grading with skipping. Since these conditions are
asymptotically equal in delay systems for 4 — 0
or 4 —>n, respectively, these results hold also for
delay systems. The question is, however, to find
out the efficiencies for the actual operating range
0<< 4 <<m.

5.2. Study by exact calculation

In this study, the six principal wiring methods
of Fig. 2 will be studied for a service system with
n = 8 gervers, accesglbﬂltv k=4, g=4 O'rqdlno
groups, and s; = 1 storage place f01 eac,h UI‘(LdlIlO’
group, j = 1,2, 3, 4. The gervers are hunted se-
quentially, the mterqucuo discipline is RANDOM.
~ The efh01ency of the wiring method can be shown
by coraparison of the relative probabilities of loss
B[Byer versus the occupancy Afn, of. Fig. 10.
(Similar results hold also for the mean total queue
length © and the total probability of waiting W.)

As shown by Fig. 10, for low occupancies (0 06<<
Afn << 0.4) the straight inhomogeneous grading
with progressive commoning and skipping is best,
whereas for higher occupancies (d/n > 0.4) the
straight homogeneous grading with skipping is best.
For higher occupancies, calls queue up and the ter-
mination process of all servers determines more and
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Fig. 10. Efficiency of wiring methods in combined delay

and loss systems; relative probability of loss versus offered
traffic per server (exact calculation); gradings: »n = 8,
k=4, g = 4 according to Fig. 2; interqueue discipline:
RANDOM; storage places: s==1 per grading group
(Bret & Fig. 2.5).

more the service quality: in this case, a grading with
the best traffic balance is optimal; for given M, the
optimum grading is a homogeneous one with a best
possible traffic balance. Furthermore, the compari-
son of Figs. 2.2 and 2.3 shows that for sequential
hunting slipping is worse than skipping. The opti-
mum grading for a delay system over the whole

range of occupancies should therefore be a grading”

_ with certain progression and a considerable homo-
geneous part with skipping. Grading 2.5 forms a
good compromise.

5.3. Study by simulations

Another study was performed for the gradings
given in Fig. 3 with » = 30, & = 10, g = 6, and
M = 2 by means of simulations. Gradings 3.1 to 3.5
are well known types, whereas grading type 3.6 was
constructed such having certain progression and a
large homogeneous part (709,) according to the
insight won by the previous study.

Fig. 11 shows the results for pure delay systems
by means of the relative mean queue length £2/Qer
versus A/n. Again, the gradings with a smooth
progression and a good traffic balance (cf. Figs. 3.2
and 3.5) are best for lower occupancies (4/n << 0.5),
whereas homogeneous gradings (cf. Figs. 3.3 and
3.4) are most efficient for higher occupancies

24
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Offered traffic per server, Al —#

Fig. 11. Efficiency of wiring methods in delay systems;
relative mean queue lengths versus offered traffic per server
(simulation); gradings: n = 30, k= 10, ¢ =6 (M = 2)
according to Fig. 3; interqueue discipline: FIFO; (Qrer &
Fig. 3.6).
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(4/n > 0.65). Grading Fig. 3.6 forms a good com-
promise and can therefore be considered as an
optimum grading for delay systems with respect to
the whole range of occupancies.

For contrasting, in Fig. 12 the same gradings are
compared for loss systems by means of the relative
probabilities of loss B Bres versus 4/n. Fig. 12 shows
that homogeneous gradings become best not before
A/n = 0.9 and that grading Fig. 3.5 is the optimum
one for loss systems with respect to the whole range
of occupancies.

(The given results of Figs. 11 and 12 were obtained
by 300000 calls per test run.)

AN
3.3\\

~
=]

Rel. probability of loss, B/B.es —®~

12 7
s AL N\
35
08
0.2 0.4 06 08 10

Offered traffic per server, A/n —»
Fig. 12. Efficiency of wiring methods in loss systems;
relative probability of loss versus offered traffic per server-
(simulation); gradings: n =30, k=10, g =6 (M = 2)
according to Fig. 3 (Bret & Fig. 3.6).

. 6. Conclusion

For multi-queue delay systems with gradings,
methods have been reported for exact and approxi-
mate calculation of mean values and the pdf of
waiting time. It has been shown that delay systems
with gradings of various type can be calculated suf-
ficiently accurate by the ‘“‘Interconnection Delay
Formula” introducing a modified blocking prob-
ability. The pdf of waiting time can be well approxi-
mated by a gamma pdf by the aid of its second
moment. Finally, it has been shown how the effi-
ciency of a grading is influenced by various wiring
methods from which an optimum grading type for
delay systems was suggested.
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