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Abstract

Totally blind APP channel estimation is based on the A Posteriori Probability (APP) calculation algorithm.
Asymmetrical modulation schemes are used in order to resolve the phase ambiguity with no need for any pilot
or reference symbols. In OFDM-systems, the two-dimensional channel estimation is performed by applying a
concatenation of two one-dimensional APP estimators for frequency and time direction in combination with an
iterative estimation and decoding loop. Linear filters are used to predict the channel transfer function while traversing
the trellis of the APP estimator. In this paper, we study the influence which the coefficients of these predictors
have on the channel estimation result. We compare the performance of ideal predictors with the performance of
predictors with coefficients based on optimal channel statistics and averaging. We study the behavior of the the
iterative estimation and decoding loop using the Extrinsic Information Transfer (EXIT) Chart and evaluate the
performance of the algorithm with respect to the BER.

1 Introduction

In OFDM-systems, channel estimation for coherent
demodulation of data symbols can conveniently be done
using a two-dimensional grid of pilot symbols [1].
This concept was successfully applied in Digital Video
Broadcasting – Terrestrial (DVB–T) [2], for example.
The drawback of pilot-based channel estimation is
the overhead introduced by the pilot symbols, which
reduces the spectral efficiency of the system. In the
case of DVB-T, the overhead is more than 10%.

The amount of pilot symbols can dramatically be re-
duced using the channel estimation method presented in
[3]. The authors base their algorithm on the calculation
of the A Posteriori Probability APP and estimate the
channel transfer function (CTF) by concatenating two
one-dimensional APP estimators in frequency and time
direction, respectively. Furthermore, the APP channel
estimator can be embedded in an iterative decoding
loop with a soft in/soft out decoder.

Blind channel estimation algorithms have gained
attention, as they are capable of estimating the channel
transfer function without the need for pilot symbols.
Most research on this subject has focused on methods
based on second or higher order statistics. However,
time varying propagation conditions in mobile com-
munication systems make these approaches unsuitable,
since they converge slowly. Additionally, a phase ambi-
guity is introduced, which makes at least one reference
symbol necessary to resolve.

In [4] the authors present a fast converging blind
channel estimator based on the Maximum Likelihood
principle. The algorithm recovers the amplitude and
phase of a channel without the need for any reference
symbols by combining modulation schemes, such as
QPSK and 3-PSK, even in mobile environments.

The concept of totally blind channel estimation and
APP channel estimation was combined in [5]. Blind
channel estimation was achieved with rapidly vary-
ing mobile channels. Pilot symbols were completely
avoided, and the phase ambiguity of the channel esti-
mate was resolved by using an asymmetrical 8-QAM
modulation scheme.

In [5], the predictors which are needed for traversing
the trellis in the APP estimators had optimal linear pre-
diction coefficients, which is very difficult to achieve. In
this paper, we investigate the influence of the prediction
coefficients. We compare different sets of prediction
coefficients based on averaging and optimal channel
statistics with the prediction coefficients used in [5].
In addition to the asymmetrical 8-QAM modulation
scheme considered in [5], the advantages and trade-offs
of using an asymmetrical 8-PSK modulation scheme are
discussed.

This paper is structured as follows. Section 2 presents
the system model and gives an introduction to totally
blind APP channel estimation. In section 3, three dif-
ferent possibilities to determine the coefficients of the
linear predictors are given. Finally, section 4 discusses
the simulation results.
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Fig. 1: Transmitter and channel model.

2 System Model

2.1 Transmitter and Receiver

We investigate an OFDM-system with K = 1000 sub-
carriers having a carrier-spacing of ∆ f = 4kHz and
an OFDM-symbol duration (useful part plus guard
interval) of Ts = 312.5µs. For the blockwise transmis-
sion we combine L = 100 successive OFDM symbols.
The signal from the binary source is convolutionally
encoded and interleaved as shown in Fig. 1. After
interleaving, three successive coded bits are grouped
and mapped onto an 8-ary symbol Xk,l . The signal Xk,l

is modulated onto K orthogonal subcarriers by an iFFT-
block. Finally, a cyclic prefix of length 1/4 is inserted.

We obtain the received 8-ary signal constellation
points Yk,l after removal of the cyclic prefix and OFDM
demodulation:

Yk,l = Hk,l ·Xk,l +Nk,l , (1)

where l is the OFDM symbol index, k is the subcarrier
index and Nk,l are statistically i.i.d. complex Gaussian
noise variables with component-wise noise power σ2

N =
N0/2. The Hk,l are sample values of the CTF:

Hk,l = H(k ·∆ f , l ·Ts) (2)

At the receiver, a blind iterative APP-CE is applied
[5]. The signal Yk,l is fed to the blind APP-CE stage
as shown in Fig. 2. This stage outputs log-likelihood
ratios (L-values) on the transmitted coded bits which
are deinterleaved and decoded in an APP decoder.
Iterative channel estimation and decoding is performed
by feeding back extrinsic information on the coded bits;
after interleaving it becomes the a-priori knowledge
to the blind APP-CE stage. The APP-CE stage is
explained in detail in section 2.3.

In the encoder and decoder, we use a recursive
systematic convolutional code with feedback polyno-
mial Gr = 0378, feed-forward polynomial G = 0238,
memory 4 and code rate Rc = 0.5. Note that in the
following all Eb/N0-values are given with respect to
the overall information rate

R = Rc ·Rg = 0.4 , (3)

whereby Rg considers the redundancy introduced by the
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Fig. 2: Receiver with iterative blind APP channel estimation.

cyclic prefix:

Rg =
1

∆ f ·Ts
= 0.8 (4)

2.2 Channel Model

For the performance evaluation of the blind channel
estimator we assumed a frequency-selective fading
channel according to a wide-sense stationary uncorre-
lated scattering (WSSUS) model. The WSSUS channel
was simulated according to the model introduced in
[6], which describes the channel’s time-variant impulse
response as

h(τ, t) = lim
Z→∞

1√
Z

Z

∑
m=1

e jθm e j2π fDm tδ(τ− τm) . (5)

The Fourier-Transform of equation (5) with respect to
τ yields the channel’s time-variant frequency response:

H( f , t) = lim
Z→∞

1√
Z

Z

∑
m=1

e jθme j2π fDm te− j2π f τm . (6)

For each of the Z paths, the phase-shift θm, the Doppler-
shift fDm and the delay τm are randomly chosen from
the corresponding probability density function (pdf)
pθ(θ), p fD( fD) or pτ(τ) of the channel model [6]. For
the simulations, the number of paths was chosen to be
Z = 100, which is a good tradeoff between simulation
speed and accuracy.

We use a channel model where the phase θ is
uniformly distributed between 0 and 2π. For the delay
τ we assume an exponential pdf

pτ(τ) =

{

e−τ/τrms

τrms(1−e−τmax/τrms)
0 ≤ τ ≤ τmax

0 otherwise
, (7)

whereby τmax is the channel delay spread. τrms is chosen
such that pτ(τmax)/pτ(0) = 1/1000. The pdf of the
Doppler frequency is assumed to be of Jakes’ type

p fD( fD) =

{ 1

π fDmax

√

1−( fD/ fDmax)
2

| fD| < fDmax

0 otherwise
,

(8)
whereby fDmax is the maximal Doppler shift.

With these assumptions the complex auto-correlation



function of H( f , t) in frequency direction is given by

R f ;∆k =
1− e−τmax( 1

τrms
+ j2π·∆k·∆ f )

(1− e−
τmax
τrms ) · (1+ j2π ·∆k ·∆ f · τrms)

, (9)

whereby ∆k is the difference of two discrete frequency
indexes. For the auto-correlation function of H( f , t)
with respect to t we obtain

Rt;∆l = J0(2π fDmax ·∆l ·Ts) . (10)

∆l is the difference of two discrete time indexes and J0

is the Bessel function of zero order. We can compute
the expected value

E
{

Hk,l ·H∗
k′,l′

}

= R f ;(k−k′) ·Rt;(l−l′) , (11)

whereby ∗ denotes the conjugate complex operation.
Please refer to [6] and [7] for the derivation of (9) –
(11).

2.3 Iterative totally blind APP Channel
Estimation

The two-dimensional blind APP channel estimator con-
sists of one estimator for frequency and time direction,
respectively [3]. The estimation algorithm exploits the
time and frequency continuity of the CTF at the re-
ceiver. Blind APP-CE is possible using asymmetrical
modulation schemes [5].

For one-dimensional APP estimation, the symbol-by-
symbol MAP-algorithm is applied to an appropriately
chosen metric. To help understanding, the symbols Xk,l

at the transmitter in Fig. 1 can be thought of being
put into a virtual shift register at the output of the
mapper, as sketched in Fig. 3. Due to this “artificial
grouping”, the corresponding trellis exploits the time
and frequency continuity of the CTF at the receiver.

At frequency index k, the APP estimation in fre-
quency direction is characterized for OFDM symbol
l0 with 0 ≤ l0 ≤ L−1 by the metric increment

γk = −
|Yk,l0 − Ĥ f

k,l0
· X̂k,l0 |2

2 ·σ2
f

+
2

∑
i=0

di
k,l0 ·L

c̃, f ,i
a,k,l0

(12)

with estimated channel coefficient

Ĥ f
k,l0

=
m f

∑
i=1

u f ,i ·
Yk−i,l0

X̂k−i,l0

. (13)

The X̂k,l0 denote the hypothesized transmitted data
symbol according to the trellis structure. The Lc̃, f ,i

a,k,l0
in (12) are the a-priori L-values of the coded bits

Mappercoded bits

z−1

virtual shift 
register

data symbolsxkEncoder

z−1 z−1

Source

Fig. 3: Feeding symbols into the virtual shift register
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Fig. 4: Minimum-error 8-ary modulation scheme.

c̃µ which are fed to the APP estimator in frequency
direction. The bits d0

k,l0
, d1

k,l0
and d2

k,l0
in the sum in

(12) result from the hard demapping of X̂k,l0 . The
calculation of the prediction coefficients u f ,i in (13)
and the derivation of the variance 2 ·σ2

f of the error
in (12) are described in detail in section 3. m f is the
prediction order in frequency-direction.

Accordingly, at time index l, the APP estimation in
time direction is characterized for subcarrier k0 with
0 ≤ k0 ≤ K −1 by the metric increment

γl = −
|Yk0,l − Ĥt

k0,l · X̂k0,l |2

2 ·σ2
t

+
2

∑
i=0

di
k0,l ·L

c̃,t,i
a,k0,l (14)

with estimated channel coefficient

Ĥt
k0,l =

mt

∑
i=1

ut,i ·
Yk0,l−i

X̂k0,l−i
. (15)

mt is the prediction order in time-direction. The two
one-dimensional APP estimators are concatenated as
shown in Fig. 2. The output Lc̃, f ,i

d,k,l of the APP estimator

in frequency direction becomes the a-priori input Lc̃,t,i
a,k,l

of the APP estimator in time direction.

2.4 Mapping
Let S = {s0,s1, . . .s7} be the symbol alphabet with
Xk,l ∈ S . Let further B = {b0,b1, . . . ,b7} be the set of bit
vectors that need to be mapped to the symbol alphabet,
where bi ∈ {0002,0012, . . . ,1112}. M : B → S denotes
the mapping from the bit vectors to the signal points.

We use the constellation diagrams of an asymmetri-
cal 8-QAM or an asymmetrical 8-PSK. The constella-
tion diagram of the asymmetrical 8-QAM is depicted
in Fig. 4. This constellation diagram was derived in [8]
and found to give minimum BER performance among
all 8-QAM constellations.

We define the following two mappings for the asym-
metrical 8-QAM:

• Mapping MQAM0 (from [5]):
B0 = {0002,1102,0102,0112,1012,1002,0012,1112}

• Mapping MQAM1 (from [5]):
B1 = {0002,1012,0102,1112,0112,1102,1002,0012}
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Fig. 5: Asymmetrical 8-PSK modulation scheme.

Fig. 5 shows the constellation diagram of the asym-
metrical 8-PSK. We derive this constellation diagram
from the symmetrical 8-PSK by moving the point s0

from 1 to 1+dx. In order to achieve zero mean all the
other points have to be moved in the opposite direction
by dx/7 as shown in Fig. 5.

We define the following two mappings for the asym-
metrical 8-PSK:

• Mapping MPSK0:
B2 = {0002,1002,1012,1112,1102,0102,0112,0012}

• Mapping MPSK1:
B3 = {0002,1012,0112,1102,0012,1002,0102,1112}

3 Linear Prediction Coefficients
The approach to obtain the linear prediction coefficients
in frequency (13) and time (15) is similar. Therefore,
we restrict our derivation to the prediction coefficients
in frequency direction.

3.1 Optimal Linear Prediction Coefficients
(OLPC)

In [5], Optimal Linear Prediction Coefficients (OLPC)
u f ,i were used. For this method it is assumed, that
the current state in the trellis actually was transmitted.
Under this assumption, (13) can be expressed as

Ĥ f
k,l0

=
m f

∑
i=1

u f ,i · Ĥk−i,l0 , (16)

whereby

Ĥk−i,l0 = Hk−i,l0 +
Nk−i,l0

X̂k−i,l0

. (17)

Taking (11) and (17) into account, we can compute the
expected value

E
{

Ĥk−i,l0 · Ĥ∗
k−ĩ,l0

}

= R f ;ĩ−i +δĩ−i ·
N0

∣

∣X̂k−i,l0

∣

∣

2 (18)

and the expected value

E
{

Hk,l0 · Ĥ∗
k−i,l0

}

= R f ;i . (19)

We calculate the linear prediction coefficients solving
the Wiener-Hopf equation in order to minimize the

mean squared error E

{

∣

∣

∣Hk,l0 − Ĥ f
k,l0

∣

∣

∣

2
}

. Therefore, the

linear prediction coefficients are:
(

u f ,1, . . . ,u f ,m f

)

= rT
f ·R−1

f (20)

Taking (19) into account, the vector rT
f can be calcu-

lated as:
rT

f =
(

R f ,1, . . . ,R f ,m f

)

(21)

Using (18), we obtain the matrix R f as:

R f =

















1+ N0
|X̂k−1,l0

|2 R f ,1 · · · R f ,m f −1

R f ,−1 1+ N0
|X̂k−2,l0

|2 R f ,m f −2

...
. . .

...
R f ,−m f +1 · · · R f ,−1 1+ N0

|X̂k−m f ,l0
|2

















(22)
The minimum mean squared error results to:

Jmin, f = 1− rT
f ·R−1

f · r∗f (23)

Therefore, the term 2 ·σ2
f in (12) yields to:

2 ·σ2
f = N0 + Jmin, f ·

∣

∣X̂k,l0

∣

∣

2
(24)

As a consequence of (18), each state in the trellis
has its own linear prediction coefficients and minimum
mean squared error expressed in (22) and (23). Beyond,
each branch in the trellis has its own variance 2 ·σ2

f of
the error, which directly results from (24).

3.2 Statistical Optimal Linear Prediction
Coefficients (SOLPC)

In order to reduce the amount of linear prediction
coefficient sets, we now derive only one coefficient set
which is used for all states in the trellis. We denote
these linear prediction coefficients as the Statistical
Optimal Linear Prediction Coefficients (SOLPC).

To obtain these coefficients, we have to rewrite (18)
as follows:

E
{

Ĥk−i,l0 · Ĥ∗
k−ĩ,l0

}

= R f ;ĩ−i +δĩ−i ·
N0

β
, (25)

whereby

β−1 = E

{

1
∣

∣X̂k−i,l0

∣

∣

2

}

= E

{

1
∣

∣Xk,l
∣

∣

2

}

. (26)

Instead of taking X̂k−i,l0 explicitly into account, we now
use the statistical expression β. Therefore, the matrix
R f can now be expressed as:

R f =













1+ N0
β R f ,1 · · · R f ,m f −1

R f ,−1 1+ N0
β R f ,m f −2

...
. . .

...
R f ,−m f +1 · · · R f ,−1 1+ N0

β













(27)
As a consequence of (25) and (27), all states in the
trellis have the same linear prediction coefficients and



minimum mean squared error.
According to (25), we calculate the variance 2 ·σ2

f
of the error as follows:

2 ·σ2
f = N0 + Jmin, f ·ES , (28)

whereby

ES = E
{

∣

∣X̂k,l0

∣

∣

2
}

= E
{

∣

∣Xk,l
∣

∣

2
}

. (29)

Therefore, all branches in the trellis have the same
variance 2 ·σ2

f of the error.
Obviously, for symmetrical PSK constellation di-

agrams the optimal and the statistical optimal lin-
ear predication coefficients are identical, because
∣

∣Xk,l
∣

∣ = 1 ∀k, l.

3.3 Linear Prediction Coefficients based on
Averaging (ABLPC)

For our last linear prediction coefficient set we choose
the pragmatic choice given in [3]. Therefore, the linear
prediction coefficients are calculated as:

u f ,i =
1

m f
(30)

The variance 2 ·σ2
f of the error is expressed as:

2 ·σ2
f = N0 (31)

We denote this design of the linear prediction coef-
ficients by Averaging Based Linear Prediction Coeffi-
cients (ABLPC).

4 Simulation results
In this section, we will investigate the system per-
formance by means of Extrinsic Information Transfer
(EXIT) and BER charts. EXIT charts were introduced
in [9]–[11]. They are a good tool to analyze the
performance of an iterative decoding loop, such as the
APP channel estimator and the convolutional decoder
in our system.

Fig. 6 shows the EXIT charts for the four con-
stellation diagrams and mappings defined in section
2.4 at Eb/N0 = 10dB. The channel parameters are
τmax = 20µs and fDmax = 100Hz. For the linear pre-
diction, m f = mt = 2 was chosen. The parameter dx for
the asymmetrical 8-PSK was set to dx = 0.25.

The charts contain the characteristic curve of the
convolutional decoder, and several characteristic curves
of the APP channel estimator with different parameter
settings. The x-axis corresponds to the mutual infor-
mation input IA1 of the APP CE, which is mapped to
a mutual information output IE1 by the characteristic
curve of the APP CE. Likewise, the mutual information
input IA2 of the decoder is mapped to the output IE2

by the characteristic curve of the decoder. Both curves
allow us to conveniently investigate the improvement
of the channel estimate from one iteration to the next.
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Fig. 6: EXIT chart, blind APP-CE stage and decoder for
τmax = 20µs and fDmax = 100Hz at Eb/N0 = 10dB.

The EXIT charts show that the PSK constellation
is much more robust with respect to the prediction
coefficient sets than the QAM scheme. Focusing on the
PSK constellation, the characteristic curves for optimal
linear prediction coefficients and statistical optimal
linear prediction coefficients are identical and start at a
higher mutual information IE1 than the average based
linear prediction coefficient set. However, the mutual
information is virtually the same for all three sets at
the intersection point with the characteristic curve of
the decoder. Hence, we can make up for the lower
starting point by using more iterations in the iterative
decoding loop. This is supported by the BER chart
for Mapping MPSK0 shown in Fig. 7. For an Eb/N0 ≥
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Fig. 7: BER performance of Mapping MPSK0, dx = 0.25,
τmax = 20µs and fDmax = 100Hz.
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Fig. 8: BER performance of Mapping MQAM0, τmax = 20µs
and fDmax = 100Hz.

9dB, the performance of the optimal linear prediction
coefficients is almost matched by the coefficient set
based on averaging after only two iterations.

On the other hand, the asymmetrical 8-QAM scheme
is more difficult to handle as its performance depends
much more on the prediction coefficients. As can be
seen from the EXIT charts, the performance of OLPC
is never be met by SOLPC and ABLPC. Even worse,
the characteristic curves of SOLPC and ABLPC drop
as the mutual information input IA1 of the APP channel
estimator approaches 1. This is due to the highly vari-
able absolute value of the signal points of the 8-QAM
constellation. Consequently, with more iterations, the
BER becomes worse, as can be seen in Fig. 8.

Finally, the BER performance of all mapping
schemes is compared in Fig. 9 after four iterations with
optimal linear prediction coefficients. Obviously, the
QAM constellation outperforms the PSK constellation
if optimal prediction coefficients are available. On the
other hand, the discussion above revealed that the PSK
constellation is much easier to handle if prediction
coefficients are non-optimal. In any case, using the iter-
ative decoding loop, the mappings MQAM1 and MPSK1
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Fig. 9: BER performance of the different mappings, OLPC,
4 iterations, dx = 0.25, τmax = 20µs and fDmax = 100Hz.
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Fig. 10: EXIT chart, blind APP-CE stage and decoder for
τmax = 40µs and fDmax = 300Hz at Eb/N0 = 10dB.

outperform the corresponding mappings MQAM0 and
MPSK0 by about 2dB at a BER of 10−4.

Similar to Fig 6, Fig. 10 shows the EXIT charts
for the four mappings at Eb/N0 = 10dB, but now for
τmax = 40µs and fDmax = 300Hz.

Due to the high Doppler frequency and the long
delay spread, the CTF varies very fast in time and
frequency direction. As a consequence, the starting
point at IA1 = 0 of the characteristic curve for ABLPC
drops to a lower value IE1. Since the characteristic
curves of the APP estimation stage with ABLPC and
the decoder intersect very early at a low value of IE1,
there is no possibility to achieve a reasonable BER
performance with any of the considered mappings. On
the other hand, the EXIT charts reveal that the new
channel parameters have little impact on the character-
istic curves if OLPC or SOLPC is used. As a solution,
an adaptive receiver could be used which needs to be
capable of determining the channel’s auto-correlation
functions R f ;∆k and Rt;∆l . The feasibility of such an
approach was shown in [12] for pilot-based systems.
Another possibility would be to use filter banks with
predetermined prediction coefficient sets for selected
channel scenarios.

The performance of the system can be improved by
increasing the parameter dx of the asymmetrical PSK
constellation. Fig. 11 compares the characteristic curves
of the APP estimator for the two values dx = 0.25
and dx = 0.75. Even though the starting point of the
characteristic curve of the APP estimator at IA1 = 0 is
moved further up, it is still not possible to achieve a
reasonable BER performance at Eb/N0 = 10dB. Again,
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Fig. 11: EXIT chart, blind APP-CE stage and decoder for
τmax = 40µs and fDmax = 300Hz at Eb/N0 = 10dB.

the reason is that the intersection with the characteristic
curve of the decoder occurs at a very low mutual
information IE1.

As a last possibility to improve performance with
ABLPC, we modify the prediction orders m f and mt .
So far, m f and mt were set to 2, corresponding to a
mean value calculation. As a second possibility, we will
investigate m f = mt = 1, which assumes that the CTF
is approximately constant for adjacent subcarriers and
consecutive OFDM-symbols (the same assumption was
already made in [4]).

Fig. 12 depicts the EXIT charts for the two PSK
mappings, m f = mt = 1 and m f = mt = 2. The diagrams
show that the performance of the system improves by
choosing m f = mt = 1, even though the noise has a
bigger impact for smaller prediction orders. Obviously,
the assumption of an approximately constant CTF for
adjacent subcarriers and consecutive OFDM-symbols is
more appropriate than a mean value calculation. This
is a very nice result, since the complexity of the APP
decoder reduces by a factor of 8 in the case of an 8-ary
modulation scheme if the prediction order is reduced
by 1.

The BER chart in Fig. 13 for mapping MPSK0
confirms the observations from the EXIT charts. With
m f = mt = 1 we can achieve a BER on the order of
10−3 at Eb/N0 = 10dB, whereas a much higher Eb/N0
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Fig. 12: EXIT chart, blind APP-CE stage and decoder for
τmax = 40µs and fDmax = 300Hz at Eb/N0 = 10dB.
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Fig. 13: BER performance of Mapping MPSK0, dx = 0.75,
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Fig. 14: BER performance of Mapping MPSK1, dx = 0.75,
ABLPC, τmax = 40µs and fDmax = 300Hz.

is required if m f = mt = 2.
As expected from the EXIT charts, a higher Eb/N0

is needed for the same BER with mapping MPSK1.
This is shown in Fig. 14. However, since the charac-
teristic curves of the APP estimator and the decoder
intersect at a higher mutual information IE1 for map-
ping MPSK1, the achievable BER for higher Eb/N0 is
better than that of mapping MPSK0. This fact mani-
fests itself in the turbo-cliff at Eb/N0 = 12dB, where
the BER rapidly drops below the BER with mapping
MPSK0.

5 Conclusion

We studied the impact of prediction coefficients of
a totally blind APP channel estimator in a mobile
environment. Our results prove that excellent BER
performance is achievable if the receiver has knowledge
of the channel’s auto-correlation functions, both with
asymmetrical 8-QAM and asymmetrical 8-PSK. In the
case of asymmetrical 8-PSK, the same performance
can be achieved even in case this knowledge is not
available. This is realized with a simple non-adaptive



first-order predictor at the receiver side. Other modula-
tion schemes, such as asymmetrical 8-QAM schemes,
require adaptive receiver designs, which are capable
of tracking the auto-correlation functions of the chan-
nel.
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