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Abstract— In this paper, the transmission of coded DPSK
signals over a time-varying channel is considered. Coded DPSK is
similar to a serially concatenated coding scheme where the inner
encoder is replaced by a differential modulator. At the receiver
side, the A Posteriori Probability (APP) calculation algorithmn
is applied for differential demodulation, followed by an outer
APP channel decoder. The Likelihood values at the output of the
channel decoder are fed back to the differential demodulator in
an iterative decoding loop. Such a system shows large coding gain
for transmission over a time-varying flat fading channel if the
receiver has perfect channel state information. However, perfect
channel knowledge is normally not available at the receiver side.
Therefore, joint channel estimation and demodulation has to be
applied, leading to a dramatical performance degradation for
conventional DPSK. In order to maintain the large coding gain
even without any channel knowledge, we propose a novel concept
for DPSK by applying regular and generalized PSK symbols in
an alternating manner. We evaluate the proposed system on the
basis of Extrinsic Information Transfer (EXIT) and Bit Error
Ratio (BER) charts.

I. INTRODUCTION

A differential modulator can be regarded as a recursive en-
coder of rate 1. Therefore, the differential demodulation of the
signal can be realized by an APP decoder at the receiver side.
In the following, we denote this process by APP demodulation.
In the case of coded DPSK, the APP demodulator can be
embedded in an iterative decoding loop together with the outer
APP channel decoder. Using this iterative decoding loop, a low
Bit Error Ratio (BER) can be achieved for transmission over a
Gaussian channel. This becomes evident in the EXIT chart [1],
since the characteristic curve of the APP demodulator reaches
the point (1,1) for perfect a priori knowledge [2]. This property
of the APP demodulator holds also for transmission over a flat
fading channel under the assumption of perfect Channel State
Information (CSI) at the receiver side.

Normally, CSI is not available and has to be estimated.
Höher et al. [3] describe a method for joint channel estimation
(CE) and demodulation using a super trellis at the receiver.
This joint channel estimator and demodulator can also be
embedded into the iterative loop in order to reduce the BER.
However, its characteristic curve does not reach the point (1,1)
in the EXIT chart. As a consequence, a tremendous loss in
SNR occurs compared to the perfect CSI case.

In order to overcome the loss in SNR we propose a novel
concept for differential modulation by alternating regular and
generalized PSK symbols, where generalized PSK denotes
PSK symbols with an arbitrary but regular angular difference

in-between successive symbol points. This combination of
regular and generalized PSK symbols was first proposed for
totally blind channel estimation in [4], [5] and [6]. Using this
concept, the characteristic curve of the joint channel estimator
and demodulator reaches the point (1,1) in the EXIT chart.
As a result, the performance of the joint channel estimator
and demodulator comes close to the performance of the APP
demodulator with perfect CSI.

This paper is structured as follows: In section II, we
introduce the structure of the transmitter and the receiver. Sub-
sequently, section III gives a detailled description of the joint
channel estimator and demodulator applied in the receiver.
Section IV discusses the system performance on the basis
of EXIT charts and presents the results of the BER studies.
Finally, section V concludes the paper.

II. SYSTEM MODEL

A. Transmitter

The considered transmission system is depicted in Fig. 1,
where the differential modulator is detailed in Fig. 2.
The signal from the binary source is convolutionally en-
coded and interleaved. After interleaving, L successive bits
(ckL, . . . , ckL+L−1) are mapped onto one symbol dk:

dk =
L−1
∑

n=0

cLk+n2n , dk ∈ {0, . . . ,M − 1}, (1)

where M = 2L. In the remainder of the paper, we will only
consider the case L = 2. However, our concepts also apply to
other values of L. After the mapping stage, the intermediate
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symbols fk = dk ⊕ fk−1 are calculated and mapped to the
transmitted data symbols by the PSK modulator according to

ak =

{

ej 2π
M

fk for k even

ej 2π
η

fk for k odd
. (2)

That is, every other symbol is a regular PSK symbol. All
remaining symbols are generalized PSK symbols as shown
in Fig. 3 with signal points S4

i :

S4
i = eji 2π

η , 0 ≤ i ≤ 3, η ∈ �
. (3)

In the coder, we use a recursive systematic convolutional
code with feedback polynomial Gr = 78, feed-forward poly-
nomial G = 58, memory 2 and code rate Rc = 0.5. The rather
small memory size of 2 is motivated by the results presented
in [7], where it was found that smaller memory sizes deliver
better BER performance. Note that in the following all Eb/N0-
values are given with respect to the overall information rate
R = Rc.

B. Channel Model

The transmitted signal ak is attenuated by the channel’s fad-
ing coefficient hk and corrupted by complex AWGN nk with
component-wise variance σ2

n = N0/2. The fading coefficient
was simulated following the model introduced in [8]:

hk = lim
Z→∞

1√
Z

Z
∑

m=1

ejθmej2πfDmkTs , (4)

where fDm
≤ fD,max is the Doppler shift and Ts is the

symbol duration. For each of the Z paths, the phase-shift
θm and the Doppler-shift fDm

are randomly chosen from
the corresponding probability density function (pdf) pθ(θ) or
pfD

(fD) of the channel model. For the simulations, the number
of paths was set to Z = 200.

For the channel model in our simulations, the phase θ
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Fig. 3: Generalized 4-PSK

is uniformly distributed between 0 and 2π. The pdf of the
Doppler frequency is assumed to be of Jakes’ type

pfD
(fD) =

{

1

πfD,max

√
1−(fD/fD,max)2

|fD| ≤ fD,max

0 otherwise
,

(5)
whereby fD,max is the maximal Doppler shift.

With these assumptions the auto-correlation function
R∆k = E {hk+∆k · h∗

k} of hk is given by

R∆k = J0(2πfD,max · ∆k · Ts) . (6)

J0 is the Bessel function of zero order, and ∗ denotes the
conjugate complex operation. Please refer to [8] for the
derivation of (6).

C. Receiver

At the receiver, the received signal yk = hkak + nk is
demodulated within the APP demodulator, which performs a
joint channel estimation and demodulation as described in [3]
by building up a super-trellis using the virtual shift register
indicated in Fig. 2. The APP demodulator is embedded in an
iterative decoding loop with a standard APP decoder. After
several iterations, the L-values [9] on the information bits are
hard-decided and fed to the binary sink.

III. JOINT CHANNEL ESTIMATOR AND DEMODULATOR

For the joint channel estimator and demodulator, the
symbol-by-symbol MAP-algorithm is applied to an appropri-
ately chosen metric. To help understanding, the symbols fk

at the transmitter in Fig. 2 can be thought of being put into
a virtual shift register at the output of the feedback delay
element, as sketched in Fig. 2. Due to this “artificial grouping”,
the corresponding super-trellis exploits the time continuity of
the flat fading channel at the receiver.

The metric increment γk in the super-trellis is given by

γk = −|yk − ĥk · âk|2
2 · σ2

t

+

L−1
∑

i=0

q̂Lk+i · La,cLk+i
(7)

with estimated channel coefficient

ĥk =
m

∑

i=1

ui ·
yk−i

âk−i
. (8)

The âk denote the hypothesized transmitted data symbol
according to the trellis structure. The La,cLk+i

in (7) are
the a-priori L-values of the coded bits cµ which are fed to
the joint channel estimator and demodulator. The bits q̂Lk+i

in the sum in (7) result from the hard demapping of the
hypothesized symbol d̂k according to the trellis structure. m
is the prediction order. In the following paragraphs, we will
describe the calculation of the prediction coefficients ui in (8)
and the derivation of the variance 2 · σ2

t of the error in (7).
For the calculation of the linear prediction coefficients,

we assume that the current state in the trellis is the actual
correct state. Then, yk−i

âk−i
= ĥk−i, and (8) can be expressed as

(cmp. method OLPC in [10])

ĥk =
m

∑

i=1

ui · ĥk−i , (9)
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whereby
ĥk−i = hk−i +

nk−i

âk−i
. (10)

Taking (6) and (10) into account, and assuming that ak and
nk are not correlated, we can compute the expected value

E
{

ĥk−i · ĥ∗

k−ĩ

}

= Rĩ−i+δĩ−i ·
N0

|âk−i|2
= Rĩ−i+δĩ−i ·

N0

β
,

(11)
where β = |âk−i|2 is constant, since we consider a PSK
modulation scheme. Finally, we can calculate the expected
value

E
{

hk · ĥ∗

k−i

}

= Ri . (12)

We calculate the linear prediction coefficients solving the
Wiener-Hopf equation in order to minimize the mean squared

error E

{

∣

∣

∣hk − ĥk

∣

∣

∣

2
}

. Therefore, the linear prediction coef-

ficients are:
(u1, . . . , um) = r

T · R−1 (13)

Taking (12) into account, the vector r
T can be calculated as:

r
T = (R1, . . . , Rm) . (14)

Using (11), we obtain the matrix R as:

R =













1 + N0

β R1 · · · Rm−1

R−1 1 + N0

β Rm−2

...
. . .

...
R−m+1 · · · R−1 1 + N0

β













. (15)

The minimum mean squared error results to:

Jmin = 1 − r
T · R−1 · r∗ . (16)

Therefore, the term 2 · σ2
t in (7) yields to:

2 · σ2
t = N0 + Jmin · β . (17)

In the method OLPC in [10], each state in the trellis has its
own linear prediction coefficients and minimum mean squared
error. In contrast, due to the fact that in our case β = |âk−i|2 is
constant, all states in the trellis have the same linear prediction
coefficients and minimum mean squared error.

IV. RESULTS

A. EXIT chart analysis

Figure 4 shows the EXIT chart for a conventional system
using a regular DPSK modulation scheme. Two characteristic
curves of the APP demodulator are depicted; one for the
Gaussian channel and the other for a flat fading channel using
perfect CSI with fD,maxTs = 0.01 at Eb/N0 = 4dB. As
reported in [2], the curve of the Gaussian channel reaches
the point (1,1) in the EXIT chart. As a consequence of this
property, a low bit error ratio can be achieved using the
iterative decoding loop. As can be seen in Fig. 4, this property
holds also for the charateristic curve of the flat fading channel
under the assumption of perfect CSI at the receiver.

In Fig. 5, the EXIT chart for a flat fading channel with
fD,maxTs = 0.01 at Eb/N0 = 6dB is depicted. Two curves
of the APP demodulator are given; one with perfect CSI and
the other with the joint channel estimation and demodulation
described in section III. While the curve for perfect CSI
reaches the point (1,1), this property holds not any more for
the joint channel estimator and demodulator. Its endpoint drops
down to the point (1,0.714) for perfect a-priori knowledge IA1.
Due to this property, the curve looks similar to the curve of a
demapper in a bit-interleaved coded modulation scheme [11].
Therefore, the system with the joint channel estimator and
demodulator exhibits a bit error floor.

In order to bend up the tail of the charateristic curve of the
joint channel estimator and demodulator to the point (1,1), we
propose a system which transmits regular and general PSK in
an alternating manner, as it was described in section II-A. The
EXIT chart of the proposed system is shown in Fig. 6 with
η = 3.6. Now, using this novel concept for DPSK, both curves
reach the point (1,1) in the EXIT chart. Therefore, the error
floor of the conventional system is removed.

In Fig. 7 the characteristic curves of the joint channel
estimator and demodulator for the regular and the alternating
DPSK scheme are depicted in order to clearly show the dif-
ference. Since the proposed alternating DPSK scheme reaches
the point (1,1) in the EXIT chart, the error floor of the
conventional system is eliminated resulting in a dramatical
increase of the performance of the overall system. This per-



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ou
tp

ut
 I E

1 
of

 A
P

P
 d

em
od

ul
at

or
 b

ec
om

es
 in

pu
t I

A
2 

to
 d

ec
od

er

output IE2 of decoder becomes input IA1 to APP demodulator

decoder, G=05, Gr=07

regular 4−DPSK

alternating scheme, η=3.6

Fig. 7: Flat fading channel with joint CE
and demodulation for conventional and

proposed system, η = 3.6,
fD,maxTs = 0.01 and Eb/N0 = 6dB

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
η

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

4dB
4.5dB
5dB
5.5dB
6dB

Fig. 8: BER over η for different values of
Eb/N0, fD,maxTs = 0.01, 19 iterations

0 1 2 3 4 5 6 7 8
Eb / N0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

η=4.8, fD,max=0.01

η=4.8, fD,max=0.05

η=4.0, fD,max=0.01

η=4.0, fD,max=0.05

Fig. 9: BER charts for different values of
η and fD,maxTs, 19 iterations

formance improvement is achieved without adding additional
redundancy while keeping the complexity constant.

B. BER results

For the simulations, the block length of the differential
modulator is set to 10000 symbols. The interleaving is done
over 5 blocks resulting in an interleaver size of 100000 bits.
The order m of the linear predictor is set to 2, which is a
good trade-off between complexity and performance [10].
The number of iterations in the iterative decoding loop was
set to 19, and a total of 10,000,000 information bits was
transmitted during one simulation run.

The characteristics of the EXIT charts reflect themselves
in the BER chart of Fig. 8, which plots the BER over the
parameter η for different Eb/N0. A conventional system which
applies regular PSK corresponds to the choice η = 4. From
Fig. 8 we can see that for η = 4 the BER reaches a local
maximum for relevant values of Eb/N0. From the EXIT chart
we know that for η = 4 the characteristic curve of the APP de-
modulator ends at IE1 = 0.714, while this ending point moves
up to IE1 = 1 as η is increased or decreased. Consequently,
the BER performance greatly improves as η is increased or
decreased. The maximum is achieved for η between 3.4 and
3.6 and η around 4.8. If η is increased or decreased further, the
performance becomes worse again. Especially for η = 3 the
BER performance is extremely poor, as the resulting 3-PSK
modulation scheme occupies one signal point twice.

In order to study the impact of the maximum Doppler shift,
Fig. 9 plots the BER over the Eb/N0 for the normalized
maximum Doppler shifts fD,maxTs = 0.01 and fD,maxTs =
0.05. Plotted are the BER curves for the conventional PSK
system with η = 4 and for the system applying the modulation
scheme with η = 4.8, which was found to deliver the best
performance in the previous paragraph. At low Eb/N0, the
performance of the conventional PSK scheme first drops below
the performance with η = 4.8. However, with η = 4.8,
we quickly outperform the conventional system as Eb/N0

increases. The performance improvement is quite significant,
as we can observe steep turbo cliffs for η = 4.8 in Fig. 9.

V. CONCLUSION

We showed how the performance of a coded DPSK system
can dramatically be improved by using alternating regular and
generalized PSK symbols. Up to now, a realistic receiver,
which does not have access to perfect channel knowledge,
suffered from a significant performance loss compared to
idealistic receivers which have perfect channel state informa-
tion. However, with the combination of modulation schemes
as presented in this paper, a receiver which does not have
any a-priori channel knowledge can achieve almost the same
BER performance as a receiver which has perfect channel
knowledge. Eventually, this new scheme makes the application
of differential modulation schemes very attractive, as we can
now easily outperform systems with coherent modulation even
if perfect channel state information is not available at the
receiver.
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