

Towards Next Generation Wireless Networks

Marc Necker Institute of Communication Networks and Computer Engineering University of Stuttgart, Germany marc.necker@ikr.uni-stuttgart.de

> Ursinus College October 3, 2007

Outline

• Overview of cellular networks

- The cellular concept
- Multiplexing techniques

• Interference and reception quality

- The wireless channel
- State-of-the-art interference mitigation techniques

• Interference Coordination

- Basic principle
- Solution by graph coloring

• Performance evaluation

The University of Stuttgart

- One of the big engineering schools in Germany
- Offers undergraduate and graduate level programs in many engineering and science areas
 - Electrical Engineering
 - Computer Science
 - Mechanical Engineering
 - Aeronautical Engineering
 - Civil Engineering
 - Chemical Engineering
 - Environmental Engineering
 - Cybernetics
 - Mathematics
 - ...

Also offers non-technical programs

- Finance, Management, History

© Institute of Communication Networks and Computer Engineering

The Faculty of CS and ECE

Faculty of Computer Science, Electrical Engineering, and Information Technology

- BS, MS, and PhD program
- Undergraduate & graduate level courses in various areas
 - semiconductors, solar cells, analog circuit design, components
 - physical layer communications
 - networking, protocols, distributed systems, network architectures
 - software engineering, services
 - node architectures, digital circuit design, processor design
 - control
 - energy systems
 - massively parallel and high-performance computing
 - intelligent systems
 - computer graphics, databases
 - algorithms, theoretical computer science

The Faculty of CS and ECE

Faculty of Computer Science, Electrical Engineering, and Information Technology

- BS, MS, and PhD program
- Undergraduate & graduate level courses in various areas
 - semiconductors, solar cells, analog circuit design, components
 - physical layer communications
 - networking, protocols, distributed systems, network architectures
 - software engineering, services
 - node architectures, digital circuit design, processor design
 - control
 - energy systems
 - massively parallel and high-performance computing
 - intelligent systems
 - computer graphics, databases
 - algorithms, theoretical computer science

The Institute at a Glance

Location

University campus in Vaihingen

Staff

- Director: Professor P. J. Kühn
- Scientific staff:
 - 7 university funded
 - 10-15 project funded
- 6 members of administrative and technical staff

Laboratories

- Hardware and system development lab
- Software development lab
- Communication networks lab

Research

Architectures and Protocols

- 2.5/3/4G mobile networks
- Photonic networks
- IP-based networks
- Quality of service and service architectures

Teletraffic Theory and Engineering

- Performance modelling and simulation
- System and network optimization and planning

Security and privacy in networks and services

- Authentication, confidentiality and pseudonymity
- Design of secure systems

System design

- Design of digital systems
- Software engineering

Infotech

Master of Science in Information Technologies

- International graduate program of the ECE/CS department in Stuttgart
- 1.5 years master program
- all courses tought in English

Possible focus options

- Information technology
- Embedded systems

Program includes

- classes
- labs
- industrial internship
- master thesis

Further Information

Interp://www.infotech.uni-stuttgart.de

Outline

- Overview of cellular networks
 - The cellular concept
 - Multiplexing techniques

• Interference and reception quality

- The wireless channel
- State-of-the-art interference mitigation techniques

Interference Coordination

- Basic principle
- Solution by graph coloring

• Performance evaluation

The Cellular Concept

Architecture of a GSM/GPRS Network

BTS: Base Transceiver Station BSC: Base Station Controller SGSN: Serving GPRS Support Node GGSN: Gateway GPRS Support Node

© Institute of Communication Networks and Computer Engineering

Multiplexing Techniques

Time Division Multiple Access (TDMA)

- Divide time axis into time slots
- Assign one or more time slots to individual connections

Frequency Division Multiple Access (FDMA)

- Divide frequency axis into several frequency bands
- Assign one or more frequency bands to individual connections

© Institute of Communication Networks and Computer Engineering

Multiplexing Techniques

Code Division Multiple Access (CDMA)

- All users transmit at the same time on the same time and frequency resources
- Assign connections different orthogonal codes

Space Division Multiple Access (SDMA)

- Separate users in space by directional antennas
- Separated users can transmit on same frequency / time resources

© Institute of Communication Networks and Computer Engineering

The Wireless Channel

Three different additive signal fading types

- Propagation loss: Distance dependent signal fading
- Slow Fading / Shadowing: Fading due to shadowing of buildings, etc.
- Fast Fading: Fading due to constructive and destructive interference in multipath fading environments

© Institute of Communication Networks and Computer Engineering

The Wireless Channel

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

 \square

Outline

• Overview of cellular networks

- The cellular concept
- Multiplexing techniques

• Interference and reception quality

- The wireless channel
- State-of-the-art interference mitigation techniques

Interference Coordination

- Basic principle
- Solution by graph coloring

• Performance evaluation

Mobiles *m_i* receive signal with received power *S_i*

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

et filet the thirt filet filet

- Mobiles *m_i* receive signal with received power *S_i*
- Transmissions to m₁ and m₂ create interference to m₀

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

- CARLASIA CLASS

- Mobiles *m_i* receive signal with received power *S_i*
- Transmissions to m₁ and m₂ create interference to m₀
- Even transmission to
 *m*₃creates interference
 to *m*₀

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

- CARLASSARDARD

- Mobiles *m_i* receive signal with received power *S_i*
- Transmissions to m₁ and m₂ create interference to m₀
- Even transmission to *m*₃creates interference to *m*₀

$$\mathfrak{F} SINR = \frac{S_o}{N_0 + \sum_{i \in \mathfrak{I}_i} I_i}$$

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

A STREET, SALES AND A STREET, SALES

Sample Mean SINR over Area

y[Pixel] x[Pixel]

Mean SIR [dB]

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

er fiket se risker fikers

• Cellular 802.16e WiMAX network based on Orthogonal Frequency Division Multiple Access (OFDMA, combined FDM/TDM)

e.g., 802.16e (WiMax), 3GPP Long Term Evolution (LTE)

• Major issue in FDM / TDM networks: inter-cellular interference

Reuse 3

- Major issue in FDM / TDM networks: inter-cellular interference
 - standard solution: frequency reuse pattern disadvantage: waste of precious frequency resources

© Institute of Communication Networks and Computer Engineering

- Major issue in FDM / TDM networks: inter-cellular interference
 - standard solution: frequency reuse pattern disadvantage: waste of precious frequency resources
 - optimization: Fractional Frequency Reuse (FFR)

- Major issue in FDM / TDM networks: inter-cellular interference

 standard solution: frequency reuse pattern
 - optimization: Fractional Frequency Reuse (FFR)

© Institute of Communication Networks and Computer Engineering

- Major issue in FDM / TDM networks: inter-cellular interference
 - standard solution: frequency reuse pattern
 - optimization: Fractional Frequency Reuse (FFR)
 - The same of directional antennas to lower inter-cellular interference

- Major issue in FDM / TDM networks: inter-cellular interference
 - standard solution: frequency reuse pattern
 - optimization: Fractional Frequency Reuse (FFR)
 - Usage of directional antennas to lower inter-cellular interference
 Additional coordination necessary interference coordination (IFCO)

© Institute of Communication Networks and Computer Engineering

Outline

• Overview of cellular networks

- The cellular concept
- Multiplexing techniques

• Interference and reception quality

- The wireless channel
- State-of-the-art interference mitigation techniques

Interference Coordination

- Basic principle
- Solution by graph coloring

• Performance evaluation

Intercellular Coordination

Two-step Approach

1. Construction of interference graph G

- Vertices $m_i \in M$
- Edges $e_{ij} \in E$ (non-directional)
- graph represents critical interference relations

2. Assignment of resources based on interference graph

connected terminals must not be served on the same resources

Intercellular Coordination

Two-step Approach

1. Construction of interference graph G

- Vertices $m_i \in M$
- Edges $e_{ij} \in E$ (non-directional)
- graph represents critical interference relations

2. Assignment of resources based on interference graph

connected terminals must not be served on the same resources

© Institute of Communication Networks and Computer Engineering

 Calculation of signal strength of interferers for a particular mobile terminal m_i

© Institute of Communication Networks and Computer Engineering

- Calculation of signal strength of interferers for a particular mobile terminal *m_i*
- Blocking of strongest interferers such that a desired minimum SIR D_S is achieved

© Institute of Communication Networks and Computer Engineering

- Calculation of signal strength of interferers for a particular mobile terminal *m_i*
- Blocking of strongest interferers such that a desired minimum SIR D_S is achieved
- Blocked terminals are connected by edge in interference graph

© Institute of Communication Networks and Computer Engineering

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

etfiets-thetheth

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

CAMPARIA THE AND

© Institute of Communication Networks and Computer Engineering

© Institute of Communication Networks and Computer Engineering

University of Stuttgart

CARLA GARDAN

© Institute of Communication Networks and Computer Engineering

© Institute of Communication Networks and Computer Engineering

Example of resource mapping frame frame

- Treat air interface resources (time / frequency slots) as colors of graph
- Resources can be assigned to mobile terminals by coloring of the interference graph
 - graph coloring is NP hard
 - large number of heuristics: genetic algorithms, simulated annealing, tabu search, other heuristics (e.g., Dsatur)

© Institute of Communication Networks and Computer Engineering

Resource Assignment by Graph Coloring

- Resource utilization decreases as desired minimum SIR D_S is increased
- Resource utilization is independent of number of mobile terminals
- 10% improvement with Tabu search compared to simple heuristic Dsatur

© Institute of Communication Networks and Computer Engineering

Outline

• Overview of cellular networks

- The cellular concept
- Multiplexing techniques

• Interference and reception quality

- The wireless channel
- State-of-the-art interference mitigation techniques

• Interference Coordination

- Basic principle
- Solution by graph coloring

Performance evaluation

Dependence of SIR on desired SINR D_S

- Linear increase of median & quantile in considered range of D_S
- Significantly better average SIR than desired minimum SIR *D*_S

© Institute of Communication Networks and Computer Engineering

Mean Resource Utilization

- Linear Decrease of resource utilization in considered range of D_S
- Significantly better resource utilization than frequency reuse 3 system

© Institute of Communication Networks and Computer Engineering

Mean Throughput per Cell Sector

• Tradeoff between resource utilization and SIR

Maximum of sector throughput for particular D_S

© Institute of Communication Networks and Computer Engineering

Throughput at the IP-Layer

Frequency Reuse 3 System

Interference Coordinated System

- Better overall performance of interference coordinated system
- Better cell edge coverage of interference coordinated system

© Institute of Communication Networks and Computer Engineering

Towards Next Generation Wireless Networks

Marc Necker Institute of Communication Networks and Computer Engineering University of Stuttgart, Germany marc.necker@ikr.uni-stuttgart.de

> Ursinus College October 3, 2007