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• Introduction of IKR SimLib

• Motivation of emulation approach

• Realization of IKR EmuLib

• Evaluation of accuracy
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• History

- origin: Pascal simulation library (1980ies)

- object-oriented redesign in the context of a dissertation (1992)

- since then continuously enhanced and improved

• Implementation

- C++ class library

- usage of additional libraries (e.g., container class library)

- tested under various platforms: Linux, Solaris, CygWin

• Main Features

- support for transformation of an abstract model into source code

- control of event-driven simulation

- random number generation (various distributions and source models)

- statistical evaluation

- reading parameter values and printing results

IKR SimLib
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Model Components: Object Hierarchy

generator
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Decomposition support by

• Hierarchy

- has-relationship

- pointer to owner

• Name Concept

- local name as attribute

- identification of 
components

- access via central 
component manager
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Simulation Model

Network Model

simulation messages simulation messages

Traffic 
Sink

Traffic 
Generator

Message exchange between model components via ports

• distinction between input and output ports

• central port registration using owner address and port name

• connection of the ports using function call Connect

• communication via handshake protocol

➥ uniform interface for communication between model components

Port Concept



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Simulation
• fast and easy exploration of 

vast parameter space

• difficulty to model complex 
componentes & protocols

Simulation vs. Emulation vs. Prototype
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Simulation
• fast and easy exploration of 

vast parameter space

• difficulty to model complex 
componentes & protocols

Simulation vs. Emulation vs. Prototype

Emulation
• easy integration of real 

world components

• unsuitable to explore large 
parameter space

Prototype
• trustworthy results

• difficult setup, 
limited parameter space
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Integrated Simulation and Emulation

Combined Simulation and Emulation
• simulative exploration of vast parameter space with 

approximate models

• emulative evaluation of selected parameter points 
with included real-world components

Design Objectives
• Create emulation extension for existing simulation library

• Enable the reuse of existing simulation models

• Switch between simulation and emulation in zero time

➥ Seamless integration
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Simulation Model

Network Model
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• Implement emulation as an IP packet router

• Delay or drop IP packets according to model behavior

➥ Interfaces to model are traffic generators and traffic sinks

Basic Idea
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• Implement emulation as an IP packet router

• Delay or drop IP packets according to model behavior

➥ Interfaces to model are traffic generators and traffic sinks

Basic Idea
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Model Thread

simulation model

Listener Thread

packet 
filter

event 
processing 

loop

Generators

calendar

Sinks

Interface to network realized by multithreaded-design

• Listener Thread

- reception of IP packets, filtering, time stamping, buffering

• Model Thread

- encapsulation into simulation messages, model processing, 
transmission to network interface

Realization I
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Realization II

Classification of inaccuracies
• Inaccuracies due to asynchronous 

packet arrivals

• Operating system imposed inaccuracies

• Model imposed inaccuracies

➥ Careful examination of emulation error
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Emulation Model

D 
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• Constant rate UDP source

• Infinite server model with constant service time TD = 10ms

• External measurement of delay error (Agilent Internet Advisor)

• Internal measurement of delay error (emulation self-determined error)

Measurement Setup
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• Excellent correlation between measured and self-determined error

• Only 0.1% of all packets have an error of more than 0.2 ms

Infinite Server Accuracy
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UTRAN Core Network

Node B

RNC SGSN GGSN

Internet

Server

Detailed UTRAN model Fixed Delay and Drop Probability 
TINet

• Detailled model of High Speed Downlink Packet Access (HSDPA)

• one emulated UDP traffic flow in downlink direction

• one simulated cross-traffic flow with TCP bulk data transfer in 
downlink direction

HSDPA Scenario
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HSDPA Accuracy Absolute Error

• Only 1% of all packets have an error of more than 2-4 ms

• Higher absolute error due to model imposed inaccuracies

➥ Evaluate relative error
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HSDPA Accuracy Relative Error
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• Very good relative error in low — medium load situations

• Only 0.1% of all packets have a relative error of more than 5%
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• IKREmuLib: Integrated simulation and emulation environment

• Flexible usage through powerful filtering and routing possibilities

• Quick transition between simulation and emulation domain

• Efficiently combine simulated with emulated flows and components

• Good accuracy for models with delay on the order of tens of ms

Outlook
• Explore possibility for protocol interfaces

• Evaluate different strategies to enhance accuracy

Conclusion


