
INSTITUT FÜR
NACHRICHTENVERMITTLUNG

UND DATENVERARBEITUNG
Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Universität Stuttgart

IKR EmuLib
A Library for Seamless Integration of Simulation and Emulation

Marc Necker, Christoph Gauger
[necker | gauger]@ikr.uni-stuttgart.de

ITG FG 5.2.1 Workshop Simulationstechnik
Mittweida, November 3, 2005

• Introduction of IKR SimLib

• Motivation of emulation approach

• Realization of IKR EmuLib

• Evaluation of accuracy

Outline:



© Institute of Communication Networks and Computer Engineering University of Stuttgart

• History

- origin: Pascal simulation library (1980ies)

- object-oriented redesign in the context of a dissertation (1992)

- since then continuously enhanced and improved

• Implementation

- C++ class library

- usage of additional libraries (e.g., container class library)

- tested under various platforms: Linux, Solaris, CygWin

• Main Features

- support for transformation of an abstract model into source code

- control of event-driven simulation

- random number generation (various distributions and source models)

- statistical evaluation

- reading parameter values and printing results

IKR SimLib



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Basic Structure

basic concepts

simulation 
control

I/O
concept

statistical 
evaluation

modelling concepts

basic
entity

event
handling

port
concept

filters &
meters

distributions

standard components

utilities

user

random

model
components



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Model Components: Object Hierarchy

generator

node1

sink

model

node2

queueserver serverqueue

TMyQueue TMyServer

TMyNode

TMyModel

TGenerator TSink

Decomposition support by

• Hierarchy

- has-relationship

- pointer to owner

• Name Concept

- local name as attribute

- identification of 
components

- access via central 
component manager



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Simulation Model

Network Model

simulation messages simulation messages

Traffic 
Sink

Traffic 
Generator

Message exchange between model components via ports

• distinction between input and output ports

• central port registration using owner address and port name

• connection of the ports using function call Connect

• communication via handshake protocol

➥ uniform interface for communication between model components

Port Concept



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Simulation
• fast and easy exploration of 

vast parameter space

• difficulty to model complex 
componentes & protocols

Simulation vs. Emulation vs. Prototype



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Simulation
• fast and easy exploration of 

vast parameter space

• difficulty to model complex 
componentes & protocols

Simulation vs. Emulation vs. Prototype

Emulation
• easy integration of real 

world components

• unsuitable to explore large 
parameter space



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Simulation
• fast and easy exploration of 

vast parameter space

• difficulty to model complex 
componentes & protocols

Simulation vs. Emulation vs. Prototype

Emulation
• easy integration of real 

world components

• unsuitable to explore large 
parameter space

Prototype
• trustworthy results

• difficult setup, 
limited parameter space



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Integrated Simulation and Emulation

Combined Simulation and Emulation
• simulative exploration of vast parameter space with 

approximate models

• emulative evaluation of selected parameter points 
with included real-world components

Design Objectives
• Create emulation extension for existing simulation library

• Enable the reuse of existing simulation models

• Switch between simulation and emulation in zero time

➥ Seamless integration



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Simulation Model

Network Model

simulation messages simulation messages

Traffic 
Sink

Traffic 
Generator

• Implement emulation as an IP packet router

• Delay or drop IP packets according to model behavior

➥ Interfaces to model are traffic generators and traffic sinks

Basic Idea



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Emulation Model

Network Model

emulation messages emulation messages

Traffic 
Sink

Traffic 
Generator

IP 
Packet 
Filter

IP 
Packet 
Routing

IP packets IP packets

Network 
Interface

Network 
Interface

Simulation Model

Network Model

simulation messages simulation messages

Traffic 
Sink

Traffic 
Generator

• Implement emulation as an IP packet router

• Delay or drop IP packets according to model behavior

➥ Interfaces to model are traffic generators and traffic sinks

Basic Idea



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Model Thread

simulation model

Listener Thread

packet 
filter

event 
processing 

loop

Generators

calendar

Sinks

Interface to network realized by multithreaded-design

• Listener Thread

- reception of IP packets, filtering, time stamping, buffering

• Model Thread

- encapsulation into simulation messages, model processing, 
transmission to network interface

Realization I



© Institute of Communication Networks and Computer Engineering University of Stuttgart

packet arrival

assign timestamp t0

append packet to buffer

real−time real−time

Listener Thread Model Thread

Interaction between threads

Realization II



© Institute of Communication Networks and Computer Engineering University of Stuttgart

packet arrival

assign timestamp t0

append packet to buffer
control transfer

process next event

check buffer: read packet

post packet event to time t0

real−time real−time

Listener Thread Model Thread

model execution

Interaction between threads

Realization II



© Institute of Communication Networks and Computer Engineering University of Stuttgart

packet arrival

assign timestamp t0

append packet to buffer
control transfer

process next event

check buffer: read packet

post packet event to time t0

real−time real−time

Listener Thread Model Thread

packet arrival

control transferassign timestamp t1

model execution

Interaction between threads

Realization II



© Institute of Communication Networks and Computer Engineering University of Stuttgart

packet arrival

assign timestamp t0

append packet to buffer
control transfer

process next event

check buffer: read packet

post packet event to time t0

real−time real−time

Listener Thread Model Thread

packet arrival

control transferassign timestamp t1

model execution

Inaccuracy

Interaction between threads

Realization II



© Institute of Communication Networks and Computer Engineering University of Stuttgart

packet arrival

assign timestamp t0

append packet to buffer
control transfer

process next event

check buffer: read packet

post packet event to time t0

real−time real−time

Listener Thread Model Thread

packet arrival

control transferassign timestamp t1

model execution

Inaccuracy

Interaction between threads

Realization II

Classification of inaccuracies
• Inaccuracies due to asynchronous 

packet arrivals

• Operating system imposed inaccuracies

• Model imposed inaccuracies

➥ Careful examination of emulation error



© Institute of Communication Networks and Computer Engineering University of Stuttgart

Emulation Model

D 

service time TD

Traffic 
Sink

Agilent Internet Advisor

packet rate r 

packet length L

Hub

Traffic 
Gen.

IP 
packet 

filter

IP 
packet 
router

• Constant rate UDP source

• Infinite server model with constant service time TD = 10ms

• External measurement of delay error (Agilent Internet Advisor)

• Internal measurement of delay error (emulation self-determined error)

Measurement Setup



© Institute of Communication Networks and Computer Engineering University of Stuttgart

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
delay error [ms]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cc
df

measured error
emulation self-determined error

• Excellent correlation between measured and self-determined error

• Only 0.1% of all packets have an error of more than 0.2 ms

Infinite Server Accuracy



© Institute of Communication Networks and Computer Engineering University of Stuttgart

UTRAN Core Network

Node B

RNC SGSN GGSN

Internet

Server

Detailed UTRAN model Fixed Delay and Drop Probability 
TINet

• Detailled model of High Speed Downlink Packet Access (HSDPA)

• one emulated UDP traffic flow in downlink direction

• one simulated cross-traffic flow with TCP bulk data transfer in 
downlink direction

HSDPA Scenario



© Institute of Communication Networks and Computer Engineering University of Stuttgart

0 2 4 6 8 10 12 14 16 18 20
absolute delay error [ms]

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cc
df

100 packets/s
200 packets/s
400 packets/s

HSDPA Accuracy Absolute Error

• Only 1% of all packets have an error of more than 2-4 ms

• Higher absolute error due to model imposed inaccuracies

➥ Evaluate relative error



© Institute of Communication Networks and Computer Engineering University of Stuttgart

HSDPA Accuracy Relative Error

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
relative delay error

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cc
df

100 packets/s
200 packets/s
400 packets/s

• Very good relative error in low — medium load situations

• Only 0.1% of all packets have a relative error of more than 5%



© Institute of Communication Networks and Computer Engineering University of Stuttgart

• IKREmuLib: Integrated simulation and emulation environment

• Flexible usage through powerful filtering and routing possibilities

• Quick transition between simulation and emulation domain

• Efficiently combine simulated with emulated flows and components

• Good accuracy for models with delay on the order of tens of ms

Outlook
• Explore possibility for protocol interfaces

• Evaluate different strategies to enhance accuracy

Conclusion


