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Abstract—This paper contributes to the field of measuring
(un)linkability in communication systems; a subproblem of pri-
vacy protection. We propose an attacker state model for attacks
on unlinkability of partial identities named linkability graph. It
covers probabilistic linkability attacks based on heterogeneous
and time-variant characteristics. From our model, we derive
linkability measures and argue prospects for safeguard design.
Our model reduces space and time complexity compared to
other contributions in literature. This enables simulative privacy
analysis of complex context-aware systems that employ multiple
partial identities per user.

I. INTRODUCTION

Recent incidences in Germany, such as surveillance of
supermarket cashiers [1] and public transportation employees
[2], as well as acquisition of personal data for tax evader
prosecution by the government [3], foster awareness of pri-
vacy issues. It becomes evident that benefits of digital data
processing (ease of storage, transfer and reproduction) are
disadvantages for privacy. For example, it is profitable to offer
marginal discounts for disclosure of personal data and profiles,
which are then subject to uncontrollable circulation.

With the advent of context-awareness [4], [S] and ubig-
uitous computing [6], [7], the situation becomes more criti-
cal. Context-awareness entails extensive data collection, often
without any restrictions on the manifold purposes of use. For
example, purposes of use may be only partially known or
specified at the point in time data is collected.

One privacy safeguard is pseudonymisation. Instead of
representing users by their fully-fledged true identity, they are
represented by partial identities. This means that users own
multiple identifiers (pseudonyms), each equipped with a subset
of personal data [8]. The pseudonym refers to the user, the
personal data subset and undertaken actions. This approach
intentionally compartmentalises the user’s true identity into
multiple partial identities by splitting personal data into subsets
and separation of action traces. However, this is only effective
as long as this intentional separation is not reversed by an
attacker. The reversal is known as the linkability threat.

Privacy-agnostic system design can enable linkability. For
example, if globally unique identifiers, such as device ad-
dresses (e.g., MAC- or IP-addresses) are required. These
allow, e. g. linking of web sessions originating from the same
IP-address by both the addressed web server and outside at-
tackers. Anonymity safeguards, e.g. MIX-networks [9], [10],

the reduced latency version Web MIXes [11] and Onion-
Routing [12] help against outside attackers. They prevent
linkability due to globally unique identifiers and observable
behaviour patterns by either sender, recipient or relationship
anonymity/unobservability [8].

Linkability can also result from voluntary data disclosure,
e.g. from data of overlapping Information Cards [13] and
tracked behaviour patterns. Today, voluntarily contacted cor-
respondent nodes already create user profiles from such data,
e.g. for the purpose of targeted advertising. This challenges
the partial identities approach. First, partial identities are
prerequisites for privacy but are no guarantee in the presence
of an attacking correspondent node. Second, linkability quan-
tification depends on the attacker’s knowledge, capabilities and
on the characteristics of data. For example, on the range of
values or how many users have some value in common.

We model linkability caused by voluntary data disclosure
to correspondent nodes in a context-aware system. The cor-
respondent nodes are attackers. Our model enables simula-
tive analysis of privacy protection by partial identities under
probabilistic linkability attacks. Therefore, it focuses on the
attacked users. We take a viewpoint on the system that allows
for comparison of probabilistically linked partial identities and
the truth. This viewpoint enables quantification of what a
particular attack means to users’ privacy. Further, it enables
identification of possibilities how users can influence or even
control linkability. We neither aim for comparing attack strate-
gies nor finding the best attack.

This paper is structured as follows. Section II introduces the
attacker model and the linkability graph as our model for the
attacker state. It shows the evaluation to linkability measures
and concludes with a discussion of properties. Section III
applies it to the multiple partial identities approach and exem-
plifies how linkability graphs can be obtained and evaluated
in practice. Section IV discusses relations to previous work.
Section V concludes the paper and exhibits open issues.

II. MEASURING LINKABILITY

A. Attacker Model

We adopt the term item of interest (I10I) from [8] to refer to
observed elements. The characteristics of IOIs form the basis
for any attack. Furthermore, we adopt the term subject [8] as
a representative for a possibly acting entity, such as a user.



The attacker’s aim is to cluster IOIs according to own-
erships. This is, identify items owned by one subject and
distinguish them from items of other subjects. We note that
this does not imply identification of any subject as such, which
would mean identification in real world. Instead, the aim is to
find IOIs owned by the same, yet unidentified subject.

We assume that observed characteristics are not necessarily
unique for some IOI or subject. Hence, any attack on unlinka-
bility of IOIs is probabilistic, i. e. that equal characteristics do
not guarantee that IOIs are owned by the same subject. This
is addressed in detail in Section I1I-B.

It is useful to assume the hypothetical omnipresent attacker
in a worst-case privacy analysis. Although this overestimates
the attacker’s abilities in realistic settings, we can assess
whether safeguards are effective. If a safeguard is effective
in the analysis, it is concluded that it is in realistic settings
as well. However, if the analysis shows that a safeguard is
ineffective, no conclusion is drawn for realistic settings.

We model linkability caused by voluntary data disclosure.
We deny the unrealistic omnipresent outsider and postulate
a local attacker who operates correspondent nodes. Subjects
voluntarily interact with correspondent nodes, such as web
servers of a service provider. The implications are:

1) If measures indicate an unlinkability breach, we know,
as in the omnipresent attacker case, that the safeguard
is ineffective.

2) If measures do not indicate an unlinkability breach,
we cannot assess the maximum strength of an attacker
against which the safeguard, in particular the multiple
partial identities approach, protects. Hence, we yield a
lower bound only.

3) Any local attacker may have partial knowledge about
the system. For example, the attacker has no a priori
knowledge about the total number of subjects and may
observe a subset of IOIs only. We therefore adopt the
open world assumption. This means that observations
can argue for and against IOIs being linked or they do
not allow any conclusion.

Without loss of generality, we henceforth focus on a single,
passive correspondent node attacker without any collaboration,
such as voluntarily visited web servers of one service provider.
However, our model can be extended to collaborating and
active attackers.

We assume that the attacker has “unlimited” computing
power and storage capacity, i.e. he can execute complex
algorithms in short periods of time and can store huge amounts
of data. Thus, our approach does not depend on any restrictions
regarding these capabilities.

We assume that state-of-the-art cryptography with correct
treatment of key material is secure. Use of cryptography
influences the amount of available cleartext characteristics.
However, the attack principle, the attacker state model and
the derived linkability measures are not influenced. Hence, in
the following cryptography is not considered.

B. Linkability Graph

In the following, we look at an attacker & who mounts
a particular linkability attack .4 in a communication system.
The users of the communication system perform actions,
e. g. they interact with other users, consume services by means
of partial identities or send and retrieve messages. They are
the considered subjects. Dependent on the attacker’s focus,
the IOIs may include received messages, service consumption
records or partial identities. For sake of clarity, we assume that
only one type of IOIs is considered in any analysis, e. g. only
partial identities.

Characteristics of IOIs may include sender’s IP-address,
email-address or gender. We assume that the universe of
characteristics is constant and known. We do not mandate
that all characteristics apply to all IOIs. For example, one
message may contain the sender’s email-address while another
one does not. Consequently, we regard the attack algorithm to
conclude about an IOI-pair as specific to the subset of common
characteristics of these IOIs. We assume that the attacker
cannot conclude anything from an empty set of common
characteristics, i.e. he is forced to ignore such observations.

Furthermore, we assume that each IOI has one owner. For
example, if the attacker aims for identifying messages of the
same sender, the owner of a message is its sender. Although
the following analysis relies on unambiguous enumeration of
subjects, it otherwise imposes no further requirements on the
actual owner representation.

Despite uniqueness of true ownerships, the attacker can
be uncertain about any individual conclusion, e.g. due to
ambiguity of observed characteristics. As a result, he obtains
probabilistically linked IOIs. We do not postulate transitivity of
these probabilistic links. We model the attacker’s guess about
existence of a link and the imposed ignorance by continuous
variables. This is inspired by approaches to uncertainty in [14].

The attacker concludes about links over time. Hence, his
a posteriori state is the accumulation of educated guesses
about linked and unlinked IOIs, and expresses right and wrong
conclusions, as well as ignored observations.

In the following, we focus on attacker o« and model his
state after attack .A. We assume that the nonempty universe
of I0Is I and an index set S for the nonempty universe
of subjects are known. This is required for quantification of
linkability, but we do not assume that an attacker has this
knowledge. We require that each subject of S has at least
one IOI in [. If this is not fulfilled in real settings, subjects
without IOI must be removed from S before applying our
model. Furthermore, we define links to be pairs of IOIs. The
set of all possible undirected' links is

L={leN|l«(p,q) =(¢p) : p,gel} . (1)

Let G* = (I*,L“) be a loop-free undirected graph with
vertices I“ C I and links L* C L. Graph G“ is the linkability
graph for attacker « and attack A.

Hinkability is symmetric, i.e.  linked to y if and only if y linked to x
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Fig. 1. Graphical representation of the attacker state for one link

The attacker observes ™ and aims for identifying owner-
ships as introduced in Section II-A. The attacker’s speculation
about ownerships is denoted by the mapping

a: L% (b, rg i, ryy) with 1€ LY . ()

Thereby, the four variables represent the attacker’s a posteriori
state. The variables are specific to the attacker and attack.
Their values vary over time due to made observations and
drawn conclusions.

Each tuple covers two aspects. First, bj* and ry; capture the
attacker’s state with respect to drawn conclusions. This is, the
attacker’s belief b;* that the 1OIs of link / have the same owner
and the obtained reliance? Ty in this belief. Second, uj* and
ry, capture the imposed ignorance. They address observations
which the attacker cannot exploit by attack A. The attacker’s
ignorance for link [ is uj* and the obtained reliance is ;. The
codomains are bf*, ui* € [0,1], vy, € [0,7] and 73, € [0,77]
with 7, 7% € (0, 00).

The greater the attacker’s belief in existence of link [, the
greater is bi*. The more evidence gathered and conclusions
drawn supporting the belief, the greater is the reliance ;.
Contrary, the more observations ignored, the greater is u;*.
Nevertheless, the more observations available, the greater is
the reliance r';.

Figure 1 shows the graphical representation of the attacker’s
state for one link. In a realistic setting, the depicted vertices
Mg, My € I may represent two sent messages. The true
ownerships are represented by the vertex fillings. Identical
vertex filling refers to identical owner, i.e. the two IOIs in
Fig. 1 have different owners. However, we remind that this
information is not part of the attacker state.

Any a priori knowledge about ownerships an attacker has
can be taken into account by an appropriate initialisation of
belief and reliance values on a per link basis. For an attacker
without any a priori knowledge about ownerships we define
the initial state to

L*=10
(b =05, iy, =0, uf =0, 7y, =0) VieL .

and

3)

This means that the attacker is unable to decide whether links
exist (bf* = 0.5) and that this result is completely unreliable
(rg'; = 0). Furthermore, he ignores no observation (uf* = 0)
and this result is completely unreliable (rﬁ‘ , = 0), because no
observation is made at all.

Although we define one representation for the absence of
a priori knowledge, the linkability measures according to
Section II-C accept any representation for which b;* - ro; =0
and u;* - rg'; = 0 hold true.

2also: certainty or confidence in correctness of a value
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Fig. 2. Example linkability graph for the attacker’s a posteriori state

Figure 2 depicts two equivalent graphical representations of
the linkability graph for a simple example. We assume 7 = 2.
Figure 2(a) shows two subjects distinguished by vertex fillings.
The first subject has sent the three messages m,,m, and m..
The second has sent m,, only. In the example, the attacker
believes with b = 1 and reliance r{* = 1 that m, and m,
have the same owner. For m,, and m_, he believes with b5 = 0
and reliance r{* = 1, i.e. that they are unlinked. For example,
the common characteristic of m, and m, differs in its value
and the attacker interprets it as evidence for different owners.
All other links are unobserved. For example, m,, may have
no common characteristic with the other messages and m,,
m, may be only observed during different periods of time.

The elaborate version Fig. 2(a) explicates the a posteriori
states even for unobserved links (I = 3,4,5,6). This can
impact clarity in larger settings. Hence, the concise version
Fig. 2(b) omits unobserved IOIs and links. It implicitly refers
to the initial values according to (3). We henceforward prefer
the concise version.

C. Linkability Measures

The linkability graph from Section II-B captures the at-
tacker’s state for each IOI-pair. This is our basis to quantify the
breach of unlinkability per subject. However, the unprocessed
linkability graph suffers from the following drawbacks.

1) It is hard to grasp the breach of unlinkability per subject
from a large linkability graph. Thus, it is hard to com-
pare the breach of unlinkability for different subjects.

2) Comparison of unprocessed linkability graphs can be-
come costly. Thus, comparison of results for different
settings can become costly.



3) The linkability graph captures beliefs in links but not
any resulting impact. In other words, all links are
considered identical in breach of privacy, irrespective of
the characteristics of linked IOIs. To obtain privacy risk
estimates, linkability and impact must be considered. We
do not examine this further.

4) The linkability graph does not help in defining any
threshold as to when unlinkability has to be regarded
as broken. However, the linkability graph is not special
in this respect. Other models suffer from this issue as
well. This is left for further study.

To address the first two drawbacks, we need few, concise
measures that represent the linkability graph and the resulting
breach of unlinkability per subject. In the following, we derive
such linkability measures.

We now take a global outsider perspective with knowledge
about true ownerships and the particular attack .4. However,
we do not assume that this is known to any subject. This
perspective enables to assess the true breach of unlinkability
per subject caused by attack A. We start by formalisation
of the true ownerships and proceed to the evaluation of the
linkability graph.

Let ~,. be an equivalence relation on I that formalises the
relation ‘owned by same subject’. This equivalence relation
partitions I and yields the equivalence classes

IN’!‘ - I/ ~r = {117]23 aIk} :

There are |S| subjects and also k = |S| equivalence classes.
The equivalence class I; contains those IOIs which are truly
owned by subject j € S. Further, for two 10Is p and ¢ we
denote p = q if p,q € I;, i.e. they are truly owned by the
same subject j. Otherwise we denote p Z q.

It is known that an equivalence relation ~,. on I is also an
equivalence relation on any subset of /. Hence, the equivalence
relation ~, also partitions 7 with respect to true ownerships.
The attacker can at best draw correct conclusions about
|I*/ ~, | subjects. However, as we postulate that the attacker
has no a priori knowledge about .S, wrong conclusions can
yield an arbitrary number of supposed subjects up to |7¢].

We now classify links into two subject specific classes.
First, cohesive links relate IOIs of one subject. They reinforce
correct clustering of I0Is. Second, adhesive links relate I0Is
of different subjects. They increase similarity of subjects, and
thus reduce certainty about ownerships. In the following, we
formalise both classes.

For subject j € S, the set of observed cohesive links is

Loy ={lel®|l < (pg):p=q A pel}
and the set of observed adhesive links is
S ={lell—@aq:pEqn pelveel)} .

These sets, in combination with the mapping «, describe
what the attacker obtained about subject j. Hence, linkability
measures can focus on these sets.

We exploit the distinction of links and define the linkability
measures

) 2 bl
o) Ee— m— TR T
A TAR TAESTR (RS
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with codomain F2(j), F4(j) €
difference

[0, 1]. Further, we define their

FRG) = Fo() — Fali) @)
with codomain FR(j) € [-1,1].

The linkability measure F2(5) is the proportion of fully and
reliably believed cohesive links, i.e. each belief is weighted
with its normalised reliance. It captures the amount of correct
conclusions. The maximum is reached if all possible cohesive
links are actually observed and reliably believed. We note
that observability of subject j’s IOIs is itself a threat to
unlinkability. This means that observability is a prerequisite
for linkability. Therefore, the number of observed 10Is |IJ°‘| is
explicitly considered by F2 (7).

The linkability measure F§(j) is the proportion of fully
and reliably believed adhesive links. It captures the amount of
wrong conclusions. The maximum is reached if all possible
adhesive links are actually observed and reliably believed.

Additionally, we define the measures for imposed ignorance

e}
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with codomain U&(j), US(5) € [0,1]. These are the propor-
tions of ignored observations for cohesive and adhesive links
respectively. They reach their maximum if all observations are
ignored (for causes refer to Section II-B).

By these measures we exploit the fact that any unobserved
link [ € L\ L® has initial values according to (3), which
yield bf* -rﬁ ; = 0 and uj* ~’I"3’ ; = 0. Thus, an unobserved link
neither requires explicit representation in the linkability graph
nor consideration in any measure.

D. Discussion

We first interpret the linkability measures from Section II-C
and discuss their properties. Then we address prospects opened
by our model in terms of safeguard design.

1) Equivalence of Linkability Graphs: Our linkability mea-
sures imply the following equivalence, which is irrespective of
how the attacker states are reached. In other words, whether
different attackers reach equivalent states by mounting the
same attack .4 or by different attacks does not matter. Instead,
the equivalence compares the completeness and correctness of
probabilistically concluded links.



TABLE I
EXAMPLE A POSTERIORI STATES OF LINKS FOR ATTACKER « AND (3

[ link number | attacker « [ attacker 3 |
1 @ L. | 052 )
2 0, 1,..) | (052 ..

We assume that the a posteriori state of attacker « is known.
The state of another attacker 3 is equivalent with respect to
the imposed ignorance for subject j if

US(j) = UL ()) a0) =ULG) -

Analogously, the state of attacker (3 is equivalent to attacker «
with respect to breach of unlinkability for subject j if

F&(j) = FA() F2(j) = Fi(j) -

We further analyse this equivalence. For simplicity we as-
sume that both attackers observe identical amounts of IOIs,

and

and

e |If] = |I jﬁ |. Any attacker § is equivalent to attacker «
with respect to breach of unlinkability for subject j if
1 1
FRD LRI LD DL L (IC)
b eLy "o ler?

We now revisit the a posteriori attacker state of the example
from Fig. 2(b), where ¥ = 2. We focus on beliefs and their
reliance and omit ignorance variables. We assume, for sake of
clarity, that the sets of observed IOIs and links are identical,
Le [ = If and L§ = Lf. For attacker 3 we assume ?lf =4
and the a posteriori states according to Table I.

Obviously, for these links (5) holds:

1 1
So(1-140-1) = 1(05-2405-2) .

2
This allows for the following interpretation: full belief in the
first link paired with full denial of the second link is equivalent
to two links for which the attacker is unable to decide about
their existence. This equivalence is intrinsic to our linkability
measures and should be kept in mind.

2) Lower and Upper Bounds of Linkability Measures:
In addition to the definition of equivalent attacker states,
the linkability measures use well-defined extreme cases as
references. On the one hand, the minimum of F2(j) and
F&(j) is reached if and only if the attacker knows nothing
about subject j. Formally this means [3* = () and L} = (. On
the other hand, the maximum of F¢(j) is reached if and only
if all possible cohesive links L, ; are concluded with

?:17Tﬁl:?g VZELCOJ‘.

This is, there are no cohesive links left unobserved and all
cohesive links are fully and reliably believed. Analogously,
the maximum of F5(j) is reached if and only if all possible
adhesive links L,q ; are concluded with

=1, g, =7 VI€Luy -

3) Practicability: Although linkability quantification is our
focus, we should not forget about practicability. The linkability
graph from Section II-B is based on dynamic characteristics
of IOIs. This implies that for any simulative analysis of, for
example, already deployed systems, models or prototypes of
future systems, the linkability graph must be manageable with
today’s technology. Hence, practicability considerations are
important. We consider space complexity of the linkability
graph and both space and time complexity of the evaluation
to our linkability measures.

According to (2), attacker « associates four variables to
any link. The set of all possible links is defined by (1). The
maximum cardinality is reached for a complete linkability
graph. Links are undirected and there is only one link for any
IOI-pair. Thus, the space complexity of a linkability graph is
quadratic in the number of IOIs.

The evaluation according to Section II-C operates on the
four variables associated to any observed link. Thus, the num-
ber of additions and multiplications scales with the number of
links. In the worst-case, L is identical to L. As a result, the
time complexity of the evaluation is quadratic in the number
of I0Is. We evaluate the linkability graph for all subjects S
concurrently and thereby substitute time by space complexity.
Thus, the space complexity is linear in the number of subjects.

Given today’s technology, these complexities are manage-
able. We therefore regard our linkability graph and linkability
measures as practical for simulative studies, especially consid-
ering the application to partial identities (see Section III).

4) Prospects for Safeguard Design: The introduced classi-
fication into cohesive and adhesive links in combination with
the attacker model presents four unlinkability safeguards. First,
a subject can target cohesive links and either reduces their pure
number or influences the attacker’s belief in their existence.
Second, a subject can target adhesive links and either influence
their pure number or the attacker’s belief in their existence.
Third and fourth, a subject can target the ignorance imposed
on the attacker with respect to cohesive and adhesive links
respectively. This means, a subject avoids disclosure of IOIs
which allow any kind of conclusion by attacker . However,
four reflections must be noted.

First, adhesive links are not under control of any single
subject. Instead, they are influenced by many subjects, which
are typically unknown to each other. For example, messages
sent by different subjects, all containing identical date of birth,
can cause adhesive links. A subject will hardly prevent others
from sending such messages. This argument applies to manip-
ulation of both belief and ignorance. Hence, we assume that
influence of a subject is negligible unless subjects extensively
cooperate in this respect. Such defensive alliances necessitate
exchange of characteristics of IOIs, which is contrary to
privacy protection aims.

Second, it is illusionary to assume that subjects will cor-
rectly guess properties of attack A, as required for effective
avoidance of conclusions. For example, a subject needs to
guess which characteristics are exploited by the attack and
how. Here, a worst-case assumption would help. This means,



finding the best attack on unlinkability that could be mounted.
We do not further investigate in this direction.

Third, cohesive links are solely influenced by the considered
subject itself and provide a starting point for safeguard design.
Thus, influencing the number of cohesive links, the belief in
their existence or the imposed ignorance are options. For the
last, the unknown properties of attack A limit the effectiveness.
Yet, a subject may exhaustively enumerate the characteristics
of its IOIs and act according to worst-case assumptions.

Fourth, assume an extreme case where one subject, aware
of linkability issues, succeeds in hiding all of its cohesive
links. All other subjects are unaware. Due to unawareness,
we assume that the other subjects’ cohesive links exist with
large beliefs, while adhesive links are generally low in their
beliefs. It becomes clear that the linkability aware subject did
not gain anything. The attacker may, by inversion, conclude
that IOIs with only low-believed adhesive links are owned by
one subject, which is an optimistic assumption for clarity of
the issue. Thus, the relation between cohesive and adhesive
links matters, which is expressed by (4). Consequently, 1OIs
of a subject are protected if either of the following cases ap-
plies. First, the attacker failed to conclude anything, i.e. both
linkability measures are zero. Second, the attacker concluded
about links but still fails in correct distinction of ownerships.
In both cases F'{(j) is at best zero. As rule of thumb: The
smaller |FR(j)|, the less distinguishable are IOIs of subject j
from others, and the better protected is subject j.

These safeguards are substantiated by our attacker state
model and linkability measures. However, we leave actual
design and realisation for further study.

III. LINKABILITY OF PARTIAL IDENTITIES

We illustrate the linkability graph by application to a ser-
vice platform implementing an Identity Management System,
which offers multiple partial identities as a privacy safeguard.
The consumers of the service platform are privacy-aware
users. Consumers correspond to subjects and their partial
identities to IOIs. Each partial identity includes a set of data.
Auvailable services are offered by service providers. A service
is described by the mandatory data for its function. Consumers
decide for any service consumption which partial identity to
use. Any chosen partial identity must at least provision the
mandatory data of the addressed service.

We aim to evaluate the influence of chosen partial identities
on linkability. We assume that service providers may be
attackers. This conforms to Section II-A and [15]. Partial
identities have unique identifiers that allow for charging. Thus,
consumptions using the same partial identity are linkable at
the provider. However, they would be initially unlinkable if
different partial identities were used.

We now provide an example attack .4 similar to [15],
which yields a concrete linkability graph. We consider a
scenario where service providers limit their efforts for attacks.
Precisely, no retrieved data is stored after session end, although
our attacker model from Section II-A would allow. Only con-

currently active partial identities I, . are subject to linkability

attacks by means of regular retrieved data, i.e. that no access
control is bypassed.

To model the attacker o, we must compute the four contin-
uous variables according to Section II-B. We interpret them
as empirical probabilities and derive them from three directly
managed integers. For each link we count the total number of
observations v;, conclusions ¢; and positive conclusions el+.

The initial values are v; = ¢ = ef = 0. We define the
variables to
e
b = o
0

s, _fya

if ¢ #0
otherwise

a .
Tb,1 T THfea
v —cCp H
uw = . if vy #0
L 0 otherwise
« — o, fuv
Tug = Tu Txfaa,

with 0 < f, f& € R, which influence convergence to the
state ‘fully reliable’. For our setting we assume f& = f& =1
and 75 = 7% = 1.

We assume that any data is constant over time. Further, by
the end of any session, all data accessible via a partial identity
is actually retrieved. Given these conditions, the linkability
graph requires update only in case a session is either set up
or released. We focus on session setup for an arbitrary partial
identity p and collapse access to all data to the very start of
the session. The update procedure is depicted in Fig. 3.

The time complexity of our example linkability graph
update is linear in the number of active sessions. This is due
to our assumption that any data is constant. In presence of
time-variant data, time complexity is at most quadratic in the
number of active sessions.

We have validated our proposal by an implementation in
Java. It uses probability distributions to construct partial iden-
tities and services. It applies event-driven simulation to mimic
service consumption behaviour, which can cause linkability of
partial identities.

We have executed this simulation on state-of-the-art hard-
ware for 1,000 consumers, a total of 10,000 partial identities
and 10 service providers, all attacking concurrently. Thus, each
linkability graph has a maximum size of approx. 50 million
links. In our implementation each link requires three 32 bit
integers and thus 12 bytes of memory. Hence, in the worst-
case the simulation requires approx. 575 MB of memory per
linkability graph and a total of approx. 6 GB. Due to statistical
properties of the configuration, total memory usage is below
1 GB and thus much better than in the worst-case.

A detailed explanation of our simulator is out of scope
of this paper. Furthermore, actual evaluations based on our
linkability graph and measures are for further study. Nonethe-
less, the above example attack and memory requirements
indicate the practicability of our approach for scenarios with
a meaningful number of partial identities.



Input: p e I
Data: 1%, L%, {(v;,c,e] )|l € Lo}, T4
1 P= I;étive ;
2 while P # () do
3 select g € P ;
4  P=P\{q};
5 if ¢ = p then continue ; /* skip loops x/
6 l— (p,g)=(q,p); /*» get link number x*/
7 vy=v+1;
8 A=qNnp;
9 if A = () then continue ;
10 cqg=c+1;

/* incomparable */

/* 1inc. conclusion count =x/

11 r=_1; /* assume unlinked */
12 while r = L A A # () do
13 select a € A ;
14 A=A\{a};
/* check for identical values */

15 if v(p,a) =v(q,a) thenr =T
16 end

/+ cond. inc. positive evidence */
17 ifr=Tthene =¢ +1
18 end
19 Iz?([:tive = Iﬁ:tive u {p} >

20 I* =I1U{p};

Fig. 3. Linkability graph update for example attack

IV. RELATED WORK

Privacy studies [16], [17], [18], [19] started with focus on
subject identification, i.e. identifying a subject in a known set
of subjects. These studies model the attacker’s a posteriori state
by a probability density function (PDF) on the known subject
set and use information theory [20] to quantify anonymity.
They establish the ‘degree of anonymity’ as the quotient of the
a posteriori entropy and the maximum entropy. Despite their
success in capturing identifiability, quantifying (un)linkability
is left open. The successive studies [21], [15], [22], [23],
[24] take up information theory and apply it to models for
unlinkability. They use an appropriately defined equivalence
relation as a representation for an attack. Any equivalence
relation partitions the considered universe of IOIs. In case of
a successful attack, the resulting partition corresponds to the
truth. However, the attacker may conclude a wrong partition
due to lack of correct information. In essence, each partition
is concluded with a certain probability, which yields a PDF on
all possible partitions. The PDF is evaluated to the ‘degree of
unlinkability’ analogous to the ‘degree of anonymity’. These
analytical models imply the following limitations.

First, all IOIs must have an identical set of characteristics,
and characteristics differ in their values only. In the example
from [21], the characteristic named ‘filling’ is common to all
IOIs. If this is not case, the precondition for evaluation of the
equivalence relation is not met and the model is not applicable.
Our linkability model differs in this assumption and covers
heterogeneous, time-variant and disjoint sets of characteristics.

Second, an attacker is forced to conclude about an 1OI-pair
under all circumstances. This is the closed world assump-
tion. Consequently, there is no explicit notion of ignorance.
At best, ignorance is implicitly represented by a uniform
probability density function over all possible partitions. In
realistic settings, ignorance can be caused by two cases. First,
IOIs are heterogeneous in their characteristics, as opposed
to the assumptions, and an observed IOI-pair has none in
common. Second, partial knowledge contradicts the closed
world assumption. This means that distinct values of a shared
characteristic do not necessarily imply that the IOIs are truly
unlinked and the attacker decides to not conclude at all.

Further, modelling the attacker state is achieved by use of
equivalence relations, which is inappropriate for probabilistic
linkability. For example, for three 10Is a, b, ¢ the attacker may
well probabilistically conclude that @ ~ b and b ~ ¢ but
a o c. This clearly contradicts transitivity of linkability and
equivalence relations, which is also detectable by an attacker.
Such conflicts arise from partial knowledge and probabilistic
linkability, i.e. from uncertainty in general and not from our
model. We do not investigate how an attacker may resolve
such conflicts by utilising transitivity as a requirement and/or
obtained reliance in beliefs.

Our model captures the attacker’s state for probabilistic
linkability, including wrong and conflicting conclusions. We
adopt the equivalence relation approach to model the true own-
erships, which are the reference for our linkability measures.

The space and time complexities of the approaches are
important for simulative studies of dynamic systems. Any of
the above partition-based models establishes a PDF on all
possible partitions. The total number of possible partitions is
the n-th Bell number B,,, where n is the number of I0Is. The
asymptotic behaviour of the n-th Bell number is derived on
pages 102—-108 in [25] to

log B, __ log log 1
S = logn—loglogn — 14 R 4 gy +
+1 - (lalen) o (Meler) (s o0)

and shows exponential growth in n. Further, computing the
‘degree of unlinkability’ from the PDF is linear in n. Thus, the
time complexity is also exponential in n. Given today’s tech-
nology, this is still impractical for any meaningful simulative
analysis. For example, for n = 11 and one 32 bit integer per
partition, the PDF requires in the worst-case approx. 373 GB
of memory.

The authors of [26] provide an analytical framework for
validation of security and privacy properties based on the
function view concept under the open world assumption. A
function view represents the attacker’s partial knowledge. The
focus is on non-probabilistic attacks and privacy as secrecy of
relationships. The authors indicate extensibility to probabilistic
attacks. Our model addresses probabilistic linkability and
differs in the assumed attacker model. In particular, we assume
that correspondent nodes are attackers.



V. CONCLUSION

We presented an attacker state model named linkability
graph that captures the results of probabilistic linkability
attacks. From this model we derived linkability measures.
We exemplified how a linkability graph can be obtained in a
simulative privacy analysis. Although our model is inspired by
previous work, it offers distinct properties. To name few: first,
the lower and upper bounds of measures correspond to well-
understood extreme cases of the linkability graph. Second,
the linkability graph is more practical in terms of space and
time complexity and enables simulative analysis of larger
settings. Third, it distinguishes between linked items owned
by one subject and by different subjects and thus separates
quantification of distinct aspects.

In future, we will validate our model in two regards.
First, we will use our implementation in simulation studies
to quantify unlinkability in as realistic as possible settings.
Second, we want to apply our model to other attacks than the
presented example. Last but not least, we aim for privacy risk
assessment, i.e. considering non-uniform impact associated
with linked partial identities.
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