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Abstract—Careful modeling of the radio channel characteris-
tics is an important issue for system level simulations. While
a number of detailed path loss, shadowing and fast fading
models can be found in literature, many of them entail large
computational efforts and hence lead to long simulation times,
or require huge amounts of memory. In this paper, we focus on
shadowing models with two-dimensional correlation properties.
We present handover performance evaluations as a use case from
which requirements to the modeling of the shadow fading are
derived. For different implementations of the shadow fading in
system level simulations, we discuss their pros and cons and
then focus on the sum of sinusoid model proposed by Cai and
Giannakis [1]. Our main contribution lies in a new frequency
sampling method to determine the coefficients of the sinusoidal
waveforms. We show that this new method, denoted as Power
Sampling Method (PSM), allows for a significant reduction of
the number of sinusoids while the correlation properties of the
shadow fading channel are preserved.

I. INTRODUCTION

Radio propagation models are an important component in
system level simulations of cellular networks. In this paper,
we focus on the modeling of the shadow fading properties of
the radio channel. Shadow fading is a spatial phenomenon
caused by large obstacles in the radio propagation paths,
such as terrain features, buildings, trees, etc. Its effect can
be characterized by a lognormally distributed variation of the
channel gain with zero mean [2], [3]. Therefore, it is also
referred to as lognormal shadowing. In a logarithmic scale,
this translates to a Gaussian normal distribution. For 3GPP
Long Term Evolution (LTE) simulations, typical values for a
macro-cell scenario are a standard deviation of 8 dB and a
correlation coefficient of 0.5 at a distance of 50m [4].

From the perspective of a moving user, shadow fading leads
to a variation of the channel gain over time. Therefore, it is of-
ten modeled as a one-dimensional function of time with certain
correlation properties for adjacent shadow fading values. A
well-known correlation model is the Gudmundson model [5],
which has been recommended by the Next Generation Mobile
Networks (NGMN) alliance for system level simulations [6].

However, a one-dimensional model does not reflect the
spatial correlation properties of the shadowing values. If a
terminal moves and thereby enters the shadow area of an
obstacle, then the signal strength of its associated base station
might decrease, which in-turn might lead to a handover to
another cell. If another terminal now comes to a very close

position, it is reasonable to expect a similar behavior. In a
one-dimensional (time-based) shadowing model, these two
terminals might experience completely different shadowing
processes, which is not realistic. The authors of [7] have
reported a significant difference for results of handover studies,
depending on whether a one-dimensional shadowing model
or a spatially correlated model is used. Among the list
of use cases for self-organizing networks published by the
NGMN [8], further problems can be identified where the
spatial correlation properties have to be taken into account.
For instance, algorithms to detect and compensate for ra-
dio coverage problems or algorithms for Neighbor Cell List
optimization in LTE will likely be based on feedback of
mobile terminals and thus require an accurate modeling of
the spatial characteristics of the shadow fading processes.
Using spatially-correlated shadowing models however involves
computationally complex calculations and can significantly
increase simulation time. If traces are used to speed up the
actual simulation, memory requirements can become a limiting
factor.

The remainder of the paper is organized as follows: In
section II, we briefly discuss different implementation pos-
sibilities of spatially correlated shadowing models for system
level simulations. We then present system level simulations
of handover performance as a use case, which shows how
the implementation of the shadow fading can impact the
channel measurements. The requirements derived from this
use case favor an implementation of the shadow fading as
a continuous process. Therefore, in section III, we briefly
summarize the sum of sinusoids (SoS) model proposed by
Cai and Giannakis [1]. Our main contribution is contained
in section IV, where we present a new method to determine
the parameters of the SoS model. This method allows for a
significant reduction of the number of sinusoids and hence
reduces computation time. Finally, in section V, we quantify
this reduction and show that the correlation properties of the
shadowing values are preserved.

II. IMPLEMENTATION ASPECTS OF SHADOW FADING

MODELS

On the way from the shadow fading’s abstract representation
as a stochastic process to a computer executable program,
the main issues are the compliance of the computer program



with its abstract model, the availability of computing resources
as memory or processing power, and the ease of use of the
generated program.

A. Shadow fading models for system level simulations

In principle, there are two different models for the imple-
mentation of spatial correlated shadowing into a simulation,
the matrix model and the SoS model. In the matrix model,
e.g. as proposed in [9], a map or grid of shadowing values
with a given resolution is generated. The grid values are
the result of a two-dimensional convolution of a matrix of
independent identical distributed random variables and another
matrix containing the auto-correlation coefficients, such that
the resulting matrix exhibits the desired correlation proper-
ties. In a multi-site scenario, usually one shadowing map is
generated per base station, to account for their different (but
correlated) shadowing properties. As it will be shown in the
next section, the resolution of these maps has to be carefully
selected. On the one hand, a coarse grid might not provide
sufficient accuracy. Furthermore, there are undesired effects
due to discontinuities at the borders of the grid elements.
Interpolation is difficult because it changes the correlation
properties. On the other hand, the memory requirements of
a very fine grid might not be feasible anymore.

In the SoS model, the correlated Gaussian random variables
are generated by summation of a finite number of sinusoids
of different frequencies, amplitudes and phases [1]. The
computational cost of this model is high. Depending on the
requirements of the application, it requires a large number of
sinusoids (around 1000 according to [1], [7]) to be calculated
and summed up for the calculation of each shadow fading
value. Its main advantage is the continuous representation of
the stochastic process and its ease of use.

As it has been suggested by [7], the computational complex-
ity of the SoS model might be overcome if traces are used.
This is based on the assumption that the simulation can be split
up into two phases, and that the second phase is executed more
often than the first. The first phase monitors the movement of
the mobiles in the simulation area and records the shadowing
values towards all base stations. In the second phase, the traces
are replayed and provide the position of the user together with
its shadow fading values. The drawback of this approach is that
the traces need to be recalculated every time the placement of
the users, their mobility parameters or another relevant system
parameter changes.

In the main part of this paper, we will therefore focus on
the SoS model and assume that traces are not used. Our goal
is to decrease the computational effort by a reduction of the
number of sinusoids.

B. Effects of grid-based models on channel measurements

This section illustrates the influence of a grid-based shadow
fading implementation on the signal of the simulated channel
and relates it to handover performance.

The channel model is composed of pathloss, shadow fading
and fast fading, with shadow fading being modelled as a
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1D process with a standard deviation of σ = 10dB and a
decorrelation distance dc = 20m, as described in [3] (section
D.4). The subcomponents of the named model are sampled
individually at a basic time step of 50ms. The signal Sw/o is
calculated for each sample by adding its associated pathloss,
shadow fading and fast fading values and subtracting their sum
from the transmission power, which is assumed to be 46dBm.
The effect of a mobile moving through a grid of shadow
fading values is modeled by extending the update interval of
the shadow fading to the grid points. For a mobile moving
at a speed of 3km/h and a grid with a sampling distance
of 1m, this means an update interval of 1.2s for shadowing
value. In simulations, it is common that a signal is not only
calculated at the times defined by the sampling distance, but
also in between; i.e. interpolation is required here.

Figure 1 shows the behaviour of the standardized ideal 1D
process [3] [5], Sw/o, the measured signal with sample-and-
hold interpolation, Ssh, and the measured signal for linear in-
terpolation, Slin. All signals are shown for sampling intervals
of 1.2s and 3.6s; i.e. a sampling distance of 1m and 3m. In
Fig. 1, deviations of the measured signal of more than 2dB for
the 1m grid and more than 4dB for the 3m grid from Sw/o

can be observed. In addition, Sw/o also shows the highest
dynamics. As the handover procedure usually selects a server
for a mobile based on the strongest received signal and due
to the observed effect of the sampling interval on the signal,
an impact on the handover performance is expected.

III. SUM OF SINUSOIDS MODEL

In this section we summarize the SoS model presented
in [1]. A stationary ergodic stochastic process s(x, y) is char-
acterized by its auto-correlation function (ACF). In the SoS
model the sinusoids are selected from the Fourier transform
of the ACF. The summation of a finite number of sinusoids
N yields an approximation of s(x, y), which can be given to



ŝ(x, y) =
N∑

n=1

cn cos(2π(fx,n · x + fy,n · y) + θn) (1)

Here, cn are the amplitudes of these sinusoids. fx,n and fy,n

are the spatial frequencies, and θn are uniformly distributed
random variables over [0, 2π).

In [1], three different sampling methods to determine the
amplitudes and spatial frequencies have been proposed, among
which the Monte Carlo Method (MCM) yields the highest ac-
curacy. MCM introduces a certain randomness in the selection
of the parameters of the sinusoids. The spatial frequencies fx

and fy are now rewritten to

fx = fr cos(ξ), fy = fr sin(ξ), (2)

where ξ is a uniformly distributed random variable in
[−π/2, π/2). The spatial frequencies fr are replaced by a
random variable Fr with the cumulative distribution function:

CDFFr
(fr) = 1 − a√

a2 + 4π2f2
r

(3)

Here, a is an environment dependent constant. It is derived
from the decorrelation distance dc and it is calculated as
ln(2)/dc. The decorrelation distance denotes the distance
at which the value of the auto-correlation function of the
stochastic process drops to 0.5. By inverting CDFFr

, the fr

are generated as:

fr = CDF−1
Fr

(u) = a/2π

√
1

(1 − u)2
− 1 (4)

where u is uniformly distributed over the range [0, 1). The
amplitudes {cn}N

n=1 of (1) are all equal to
√

2/N .

IV. POWER SAMPLING METHOD

In the SoS model, it is up to the user to select the number
of sinusoids N , which influences both, the accuracy and the
computational cost of the implementation. Since the cn values
are constant, the performance of the generated channel mainly
depends on the selection of the spatial frequencies fx and fy ,
respectively fr. In MCM, the spatial frequencies fr are chosen
by random. For a large number of N , the empirical CDF
constructed from the set {fr}N

n=1 converges to the CDFFr
in

(3). As stated by [1], [7], the number of sinusoid N required
to achieve satisfying correlation properties is more than 1000.
This leads to a significant computational effort.

We will show that if the parameters of the sinusoids are
carefully selected, N can be reduced. We denote this new
selection method as the Power Sampling Method (PSM). The
key idea of PSM is that, in contrast to the MCM, the spatial
frequencies fr are not chosen by random but derived from the
power spectrum of the theoretical stochastic process s(x, y).
The details of the PSM are described in the following sections.

A. Representation of ŝ(x, y) in terms of power

The average power of a given periodic signal x(t) with
period T0 can be expressed as:

Px = 1/T0

∫ +T0/2

−T0/2

x2(t)dt (5)

If x(t) is represented as a Fourier series expansion, then, ac-
cording to Parseval’s theorem, the power Px can be calculated
by the summation of the powers of all sinusoids [10]. The av-
erage normalized power of each sinusoid s(t) = A cos(2πft)
with period Ts and amplitude A is:

Ps = 1/Ts

∫ +Ts/2

−Ts/2

A2 cos2(2πft)dt = A2/2 (6)

Therefore, by just knowing the amplitudes of the sinusoids,
the power of a signal that is represented by a Fourier series
expansion can be calculated. It can also be shown that the
power of x(t) at a given frequency value f can be found by
calculating the power of the sinusoids with frequency f .

If equation (1) for ŝ(x, y) is rewritten with the help of (2)
in terms of fr,n, a similar approach can be developed:

ŝ(x, y) =
N∑

n=1

cn cos(2πfr,n(cos(ξn)x + sin(ξn)y) + θn) (7)

The term (cos(ξn)x + sin(ξn)y) translates into a distance,
which is independent of ξn and equation (7) can be interpreted
as the Fourier series expansion of ŝ(x, y) with the fr,n as the
frequencies and the cn as the amplitude values.

Since the amplitudes cn are constant, each sinusoid has a
power of c2

n/2. Hence, it is possible to plot the cumulative
power of ŝ(x, y) as a function of fr,n. Keeping this idea in
mind, it can be argued that the CDFFr

of (3) is the same as
the function of the normalized cumulative power of s(x, y) as
a function of fr. As a result, the power of ŝ(x, y) with respect
to fr can be given to:

Gs(fr) = 1 − a√
a2 + 4π2f2

r

(8)

where Gs(fr) is the theoretical CDF of the average power of
s(x, y) from 0 to fr. A plot of this function for a decorrelation
distance of 20m is given in Fig. 2.

This argument is supported by the analysis of a channel
generated according to the MCM of [1]. As an example, if a
channel is generated from 1000 sinusoids with a decorrelation
distance of 20m, according to (3), half of the fr,n values
should be smaller than 0.0096. The cn values of all sinusoids
are equal to

√
2/1000 and every sinusoid thus has the same

power of 1/1000. According to (8), half of the total power of
s(x, y) is then located in the frequency range below 0.0096.

In order to get a good approximation of the stochastic
process s(x, y), it can be concluded that the normalized
cumulative power that is calculated from the selected fr,n

values, denoted as Gŝ(fr), should approximate Gs(fr).



Fig. 2. Normalized cumulative power distribution Gs(fr)
Fig. 3. Approximation of Gs(fr) in the PSM

B. Relation between fr,n and cn

Figure 2 shows the function Gs(fr) for a decorrelation
distance of 20m. Gs(fr1) is the value of the power of s(x, y)
obtained by the total power of sinusoids whose fr,n values are
smaller than fr1. Accordingly, the power of s(x, y) over the
region [fr1, fr2) is:

Δpow = Gs(fr2) − Gs(fr1) (9)

If the fr,n values of the sinusoids that constitute ŝ(x, y)
are generated in a way that there is only one fr value in the
region [fr1, fr2), then its amplitude cn should be chosen to
match the overall power in this region. Using equations (6)
and (9), the amplitude cn of the corresponding sinusoid can
thus be calculated to

cn =
√

2 · Δpow (10)

In our previous example, if the fr,n variables are generated
in a way that there is only one fr value in the region
[0,0.0096), then the power of the sinusoid will be:

Δpow = Gs(0.0096) − Gs(0) = 0.5 (11)

Therefore, the cn of the corresponding sinusoid should be
adapted in a way that its power equals 0.5. Consequently,
according to (10), its amplitude has to be chosen to cn = 1.

C. New approach to the selection of fr,n and cn

In order to obtain better performance, the fr,n and cn

values of the sinusoids should be calculated in a way that
the error between the Gŝ(fr) of the generated sinusoids and
the thoretical Gs(fr) becomes minimal. First, the codomain
of Gs(fr) is divided into N equidistant intervals, where N
is the number of sinusoids that shall be used to approximate
s(x, y). The size of the interval determines the power Δpow
of the corresponding sinusoids. The amplitudes cn can then be
calculated from Δpowi using (10). Second, the fr,n values of
the sinusoids are chosen to be at the center of each interval.

Figure 3 illustrates the selection of the fr,n and cn values
according to our PSM.

As an example, we conducted simulations with 200 sinu-
soids, with fr,n and cn values calculated as follows: The
codomain of Gs(fr) is divided into 200 equal parts, that
means each sinusoid has a power value of Δpowi = 1/200.
cn is calculated using (10). As we know the starting and
end values of each region that are Gs(fr,LowerBound) and
Gs(fr,UpperBound) respectively, we can find the corresponding
fr,n of the region using the inverse of the equation (8) as
G−1

s ((Gs(fr,LowerBound) + Gs(fr,UpperBound))/2).

V. NUMERICAL RESULTS

In this section, the computational effort and the accuracy of
MCM and PSM are compared.

The comparison of the computational effort is straightfor-
ward - it directly depends on the number of sinusoids that need
to be calculated to determine the shadowing value at a given
position. In a simple simulation the signal-to-interference ratio
of a mobile moving for one hour with 3km/h through an area
defined by 19 hexagonally shaped cells was calculated every
200ms. 20 shadowing values were calculated at each position
update of the mobile - one per cell and a common value to
correlate the shadowing of all cells. We measured an execution
time of 799s for the MCM with 1058 sinusoids and 141s for
PSM with 200 sinusoids on an Intel E5420 processor with
optimized g++ compiler settings (-g0 -O3). These values are
in line with our expectations.

The accuracy of the implementation is judged by compari-
son to the performance of the defining stochastic process’ ACF,
i.e. the theoretical ACF. Here, the correlation model of [5] will
serve as a reference.

There are two cases to distinguish: short- and long distances.
For long distances, a good compliance within about two times
the decorrelation distance is considered sufficient for system
level simulations. Towards the other end of the scale, the
minimum required distance can be calculated from the user’s
speed and the system’s minimum time interval. Typical values
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for LTE system level simulations are a user speed of 3km/h
and a system time step of 1ms, i.e. the minimum distance is
8.3e-4 m. Of course, these values have to be adapted according
to the given simulation environment.

All examples given in this section assume a decorrelation
distance dc of 20m. The examples using the MCM are
generated using Matlab as described in [1]. The parameters
of PSM are selected as described in subsection IV-C.

Figure 4 shows the one-dimensional ACF of both, the
PSM and the reference ACF. Over the entire range shown
in the diagram, a good correspondence between both can be
observed.

In order to assess the deviation of the implementations from
the reference process more systematically, the mean squared
error between the generated process’ ACF and the reference
ACF is used. Figure 5 compares the mean squared error for the
different implementation methods and number of sinusoids.
The diagram shows that the error of MCM with 1058 sinusoids
and PSM with 200 sinusoids is comparable, whereas the error
of the MCM with only 200 sinusoids is much higher.

Concluding, it can be stated that the implementation of
PSM achieves a similar accuracy as MCM, but allows for
a reduction of the number of sinusoids by a factor of five.
Due to the lower number of sinusoids, this directly results in
a five times lower computation time for the shadowing values.
As an example, in our system level simulations for handover
performance studies, by using PSM we achieved a speed up
of the overall simulation time by a factor of about two.

VI. CONCLUSION

We have presented the Power Sampling Method (PSM) for
the parametrization of the well established sum-of-sinusoids
model for the implementation of a spatially correlated shadow
fading channel. In comparison to the parameter selection using
the Monte-Carlo Method (MCM) that was proposed in [1],

this new method significantly reduces the required number
of sinusoids and hence also the computational complexity.
This is achieved by a selection of the spatial frequencies and
amplitudes of the sinusoids according to the power profile of
the stochastic process.

In the example presented in the numerical results section, a
clear performance gain is shown by achieving the same level
of accuracy with the use of less number of sinosuids in PSM
method as compared to MCM method.
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