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Abstract. Base stations experiencing hardware or software failures have
negative impact on network performance and customer satisfaction. The
timely detection of such so-called outage or sleeping cells can be a dif-
ficult and costly task, depending on the type of the error. As a first
step towards self-healing capabilities of mobile communication networks,
operators have formulated a need for an automated cell outage detec-
tion. This paper presents and evaluates a novel cell outage detection
algorithm, which is based on the neighbor cell list reporting of mobile
terminals. Using statistical classification techniques as well as a manu-
ally designed heuristic, the algorithm is able to detect most of the outage
situations in our simulations.

1 Introduction

1.1 Self-Organizing Networks

The configuration, operation and maintenance of mobile communication net-
works becomes increasingly complex, due to a number of different reasons. First,
the continuous demand for bandwidth and coverage, driven by more and more
widespread mobile Internet usage and new applications, urges operators to up-
grade their backhaul networks and invest in new backhaul and air interface
technologies. These need to be integrated into an existing infrastructure, which
increases heterogeneity and in-turn complicates the management of these net-
works. Second, more sophisticated algorithms are implemented at the radio layers
to exploit various physical effects of a wireless communications channel in order
to increase system capacity. Third, more and more optimizations are conducted
at cell-individual level to better exploit the particularities of a site. Given that
nowadays, UMTS networks provide around 105 operator-configurable parame-
ters [1], manual optimization already is a tedious and costly task.

Facing the challenge of increasingly complex network management, operators
are at the same time under a tremendous cost pressure, driven by a strong com-
petition among existing players and new entrants to the mobile communications
sector. In this situation, the ability to efficiently manage their internal resources



and the ability to cut down capital and operational expenditure becomes a com-
petitive edge.

These constraints currently foster a trend towards a higher degree of automa-
tion in mobile communication networks. Under the term Self-Organizing Net-
works (SON), the Next Generation Mobile Networks (NGMN) alliance has pub-
lished a set of use cases for the application of self-configuration, self-optimization
and self-healing concepts in deployment, planning and maintenance of mobile
communication networks [2, 3]. The 3GPP has also recognized the need for more
automation and cognitive functions in future wireless networks and has there-
fore started to work on concepts, requirements and solutions [4, 5] In addition,
research projects are underway to develop solutions to these requirements [6, 7].

1.2 SON Use Case: Cell Outage Detection

One of the SON use cases listed in [3] concerns the automated detection of cells in
an outage condition, i.e. cells which are not operating properly. The reasons for
the erroneous behavior of an outage cell, often also denoted as sleeping cell, are
manifold. Possible failure cases include hardware and software failures, external
failures such as power supply or network connectivity, or even misconfiguration.
Consequently, the corresponding observable failure indications are diverse, too.
Indications can be abnormal handover rates, forced call terminations, decreased
cell capacity or atypical cell load variations. While some cell outage cases are
easy to detect by Operations Support System (OSS) functions of the network
management, some may not be detected for hours or even days. Detecting those
outage cases today is usually triggered by customer complaints. Subsequently,
discovery and identification of the error involves manual analysis and quite often
requires unplanned site visits, which makes cell outage detection a costly task.

A rough classification of sleeping cells is provided in [8]. According to this,
a degraded cell still carries some traffic, but not as it would if it was fully op-
erational. A crippled cell in contrast is characterized by a severely decreased
capacity due to a significant failure of a base station component. Finally, a cata-
tonic cell does not carry any traffic and is inoperable.

In our work, we focus on the detection of a catatonic cell. More specifically,
our failure assumption is that the base station experiences a failure in one of its
high-frequency components. This might be an error of the HF amplifier, antenna
or cabling. The consequence is, that the cell is not visible anymore to users or
neighbor base stations, i.e. it does not transmit a pilot signal anymore. However,
from a network point of view, the cell appears to be empty, but still operational.
As requirements to the detection algorithm, we have decided to only use already
available measurement data and to avoid the need for new sensor equipment or
the introduction of dedicated measurement procedures. Furthermore, the algo-
rithm shall be able to reduce detection time to seconds or minutes.

While the basic idea and some preliminary results of our outage detection
technique have already been presented in [9], here a a detailed description of
the algorithm and an in-depth evaluation of its performance is provided. The



remainder of this paper is structured as follows: Section 2 presents the outage de-
tection algorithm. The evaluation methodology and system model are described
in section 3. Section 4 examines the performance of the detection algorithm and
presents simulation results. Section 5 finally summarizes and draws conclusions.

2 Cell Outage Detection Algorithm

The idea behind our outage detection algorithm is to use Neighbor Cell List
(NCL) reports to create a graph of visibility relations, where vertices of the
graph represent cells or sectors. Edges of the graph are generated according to
the received NCL reports, where an edge weight determines the number of mobile
terminals that have reported a certain neighbor relation. More details on how
the graph is constructed will be given in section 2.1.

Neighbor Cell List reports are always generated during active connections,
when mobile terminals continuously measure the signal strength and quality of
the radio channel of the cell it is currently connected to. They also measure the
signals of several neighbor cells, which constitute candidate cells for potential
handovers. These measurements are transmitted to the current cell to decide
whether a handover might have to be performed. In GSM, for example, a termi-
nal in an ongoing connection measures up to 16 base stations within its visibility
range and sends NCL reports at 480 ms intervals, containing the best 6 mea-
surement results [10]. The NCL reports of different terminals are retrieved by a
subordinated network entity, e.g. a radio network controller in UMTS, respec-
tively a base station controller in GSM. While measurement reporting details
differ from GSM to UMTS or LTE, we only assume that lists of neighbor cells
are reported at regular intervals, which can be realized in all the different radio
access technologies.

2.1 Monitoring the Visibility Graph

Monitoring changes in the visibility graph is a key element of our detection
algorithm. The visibility graph is created at regular intervals and any unusual
variations of the graph might indicate a cell outage. Figure 1 depicts examples
of such a graph. Comparing two successive graphs G(t1) and G(t1 + T ), the
detection algorithm is sensitive towards any nodes becoming isolated in G(t1+T ),
in which case a so-called change pattern is created.

In Fig. 1(a), a mobile terminal UEA is currently being served by sector 2,
while UEB is in an active connection currently being handled by sector 3. The
visibility range of both mobiles in this simplified example is denoted as a circle
around their respective positions. Thus, the NCL report of UEA contains cell 2
as the currently serving cell and cells 1 and 3, which are neighbor cells within
its visibility range. The NCL report of UEB is constructed accordingly. In the
resulting visibility graph, the NCL report of UEA now leads to the two directed
edges (blue) originating from node 2 to the nodes 1 and 3. Analogously, the
NCL report of UEB results into the two edges (red) originating from node 3.



(a) G(t1): Initial state (b) G(t1 + T ): NCL change

(c) G(t1 + T ): Call end (d) G(t1 + T ): Outage case

Fig. 1. Visibility Graph examples with two terminals being served by cells 2, respec-
tively 3

Every edge in the graph has a certain weight, representing the number of UEs
which have reported a neighbor relation between a pair of cells. In the example
in Fig. 1, all edge weights equal one and are therefore not shown.

During normal operation of the network, the visibility graph is subject to
frequent changes, caused by starting and ending calls, user mobility, changes in
radio propagation and changes in the NCL reporting itself. Figures 1(b) and 1(c)
show typical examples of graph variations. In Fig. 1(b), UEB has changed its
position such that cell 2 is no longer in its visibility range. The corresponding
NCL reports are depicted on the right hand side of Fig. 1(b), together with
the resulting topology of the visibility graph. Another variation of the graph is
depicted in Fig. 1(c), where UEB has terminated its connection and does not
send NCL reports anymore. Consequently, the visibility graph now only contains
the neighbor relations reported by UEA.

Figure 1(d) finally depicts the resulting visibility graph if cell 3 experiences
a failure and becomes catatonic. The NCL reports of UEB are not received
anymore. At the same time, cell 3 disappears from the candidate set of UEA.
The resulting graph now only contains a single edge from node 2 to node 1. Note
that every outage situation results into an isolated node in the visibility graph.

Figure 1(d) shows the change pattern of the graph variation compared to the
initial state of the graph in Fig. 1(a). A change pattern is a 7-tuple with the
following attributes, that is created for every isolated node:

– number of disappeared edges to the isolated node
– number of disappeared edges from the isolated node



– sum of the edge weights to the isolated node
– sum of the edge weights from the isolated node
– number of UEs of which no reports are received anymore
– number of UEs with changed neighbor cell list reports
– load as sum of the number of active calls of the direct neighbor cells

The respective elements of the 7-tuple are the features or input parameters of
the classification step described in the following section 2.2.

The change patterns that are created when nodes become isolated are not
necessarily unique. In the sample scenario in Fig. 1, the same pattern would
have been created if a movement of UEA and the end of a connection of UEB

occurred within a single monitoring interval. Thus, an isolated node pattern in
the visibility graph is a necessary condition for an outage situation, but not a
sufficient one. However, our assumption is that cell outages create characteristic
change patterns which, in many cases, can be distinguished from normal fluctu-
ations of the visibility graph. The outage detection problem thus translates into
a classification problem on change patterns of the visibility graph.

2.2 Outage Detection as a Binary Classification Problem

The classification of a set of items is the assignment of similar items to one out
of several distinct categories. The task of separating change patterns into outage
and non-outage situations can be regarded as a binary classification problem
with a set of predefined classes.

Classification algorithms are widely used in the field of automatic pattern
recognition [11]. A classifier can either be knowledge-based (e.g., expert systems,
neural networks, genetic algorithms) or make use of mathematical techniques
from multivariate statistics (e.g. cluster analysis, classification and regression
trees). We applied three different classification techniques, a manually designed
expert system and two others using statistical classification techniques. In sta-
tistical classification, the n-dimensional tuple space is separated according to
statistical measures, which allows to automatically construct a classifier from a
given training set of patterns. A large number of statistical methods exist to
infer the classification rules, of which an iterative decision-tree algorithm and a
linear discriminant analysis have been applied here and will be further detailed
in the following:

Expert System. From the class of knowledge-based classifiers, an expert sys-
tem has been applied to the outage detection problem. A set of rules has been
manually constructed, based on the observation of the change patterns of the
visibility graph. The rules are expressed as a sequence of if . . . then statements,
with threshold values tailored to our evaluation scenario. The expert system has
been designed such that it performs a conservative classification, i.e., the number
of false alarms shall be minimized.

Decision-Tree (DT). A tree of binary decisions on the attributes of the re-
spective patterns is automatically created from a training set. The decision about
when to split into separate branches is thereby determined by the Gini impurity



function, which is used by the classification and regression tree (CART) algo-
rithm [12]. Similar to the expert system, the outcome of the DT algorithm can
be regarded as a sequence of if . . . then statements, with the difference that now
these rules are being determined automatically.

Linear-Discriminant Function (LDF). The LDF classifier belongs to the class
of linear classification algorithms. The discriminant function is a linear combi-
nation of the pattern’s attributes, whose coefficients are determined from the
training set using a least square estimation [13].

Fig. 2. SINR without outage Fig. 3. SINR in outage case

3 Evaluation Methodology

The performance evaluation of the cell outage detection algorithm involves sev-
eral steps. First, a system-level simulation of a multiple sites scenario is run
several times for a duration of 100.000 s without any outage situation, in order
to collect change patterns from the normal operation of the network. Second,
a Monte Carlo-like simulation is performed to collect change patterns for cases
where a cell becomes catatonic. For each of the 3000 drops of this Monte Carlo-
like simulation, mobile terminals were positioned randomly and the change pat-
terns are obtained immediately after a cell sector is configured to be in an outage
state. Finally, a training set and a test set is constructed from the collected pat-
terns and fed to the classification algorithms. For the statistical classification,
the LSS Classification Toolbox in its default parametrization is used [14]. The
system-level simulations have been conducted with the event-driven IKR Simlib
simulation library [15].

The scenario used in the event-driven simulations consists of 19 sites, respec-
tively 57 cells, with a base station distance of 1000m. The system was modeled
as an FDM system with a maximum capacity of 20 simultaneously active calls
per cell. A fractional frequency reuse is assumed with half the capacity reserved
for the re-use 1 region in the cell center and the remaining capacity distributed



over the re-use 3 regions at the cell border. Inter-cell interference is considered
as proportional to the actual load in the corresponding re-use areas of neigh-
bor cells. The Walfish-Ikegami model (non-LOS) determines the path loss and
spatially correlated shadowing planes similar to [16] are used. A global shadow-
ing plane models the influence of buildings and other common obstructions to
radio propagation, while local shadowing planes for each base station account
for the different antenna locations. The 3-sector antenna pattern corresponds
to [17]. A handover algorithm is implemented which is sensitive towards SINR
and RSSI (Received Signal Strength Indicator) values. The measurement report-
ing of neighbor cell lists is assumed to be GSM-like with a reporting period of
480 ms, which in our setting corresponds to the graph update period. Further
parameters are given in Table 1. SINR plots extracted from the simulation for
an outage and a non-outage case for an average cell load of 25% are given in
Figures 2 and 3, respectively.

Table 1. Scenario and simulation parameters

Parameter Value

Base station distance 1000m
Shadowing std. dev. (global) 7.0 dB
Shadowing std. dev. (local) 1.0 dB
Shadowing correlation length 50m
BS power to individual UE 35 dBm
Signal detection threshold at UE -96 dBm
Traffic model (Poisson arrivals) λ = 1

100 s

Call holding time (neg.-exp.) h = 35 s
User movement Random Direction
User speed v = 1− 5m

s

Segment length (uniform) l = 20− 800m
Direction angle (uniform) 0− 360

4 Analysis and Results

4.1 Outage Observability

The quality of the outage detection is largely determined by the performance
of the classification algorithm. However, even with perfect classification, some
outage cases might still not be detected. In particular in low load situations
when user density is scarce, a cell might not serve any users and might not be
measured by any of the UEs of the surrounding cells. A cell outages thus does
not result into changes of the visibility graph. In this case, the outage would not
be detectable at all.
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Figure 4 depicts the upper bound of detectable outages for the evaluation
scenario. The black solid line denotes the ratio of detectable outages over the
average number of active connections per cell. It can be seen that in low load
conditions, a large proportion of the cell outages have no representation in the
visibility graph. Starting from an average 1.6 active connections per sector, which
in our setup corresponds to a cell load of 10%, already more than 95% of the
outages can theoretically be detected. As outlined in section 2.1, outages do not
necessarily create unique change patterns because normal fluctuations of the
visibility graph might lead to the exact same patterns. The dashed red curve
denotes the proportion of patterns uniquely identifying a cell outage. This gives
a reference value which constitutes the performance achievable by a hypothet-
ical look-up table based detection algorithm, assuming that all possible outage
patterns are known in advance.

4.2 Classification Quality

The quality of a classification algorithm is characterized by the so-called confu-
sion matrix (see Fig. 5).

True Positive. A TP denotes the case that an outage (i.e. a cell becomes
catatonic) has occurred and it has been successfully detected.

False Negative. A FN denotes the case that an outage has occurred, but it
has not been detected.

False Positive. A FP occurs, when there is no catatonic cell but the detection
algorithm nevertheless reports an outage.

True Negative. A TN is when there is no outage and the algorithm correctly
recognizes the change pattern as normal fluctuation of the visibility graph.

TP , FN , FP , and TN denote the total numbers of occurrences for these four
cases in a simulation run. From the confusion matrix, a number of metrics can
be derived. On the one hand, the Sensitivity or True-Positive-Rate RTP denotes



whether a classifier is able to correctly detect the outage patterns from the set
of all patterns:

RTP =
TP

TP + FN
(1)

On the other hand, the Fall-out or False-Positive-Rate RFP gives the ten-
dency of a classification algorithm to create false alarms:

RFP =
FP

FP + TN
(2)

Achieving a high sensitivity generally comes with an increase in the rate of
false alarms. The two metrics can therefore be regarded as complementary. A
so-called Receiver-Operating-Characteristics (ROC) plot is a way to visualize the
performance of binary classification algorithms regarding these two metrics and
is primarily used in signal detection theory [18]. In a ROC plot, the sensitivity
is drawn over the false-positive-rate. A perfect classification would thus result in
a mark in the upper left corner of the plot. The line through the origin gives the
reference values for a random decision, where each of the classes is chosen with
probability one half.
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Figure 6 shows a ROC plot of the classification algorithms applied here,
for the range of cell load values also used in the other figures. After having
been trained with a training set, the classifiers had to determine the correct
mapping for test sets, where each of the patterns is tested only once. In doing
so, Fig. 6 is independent of the frequency of occurrence of the different patterns
in the outage detection scenario. It thus solely gives the performance of the
classification algorithms, which is not identical to the resulting performance of
the outage detection algorithm. It can be observed that the Expert System and
the Decision Tree classifiers are able to achieve a high sensitivity, especially for
higher load scenarios, which is consistent with the results from Fig. 4. The Expert



System has been designed to perform a conservative detection. In other words,
the Expert System is more likely to indicate False Negatives than False Positives.
Compared to this, the DT classifier is characterized by a much higher risk to
create false alarms. Finally, the LDF classifier has high false alarm probability
and, in contrast to the other algorithms, does not show any improvement with
increasing system load.
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Fig. 7. Sensitivity of the classification al-
gorithms
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4.3 Outage Detection Performance

In order to determine the performance of the outage detection algorithm, not
only the classification quality, but also the problem-specific frequency of occur-
rence of the patterns has to be taken into account. A wrong classification of
frequently occurring patterns could significantly deteriorate the suitability of
the classification algorithms to the outage detection problem, whereas a classifi-
cation error for rare patterns does not have much influence. Figure 7 depicts the
sensitivity of the classification algorithm with respect to the observability bound
presented in Fig. 4. It thus gives a measure of the proportion of outages that can
be detected with the approach presented here. Using the statistical classifiers,
sensitivity is close to the maximum achievable sensitivity. The Expert System
only attains moderate sensitivity due to its conservative decision rules.

Finally, Fig. 8 depicts the fall-out risk per cell in terms of the mean time
between false alarms. Only the statistical classifiers are shown, given that the
Expert System did not produce any false positive classifications over the whole
monitoring period. For lower load, overall sensitivity is low and therefore the
risk of rising false alarms also is lower than in the middle range of the curves
in Fig. 8. However, a mean time between false alarms of only several tens or
hundreds of hours would already result into several false alarms per cell being
raised within a single week. Even though the applied classification algorithms



here provide means to mitigate this problem by giving higher penalty to false
positive classification, the results do not differ significantly. An example is shown
in Figures 7 and 8 for a modified decision tree classifier (denoted as DT∗), which
has given a ten times higher penalty for false positive classifications.

4.4 Discussion

From the previous subsections, it can be summarized that although the sta-
tistical classifiers show an overall good detection sensitivity, tendency towards
generation of false alarms is still far too high for practical applications. This
is mainly due to the partly ambiguous change patterns and the non-linearity
of the problem. The expert system achieves much better performance here, but
generally suffers from the need to manually tune its threshold parameters to the
scenario under investigation. These observations motivate further work, employ-
ing more flexible classification algorithms such as fuzzy classifiers or Support
Vector Machines [19].

From a network operation point of view, a detection algorithm as described
here can be applied to whole or parts of a network. That is, collection of NCL
reports and its interpretation can be done in an RNC or BSC, without the need
for additional signaling. For LTE, the scope of a single eNodeB is too small and
a master eNodeB or another management device would have to monitor the
visibility graph. Although this results in additional signaling, the NCL reports
of each terminal in a cell can be aggregated by the eNodeB over one monitoring
period, which results in one signaling message per monitoring interval being sent
to the respective management device.

5 Conclusion

Automated detection of base station failures or sleeping cells is a prerequisite
for future self-healing capabilities in mobile communication networks. The de-
tection of some failure conditions still imposes a challenge to network operators
and demands for additional means to observe base station behavior from the out-
side. An algorithmic detection without the need for additional sensor equipment
thereby represents the most cost effective way of improving outage detection
capabilities in existing networks.

The presented approach of using neighbor cell measurement reports of mobile
terminals to determine outage situation showed good performance, even in mod-
erate cell load conditions. However, the relatively high risk of false alarms still
prevents from practical application. Although the algorithm is able to quickly
detect a large proportion of the outages in a certain cell load range, it has been
shown that there is no possibility to detect outages when no active users are close
to the respective cell. In this case, the presented algorithm may be combined with
other detection mechanisms operating on a longer time scale.
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