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Abstract—High speed Internet routers and switches require
fast packet buffer to hold packets during times of congestion.
These buffers usually use a memory hierarchy that consist of
expensive but fast SRAM and cheap but slow DRAM to meet
both, speed and capacity requirements. A challenge building these
packet buffers is to provide deterministic bandwidth guarantee
under any traffic condition. We propose a novel hybrid packet
buffer architecture with parallel DRAMs. Our approach reduces
the amount of required SRAM compared to state-of-the-art
architectures significantly, e. g., the tail SRAM by 47% for a
100Gbps line card using DDR3 SDRAM. Our architecture also
applies packet aggregation and thereby minimizes the required
DRAM and SRAM bandwidth and eliminates fragmentation. We
are currently implementing the architecture on an FPGA and
provide first results.

I. INTRODUCTION

Internet routers and switches need buffers to store packets in

case of congestion, e. g., when an output port is currently busy

transmitting another packet. With ever increasing line rates

packet buffers are becoming major bottlenecks in high speed

routers and therefore significantly impact their performance.

Packet buffers are typically located on the individual line

cards of the router, each maintaining several first-in-first-out

(FIFO) queues. E. g., a packet buffer on an input line card

maintains number of service classes times number of output

ports separate FIFO queues (virtual output queues, VOQ). The

number of VOQs common today is in the order of hundreds

to thousands [1]. All data of one queue belongs to one flow.

In the following, the queues maintained by a packet buffer are

named flow queues.

In the following, we address the packet buffer requirements

and the available memory technologies to meet these. Then

we introduce the state-of-the-art hybrid memory approach to

build packet buffers, before we outline our contribution.

A. Packet Buffer Requirements

A packet buffer has to satisfy requirements concerning three

major properties: bandwidth, capacity, and random access

time.

Bandwidth – The packet buffer has to both, store and

retrieve packets at line rate. Therefore, the minimal necessary

memory bandwidth is 2R, where R is the aggregate line rate

of all ports on a line card. It is common for network nodes

to segment packets into fixed size chunks to simplify memory

management. 64 byte is a common choice as it is the first

power of two able to hold a minimal Ethernet or IP packet.

Nevertheless, in the worst-case the packet buffer must sustain

a stream of 65 byte packets, which all consume two 64 byte

chunks, leaving the second nearly empty. This is called the

65-byte-problem [1]. Because of this, memory bandwidth is

usually over-provisioned by a factor of two, i. e. to 4R. A high

memory bandwidth can be achieved by using many memory

chips in parallel.

Capacity – It is common to use a rule-of-thumb that says,

for TCP to work well, the buffer should be dimensioned

to RTT × R, where RTT is the round trip time between

active end hosts [2]. Assuming an RTT of 200ms and a line

rate of R = 100Gbps the buffer size is 2.5Gbyte. While it

has been challenged in [2] this rule-of-thumb is still widely

used. The 65-byte-problem also affects capacity as it leads to

fragmentation. Memory capacity can also be increased by the

number of parallel operated memory chips.

Random Access Time – The random access time T (or

TRC in memory parlance) is the maximum time to write to or

read from any memory location and limits the possible number

of read/write operations. For example, as it takes 5.12 ns to

receive a 64 byte packet at 100Gbps, a stream of 64 byte

packets requires an access time of T = 2.56 ns since packets

have to be written to and read from memory.

B. Available Memory Types

Two principle types of memories can be utilized to meet the

mentioned requirements. First, static random access memory

(SRAM) has a relatively short access time (e. g., T = 3.33 ns
for QDRII-SIO SRAM), a small capacity in the range of few

MByte (e. g., 72Mbit per QDRII-SIO SRAM chip) and a very

high price per bit. Second, dynamic random access memory

(DRAM) has a long access time (e. g., T = 49 ns for a DDR3-
1600 SDRAM), a large capacity (e. g., 2048Mbit per DDR3

SDRAM chip) and a very low price per bit. This makes it very

attractive to router manufacturers. DRAMs consist of several

independent banks that can be accessed interleaved to reduce

access time. However, this allows reducing T only on average

as the unknown packet departure order may require unbalanced

access to the individual banks.

C. Hybrid SRAM/DRAM Memory Architecture

To simultaneously meet the packet buffer requirements

researchers propose a hybrid SRAM/DRAM (HSD) architec-
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ture [3]–[5]. SRAM meets the random access time and DRAM

the capacity requirement, while both meet the bandwidth

requirement. For this approach we assume that an SRAM is

available that meets the required random access time. Fig. 1

shows the basic architecture. The tail buffer (SRAM) contains

the tails of all flow queues, i. e. the packets that arrived

last. The head buffer (SRAM) contains all the heads of the

flow queues, i. e. the packets that are going to be requested

soon. The bulk memory (DRAM) in the middle holds all

the other packets in the queues. A memory management

algorithm (MMA) controls the data transfers between SRAM

and DRAM. Its challenge is to never let the tail buffer overflow

and to make sure that packets are always present in the head

buffer when needed. When the required SRAM for head and

tail buffer are small enough they can be realized on the same

chip as the MMA. This simplifies board layout and reduces

cost.

When designing a hybrid SRAM/DRAM packet buffer

like shown in Fig. 1 we have to choose between providing

statistical or deterministic bandwidth guarantee. This is a

major question, as this impacts the interface of the packet

buffer.

When bandwidth guarantee is statistical packets are occa-

sionally lost [6], [7]. This can be acceptable depending on the

system. When bandwidth guarantee is deterministic, then the

packet buffer always behaves like an SRAM under any packet

arrival and departure pattern, i. e. it delivers the requested

packets in-order after a constant read latency. This leads to

a very narrow and simple packet buffer interface, simplifying

the realization of subsequent components as they do not have

to deal with variable latencies or not delivered packets. Our

approach implements deterministic bandwidth guarantee.

The read latency is the time between issuing a read request

to the packet buffer and receiving the packet. This corresponds

to the minimum delay that a packet buffer introduces to every

packet. When a requested packet is delivered immediately,

then we have no read latency. Therefore the head SRAM has

to buffer always enough packets as there is no time to access

the DRAM. However, the necessary MMAs are not practical

for a larger number of queues [1]. In contrast, if we accept a

pipeline delay, i. e. a read latency > 0, less SRAM is required

as the MMA starts requesting packets from DRAM only after

it received a packet request. Therefore, in our approach we

assume, that a pipeline delay, i. e. a read latency > 0, is

acceptable.

D. Paper Targets and Result Summary

Our target is to design a hybrid SRAM/DRAM packet buffer

architecture with deterministic bandwidth guarantee under any

traffic condition while minimizing the required SRAM size.
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Requested packets are delivered in-order after a constant read

latency.

In this paper we propose a novel hybrid architecture with

parallel DRAMs. We prove that utilizing dynamic memory

allocation the tail buffer size can be reduced significantly. E. g.,

for a 100Gbps line card using DDR3 SDRAM we reduce tail

buffer size by 47% compared to [3], [5] and by 28% compared

to [4]. We prove also, that the read latency is equal to [3] and

is not raised for any reason.

Further, our architecture aggregates packet data per-flow.

This eliminates the 65-byte-problem and so we require no

bandwidth over-provisioning and have no fragmentation in

both, SRAM and DRAM.

We are currently implementing a prototype to work on an

FPGA and present results for the tail part.

E. Paper Organization

The rest of this paper is organized as follows. In Section II,

we introduce the state-of-the-art hybrid packet buffer architec-

tures. In Section III, we introduce our proposed architecture

including the MMAs used on head an tail side. In Section IV,

we evaluate our architecture by proving the required head

and tail buffer size as well as the read latency. Section V

presents realization results for the tail part of the architecture

and Section VI concludes the paper.

II. RELATED WORK

Three basically different HSD packet buffer architectures

have been proposed that provide deterministic bandwidth

guarantee [3]–[5]. These will be introduced in the following.

[3] initially proposes a HSD packet buffer (cf. Fig. 2) and

details it in [1]. It maintains Q FIFO flow queues and stores

the heads and tails of all queues in the corresponding buffer.

The remaining part is stored in bulk DRAM. The tail buffer

aggregates variable length packets per flow to constant size

blocks of B = 2TR byte. As only full blocks are transferred

to and from DRAM its bandwidth can be dimensioned to 2R.

The authors prove, that the required tail buffer size is Q(B −
1) byte. The smallest required head buffer is Q(B − 1) byte

if a read latency of Q(B − 1) + 1 time slots is accepted,

while they define a time slot as
1 byte

R
. The drawbacks of this

architecture are the large tail and head buffer size and that it

does not exploit bank interleaving although banks are available

in all DRAMs.
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The architecture in [4] exploits bank interleaving to reduce

tail and head buffer sizes. On the abstraction level discussed

here, the architecture is equal to that in Fig. 2. The main idea is

to decrease T by bank interleaving to reduce the block size B.

As head and tail buffer sizes and read latency are proportional

to B, they are decreased when B decreases.

The price they pay is additional effort for DRAM bank

management and heavy fragmentation of the DRAM for

special traffic patterns. In contrast to today’s DRAMs, they

assume DRAMs with several hundred banks, which do not

exist now and in near future. According to their formula, they

reduce the head and tail buffer size compared to [3] by each

26% for a realistic system with R = 100Gbps and DDR3

SDRAM (8 banks).

Finally, the authors in [5] present a parallel hybrid

SRAM/DRAM architecture and detail it in [8]. They assume

constant size blocks (packet segments) arriving to and de-

parting from the packet buffer. Fig. 3 shows its architecture

built from k parallel subsystems. Each subsystem consists of

a tail buffer (SRAM) and a DRAM. Each tail buffer holds

blocks destined to the corresponding DRAM. They do not use

a head buffer as they solve in-order delivery algorithmically.

A round robin MMA distributes blocks per-flow equally to

the k subsystems. Each subsystem provides 1
k

of the total

required bandwidth. When providing deterministic bandwidth

guarantee, the summed tail buffer size is equal to the size

in [3]. The main advantage of this architecture is that it can be

implemented distributed and that it requires no reorder buffer,

i. e. head buffer.

However, there are several drawbacks. In-order delivery of

requested packets is only guaranteed per-flow and read latency

is variable. If this is acceptable depends on the subsequent

component receiving these blocks. Further, the algorithms

proposed to achieve per-flow in-order delivery require DRAM

bandwidth over-provisioning. Finally, as they do not apply

aggregation they will face the 65-byte-problem.

Our novel architecture combines the strengths of the intro-

duced architectures and additionally decreases the tail buffer

size significantly. We utilize a tail and a head buffer in

combination with parallel DRAMs (or DRAM banks) for de-

terministic bandwidth guarantee and in-order delivery. As our

MMA accesses DRAMs in a strict deterministic way, we can

replace them by DRAM banks saving lots of data pins. With

our MMA and dynamic memory allocation in the tail buffer

packets of flow a

→

1 a1a2a32

blocks of flow a segment

Fig. 5. Packet segmentation and subsequent aggregation to blocks for one flow

our architecture requires a significantly smaller tail buffer

size. Finally, by utilizing aggregation we require no memory

bandwidth over-provisioning and eliminate fragmentation in

both, SRAM and DRAM.

III. SEMI PARALLEL HYBRID SRAM/DRAM (SPHSD)

PACKET BUFFER ARCHITECTURE

A. Architecture

Our proposed Semi Parallel Hybrid SRAM/DRAM

(SPHSD) architecture is depicted in Fig. 4. Its core consists

of k parallel DRAMs (or DRAM banks), one tail buffer and

one head buffer. Each DRAM provides 1/k of the required

bandwidth and contains Q FIFO flow queues, i. e. each logical

flow queue is spread over all k DRAMs. The packet buffer

aggregates packet data per-flow to constant size blocks. As

always full blocks are written to and read from DRAM the

total DRAM bandwidth is dimensioned to 2R, which is the

minimum possible. So each DRAM provides a bandwidth of

2R/k, i. e. R/k for reading and R/k for writing. The random

access time of a DRAM is T and so each DRAM performs one

read and one write every 2T . Access time (2T ) and bandwidth

(R/k) of a DRAM define the block size of b = 2TR/k.

Definition 1. A time slot is the time to receive a block of b byte
at line rate R.

From this follows that 2T = k time slots. In k time slots

all DRAMs together write k blocks and read k blocks.

The tail side aggregates packet data per-flow and writes it in

granularity of blocks into the DRAMs. In Fig. 4 from left to

right, the segmenter receives variable length packets, divides

them into segments and forwards them to the dispatcher. The

size of a segment is always chosen in a way that a block gets

full. In the example in Fig. 5 the first packet is segmented

into one segment of same size, while the second packet

is segmented into three segments. The dispatcher distributes

segments over k DRAM queues (one for each DRAM, cf.

Fig. 4). For each flow, each time after one DRAM queue

received segments with a total size of b byte, the dispatcher

chooses the next DRAM queue. E. g., in Fig. 5 the first two

segments are dispatched to the same DRAM queue so they

can be aggregated to block a1. ai denotes the ith block of

flow a.
The tail buffer maintains the k DRAM queues. A DRAM

queue serves two purposes. First, it holds data of non-full

blocks during aggregation. Second, it holds full blocks in case

the corresponding DRAM is temporarily overbooked. The tail

transferor transfers full blocks from the DRAM queues to the

DRAMs.

The head side receives requests from an external arbiter,

retrieves the data from DRAM and delivers the packets in-

order with constant read latency. In Fig. 4 from right to left,
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an external arbiter sends packet requests to the requester. The

requester determines the DRAMs that contain a block with a

segment of the packet. If the corresponding blocks were not

requested yet, block requests for the corresponding DRAMs

are generated and forwarded to the request buffer. The request

buffer maintains one request queue per DRAM. Its purpose

is to hold the requests in case the corresponding DRAM is

overbooked. The head transferor sends the requests from the

request buffer to DRAM and delivers the received block to the

head buffer.

The head buffer maintains the k DRAM queues, i. e. one

per DRAM. A DRAM queue in the head buffer serves two

purposes. First, it stores data until it can be delivered because

the head buffer serves as a reorder-buffer. Second, it holds

segments that were not yet requested by the arbiter. After

the constant read latency the per-flow RR requester reads the

requested segments from the head buffer and forwards them

to the reassembler which reassembles the original packets.

A side effect of aggregation is that non-full blocks are never

written to DRAM. But for flows with light traffic it may

happen, that such a block is requested by the head part but is

not available in the DRAM. A short-cut path from tail to head

buffer solves the problem.

Switch fabrics usually operate with fixed size cells. When

the packet buffer serves a switch fabric and the block size is

dimensioned equal to the cell size then the reassembler can

be omitted.

B. Dimensioning of Parallelism

The parallelism of the architecture is controlled by the value

of k. We will show in Section IV that with dynamic allocation

the tail buffer size decreases with increasing k. The block size

b = 2TR/k is inversely proportional to k. For k = 1 block

size and basic architecture are equal to those in [3].

The minimum block size is determined by the used DRAM

technology. E. g. with standard DDR3 SDRAM DIMMs (Dual

Inline Memory Module) the smallest reasonable block size is

64 byte. At a given line rate this determines the upper limit

of k, e. g., for R = 100Gbps and T = 49 ns, ⌈k⌉ = 20.
The organization overhead required for dynamic memory

allocation increases towards smaller block size. This defines

another upper limit for k.

C. Tail Round Robin Memory Management Algorithm

This section describes the round robin MMA utilized in the

tail part. The MMA consist of two components: the per-flow

round robin dispatcher and the tail transferor. Dispatcher and

transferor work independently.

Per-flow round robin dispatcher – The dispatcher dis-

tributes packet data of each flow block-wise in a round robin

manner over all k DRAMs, i. e. every kth block of each flow

is dispatched to the same DRAM. As the dispatcher actually

dispatches segments, for each flow it chooses the next DRAM

if the current already received segments with a total size of

b byte. The dispatcher completes writing b byte into the tail

buffer in one time slot. To simplify the description we will

say in the following, that the dispatcher dispatches blocks.

Further, we will call the arrival of b byte for one flow block

arrival.

Dispatching per-flow allows us to write/read blocks of each

flow to/from DRAM with line rate. This is mandatory in order

to provide deterministic bandwidth guarantee. The architec-

tures in [4], [5] also use per-flow round robin dispatching.

Fig. 6(a) shows the consecutive dispatching of blocks from a

single flow to the DRAMs.

Tail transferor – The task of the tail transferor is trivial.

It transfers full blocks from tail buffer to DRAM as fast as

possible in order to keep tail buffer occupation low. Each

DRAM completes writing a block in 2T = k time slots.

The transferor performs parallel writes to all k DRAMs if

all DRAM queues have full blocks. With full blocks in each

DRAM queue the tail buffer fill level cannot raise, as per time

slot, b byte leave and at most b byte arrive.

Fig. 6(b) shows the state of the DRAM queues after the

arrival of blocks from several flows. In the example we assume

k = 4 DRAMs and Q = 6 flows named a to f . To simplify the

example we assume that the received packets size is an integer

multiple of the block size. The blocks arrive at the tail buffer

one by one in the following order: a1, b1, b2, c1, c2, c3, c4,

c5, a2. In DRAM queues 1 and 2 blocks accumulate, as due

to the round robin dispatching these DRAMs are temporarily
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overbooked. The grey shaded area marks blocks that have

been in the queue before, but were transferred to DRAM

meanwhile. E. g., after block c4 two more blocks arrived.

During these two time slots the block c4 could be transferred

to DRAM by half, as it takes k = 4 time slots to transfer it

completely.

Lemma 1. No more than Q blocks can accumulate per DRAM

queue for Pmin ≈ 0 ≪ b, where Pmin is the minimal packet

size in byte.

Proof: Assume all Q flows have a nearly full block in

tail buffer. Then each flow receives a minimal size packet

completing aggregation of all Q blocks. If all flows are

synchronized to the round robin sequence, then all Q blocks

are in the same DRAM queue. Fig. 6(c) shows the case after

the sequential completion of the blocks a1 to f1.

The per-flow round robin dispatcher assigns every kth block

of a flow to the same DRAM queue. However, in k time

slots the transferor can remove one block from every DRAM

queue and write it to DRAM. So no more than Q blocks can

accumulate.

D. Head Round Robin Memory Management Algorithm

Our SPHSD architecture is symmetric. So a similar MMA

can be used on the head side. The per-flow round robin

requester behaves identical to the dispatcher except that it

operates on packet requests instead of packets. Therefore, also

the properties of the request queues are identical to that of

the DRAM queues on tail side. As requests are negligible in

size compared to blocks, the request buffer is not considered

further.

For the head transferor we have two options. First, the

transferor can implement a trivial algorithm and process every

packet request as soon as possible. As the head buffer acts as a

reorder buffer this maximizes the head buffer size. Second, the

transferor can behave inversely and wait before processing a

request as long as possible, while still guaranteeing a constant

read latency. With this, the head buffer has to reorder fewer

packets. Utilizing dynamic memory allocation reduces head

buffer size.

IV. EVALUATION

The two main metrics of a hybrid packet buffer are (1) the

required head and tail buffer size and (2) the read latency. In

the following the upper bound for the tail and head buffer size

as well as the read latency are derived.
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For the following proofs we will assume that the minimal

packet size Pmin that can arrive or depart from the packet

buffer is ≈ 0. This is a worst-case approximation that will

slightly raise our bounds but simplify the proofs.

A. Tail Buffer Size

Theorem 1. If the tail buffer is statically divided in k
partitions (one for each DRAM queue) the upper bound for

the tail buffer size in blocks is Qk.

Proof: We know from Lemma 1 that no more than Q
blocks can accumulate per DRAM queue. With k DRAM

queues the upper bound is Qk blocks.

This is nearly equal to the tail buffer size required in [3]

and [5]. The difference originates from the different assump-

tions for Pmin.

Due to the per-flow round robin dispatching not all DRAM

queues can be full at the same time. This allows a significant

buffer size reduction with dynamic memory allocation.

Theorem 2. If dynamically allocated, the upper bound for the

tail buffer size in blocks is

Q
(k + 1)

2

Proof: We assume that packets arrive at the packet buffer

continuously with full line rate R. This represents the worst-

case if we want to show that the buffer size is bounded. The

proof consists of four steps leading to Lemma 2, 3, 4 and 5.

We make the following observation: as long as any DRAM

is idle because its DRAM queue contains no full blocks, tail

buffer size will grow. The worst-case traffic pattern maximizes

DRAM idle time and by this defines the upper bound for the

tail buffers size. In the following we define a traffic pattern and

proof that it’s the worst case traffic pattern, as it maximizes

required buffer size.

Definition 2. Traffic pattern P1 has the following properties:

• Q blocks accumulate to one DRAM queue according to

Lemma 1.

• This consecutively happens ≥ k times

Fig. 7 gives an example for P1 assuming Q = 6 and k = 4.
Starting from an empty tail buffer at t = 0 after Q − ε time

slots no block is fully aggregated yet. However, at t = Q
time slots all Q blocks are full in the first DRAM queue (see

Fig. 7(a)). Until now all DRAMs are idle. At t = 2Q time

slots Q blocks get full in DRAM queue 2 (see Fig. 7(b)).

Up to now DRAM queue 1 transferred Q/k = 1.5 blocks to

DRAM 1. We visualize transferred blocks by shading them.
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Up to now all other DRAMs are still idle. Fig. 7(c) shows tail

buffer status at t = kQ time slots.

Lemma 2. With P1, starting from an empty tail buffer the

maximal required tail buffer size is Q · (k+1)
2 blocks.

Proof: The non-shaded area in the Fig. 7(c) represents

the required tail buffer size. Based on this we can calculate

the buffer size for arbitrary k and Q.

Accumulation of Q blocks in each of the DRAM queues

takes Q time slots. The transferor removes in Q time slots Q/k
blocks from any DRAM queue with full blocks. At t = kQ
DRAM queue i has Q i

k
full blocks, i. e. DRAM queue k − 1

has Qk−1
k

full blocks. Summing up the blocks of all DRAM

queues gives us

SP1 = Q ·

k∑

i=1

i

k
= Q ·

(k + 1)

2

At any time t = xQ time slots, with x > k the buffers size

is equal to SP1 because the fill levels just rotate through the

DRAM queues. E. g., starting from Fig. 7(c), at t = (k + 1)Q
DRAM queue 1 will have the fill level of DRAM queue k, 2
that of 1 and so on. As all DRAM queues have full blocks all

the time, data leaves from tail buffer with full line rate and

leaves space for arriving segments.

Now we show that starting from an empty tail buffer any

traffic pattern different from P1 leads to a lower bound for the

tail buffer size.

Definition 3. Traffic pattern P2 includes all possible traffic

patterns except P1.

Lemma 3. With P2, starting from an empty tail buffer the

maximal required tail buffer size is always less than with P1.

Proof: Starting from an empty tail buffer, with P2 some

blocks get full earlier than with P1. Consequently, the trans-

feror also starts writing blocks to DRAM earlier. This always

leads to a smaller maximal required tail buffer size than P1.

Fig. 8 gives an example for P2. We assume Q = 6 and

k = 4. Starting from an empty tail buffer, up to t = 3Q
time slots in this example there is no difference to P1 (cf.

Fig. 8(a)). At t = 3Q + 2 time slots already 2 blocks get full

in DRAM queue 4 (cf. Fig. 8(b)). At t = kQ time slots 4

further blocks get full in DRAM queue 4 (cf. Fig. 8(c)). The

main difference to P1 is, that the transferor could start writing

blocks to DRAM 4 earlier. This leads to a smaller total tail

buffer size compared to P1.

Now we consider starting from a non-empty tail buffer.

Lemma 4. Starting from any valid non-empty tail buffer status

P1 does not raise the upper bound from Lemma 2.

Proof: The proof requires two definitions.

Definition 4. System A, is a system that receives from the

beginning only P1. FAi denotes the length of DRAM queue i
in its tail buffer. Fig. 7 depicts the tail buffer status of such a

system.

Considering System A, independent how long P1 is re-

ceived, the required buffer size is bounded (cf. Lemma 2).

Definition 5. System B, is a system that receives from the

beginning only P2. Then packet arrivals synchronize to the

round robin scheme so that it can receive P1 in the following.

FBi denotes the length of DRAM queue i in its tail buffer.

Fig. 8 depicts the tail buffer status of such a system.

We compare now the tail buffer status of systems A and B.

We consider the status of system A depicted in Fig. 7(c) and

the status of system B depicted in Fig. 8(c). System B is at the

point in time before it starts receiving P1. Comparison shows

that FAi ≥ FBi,∀i ∈ {1, 2, . . . , k}. If system B starts now

receiving P1 then it cannot raise the upper bound of Lemma 2

as it has a better starting position than system A.

Lemma 5. Starting from any valid non-empty tail buffer status

introduced by P1, P2 does not raise the upper bound from

Lemma 2.

Proof:We start from a system receiving P1 (cf. Fig. 7(c)).

Receiving packets at full line rate R, the required tail buffer

size of this system cannot decrease as the DRAM bandwidth

available for writing is also R. As long as each DRAM

queue has full blocks the required tail buffer size can also

not increase.

We show now, that at full line rate none of the DRAM

queues can run empty of full blocks and therefore the required

tail buffer size cannot increase. The tail buffer status in

Fig. 7(c) is the start point. To see if a DRAM queue i can run

empty of full blocks we need a traffic pattern that maximizes

the waiting time of DRAM queue i for full blocks. P1 has

this property. E. g., the maximum time for DRAM queue 1

until a new block gets full is Q time slots. The Q/k blocks

in DRAM queue 1 are exactly enough not running empty in

these Q time slots. From this we conclude, that here with P1

no DRAM queue can run empty. Consequently, with P2 also

no DRAM queue can run empty, because with P2 blocks get

full earlier compared to P1. We conclude, that P2 does not

raise the upper bound from Lemma 2.

From Lemma 2, 3, 4 and 5 it is clear that independent of the

received traffic pattern (i. e. only P1, only P2, first P1 then P2

or first P2 then P1) the upper bound of the required tail buffer

size is that given in Lemma 2. According to the definitions of

P1 and P2 these cover together all existing traffic patterns. P1

introduces the upper bound in Lemma 2 and is therefore the

worst case traffic pattern.

We compare now our required tail buffer size to the size



required in other systems. In realistic systems the value of k
is large, e. g., k = 20 for a system with R = 100Gbps and

DDR3 SDRAM (cf. Section III-B). This leads to a buffer size

of S1 = Q 20+1
2 blocks. In [3] the tail buffer size is S2 =

Q(B − 1) byte. With B = kb, S2 ≈ Qkb byte = Qk blocks.

The tail buffer size in [5] is equal to that in [3]. Concluding,

our SPHSD architecture reduces the tail buffer size by 47%

compared to [3], [5].

For the given example, according to the formula in [4], the

authors reduce the tail buffer size by 26% compared to [3], [5].

Concluding, our SPHSD architecture reduces the tail buffer

size by 28% compared to [4].

B. Read Latency

We derive the read latency before the head buffer size, as

the head buffer size depends on this value. The read latency

is the time between issuing a read request to the packet buffer

and receiving the packet. This corresponds to the minimum

delay that a packet buffer introduces to every packet.

Theorem 3. The packet buffer has a constant read latency of

Qk time slots.

Proof: The read latency is the sum of the maximum

latencies introduced by head and tail part.

Lemma 6. The tail part introduces no latency.

Proof: The short-cut path can be used to transfer any

block from tail to head buffer. So no latency is introduced.

Lemma 7. The head part introduces a maximum latency of

Qk time slots.

Proof: A DRAM queue in the tail part can accumulate

up to Q blocks (cf. Lemma 1). Due to symmetry, a request

queue can accumulate the same amount of block requests. The

head transferor can read from one DRAM one block every k
time slots. Therefore, the maximum latency for a request is

Qk time slots.

From Lemma 6 and 7 we conclude, that the read latency of

the packet buffer is Qk time slots.

This is nearly equal to the read latency in [3] when the

architecture in [3] uses the minimal possible head buffer size

(cf. Section II). The difference originates from the different

assumptions for Pmin.

C. Head Buffer Size

Theorem 4. If the head buffer utilizes dynamic memory

allocation and the head transferor processes every request as

early as possible, then the upper bound for the head buffer

size in blocks is

Q(k + 1).

Proof: The head buffer (a) stores blocks to ensure in order

delivery and a constant read latency and (b) stores not yet

requested packet segments. Memory size for (a) is maximized,

when Qk blocks of a single flow are requested consecutively

starting from an empty request buffer. The head transferor

processes each request immediately. After the read latency of
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Qk time slots (cf. Lemma 7) (Q− 1)k blocks are completely

received from DRAM and k blocks are partly received.

Memory size for (b) is maximized, when the Q − 1 other

flows each have one segment of nearly the size of a full block

available in the head buffer. Rounded up, the upper bound for

the head buffer size is Q(k + 1) blocks.

Compared to [3], where the head buffer size is Q(B −
1) byte, our SPHSD architecture requires a head buffer that is
1
k
larger. In a realistic system k is around 20 (cf. Section III-B)

and so the difference to [3] is quite small. However, therefore

the architecture in [3] requires a direct write path from the

packet buffer input to the head buffer (cf. Fig. 2). This

increases the required bandwidth of their head buffer. The

same holds also compared to [4] with the difference, that the

head buffer size in [4] is 26% below that in [3] (cf. Section II).

We believe that due to the symmetric property of our

SPHSD system, a more sophisticated head transferor that

process requests as late at possible (cf. Section III-D) the head

buffer size can be reduced by the same amount (approx. 50%)

like the tail buffer. The corresponding proof is ongoing work.

V. REALIZATION

We are currently implementing a packet buffer prototype in

VHDL to run on an FPGA. In the following we deliver results

for the tail part. Fig. 9 shows its architecture. Realization

allows us quantifying the price for the available features: (1)

aggregation, (2) dynamic memory allocation, and (3) short-cut.

These features are also available in other architectures [3], [4],

but their implementation complexity is not evaluated in this

detail by the authors.

The prototype has a data bus width of w = 512 bit,
while the design can be synthesized for any w = 2n. We

implement dynamic memory allocation by utilizing linked lists

and organize the tail buffer with a granularity of one bus word.

The block size can be any integer multiple of one word. To

minimize tail buffer size we set the block size to the smallest

possible value, i. e. one bus word. The tail buffer and all

other memories are realized with on-chip dual-port SRAM

that allows one read and one write access per clock cycle.

In Fig. 9 from left to right the aggregation module segments

the packets, aggregates them to full words and retrieves the

target DRAM queue for each block from the dispatcher. It

forwards full words to the write module which writes them



to the tail buffer. Further, the write module accesses pointer

memory and queue table to update the data structures for

the linked lists and the DRAM queue status. The transferor

checks periodically in a round robin manner the status of

each DRAM queue. If in a DRAM queue at least one block

is full, it generates a read request for the read module. The

read module reads the block from tail buffer and forwards it

towards DRAMs. Further, the read module accesses pointer

memory and queue table to update the data structures for the

linked lists and the DRAM queue status.

If the head part wants to read a block that is not in DRAM,

it generates a short-cut request for the tail transferor. The

transferor checks in parallel the blocks location, which can

be anywhere in the tail part as this depends on the incoming

traffic pattern. Then it triggers the corresponding module to

forward the block via the short-cut path.

In the following we discuss the complexity and resource

consumption added by the individual features.

Aggregation – We perform aggregation to full words in a

separate module to keep the operating frequency of the tail

buffer low. Thereby, the tail buffer receives only full words

and has to perform only one write per incoming bus word to

the tail part – instead otherwise two due to segmentation. The

price for aggregation is mainly the additional required memory

of Q words.

Dynamic Memory Allocation – This adds complexity to

the read and write module which have to maintain the linked

lists in the pointer memory. To keep the pointer memory

neglectable in size we organize the tail buffer in a granularity

of one word. As the tail buffer contains only full words, it

is not fragmented at all. However, Theorem 2 assumed an

infinite fine grained organization. The unavoidable memory

fragmentation occurs in the aggregation module.

Short-cut – All components have to support the short-cut.

This has major impact on two modules. First, the aggregation

module has to support one additional read to its aggregation

memory per clock cycle. We solve this by doubling this

memory instead of doubling its clock frequency. Second,

instead of k we maintain Qk queues in the tail buffer, i. e.

Q queues for each logical DRAM queue. A short-cut always

requests the oldest block of a flow from a given DRAM queue.

Now the read module can easily retrieve the requested block.

Concluding, the complexity and resources for these features

are small compared to the delivered benefits, e. g., no required

bandwidth over-provisioning for both, SRAM and DRAM.

VI. CONCLUSION

High speed routers and switches utilize hybrid SRAM/

DRAM packet buffers to meet both, speed and capacity

requirements.

In this paper, we propose a novel hybrid architecture pro-

viding deterministic bandwidth guarantee under any traffic

condition as well as constant read latency. Our architecture

utilizes a tail and a head buffer (SRAM) in combination with

parallel DRAMs (or DRAM banks). It has the two following

main characteristics.

First, it combines the strengths of other architectures in a

single architecture. These are namely per-flow aggregation and

banking. Aggregation eliminates the 65-byte-problem, so we

require no bandwidth over-provisioning and have no fragmen-

tation in both, SRAM and DRAM. To enable banking we

replace the individual DRAMs in our architecture by DRAM

banks. Thereby we still provide deterministic bandwidth guar-

antee as our memory management algorithm accesses these

banks in strict deterministic order. This saves many I/O pins

and still allows usage of cheap commodity DRAM like DDR3

SDRAM.

Second, it reduces the tail buffer size (SRAM) significantly

compared to other architectures, e. g., for a 100Gbps system

with DDR3 SDRAM we decrease tail buffer size by 47%

compared to [3], [5] and by 28% compared to [4]. We achieve

this with help of the parallel DRAMs (banks) and dynamic

memory allocation in the tail buffer. The former reduces the

data block size transferred from and to DRAM and so data

blocks are earlier ready to be written to DRAM. The latter

allows us to utilize the tail buffer efficiently.

Our head buffer size is marginally above the size required

in [3] if we utilize a trivial memory management algorithm.

However, due to the symmetry of our architecture, we believe,

that with a more sophisticated memory management algorithm

in the head part we can decrease the head buffer size by the

same amount as the tail buffer, i. e. by approx. 50%. The

formal proof is ongoing work.

We prove also, that the read latency is equal to [3] and so

is not raised by any of the characteristics mentioned above.

Finally, we present the FPGA prototype architecture for the

tail part.
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