
A Novel Hybrid Memory Architecture

for High-Speed Packet Buffers in Network Nodes

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Arthur Mutter

geb. in Sathmar

Hauptberichter: Prof. em. Dr.-Ing. Dr. h.c. mult. Paul J. Kühn

1. Mitberichter: Prof. Dr. rer. nat. Ernst W. Biersack, EURECOM (F)

2. Mitberichter: Prof. Dr.-Ing. Andreas Kirstädter

Tag der Einreichung: 26. September 2011

Tag der mündlichen Prüfung: 26. März 2012

Institut für Kommunikationsnetze und Rechnersysteme

der Universität Stuttgart

2012

To Christine and Sarah.

Abstract

Routers are the prevalent type of network nodes in today’s Internet. A router processes incoming
packets and forwards them towards their destination. Core routers, i. e., routers that operate in
the core of the Internet, contain up to hundreds and more ports to be able to interconnect many
network segments. Temporary unbalanced traffic between the ports of a router can lead to
overload situations. To minimize packet loss routers contain packet buffers to hold packets
during times of congestion. To be able to provide the large buffering capacities required packet
buffers are typically implemented with DRAM (Dynamic Random Access Memory).

One major problem of building high-speed packet buffers is that line rates and therewith the
packet rates grow much faster than the random access time of DRAM decreases. The random
access time of a memory bounds the rate of individual accesses to the memory device. At a line
rate of 10Gbps DRAM random access time was just short enough to meet the required access
time. Since then, the gap between these values steadily increases. For example, on a 100Gbps
link an Ethernet frame can arrive every 6.7 ns but DRAM random access time is approx. 50 ns.

Using a hybrid memory architecture can close this gap by combining the strengths of both major
memory technologies: short random access time of SRAM (Static Random Access Memory)
and large capacity of DRAM. However, the architecture proposals in literature that provide a de-
terministic bandwidth suffer from high memory resource requirements and inefficient memory
resource utilization. The main reasons for this are fragmentation, inefficient DRAM data bus
utilization, and large required SRAM capacities. These properties limit scalability and increase
costs and power consumption.

This thesis proposes a novel hybrid memory architecture for high-speed packet buffers that
delivers deterministic bandwidth. The novelty of the architecture is that it significantly reduces
the memory resources compared to related architectures from literature, while it provides the
same functionality. Memory resources refer to the required SRAM and DRAM capacity and
bandwidth, as well as to the DRAM data bus pin count. The feasibility of the architecture in
hardware at high line rates is shown by a prototypical packet buffer implementation.

The thesis introduces at first fundamentals of packet buffering. It addresses the potential loca-
tions to place a packet buffer in a router, defines the term packet buffer, and introduces its basic
building blocks. It also quantifies the requirements a packet buffer has to suffice and compares
them to cutting-edge SRAM and DRAM devices. Then focus is set on hybrid memory archi-
tectures and the necessary metrics to evaluate these. Architecture proposals from literature are
surveyed and their pros and cons are discussed.

i

ii Abstract

The main objective for the design of the novel hybrid memory architecture was to reduce mem-
ory resource requirements without reducing functionality. Besides providing a deterministic
bandwidth the design targets were reduction of the SRAM capacity and reduction of the DRAM
resources compared to related architectures. The architecture features that are necessary to meet
all targets simultaneously are derived. For example, packets are aggregated to blocks and only
blocks are buffered in SRAM and DRAM. As aggregation eliminates fragmentation, this de-
creases the required bandwidth and capacity of SRAM and DRAM. To further significantly
decrease the SRAM capacity the queues maintained in the SRAM share the SRAM dynami-
cally.

The architecture contains a tail buffer (SRAM), a head buffer (SRAM), and a set of parallel
DRAMs (or DRAM banks). The degree of parallelism can be freely chosen. The task of a
high-speed packet buffer is to maintain a set of FIFO queues that hold the packets. Similar to
related architectures the tail buffer holds the queue tails, the DRAMs hold the middle parts of
the queues, and the head buffer holds the queue heads. A new memory management algorithm
(MMA) is proposed. Further, two MMAs from literature are used in combination with this
architecture. An MMA defines how blocks are distributed to the DRAMs and how blocks are
transferred between SRAM and DRAM.

The typical metrics are derived to evaluate the architecture quantitatively: upper bounds for the
tail buffer size and head buffer size, as well as the read latency of the system. For two MMAs
these are formally proven. A detailed comparison of the metrics to those of other architectures
is performed. It is shown, that the proposed architecture reduces the tail and head buffer sizes
by up to 50%. The read latency is similar or equal to that of other architectures.

Required DRAM resources are also compared to those of related architectures. These are also
reduced significantly, as the proposed architecture is the only one that eliminates internal and
external fragmentation and uses bank interleaving simultaneously. The first two properties re-
duce the DRAM bandwidth and capacity to the theoretical minimum, while the third minimizes
the DRAM data bus pin count to provide the bandwidth. Finally, a dimensioning example for
the proposed memory architecture is provided. This shows how to take advantage of the degrees
of freedom, e. g., the degree of parallelism.

Feasibility of the architecture is shown by a prototypical implementation of a corresponding
packet buffer. The prototype was described in VHDL and an FPGA development board served
as platform. The implementation is presented in detail. Functional simulations and tests on
the FPGA validate the correct behavior of the prototype. Place&Route results show that the
prototype supports a line rate of over 10Gbps providing 64 FIFO queues despite using an over
6 year old FPGA. The objective of the implementation was achieving full functionality. A new
optimized implementation on an ASIC is estimated to support significantly more FIFO queues
and a line rate of 100Gbps and far more.

Concluding, the significant reduction of memory resources improves scalability towards higher
line rates and higher number of queues compared to related architectures. Further, the reduction
of memory resources also improves the energy efficiency as a packet buffer consists for the most
part from memory.

Kurzfassung

Im heutigen Internet sind Router die vorherrschende Art von Vermittlungsknoten. Ein Router
verarbeitet ankommende Pakete und leitet sie in Richtung ihres Ziels weiter. Core Router, d.h.
Router die im Kern des Internets betrieben werden, können bis zu hunderte von Anschlüssen
besitzen, um möglichst viele Netzwerksegmente miteinander zu verbinden. Kurzzeitig unaus-
geglichener Datenverkehr zwischen den Anschlüssen eines Routers kann zu Überlastsituationen
führen. Um Paketverluste zu minimieren, besitzen Router Paketpuffer, die Pakete in Überlastsi-
tuationen puffern können. Um die hohen geforderten Pufferkapazitäten bereitstellen zu können,
werden Paketpuffer typischerweise mit DRAM (Dynamic Random Access Memory) realisiert.

Ein wesentliches Problem beim Bau von Hochgeschwindigkeitspaketpuffern ist, dass Daten-
übertragungsraten und damit auch die Paketraten viel schneller wachsen als die wahlfreie Zu-
griffszeit von DRAM abnimmt. Die Zugriffszeit eines Speichers begrenzt die Rate einzelner
Zugriffe auf den Speicherbaustein. Bei einer Datenübertragungsrate von 10Gbit/s war die wahl-
freie Zugriffszeit von DRAM gerade kurz genug, um die geforderte Zugriffszeit zu erfüllen.
Seitdem wächst der Abstand zwischen diesen Werten stetig. Beispielsweise kann bei einer Da-
tenübertragungsrate von 100Gbit/s alle 6.7 ns ein Ethernet Rahmen ankommen, wohingegen
die wahlfreie Zugriffszeit von DRAM jedoch ungefähr 50 ns beträgt.

Eine hybride Speicherarchitektur kann dieses Problem lösen, indem sie die Stärken der beiden
wesentlichen Speichertechnologien kombiniert: die kurze wahlfreie Zugriffszeit von SRAM
(Static Random Access Memory) und die große Kapazität von DRAM. Allerdings leiden die
Architekturvorschläge aus der Literatur, die eine deterministische Bandbreite garantieren, an
hohem Speicherressourcenbedarf und ineffizienter Speicherressourcennutzung. Die Hauptgrün-
de hierfür sind Fragmentierung, ineffiziente DRAM-Datenbusausnutzung und große benötigte
SRAM-Kapazitäten. Diese Eigenschaften limitieren die Skalierbarkeit und erhöhen die Kosten
sowie den Energieverbrauch.

Diese Dissertation schlägt eine neue hybride Speicherarchitektur für Hochgeschwindigkeits-
paketpuffer vor, die eine deterministische Bandbreite garantiert. Der Vorteil dieser neuen Ar-
chitektur anderen gegenüber ist, dass sie bei gleich bleibender Funktionalität die benötigten
Speicherressourcen wesentlich reduziert. Speicherressourcen beziehen sich hierbei auf die be-
nötigte Kapazität und Bandbreite von SRAM und DRAM, sowie auf die Pinzahl des DRAM-
Datenbusses. Die Realisierbarkeit der Architektur in Hardware bei hohen Datenraten wird mit
Hilfe einer prototypischen Paketpufferimplementierung gezeigt.

iii

iv Kurzfassung

Zunächst führt diese Dissertation Grundlagen zum Thema Paketpufferung ein. Sie zeigt dabei
auf, wo Paketpuffer in einem Router platziert werden können, definiert den Begriff Paketpuf-
fer und stellt seine elementaren Bestandteile vor. Sie quantifiziert die Anforderungen, die ein
Paketpuffer erfüllen muss und vergleicht diese mit den Eigenschaften aktueller SRAM und
DRAM-Bausteine. Anschließend wird der Fokus auf hybride Speicherarchitekturen und die
notwendigen Metriken zu deren Bewertung gesetzt. Architekturvorschläge aus der Literatur
werden vorgestellt, diskutiert und bewertet.

Die Zielsetzung beim Entwurf der neuen hybriden Speicherarchitektur war, die benötigten Spei-
cherressourcen zu reduzieren ohne dabei die Funktionalität einzuschränken. Neben der Bereit-
stellung einer deterministischen Bandbreite waren die Entwurfsziele die Reduktion der SRAM-
Kapazität und die Reduktion der DRAM-Ressourcen im Vergleich zu anderen Architekturen.
Die notwendigen Architekturmerkmale zur gleichzeitigen Erfüllung aller Entwurfsziele wer-
den hergeleitet. Zum Beispiel werden Pakete zu Blöcken aggregiert und in SRAM und DRAM
werden nur Blöcke gepuffert. Da die Aggregation die Fragmentierung eliminiert, werden hier-
durch die benötigte Bandbreite und die Kapazität von SRAM und DRAM gesenkt. Um die
SRAM-Kapazität weiter deutlich zu verkleinern, teilen sich die Warteschlangen im SRAM den
Speicherplatz dynamisch.

Die Architektur enthält einen Eingangspuffer (SRAM), einen Ausgangspuffer (SRAM) und
einen Satz paralleler DRAMs (oder DRAM-Bänke). Der Grad der Parallelität ist völlig frei
wählbar. Die Aufgabe eines Hochgeschwindigkeitspaketpuffers ist es, einen Satz von FIFO-
Warteschlangen zu verwalten, welche die Pakete enthalten. Wie bei anderen Architekturen auch
enthält der Eingangspuffer die Enden der Warteschlangen, die DRAMs enthalten die Mittelteile
der Warteschlangen und der Ausgangspuffer enthält die Anfänge der Warteschlangen. Ein neuer
Speicherverwaltungsalgorithmus wird vorgeschlagen. Zudem werden auch zwei aus der Litera-
tur bekannte Speicherverwaltungsalgorithmen eingesetzt. Ein Speicherverwaltungsalgorithmus
definiert, wie die Blöcke auf die DRAMs verteilt werden und wie die Blöcke zwischen SRAM
und DRAM übertragen werden.

Um die Architektur quantitativ bewerten zu können, werden die typischen Metriken abgeleitet:
die Obergrenze für die Größe des Eingangspuffers und des Ausgangspuffers, sowie die Lese-
latenz des Systems. Für zwei Speicherverwaltungsalgorithmen werden diese formal bewiesen.
Ein detaillierter Vergleich der Metriken mit denen anderer Architekturen wird durchgeführt.
Es wird gezeigt, dass die vorgeschlagene Architektur die Größe von Eingangspuffer und Aus-
gangspuffer um bis zu 50% reduziert. Die Leselatenz ist ähnlich oder gleich zu der Leselatenz
anderer Architekturen.

Auch die notwendigen DRAM-Ressourcen werden mit denen anderer Architekturen verglichen.
Diese werden ebenfalls signifikant reduziert, da die vorgeschlagene Architektur die einzige ist,
die jegliche interne und externe Fragmentierung eliminiert und gleichzeitig verschränkt auf
DRAM-Bänke zugreift. Die ersten beiden Eigenschaften reduzieren die Bandbreite und Kapa-
zität des DRAMs auf das theoretische Minimum, während die dritte Eigenschaft die Pinzahl des
DRAM-Datenbusses minimiert, die notwendig ist, um die Bandbreite bereit zu stellen. Schließ-
lich wird beispielhaft eine Dimensionierung für die vorgeschlagene Architektur durchgeführt.
Diese zeigt wie die Freiheitsgrade vorteilhaft genutzt werden können, z. B. der frei wählbare
Grad der Parallelität.

Kurzfassung v

Die Realisierbarkeit der Architektur wird durch die prototypische Implementierung eines ent-
sprechenden Paketpuffers gezeigt. Der Prototyp wurde in VHDL beschrieben und auf einer
FPGA-basierten Plattform betrieben. Die Implementierung wird im Detail vorgestellt. Funktio-
nale Simulationen und Tests auf dem FPGA validieren das korrekte Verhalten des Prototyps.
Place&Route Ergebnisse zeigen, dass der Prototyp trotz der Verwendung eines 6 Jahre alten
FPGAs eine Datenübertragungsrate von 10Gbit/s und 64 FIFO-Warteschlangen unterstützt. Die
Zielsetzung der Implementierung war ein voll funktionsfähiger Prototyp. Es wird abgeschätzt,
dass eine neue, optimierte Implementierung auf einem ASIC eine wesentlich höhere Zahl an
FIFO-Warteschlangen sowie Datenübertragungsraten von 100Gbit/s und weit mehr unterstüt-
zen kann.

Abschließend lässt sich sagen, dass die wesentliche Reduktion der Speicherressourcen die Ska-
lierbarkeit verbessert im Hinblick auf höhere Datenübertragungsraten und eine höhere Zahl
an FIFO-Warteschlangen. Des Weiteren senkt die Reduktion der Speicherressourcen auch den
Energieverbrauch, da ein Paketpuffer zum größten Teil aus Speichern besteht.

vi Kurzfassung

Contents

Abstract i

Kurzfassung iii

Contents vii

Figures x

Tables xiii

Abbreviations and Symbols xv

1 Introduction 1

1.1 Motivation . 1
1.2 Thesis Contribution . 2
1.3 Thesis Organization . 3

2 Packet Buffers for Network Nodes 5

2.1 Network Nodes . 5
2.1.1 Types of Network Nodes . 6
2.1.2 Types of Routers . 7
2.1.3 Router Architectures . 7

2.1.3.1 Backplane . 8
2.1.3.2 Buffer Location . 10

2.1.4 Combined Input/Output-Queued Router 14
2.2 Packet Buffers . 16

2.2.1 Overview . 17
2.2.2 Basic Architecture . 18
2.2.3 Memory Organization . 19
2.2.4 Requirements . 24

2.3 Memory Technologies . 27
2.3.1 Terminology . 27
2.3.2 Static Random Access Memory (SRAM) 28
2.3.3 Dynamic Random Access Memory (DRAM) 32
2.3.4 Discussion . 40

2.4 Basic Architectural Approaches . 42

vii

viii Contents

2.4.1 Overview . 42
2.4.2 Parallel Memories . 43
2.4.3 Hybrid Memory Architecture . 44
2.4.4 Hybrid Memory Architecture with Parallel Subsystems 47
2.4.5 Discussion . 48

2.5 Survey of Hybrid Memory Architectures . 49
2.5.1 Metrics . 49
2.5.2 Related Work . 50

2.5.2.1 Hybrid SRAM/DRAM System (HSD) 50
2.5.2.2 Conflict-Free DRAM System (CFDS) 53
2.5.2.3 Parallel Hybrid SRAM/DRAM System (PHSD) 57
2.5.2.4 Discussion . 61

3 A Novel Hybrid Memory Architecture for High-Speed Packet Buffers 65

3.1 Targets . 66
3.2 Design Considerations and Challenges . 67
3.3 Architecture Proposal . 69

3.3.1 Architecture . 69
3.3.2 Degree of Parallelism . 73
3.3.3 Tail Memory Management Algorithm 75
3.3.4 Head Memory Management Algorithm 77

3.4 Quantitative Assessments . 80
3.4.1 Tail Buffer Size . 80

3.4.1.1 Upper Bound . 80
3.4.1.2 Assessment . 84

3.4.2 Head Buffer Size . 87
3.4.2.1 Upper Bound . 87
3.4.2.2 Assessment . 91

3.4.3 Read Latency . 92
3.4.3.1 Derivation . 93
3.4.3.2 Assessment . 93

3.4.4 DRAM Resources . 94
3.4.5 Summary of Results . 95

3.5 Dimensioning Example . 96

4 Prototypical Implementation of a Packet Buffer for an Input Line Card 103

4.1 Targets . 104
4.2 Platform . 104
4.3 Prototype Overview . 107

4.3.1 Overall System . 107
4.3.2 Basic Design Properties . 111

4.4 Tail Part . 113
4.4.1 Block Diagram . 113
4.4.2 Aggregation Module . 115
4.4.3 Dispatcher Module . 119
4.4.4 Dynamic Memory Manager Module 120
4.4.5 Short-Cut Module . 126

Contents ix

4.4.6 Short-Cut Reorder Buffer . 128
4.4.7 Tail Transferor Module . 130

4.5 Head Part . 132
4.6 Validation . 134

4.6.1 Functional Tests . 134
4.6.2 Hardware Resource Requirement and Supported Line Rate 135
4.6.3 Summary and Conclusions . 139

5 Conclusions 141

5.1 Summary . 141
5.2 Limitations . 144
5.3 Outlook . 144

Bibliography 145

Acknowledgments 155

x Contents

List of Figures

2.1 Bufferless crossbar (Source [10]) . 9
2.2 Buffered crossbar (Source [10]) . 9
2.3 Output-Queued Router with distributed memories (Source [11]) 11
2.4 Output-Queued Router with centralized shared memory (Source [11]) 11
2.5 Input-Queued Router (Source [11]) . 12
2.6 Combined Input/Output-Queued Router (Source [11]) 13
2.7 Basic Combined Input/Output-Queued IP Router architecture 14
2.8 Packet buffer interaction with other components 17
2.9 Basic architecture of a packet buffer . 18
2.10 Flat and hierarchical linked lists like used in packet buffers 21
2.11 Packet segmentation to constant-size blocks 22
2.12 Basic memory management with linked lists 23
2.13 Basic architecture of an SRAM device . 29
2.14 Memory data I/O types . 30
2.15 SRAM data bus utilization as function of the read and write operation ratio . . 32
2.16 DRAM device architecture . 33
2.17 DRAM - levels of organization . 35
2.18 DRAM access to the same and to different banks 37
2.19 Basic impl. approach: Parallel Memories . 43
2.20 Basic impl. approach: Hybrid Memory Architecture 45
2.21 Basic impl. approach: Hybrid Memory Architecture with Parallel Subsystems . 46
2.22 Hybrid Memory Architecture with Ping Pong Approach 48
2.23 Hybrid SRAM/DRAM System (HSD) of Iyer et al. 51
2.24 DRAM access in HSD . 52
2.25 Conflict-Free DRAM System (CFDS) of Garcia et al. 53
2.26 Bank organization of the CFDS . 54
2.27 Hybrid memory architecture with interleaved DRAMs of Wang et al. 57
2.28 Parallel Hybrid SRAM/DRAM System (PHSD) of Wang et al. 58
2.29 Head side of PHSD with in-order matching scheduler 60

3.1 Semi-Parallel Hybrid SRAM/DRAM system (SPHSD) 70
3.2 Packet segmentation and subsequent aggregation to blocks for one flow 71
3.3 Status of the DRAM queues in the tail buffer 75
3.4 Distribution of blocks to the flow queues in the DRAMs 76
3.5 Tail buffer status during the arrival of traffic pattern P1 81
3.6 Tail buffer status during the arrival of traffic pattern P2 82

xi

xii LIST OF FIGURES

3.7 Tail buffer size of SPHSD as a function of parameter k 85
3.8 Status of request buffer and head buffer: case with maximal head buffer size . . 89
3.9 Request buffer and head buffer status during the arrival of traffic pattern P1 . . 90
3.10 Interleaved access to 6 banks in round robin manner 98
3.11 DRAM organization for dimensioning alternative choose b 100
3.12 Parameter k and DRAM overdimensioning as function of the DRAM group size 101
3.13 DRAM organization for dimensioning alternative choose k 102

4.1 UHP-2 board . 106
4.2 Overview of the complete prototype . 108
4.3 Tail part . 115
4.4 Aggregation in the tail buffer . 116
4.5 Aggregation module . 118
4.6 Aggregation performed in the merger module 119
4.7 Dispatcher module . 121
4.8 Variants for DRAM queue organization in the tail buffer 122
4.9 Dynamic memory manager module . 125
4.10 Short-cut module . 127
4.11 Short-cut reorder buffer . 129
4.12 Tail transferor module . 131
4.13 Head part . 133

List of Tables

2.1 High-speed SRAM types and their properties 32
2.2 High-speed DRAM types and their properties 39
2.3 Basic architectural concepts to overcome limitations in memory parameters . . 42
2.4 Possible CFDS configurations utilizing a DRAM with M = 8 banks 56
2.5 Summary of the related work’s main metrics 62
2.6 Summary of the related work’s properties . 62

3.1 Summary of properties related to DRAM resource requirements 95
3.2 Summary of metrics of the SPHSD . 95
3.3 DDR3-1600K SDRAM chip properties . 97

4.1 Meta-information of the different data elements in the prototype 114
4.2 Functions of the tail part and their mapping to modules 114
4.3 Pointer memory and free-list cache accesses 126
4.4 Functions of the head part and their mapping to modules 132
4.5 Hardware resource requirements and supported line rates 138

xiii

xiv Abbreviations and Symbols

Abbreviations and Symbols

Abbreviations

ALM Adaptive Logic Module

ALUT Adaptive LUT

ASIC Application Specific Integrated Circuit

CFDS Conflict-Free DRAM System

CIO Common I/O

CIOQ Combined Input/Output-Queued

CMOS Complementary Metal Oxide Semiconductor

CoS Class of Service

CPU Central Processing Unit

DDR Double Data Rate

DIMM Dual Inline Memory Module

DMM Dynamic Memory Manager

DRAM Dynamic Random Access Memory

DSL Digital Subscriber Line

DSS DRAM Scheduling Subsystem

ECQF Earliest Critical Queue First

FBDIMM Fully Buffered DIMM

FF Flip-Flop

FIFO First-In First-Out

FPGA Field Programmable Gate Array

xv

xvi Abbreviations

GDDR Graphics Double Data Rate

HDL Hardware Description Language

head-MMA Head Memory Management Algorithm

HOL Head Of Line

HSD Hybrid SRAM/DRAM System

IOM In-Order Matching

IP Internet Protocol

IQ Input-Queued

ISO International Organization for Standardization

ISP Internet Service Provider

JEDEC Joint Electron Device Engineering Council

LAN Local Area Network

LBRB Last Block Request Buffer

LIFO Last-In First-Out

LUT Lookup Table

MAC Medium Access Control

MAN Metropolitan Area Network

MaRBD Maximize Request Buffer Delay

MDQF Most Deficit Queue First

MiRBD Minimize Request Buffer Delay

MMA Memory Management Algorithm

NP Network Processor

OQ Output Queue or Output-Queued

OSI Open System Interconnection

PCB Printed Circuit Board

PHSD Parallel Hybrid SRAM/DRAM System

PLD Programmable Logic Devices

PSM Parallel Shared Memory

Abbreviations xvii

QDR Quad Data Rate

QoS Quality Of Service

RAM Random Access Memory

RLDRAM Reduced Latency DRAM

RMC Route and Management Controller

RPP Read Pipeline

RTT Round Trip Time

SDR Single Data Rate

SDRAM Synchronous DRAM

SGRAM Synchronous Graphics Random Access Memory

SIM Scheduling Information Manager

SIMM Single Inline Memory Module

SIO Separate I/O

SLA Service Level Agreement

SPHSD Semi-Parallel Hybrid SRAM/DRAM System

SPMT Serial Port Memory Technology

SPP Silicon Packet Processor

SRAM Static Random Access Memory

SSRAM Synchronous SRAM

tail-MMA Tail Memory Management Algorithm

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver/Transmitter

UHP Universal Hardware Platform

VHDL Very High Speed Integrated Circuit HDL

VLAN Virtual Local Area Network

VOQ Virtual Output Queue

WAN Wide Area Network

WPP Write Pipeline

xviii Symbols

Symbols

B Block size in a system that does not incorporate parallel subsystems

b Block size in a system that incorporates parallel subsystems, DRAMs, or
DRAM banks

C DRAM capacity of the packet buffer

f System clock frequency

fmin Minimal system clock frequency

G Number of bank groups in the CFDS

Gmin Minimal inter-framing gap

k Degree of parallelism, i. e., the number of parallel subsystems or DRAMs (or
DRAM banks)

kmin Minimal number of parallel subsystems in the PHSD

L Read latency

LSPHSD Read latency of the SPHSD

LHSD−ECQF Read latency of the HSD when the ECQF MMA is used

LCFDS−ECQF−M8 Read latency of the CFDS when the ECQF MMA and a DRAM with 8 banks
are used

LCFDS−ECQF Read latency of the CFDS when the ECQF MMA is used

LPHSD−max Maximal read latency of the PHSD

M Number of banks of DRAM device

N Number of line cards

p DRAM data bus pin count

pcap DRAM data bus pin count to achieve the required capacity

pbw DRAM data bus pin count to achieve the required bandwidth

P Packet size or Number of physical flow queues maintained by the CFDS

Pmin Minimal packet size

Pwc Worst-case packet size

Q Number of flow queues maintained by the packet buffer

R Aggregate line rate of all ports of a line card

Symbols xix

Rgross Gross data rate of the input bus to the packet buffer

r Packet rate

rmax Maximal packet rate

rwc Worst-case packet rate

Shead Head buffer size

Shead−SPHSD−MiRBD Head buffer size of the SPHSD when the MiRBD MMA is used

Shead−SPHSD−MaRBD Head buffer size of the SPHSD when the MaRBD MMA is used

Shead−HSD−ECQF Head buffer size of the HSD when the ECQF MMA is used

Shead−HSD−MDQF Head buffer size of the HSD when the MDQF MMA is used

Shead−CFDS−ECQF Head buffer size of the CFDS when the ECQF MMA is used

Stail Tail buffer size

Stail−SPHSD Tail buffer size of the SPHSD

Stail−SPHSD−k1 Tail buffer size of the SPHSD when k = 1

Stail−SPHSD−k16 Tail buffer size of the SPHSD when k = 16

Stail−SPHSD−min Tail buffer size of the SPHSD, smallest possible value

Stail−HSD Tail buffer size of the HSD

Stail−CFDS Tail buffer size of the CFDS

Stail−PHSD Tail buffer size of the PHSD

TFAW Four bank activation window of a DRAM device

TRC Row cycle time of a DRAM device

TRRD Row to row activation delay of a DRAM device

T Access time of a memory device; when not denoted differently, it refers to the
random access time of the memory device, i. e., the worst case access time

Timag Imagined access time in the CFDS

tck Clock cycle time

w Internal bus width

ρ DRAM data bus utilization

⌈ ⌉ Round up to the next integer number

xx Symbols

1 Introduction

1.1 Motivation

Today, communication via the Internet is indispensable for the commercial and for the private
sector. This extensive use is reflected in the ever growing data rates used in the Internet. For ex-
ample Ethernet line rates increased by a factor of 10 per 5 years during the past 15 years [9]. The
data exchanged by the communication partners is today mainly transported by packet switching
networks. The network nodes (e. g. routers) operated in these packet switching networks have
to constantly provide very high throughput and high reliability. This is true especially for core
networks which form the backbone of the Internet. The malfunction of a core node or just a
drop of its performance would lead to large economic loss for both, user and provider.

Routers are the prevalent type of network nodes in core networks. Core routers contain up
to hundreds and more ports to be able to interconnect many network segments. They process
incoming packets and forward them towards their destination. Temporary unbalanced traffic
between the ports of a router can lead to overload situations. To minimize packet loss routers
contain packet buffers to hold packets during times of congestion.

Favorably, these packet buffers provide a deterministic bandwidth. Deterministic behavior has
three main advantages over statistical: Firstly, the packet buffer delivers 100% bandwidth under
any traffic condition. Secondly, this enables implementation of routers that are safe against
adversarial attacks and ”bake-off” tests as there are no loopholes an adversary (e. g., a virus or
a hacker) could exploit, e. g., there is no traffic pattern that brings down the router. Thirdly,
a simple and deterministic packet buffer interface leads to simple interfacing that reduces the
overall complexity.

To build a packet buffer, one can choose between two prevalent memory technologies: Static
Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM). SRAM
has a short access time, a small capacity, and a high price per bit. DRAM has a long access time,
a large capacity, and a low price per bit. To achieve low packet loss probabilities and for the
Transmission Control Protocol (TCP) to perform well packet buffers require large capacities.
Due to this reason packet buffers typically use DRAM.

One major problem of building high-speed packet buffers is that line rates and therewith the
packet rates grow much faster than the random access time of DRAM decreases. The random
access time bounds the rate of individual accesses to the memory device. The increase in packet
rate is equal to the increase in line rate, since the minimal packet sizes do not change over time,

1

2 Chapter 1. Introduction

e. g., the minimal size of an Ethernet frame is 64 byte. DRAM random access time decreases by
just 7% per year [12], i. e., by 30% per 5 years. At a line rate of 10Gbps DRAM random access
time was just short enough to meet the required access time. Since then, the gap between these
values steadily increases. For example, the first commercial core routers that support 100Gbps
Ethernet appear at the time of writing. On a 100Gbps link an Ethernet frame can arrive every
6.7 ns (calculation includes inter frame gap) but DRAM random access time is approx. 50 ns.

Using a hybrid memory architecture can close this gap. Hybrid refers to the fact that it utilizes
memory of two different memory technologies to store the packet data: SRAM and DRAM.
This architecture combines the strengths of both: short access time of SRAM and large ca-
pacity of DRAM. However, the architecture proposals in literature that provide a deterministic
bandwidth suffer from high memory resource requirements. The main reasons therefore are
fragmentation, inefficient DRAM data bus utilization, and large required SRAM capacities.
These properties limit scalability and increase costs and power consumption.

1.2 Thesis Contribution

In this thesis the author proposes a novel hybrid memory architecture for high-speed packet
buffers that deliver deterministic bandwidth. The architecture consists of three parts: a tail
buffer and a head buffer made of SRAM and a set of parallel DRAM banks for bulk storage.

The architecture significantly reduces the required memory resources compared to related ar-
chitectures from literature. Memory resources refer to the required capacity and bandwidth of
SRAM and DRAM, as well as to the DRAM data bus pin count. Reduction is achieved by
two measures: (i) reduction of memory resource requirements by architectural changes and (ii)
efficient utilization of memory resources. As an example for (i), utilization of dynamic mem-
ory allocation in the tail buffer and the presence of parallel DRAM banks reduce the tail buffer
size by up to 50%. As an example for (ii), DRAM resources (capacity and data bus pin count)
are significantly reduced by elimination of any fragmentation and by utilization of bank inter-
leaving. These reductions significantly improve scalability towards higher line rates and higher
number of queues.

The required tail and head buffer sizes required as well as the read latency of the system are
formally proven and assessed in detail. To show that the architecture is operational and feasi-
ble the author implemented a corresponding packet buffer prototype. The functionality of the
prototype was tested on an FPGA-based platform. The thesis provides detailed implementa-
tion results including block diagrams of the design, achieved line rates, and hardware resource
requirements.

The author presented most of the results of this thesis on an international conference on router
architectures [1]. Additionally, the author discussed with other scientists the challenges and
perspectives of packet buffer design and packet processing at future line rates in a position
paper [2]. The author participated in the following joint publications to related topics: as main
author [3, 4], as co-author [5, 6]. Prototype implementation has been party realized by student
research projects supervised by the author [7, 8].

1.3 Thesis Organization 3

1.3 Thesis Organization

This thesis is structured into a Chapter on fundamentals and related work (Chapter 2), a Chapter
on the hybrid memory architecture proposal and its assessment (Chapter 3), and a Chapter on
the prototypical implementation of an according packet buffer and its validation (Chapter 4).

Chapter 2 introduces necessary fundamentals and surveys related hybrid memory architectures
from literature. It first motivates the importance of routers in the Internet today and shows the
potential locations to place a packet buffer in a router. Then it defines the term packet buffer

and introduces its basic building blocks. It also quantifies the requirements a packet buffer
has to suffice. Then it introduces the prevalent memory technologies available to implement
packet buffers. In the following discussion it points out that a single memory technology can-
not suffice all requirements of a high-speed packet buffer simultaneously. Then it presents
basic architecture approaches to overcome the limitations of the individual memory technolo-
gies. It concludes that hybrid approaches, which combine several memory technologies, are
most promising. Then it focuses on hybrid memory architectures and introduces the necessary
metrics to evaluate these. Finally, it presents explicit architecture proposals from literature and
discusses their pros and cons.

Chapter 3 introduces and assesses the hybrid memory architecture proposal for high-speed
packet buffers. First, it gives an overview of the design objectives and derives for each the
required architectural features that enable it. Then it introduces in detail the hybrid memory ar-
chitecture proposal, formally proves its resource requirements and properties, and compares the
results to that of related architectures. A dimensioning example for the proposed architecture
closes this Chapter.

Chapter 4 shows the feasibility of the hybrid memory architecture proposal by presenting the
prototypical implementation of a corresponding packet buffer. First, it motivates the imple-
mented input buffer scenario. Then it introduces the hardware platform used for implementa-
tion and the prototype properties. The core of the Chapter presents the implementation in detail.
Finally, it presents the prototype’s validation results with respect to functionality, hardware re-
source requirements, and throughput.

4 Chapter 1. Introduction

2 Packet Buffers for Network Nodes

The Internet is a packet switching network connecting hundreds of millions of end hosts. The
hosts communicate by sending packets. The Internet consists of network nodes that route and
switch the packets from source to destination end host. A network node may have up to hun-
dreds and more ports. Temporary unbalanced traffic or traffic overload in these nodes requires
high-speed packet buffers to hold packets during times of congestion.

This Chapter introduces why it is challenging to build packet buffers for high-speed network
nodes and discusses the architectures available in literature that try to solve the problem. The
Chapter is organized in five Sections.

Section 2.1 first introduces and classifies today’s prevalent types of network nodes. Then it
presents the possibilities for locating buffers in network nodes. Further, it describes exemplarily
the individual building blocks of a very common high-speed network node architecture: the
Combined Input/Output-Queued Router.

Section 2.2 defines the term packet buffer and introduces its basic building blocks. Further it
presents the degrees of freedom organizing the associated memory and finally points out the
explicit requirements a packet buffer has to meet.

Section 2.3 introduces the prevalent memory technologies available to implement packet
buffers. In the final discussion it points out that no single memory device meets all require-
ments of a high-speed packet buffer simultaneously.

Section 2.4 presents the basic architecture approaches to overcome the limitations of the in-
dividual memory technologies. Finally, it concludes that hybrid approaches which combine
several memory technologies are most promising.

Section 2.5 focuses on hybrid memory architectures. Thereby it first introduces necessary met-
rics to evaluate these architectures. Following up it presents in detail explicit architecture pro-
posals from literature and discusses their pros and cons.

2.1 Network Nodes

Network nodes for packet switched networks have two or more ports and process each packet
individually. They also receive and transmit packets individually via their input and output
ports, respectively. The operations carried out on the packets depends on the node’s type and

5

6 Chapter 2. Packet Buffers for Network Nodes

ranges from determining the outgoing port (or ports) to packet modifications, deep packet in-
spection and queuing. Network nodes operate on different layers of the Open System Inter-
connection (OSI)1 reference model. The various functionalities necessary therefore define the
specific types of network nodes. This Section first gives an overview of network node types
before focusing on routers and their architecture.

2.1.1 Types of Network Nodes

The four main types of network nodes are repeaters, bridges, routers and gateways [14].

Repeaters or network hubs connect network segments at the physical layer (layer 1) of the OSI
model. They just broadcast the signal to adjacent network segments and have no logic functions.

A bridge connects multiple network segments at the data link layer (layer 2). The term switch
or layer 2 switch is used interchangeably with bridge. Switches are designed to operate in a
Local Area Network (LAN).

A popular example for this type of devices is an Ethernet switch. It makes forwarding decisions
on the basis of Medium Access Control (MAC) addresses and without topology information.
Switches use MAC-learning to keep their forwarding database up to date. Due to the flat MAC
address space switches use flooding to reach unknown devices, i. e., if the switch does not find
the destination MAC address of a packet in its forwarding database it sends the packet out on
all switch ports except the incoming port of the packet.

A router connects network segments at the internetwork layer (layer 3) and was initially de-
signed to operate in Metropolitan Area Networks (MAN) and Wide Area Networks (WAN).
Today, most home networks also contain a router. Routers operate on globally unique addresses
in a hierarchical address space. Further, it is itself explicitly addressable. The most prominent
example is an Internet Protocol (IP) backbone router used in the Internet. A router’s main task
is to forward each packet towards its destination. It accesses its forwarding table to determine a
packets next hop. To build its forwarding table the router uses topology information and applies
a routing algorithm, e. g., ”shortest path”.

Finally a gateway connects network segments at the transport layer (layer 4) or higher. It
typically operates between different network types and therefore usually transforms protocol
parameters and addresses.

A core network or backbone network is the central part of a communication network. The core
network of an Internet Service Provider (ISP), e. g., Deutsche Telekom, is a WAN. Routers are
the predominant node type in core networks where they operate at highest data rates. Extreme
data rates and high number of ports make packet buffering very challenging in these devices.

1The Open System Interconnection Reference Model (OSI Reference Model, [13]) is an abstract description
for layered communications and network architecture. It was standardized by the International Organization for
Standardization (ISO). The OSI Network Architecture defines 7 principal layers. These are from bottom to top:
Physical layer (1), Data Link Layer (2), Network Layer (3), Transport Layer (4), Session Layer (5), Presentation
Layer (6), and Application Layer (7).

2.1 Network Nodes 7

Due to the high importance of routers and the big challenges regarding their packet buffering
this thesis focuses on routers.

2.1.2 Types of Routers

Routers can be operated at different points in a network. Depending on the place of installation
a router has to support different functions and processes the packets at different rates. The
complexity of a router depends on these properties. Routers can be classified in many types.
In this thesis we follow the proposal in [15], where the authors distinguish between three main
router types: core routers, edge routers and enterprise routers.

Core routers are operated by service providers to interconnect a large number of smaller net-
works. The core network is also called the ”Internet-backbone” as it serves as the backbone
of today’s Internet. The traffic arriving at a core router is highly aggregated and of very high
speed, e. g., 10Gbps and more per port. The core nodes are the most critical nodes in a network
and therefore should not fail. ”The primary requirements for a core router are high speed and
reliability” [15].

Edge routers, also known as access routers, are installed at the service providers’ network
edge and provide connectivity to customers. One of their main tasks is aggregating the traffic
from the customers and its forwarding to the core. Therefore edge routers need to support a
large number of ports and a variety of access technologies, e. g., Digital Subscriber Line (DSL)
or cable modems.

Enterprise routers are operated by companies, universities etc. to interconnect their end sys-
tems. Typical enterprise networks use Ethernet and are built up by inexpensive Ethernet devices
like hubs and switches. Besides basic connectivity with a large number of ports these routers
need to support further features like firewalls, filters and Virtual Local Area Networks (VLAN,
cf. Ethernet VLAN extension of [16]). Enterprises consider the network as operations expense
and try to minimize it. So routers targeting this market segment need to have a low per port
cost.

This thesis targets the challenges to build high-speed packet buffers like needed in core routers.
The following Sections therefore focus on these core routers.

2.1.3 Router Architectures

A core router comprises of a number of line cards that are interconnected by a backplane. A
line card itself contains one or more ports.

A physical port logically divides into an input (receive) and an ouptput (transmit) part. Simi-
larly, a physical line card also divides logically into an input (ingress) part and output (egress)
part. This thesis references them as input port, output port, and as input line card and output

line card, respectively. The words input and ingress as well as output and egress are used inter-
changeably. Depending on the implementation the two logical parts (input and output) may of
course share resources.

8 Chapter 2. Packet Buffers for Network Nodes

The input line card classifies incoming packets and then processes them based on the classifi-
cation result. Afterwards, the backplane transfers the packets to the output line card where they
can exit on the respective output ports.

Routers can be classified with respect to many criteria. Targeting packet buffering there are
two relevant criteria. The first is the backplane type of the router as the backplane may contain
a buffer itself and in many architectures it receives the packets from the packet buffer. The
second is the buffer’s location in the router architecture. Both criteria fundamentally impact the
performance and complexity of a router. The following two Sections show the classification
with respect to these criteria.

The most common protocols like the IP allow the use of variable-length packets. However,
backplanes and packet buffers usually operate on constant-size data elements often called cells.
The reason for this is that these components are usually implemented as digital circuits in hard-
ware to achieve high performance and to be able to guarantee high timing requirements in the
range of nanoseconds.

As hardware design is much more complex than software design constant sized data ele-
ments help to lower complexity significantly. Therefore the input line card segments incom-
ing variable-length packets to constant-size cells. On the output line card the packets are re-
assembled before they depart on the output port.

2.1.3.1 Backplane

There are two general types of backplanes [15]:

• Shared backplanes

• Switched backplanes

In case of a shared backplane, e. g., a shared bus, only two line cards can communicate at any
instant. In case of a switched backplane, also referred to as switch fabric, multiple line cards
can communicate simultaneously. The aggregate line rate of the interfaces on all line cards2

defines the required bandwidth3 of the backplane. Obviously it is much simpler to meet the
throughput requirements with a switch fabric. Today all faster routers use switch fabrics.

Two basic types of switch fabrics exist [10]:

• Single-stage switch fabrics

• Multiple-stage switch fabrics

2Depending on the application, a line card may be also connected to the backplane with less than the aggregate
line rate of its ports.

3In computer networking and computer science the term bandwidth is a bit rate measure for communication
resources.

2.1 Network Nodes 9

input 1

input N

output 1 output N

crosspoint

Figure 2.1: Bufferless crossbar (Source [10])

input 1

output 1 output N

input N

crosspoint

Figure 2.2: Buffered crossbar (Source [10])

A single-stage switch fabric is a fully interconnected network, where every input can be con-
nected to every output directly. A crossbar is an example for a single-stage switch fabric (cf. Fig-
ure 2.1). The drawback of single-stage fabrics is the required central scheduler, which is chal-
lenging for a large number of inputs. The number of inputs the arbitration algorithm has to
consider is the number of line cards (N) times the number of queues (Q) maintained per line
card, where the latter can be quite large. Nevertheless, crossbar switch fabrics are very popular
for fabric implementation due to their non-blocking capability, simplicity, modularity, and their
market availability [10].

A multiple-stage switch fabric is a network of switch modules [10]. Each module is a small
switch with two ore more ports. Here each input is connected to a switch module and not
directly to the outputs. To reach the output line card every packet traverses several switch-
ing modules. Examples for multiple-stage switching networks are Clos [17] and Banyan [18]
networks.

Switch fabrics can be further classified into [10]:

• Bufferless switch fabrics

• Buffered switch fabrics

10 Chapter 2. Packet Buffers for Network Nodes

The drawback of bufferless switch fabrics is the need for a centralized scheduler. This can be
solved by using a buffered crossbar switch fabric with buffers at each crosspoint as these make
scheduling distributed. Figure 2.2 shows a buffered crossbar. A buffered crossbar scheduler
consists of N input schedulers and N output schedulers which work independently and paral-
lel [11].

The number of cross points is N×N. For large N, like in the order of 256 and higher, the total
required buffer memory can be quite large. However, currently crossbar switches are limited
by the number of I/O pins required for data transfer to and from the chip [19]. This leaves
empty area on the die to implement memory. The drawback of buffered crossbars is that they
suffer from so called ”crosspoint blocking” what occurs, when a low priority cell resides in a
crosspoint buffer. This prevents a higher priority cell of the same input/output pair to enter the
crossbar as the corresponding buffer is occupied.

In multiple-stage fabrics buffering helps to resolve packet contention during switching but also
may cause a sequencing problem. They therefore require output line cards capable of reordering
cells when necessary.

The electrical implementation of switch fabrics is limited towards large number of line cards and
high data rates due to increasing power and chip count requirements. Here hybrid approaches
with electrical scheduling and optical switching are considered to be more scalable, but are yet
unsolved [10].

2.1.3.2 Buffer Location

In a router or switch it can easily happen that an output port is temporarily overbooked because
packets from several input ports are destined to it in a short time period. These packets now
compete for the output port resource. During classification on the input line card each packet
is assigned a Class of Service (CoS). Later, a scheduler uses this CoS information to define the
packet transmission order on each output port.

To reduce packet drops routers buffer these packets for the duration of the congestion. The
buffer location essentially influences the router performance and implementation complexity.

Possibilities for the buffer location are on the input line card, the output line card, or on input
and output line card. This leads to the three main queuing variants known in literature:

• Input-Queued (IQ)

• Output-Queued (OQ)

• Combined Input/Output-Queued (CIOQ)

For simplification of description it is assumed that each line card has only one port with line
rate R. In reality a line card may contain several ports with an aggregate line rate of R.

The content of the following descriptions and statements about IQ, OQ and CIOQ routers
mainly originate from [11].

2.1 Network Nodes 11

(N+1)R

line card 1

R

switch fabric

(N+1)R

line card N

R

line card N

R

line card 1

R

NR

no buffer N writes, 1 read

Figure 2.3: Output-Queued Router with distributed memories (Source [11])

line card 1

R

switch fabric

line card N

R

line card 1

R

2NR

line card N

R

2NR

centralized memory

N writes, N reads

Figure 2.4: Output-Queued Router with centralized shared memory (Source [11])

OQ Router

An OQ router has a buffer at each output (cf. Figure 2.3). The input line card processes and
segments a packet to constant-size cells. The switch fabric transfers the cells to the correspond-
ing output line card. In an NxN OQ router each output buffer has to be capable to write N cells
and read one cell simultaneously. With this, the memory bandwidth of every individual memory
is (N+1)R. The required bandwidth of the switch fabric is NR.

Another variant of an OQ router is the centralized shared memory router (Figure 2.4). It uses
one central memory that is shared by all line cards instead of individual memories on the line
cards. This central memory requires a bandwidth of 2NR and a switch fabric bandwidth of
2NR. The big advantage of the centralized memory is that its capacity can be shared by all data
flows from all line cards, leading to a smaller total required capacity. However, when memories
are distributed like in the first variant, then memory can be added incrementally with new line
cards.

Due to the high memory bandwidth required, OQ routers are not scalable even for moderate line
rates. However, OQ routers perform like the ideal router as there is no fabric contention and the

12 Chapter 2. Packet Buffers for Network Nodes

2R

line card 1

R

switch fabric

line card N

R

line card 1

R

NR

2R

line card N

R

1 write, 1 read no buffer

Figure 2.5: Input-Queued Router (Source [11])

scheduler on the output line card can perform an optimal scheduling. Therefore OQ routers are
often used for benchmarking and comparison.

IQ Router

An IQ router buffers incoming packets on the input line card (cf. Figure 2.5). Therefore a
memory needs to perform only one write and one read operation simultaneously, what is the
minimum for a buffer. This leads to a memory bandwidth of 2R. The switch fabric has a
bandwidth of NR. However, memories could be dimensioned to have a higher read bandwidth,
but this is not mandatory.

If the buffered cells are organized as one First-In First-Out (FIFO) queue, only the Head Of
Line (HOL) cell is considered for switching. When a HOL cell is not processed due to fabric
contention, every cell behind it is blocked even if its destined output is currently idle. This
phenomenon is called the HOL blocking and limits router throughput significantly [20].

HOL blocking can be completely eliminated by the use of Virtual Output Queues (VOQ). Here,
each input buffer maintains one FIFO queue per output line card and per CoS. So on a line card
no cell destined to an output can block a cell destined to a different output. The contention
resolution algorithm considers the total number of N2× number of CoS VOQs of all line cards.
IQ routers have to resolve fabric contention before cells are forwarded to the output line cards.
Contention resolution works by means of a matching process. The matching process deter-
mines pairs of switch fabric input and switch fabric output (input i, output j). After matching
the switch fabric is configured and the cells are transferred simultaneously from inputs to out-
puts. Complex maximum weight matching algorithms that provide 100% throughput are not
practicable at high speeds [11]. Therefore, most routers use heuristic algorithms like iSLIP [21]
that are often realized iteratively.

2.1 Network Nodes 13

3R

line card 1

R

switch fabricline card 1

R

2NR

3R

3R

line card N

R

line card N

R
3R

1 write, 2 reads 2 writes, 1 read

Figure 2.6: Combined Input/Output-Queued Router (Source [11])

CIOQ Router

IQ and OQ routers are often also referred to as single buffered routers as they have only a single
stage of buffering. In contrast to these, a CIOQ router buffers packets on the input as well as
on the output line cards (cf. Figure 2.6).

The central switch fabric arbitration becomes easier with two stages of buffering [11]. This is
due to the fact, that the input line card can buffer a cell when the switch fabric is not free. Later,
when the output port is busy while forwarding the cell via the switch fabric, the output line card
can buffer the cell until the output port is idle.

According to [11], if the memory on each line card has a bandwidth of 3R and the router im-
plements a time reservation scheduling algorithm this router can behave like an OQ router that
supports Quality Of Service (QoS). Therefore the switch fabric needs a bandwidth of 2NR.
Since the switch fabric needs to operate faster than in an IQ router, this shortens the time avail-
able for the matching process [10]. Therefore, CIOQ routers with unbuffered crossbar are hard
to scale while providing deterministic guarantees as the switch fabric scheduler is centralized
and complex.

Reduction in scheduling complexity makes CIOQ routers practical. The possible determin-
istic performance guarantee makes this architecture interesting for core routers where a high
throughput is crucial.

Many routers today allow adding line cards incrementally and independently. These line cards
can even support different protocols and have different features. As these line cards may process
packets differently they need to store cells locally on the input part [11]. The CIOQ router meets
also this requirement.

CIOQ is today the most popular architecture for high-speed routers. ”Cisco Systems, currently
the world’s largest manufacturer of Ethernet switches and IP routers, deploys the CIOQ archi-
tecture in Enterprise, Metro, and Internet core routers” [11], e. g., the Cisco CRS-1 (Carrier
Routing System) [22, 23].

14 Chapter 2. Packet Buffers for Network Nodes

PHY/ packet traffic & VOQ

memory/ switch fabric route &
management

switch fabric

scheduler

MAC

memory

PHY/

MAC

sR

memory

fabric contention

egress congestion

OQ

exemplary path of

a packet (fast-path)

(ingress part)line card 1

RIF

RIF

RIF

RIF

(packets)

(packets)

R R

sR

manager

(lookup table)

manager

(egress part)line card N

CPU
controller

system
processing

Figure 2.7: Basic Combined Input/Output-Queued IP Router architecture

2.1.4 Combined Input/Output-Queued Router

The most popular type of router used in the Internet today is the CIOQ router as it simplifies
switch fabric scheduling (cf. the previous Section). Figure 2.7 shows the basic architecture of
such a CIOQ IP router.

The tasks performed by an IP router can be classified into two categories: control plane tasks
and data plane tasks [24].

Control plane tasks include system configuration, management and exchange of routing ta-
ble information. These tasks are performed relatively infrequently compared to normal packet
processing in the data plane, but are often complex. As throughput is not crucial here, general
purpose CPUs (Central Processing Unit) perform processing, e. g., CPU on ingress line card,
CPU on Route and Management Controller (RMC) card. The path of the packets through the
control plane modules is also referred to as slow-path. The RMC handles packets that need
extra attention, participates in routing protocols, reserves resources etc., while the CPU on the
line card performs local forwarding table updates, exception handling, etc.

Data plane tasks are the typical tasks a router performs on nearly all incoming packets, e. g.,
classification, lookup the forwarding table, packet header modification and queuing. To support
processing at line rate the corresponding modules are implemented with specialized hardware,
e. g., by a Network Processor (NP), an Application Specific Integrated Circuit (ASIC), or a Field
Programmable Gate Array (FPGA). The path of the packets through the data plane modules is
also referred to as fast-path.

2.1 Network Nodes 15

Since packet buffering is a data plane task, in the following the modules along the fast-path are
described in detail (cf. Figure 2.7). Contents of the descriptions partly originate from [24].

PHY/MAC – The PHY chip receives the optical signal from the fiber and performs opto-
electronic conversion, as well as clock and data recovery. The MAC chip detects the
frame boundaries, checks the integrity of the frame and delivers it to the packet process-
ing system.

Packet Processing System – This module is a processing system that is specialized on packet
processing. For example, it usually contains processing units with a specialized instruc-
tion set architecture and highly parallel processing. The packet processing system parses
and classifies incoming packets to isolate the individual flows. Packets destined for the
slow-path are forwarded correspondingly. For fast-path packets it performs a route lookup
to determine the outgoing interface, and modifies certain header fields. Depending on the
lookup algorithm different off-chip4 memory technologies are used to store the lookup
table. During processing, the packets are stored in a small on-chip memory. Finally,
it forwards the packets to the traffic and VOQ manager module. A commercial exam-
ple for a packet processing system is the Silicon Packet Processor (SPP) [22] of Cisco,
which operates on their 40Gbps CRS-1 router line cards. Hauger presents in [25, 26] a
novel architecture for high-speed packet processing systems. This provides high speed
and flexibility to adapt to new requirements simultaneously.

Traffic Manager – This module ”is responsible for prioritizing and regulating the outgoing
traffic” [15] according to the service level agreements with the individual subscribers.
Therefore it monitors the traffic and may also take corrective actions by policing the
traffic via dropping, delaying or marking packets. Chao et al. present and discuss in [24]
corresponding algorithms.

VOQ Manager – The Virtual Output Queue manager implements a packet buffer for tempo-
rary storage of packets to resolve contention among the different inputs of a switch fabric,
i. e., on several input line cards packets may be available which are destined to the same
output line card. The VOQ manager organizes the packets in queues to avoid head of the
line blocking. These queues are called VOQs. One or more flows may share a queue in the
buffer. It typically maintains number of output interfaces × number of CoS queues [27],
i. e., each queue corresponds to an output interface and a class of service. In real high-
speed systems this leads to hundreds to thousands of VOQs [24, 27, 11]. A memory

manager maintains the individual queues and organizes the required control structures.
The memory manager may also keep some overall statistics that can be used by the traf-
fic manager, e. g., memory occupancy of the individual queues, memory occupancy of a
group of queues, etc. A packet memory stores the individual packets. To enable large
capacities, this memory is typically implemented with off-chip memory modules.

Switch Fabric Scheduler – Assuming a router with a bufferless crossbar based switch fab-
ric the router also contains a centralized switch fabric scheduler. This schedules the cell

4Off-chip memory is memory that is implemented on a different chip than the data processing task. E. g.,
the memory modules in a personal computer are off-chip memories. External memory is a synonym for off-chip
memory. In contrast to this, on-chip memory is memory that is integrated into the same chip like the data processing
or memory management task. Internal memory is a synonym for on-chip memory. Typically on-chip memory can
be accessed much faster compared to off-chip memory.

16 Chapter 2. Packet Buffers for Network Nodes

transfers from input line cards to output line cards via the switch fabric. At the beginning
of each cell time, the scheduler selects a configuration for the switch fabric and then trans-
fers cells from switch fabric input to output. To determine the switch fabric configuration
the scheduler implements a matching algorithm (e. g., iSLIP [21]) that may take account
of queuing information (e. g., queue length), CoS, and statistics maintained by the line
cards.

Switch Fabric – The switch fabric interconnects the individual line cards as discussed in Sec-
tion 2.1.3.1. Switch fabrics often implement a speedup to account for fragmentation of the
cells and the non-optimal matching algorithms implemented by the switch fabric sched-
uler. The speedup s is the number of times a module works faster then than the line rate,
e. g., s= 1 means there is no speedup, s= 2 means the module works twice as fast as the
line rate. Accordingly, cells depart from the input line card and arrive on the output line
card with a rate of sR.

OQ Manager – The Output Queue manager implements a packet buffer for temporary storage
of packets to resolve egress congestion and to match the speed gap between the switch
fabric rate (sR) and the outgoing interface rate (RIF). The number of output queues in
high-speed systems is large because these often maintain one queue per flow, e. g., up to of
ten thousands or even more [11]. Further, the OQ manager is similar to the VOQ manager
except that a local scheduler serves the output ports based on their line rates. A huge
number of potential algorithms are available in literature, e. g., weighted fair queuing [28]
and its variants.

Summarizing, a router with CIOQ is a complex system with many modules. The packets tra-
verse the modules along the fast-path from the input ports to the output ports in a fixed order,
i. e., in a kind of pipelined fashion. All modules along the fast-path operate at line rate or even
faster and therefore require specialized hardware. Along the fast-path there are two large packet
buffers which are implemented by the queue managers, i. e., VOQ manager and OQ manager.
In high-speed systems the packet buffer on the ingress part of the line card maintains a medium
number of queues in the order of hundreds to thousands, while the packet buffer on the egress
part of the line card maintains a larger number of queues in the order of ten thousands and more.

2.2 Packet Buffers

Internet routers and switches require high-speed packet buffers to hold packets during times of
congestion. In the following, Section 2.2.1 defines the term packet buffer and gives an overview
how it interacts with other components. Then Section 2.2.2 introduces the basic architecture
and building blocks of a packet buffer. Section 2.2.3 explores the design choices and gives
a practical example for queue management. Finally, Section 2.2.4 derives performance and
capacity requirements for packet buffers.

2.2 Packet Buffers 17

packet buffer

packet

memory

scheduler
queue state

packet request

e.g., from e.g., to
switch fabricnetwork processor

packet

Figure 2.8: Packet buffer interaction with other components

2.2.1 Overview

In literature there is no clear definition of the term packet buffer. Authors use a wide range
of expressions and wordings to describe packet buffering and the involved components. This
Section gives a definition which is used throughout this thesis. Further, this Section introduces
the interaction of the packet buffer with other components. Figure 2.8 shows the packet buffer
and its connections to related components.

A packet buffer performs all tasks related to the buffering of packets: it abstracts from the
underlying technology and from any queue and memory management.

High-speed packet buffers in routers always maintain several FIFO queues [11] in which they
buffer packet data. To implement these queues it manages the packet memory. Thereby it may
assign buffer memory to the individual queues statically or dynamically. Depending on the
location of the packet buffer in the router architecture, these queues represent VOQs or OQs. A
packet buffer may operate on packets or cells depending on its implementation.

From the packet buffer’s point of view all data of one queue belong to one logical flow. For the
remainder of this thesis the term flow is defined as follows: all packets that should be buffered
in the same queue belong to one flow. For example, for an input buffer all packets with the
CoS i destined to output line card j belong to one flow.

In the following the queues maintained by a packet buffer are named flow queues. The pre-
ceding component (e. g., an NP) delivers packets with meta-information. The meta-information
contains at least the packet length and the flow the packet belongs to. Based on this the packet
buffer allocates the right amount of memory and enqueues the packet into the corresponding
flow queue. The packet buffer provides queue state and scheduling information to the sched-
uler, e. g., queue empty/non-empty and packet sizes of the head packets, respectively. Based on
this information the scheduler requests packets from the packet buffer.

Summarizing, the tasks of a packet buffer are

• Buffering of packet data

• Queue management (enqueue incoming and dequeue requested packets or cells)

18 Chapter 2. Packet Buffers for Network Nodes

memory manager

memory

controller

addr.

packet

memory

descriptor

memory

descriptor

packet buffer

packet request

queue state

block

packets
variable-length

Figure 2.9: Basic architecture of a packet buffer

• Memory management (statically or dynamically allocate memory for queues)

• Provide queuing information to scheduler

The scheduler, also often named arbiter, requests packets or cells from the packet buffer. Its
decision bases on the queue state information provided by the packet buffer (cf. Figure 2.8).

The following Sections focus on the building blocks and operation of a packet buffer according
to the definition given above.

2.2.2 Basic Architecture

The basic architecture of a packet buffer is shown in Figure 2.9. In the following the individual
building blocks are introduced. These are namely: packet memory, memory controller, memory
manager, and descriptor memory.

Packet Memory – The packet memory stores the individual packets. In most cases the required
capacity is too large for on-chip memory. Therefore usually off-chip memory is used in
form of DRAM as this provides large capacities at low prices, e. g., DDR3 SDRAM [29].

Memory Controller – The memory controller abstracts from the potentially complex inter-
face of the memory module to implement the packet memory. For example it assures
that timing constraints of the memory device are met and it sends special required control
sequences to initiate write or read process. Further it may optimize the throughput by ex-
ploiting memory characteristics, e. g., perform out-of-order reads and writes to minimize
signaling overhead. The authors in [30, 31] show strategies how to increase DRAM bus
utilization in packet buffers.

Memory Manager – The memory manager abstracts from actual memory organization and
provides Q logical FIFO queues where packets are stored and retrieved from. There are

2.2 Packet Buffers 19

many degrees of freedom maintaining these queues. The main design choices are dis-
cussed in Section 2.2.3.

Upon packet arrival, the memory manager allocates free memory in the packet memory.
Then it triggers packet storage by providing memory address and packet data to the mem-
ory controller. In parallel it generates one or more descriptors which contain information
about the packet, e. g., location (memory address) and packet length. It stores the descrip-
tors in the descriptor memory and also links it to the tail of the corresponding queue. The
memory manager provides the queue states to an external scheduler.

Upon a packet request from the scheduler, the memory manager accesses the descriptor
memory and retrieves from the corresponding queue head the one or more descriptors
belonging to the packet. Knowing packet length and location it triggers packet retrieval
from packet memory.

Descriptor Memory – The descriptor memory stores the individual descriptors. Its size is
usually proportional to the packet memory size5 as each packet or portion of data requires
a descriptor. The queue operations (enqueue, dequeue, etc.) performed by the memory
manager often require accesses that depend on each other, e. g., result of read access A
determines address of read access B. Consequently, the descriptor memory requires a
short access latency to enable fast queue operations. Usually, it is implemented by off-
chip SRAM as this provides very short and constant access latencies. As SRAM provides
a very simple interface, the corresponding memory controller is omitted here.

Concluding, the memory manager is the central component in packet buffer as it performs the
complete queue and memory management, i. e., it adds and removes packets from the individual
queues as well as allocates and de-allocates required memory. The degrees of freedom it has
maintaining these queues are discussed in the following Section.

2.2.3 Memory Organization

This Section introduces how the memory manager actually organizes the packet memory.
Therefore it shows available design choices for memory allocation and block size. Further, it
presents the application of linked lists as state-of-the-art control structure along with its degrees
of freedom, optimizations to reduce the control overhead, and an example.

Memory Allocation

The memory manager assigns memory statically or dynamically to individual queues. In case
of static memory allocation each queue is statically assigned a memory area. This greatly
simplifies implementation as the memory area can be organized as a ring buffer. However,
this disallows sharing the available memory capacity, e. g., if a queue already occupies its full
memory range further packets destined for this queue are dropped, even if there is enough
unallocated space in the packet memory. Due to its very inefficient memory capacity utilization
this is not a practical solution for typical network nodes.

5size is used in the following interchangeably for capacity

20 Chapter 2. Packet Buffers for Network Nodes

In case of dynamic memory allocation memory is dynamically assigned to the individual
queues. To prohibit queues from monopolizing the packet memory dynamic partition mech-
anisms [32, 33] can be used to regulate queue lengths.

Block Size

In case of dynamic memory allocation, the memory manager divides the available memory into
blocks. These blocks can be variable or fixed in size. With variable-size blocks no internal
fragmentation occurs as the blocks exactly match the size of the packets. However, this has two
main drawbacks. Firstly, variable-size blocks may lead to heavy external fragmentation, i. e.,
new blocks may not fit into the free memory fragments. Secondly, searching for free memory
to store a new block is complex and challenging at higher line rates.

With constant-size blocks internal fragmentation occurs, i. e., a packet usually does not fill a
block entirely. To minimize fragmentation a small block size is used, e. g., 64 byte is a common
choice. The problem of finding free blocks gets trivial when blocks are of constant size.

Alternatively, the memory can be partitioned statically or dynamically into areas where each
area has a different block size [34], e. g., four areas with the block sizes 64 byte, 128 byte,
512 byte, and 2048 byte, respectively. Packets that are larger than a block are segmented into
several blocks. For example, a 550 byte packet occupies one 512 byte and one 64 byte block.

Control Structure

Assuming constant-size blocks and dynamic memory allocation there are many possibilities to
implement the control structures for queue management, e. g., linked lists of blocks, pointer
arrays, and binary trees. Wuytack et al. give in [35] an overview about control structures.
Linked lists are flexible, resource efficient and simple to realize in hardware. Therefore, this is
the typical control structure used. The following paragraphs introduce in detail how linked lists
are used for queue management.

The memory manager segments incoming variable-length packets into constant-size blocks and
allocates the corresponding number of blocks in the packet memory. For each allocated block
it generates a block descriptor that contains information about the packet length, a pointer to
the next block and information if this is the last block of a packet. To be able to read blocks
of a single queue with line rate, the read latency to access the individual descriptors has to
be low. This is mandatory as each block descriptor contains the pointer (memory address) to
the next descriptor. Placing the block descriptors into the packet memory is very economic
as no separate descriptor memory is needed. This also minimizes the number of I/O pins.
Nikologiannis et al. propose in [36] a corresponding packet buffer architecture. However, this
is not feasible in high-speed systems with very high packet rates. The reason therefore is that
the DRAM technology used to implement the packet memory has a relative long and variable
read latency what does not meet the requirements for descriptor memory. Systems targeting a
high throughput [37, 38, 39, 40, 41, 42] store descriptors in a dedicated descriptor memory,
which is implemented as a physically separate memory with short read latency compared to the
packet memory.

2.2 Packet Buffers 21

block blocks of one packet

blocks of one packet

Hierarchical ListFlat List

Figure 2.10: Flat and hierarchical linked lists like used in packet buffers

High-speed systems allow only strict FIFO access to the flow queues maintained to achieve
a high performance. As in such systems all packet processing and manipulation takes place
before the packet is enqueued this is no drawback.

Information about actual products is very rare, as vendors do not publish their implementations
in such detail. One example with some information is the IXP2400 network processor from
Intel [43] which provides hardware supported queuing. It uses relatively large block descriptors
of 32 byte, which contain information about both, the block and the packet. With these descrip-
tors the memory manager can create flat and hierarchical lists (cf. Figure 2.10). A flat list means
a simple linked list of blocks. A hierarchical list means, each packet is represented by a linked
list of blocks while the first blocks of individual packets are additionally linked together to a
packet list.

To remember the head and tail of each queue the memory manager maintains a queue table
which contains one queue descriptor per queue. A queue descriptor contains at least one pointer
to the head block and one pointer to the tail block descriptor as well as a valid bit to mark the
validity of an entry. As the queue table is accessed very frequently it is typically implemented
with a dedicated memory. Due to its small size this memory can be usually implemented as
on-chip memory.

To reduce the number of memory accesses often preallocation [36] is implemented: one free
block is preallocated for every queue and linked as the last block in the queue. When a new
block is to be enqueued, it is always written into the preallocated block. This corresponds to a
write operation to the packet memory. Simultaneously, a new free block is linked to this block,
which is thus preallocated. This corresponds to a write operation to the descriptor memory.

To keep track of free blocks the memory manager organizes them as an own queue which is
often called the free-list. To reduce the access rate to the descriptor memory a free-list cache
can be used which caches several pointers to free blocks. With a balanced packet arrival and
departure to the packet buffer, a free-list cache greatly reduces access rate to the descriptor
memory. To optimize the packet memory accesses, the reuse of free blocks can be adapted
to the properties of the memory module used to implement the packet memory, e. g., Last-In
First-Out (LIFO) reuse, FIFO reuse, one free-list per memory area or bank, etc.

22 Chapter 2. Packet Buffers for Network Nodes

Packet

data block 1 data block 2 data block 3

Figure 2.11: Packet segmentation to constant-size blocks

Reduction of Descriptor Memory Size and Bandwidth

As each data block requires a block descriptor a large packet memory leads to a large descriptor
memory. Nevertheless, there are several options to keep the descriptor memory size small.

• Reduction of block descriptor size: If the packet length or any other information is not
required by the system in advance, this can be stored in the packet memory along with the
packet data. E. g., in case of the packet length an end-of-packet bit in the block descriptor
allows to stop reading at the last block of a packet without knowing its explicit length.

• Reduction of the number of block descriptors: With increasing block size the number
of block descriptors decreases. However, depending on the packet size distribution this
may increase the internal fragmentation in the blocks dramatically.

• Grouping of blocks to pages: N adjacent blocks can be grouped to a page, while the
packet memory is still accessed in granularity of blocks [44]. One page is explicitly
allocated to one queue. Now only one page descriptor is maintained instead of N block
descriptors. Inside a page the blocks are occupied sequentially and therefore require no
explicit descriptor. This is a trade-off between packet memory fragmentation on the one
hand and descriptor memory size and bandwidth on the other hand.

Fragmentation occurs as the head and tail page of each flow are only partially occupied,
i. e., the memory manager fills the head page sequentially and also empties the tail page
sequentially. Non-occupied page parts cannot be utilized by other flows as a page is
exclusively assigned to a single flow. For a moderate page size (e. g., 16 blocks) and
number of flows the introduced fragmentation is negligible with respect to the extreme
capacities provided by today’s DRAMs.

When the page size is large enough the size of the descriptor memory may drop below
a value that enables implementation as an on-chip memory, saving I/O pins and costs.
However, with increasing page size the page descriptor size is also growing as it contains
now information from several packets, e. g., packet lengths, begin and end information of
the individual packets.

Further, using pages reduces the required bandwidth to the descriptor memory in average
by factor N. The memory manager derives the memory address of the next block by a
simple increment of the current address. So it accesses the descriptor memory only when
it reaches the end of a page and wants to read or link the next page descriptor.

Example

Figure 2.12 shows the basic memory management with constant-size blocks and linked lists as
control structure. Descriptor memory and packet memory are physically separate memories.

2.2 Packet Buffers 23

Descriptor Memory Packet Memory

data block 2

data block 1

data block 3
8

0
1
2
3

7

2

0

n-1

0
1
2

tail

Q-1

Queue Table

Free-List

Free-List Cache

4
5
6
7

0
v

1
0

0

1

8

3
0
1

84

9n-15
head tailv preallocated block

6
9

10
-

block descriptors blocksqueue descritpors

head

n-1 -

Figure 2.12: Basic memory management with constant-size blocks and linked lists as control
structure

There is a one-to-one mapping between block descriptors and blocks, i. e., each block is associ-
ated to one fixed block descriptor. Therewith, the block descriptor does not need to contain the
address of the block, as it is equal to the descriptor address, e. g., block descriptor 0 and data
block 0 have both the address 0. Both, descriptor and packet memory contain n elements, i. e.,
the size of the packet memory is n blocks.

After powering on the systems the memory manager initializes the descriptor memory in a way
that all blocks belong to the free-list. Every block, except the ones in the free-list cache, belong
at any time to one of the Q queues or to the free-list.

The queue table contains Q queue descriptors. The head pointer points to the head block de-
scriptor of the queue while the tail pointer points to an empty preallocated tail block descriptor.

When the memory manager has to read the block at the head of queue 1 in Figure 2.12 it
performs the following tasks:

1. It accesses the queue table at address 1 to read the queue descriptor which contains the
head pointer. Here the value of the head pointer is 4.

2. It accesses the packet memory at address 4 to read the corresponding block.

3. Simultaneously to 2., it accesses the descriptor memory at address 4 to read the block
descriptor that contains the pointer to the new head. Here the value of the new head
pointer is 2.

4. It accesses the queue table to update the head pointer in the queue descriptor to the new
head. Here the value of the new head pointer is 2.

24 Chapter 2. Packet Buffers for Network Nodes

When the memory manager has to enqueue a block to queue 1 in Figure 2.12 it performs the
following tasks:

1. It accesses the queue table at address 1 to read the queue descriptor which contains the
tail pointer. To tail pointer points to the preallocated tail block. Here the value of the tail
pointer is 8.

2. It accesses the packet memory at address 8 to write the corresponding block.

3. Simultaneously to 2., it fetches a free block from the free-list cache (e. g., block 3) and ac-
cesses the descriptor memory at address 8 to store the new block descriptor. This contains
the pointer to the new preallocated tail block. Here the value of the pointer is 3.

4. It accesses the queue table to update the tail pointer in the queue descriptor to the new
tail. Here the value of the new tail pointer is 3.

Summary

Summarizing, the memory organization offers several main design choices, e. g., blocks size and
control structure. However, typically constant-size blocks with linked lists as control structure
are used. The reasons therefor are that this is resource efficient, hardware implementation is
relatively simple, and implementation offers a large number of design choices.

2.2.4 Requirements

A packet buffer has to fulfill requirements on the functional level and on the technological level.
Further, the performance, i. e., here bandwidth, delivered by a packet buffer can be deterministic
or statistical. This Section introduces the requirements and discusses the pros and cons of
statistical and deterministic bandwidth guarantee.

Functional Level

The global requirement on the functional level is to provide and manage a set of queues to
buffer user packets. Thereby it completely abstracts from the underlying memory technology
and its organization. The previous Sections introduced in detail the architectural building blocks
necessary therefore.

Technological Level

On the technological level a packet buffer has to satisfy requirements concerning three major
properties: bandwidth, capacity, and access time. These requirements are mainly defined by
system properties like the input line rate R to the packet buffer and the applied network technol-
ogy, e. g., Ethernet [802.3] or Provider Backbone Bridging [802.1ah]. These requirements are
quantified in the following.

2.2 Packet Buffers 25

Bandwidth – The packet buffer has to both, store and retrieve packets at line rate. Therefore,
the minimal necessary memory bandwidth is 2R, where R is the aggregate line rate of all
ports on a line card.

It is common for network nodes to segment packets into constant-size blocks to simplify
memory management. 64 byte is a common choice as it is the first power of two able to
hold a minimal Ethernet or IP packet. Nevertheless, in the worst case the packet buffer
must sustain a stream of 65 byte packets, which all consume two 64 byte blocks, leaving
the second nearly empty. This effect is called the 65-byte-problem [45].

Because of this effect memory bandwidth is often overdimensioned by a factor of two,
i. e., to 4R. A high memory bandwidth can be achieved by using many memory chips in
parallel. However, with increasing number of I/O pins to connect the memory chips the
system costs increase quickly.

Capacity – The capacity dimensioning of packet buffers is discussed controversially in litera-
ture. As dimensioning is not part of this thesis the author relies on common dimensioning
rules.

It is common to use a rule-of-thumb, commonly attributed to [46], to dimension the capac-
ity of the packet buffer. This suggests, for TCP to work well, the buffer should be dimen-
sioned to the bandwidth delay product, i. e., RTT ×R where RTT is the round trip time
between active end hosts. Assuming RTT = 200ms and a line rate of R = 100Gbps the
required buffer size is 2.5Gbyte. In [12] the authors show that for core routers, buffer size
can be reduced to RTT ×R/

√
N, where N is the number of major active TCP flows. With

10.000 TCP flows this would reduce the buffer size to around 1%. However, this rule-of-
thumb is widely in use and it is likely to be also in future as network operators do not want
to put the Service Level Agreements (SLA) at a risk [47]. For example, a cutting-edge
100Gbps line card fromAlcatel-Lucent for their 7750 IP router platform uses 1.5Gbyte of
DRAM for buffering [48]. This is enough to buffer around 1.5Gbyte/100Gbps ≈ 120ms
of traffic. The 100Gbps line card is already available as prototype at time of writing and
uses the in house developed FP2 chipset that also includes a chip for queue management.

Following the proposal of [12] with the assumptions from above the required buffer size
is 25Mbyte. With off-chip memory this leads to small benefit as still many parallel mem-
ory chips are needed to achieve the required bandwidth. However, when this amount of
memory could be realized on-chip this would eliminate the large number of memory I/O
pins and thereby greatly reduce overall system costs. Such a price shift would let net-
work operators rethink if they really need routers with packet buffer capacities that are
dimensioned according the rule-of-thumb.

The 65-byte-problem also affects capacity as it leads to fragmentation. This again requires
overdimensioning. Similar to the bandwidth, memory capacity can also be increased by
operating more memory chips in parallel.

Access Time – The access time ”refers to the minimum amount of time that needs to elapse
between any two consecutive” [11] accesses to the packet buffer. For example, as it takes
5.12 ns to receive a 64 byte packet at 100Gbps, a stream of 64 byte packets requires an
access time of T = 2.56 ns since packets arrive to and depart from the packet buffer. This
directly translates to the memory subsystem in the packet buffer, i. e., the access time of

26 Chapter 2. Packet Buffers for Network Nodes

the packet buffer is only as short as the access time provided by the implemented memory
subsystem.

Bandwidth Guarantee: Statistical or Deterministic?

Delivering statistical bandwidth guarantee means, the bandwidth is not guaranteed and depends
on the traffic pattern. Packets can be occasionally lost, i. e., the packet buffer cannot store an
incoming packet although there is free buffer capacity because the packet rate is temporary too
high. Similarly, requested packets may be not delivered at all, too late, or even out-of-order.

Delivering deterministic bandwidth guarantee means, that the packet buffer accepts every in-
coming packet and delivers every requested packet independent of the traffic pattern, i. e., it
never drops a packet. However, when the packet buffer is full, incoming packets cannot be
accepted. The deterministic property implies that no packets are lost, all packets are delivered
in-order and after a constant time.

A deterministic behavior has many advantages over a statistical:

• 100% bandwidth guarantee under any traffic condition

This means, that no one can do better and packet drops occur only when the buffer is full.

• Very simple packet buffer interface

This leads to a simpler subsequent component as this does not need to deal with not
delivered packets, variable read latencies and packets delivered out-of-order.

• Safety against adversarial attacks and ”bake-off” tests

This means, that there are no loopholes an adversary (e. g., a virus or a hacker) could
exploit. Examples for loopholes are specific traffic patterns or even just a specific packet
size that leads to a significant drop in router performance. Tester companies [49, 50] that
are specialized on ”bake-off” tests analyze network devices for these loopholes [11].

• Support for protocols which are designed for a network which never drops packets

Examples for such protocols are data center Ethernet [51] or fiber channel.

A packet buffer with deterministic bandwidth can constantly deliver highest performance what
is crucial in high-end routers like a core router. Inevitably this requires more resources than
providing just a statistical guarantee.

Summary

A packet buffer has to provide and manage a set of FIFO queues while fulfilling the technolog-
ical requirements bandwidth, capacity, and access time. The latter are dictated by the supported
line rate R and the used network technology. Bandwidth and access time are hard require-
ments that a packet buffer has to fulfill to sustain a worst-case packet stream. Capacity is a
soft requirement which has no sharp bound and is only relevant when considering higher layer
protocol performance like TCP.

2.3 Memory Technologies 27

The required bandwidth and capacity grow linearly with the line rate R and the required access
time decreases linearly with the line rate R. This fact poses big challenges to high-speed packet
buffer design as memory technology cannot keep up with this. Finally, the bandwidth guar-
anteed can be deterministic or statistical. Deterministic behavior has many advantages, which
come at the price of a higher system cost.

2.3 Memory Technologies

The previous Section introduced the building blocks and requirements of a packet buffer. To
implement the packet memory and the descriptor memory the suitable memory technology has
to be selected for each.

For efficient implementation of the huge number of memory accesses performed by a packet
buffer a Random Access Memory (RAM) is required. RAM allows stored data to be accessed
in any order. i. e., at random. ”The word random thus refers to the fact that any piece of data
can be returned in a constant time, regardless of its physical location and whether or not it is
related to the previous piece of data. By contrast, storage devices such as tapes, magnetic discs
and optical discs rely on the physical movement of the recording medium or a reading head. In
these devices, the movement takes longer than data transfer, and the retrieval time varies based
on the physical location of the next item.” [52]

Modern RAMs are typically volatile storage, i. e., they require power to maintain the stored data.
At time of writing two practically relevant types of volatile RAM exist: static RAM (SRAM)
and dynamic RAM (DRAM).

This Section is organized in four Subsections. The first Subsection introduces important mem-
ory related terms. Subsequent Subsections introduce SRAM and DRAM along with their prop-
erties and variants. The focus is thereby on the principal architecture, operation, and properties
of these memory types. Jacob et al. give in [53] an in depth introduction to memory tech-
nologies. This Section partly relies on this. Finally, the fourth Subsection faces packet buffer
requirements with SRAM and DRAM properties.

2.3.1 Terminology

This Section introduces important memory related terms.

Bandwidth – ”This refers to the total amount of data that can be transferred from a single
memory per unit time.” [11] The typical unit of measurement is gigabit per second (Gbps).
The maximum or peak bandwidth refers to the maximum achievable bandwidth.

Capacity – ”This refers to the total number of bits that” [11] a memory can store. The typical
units of measurement are bit and byte, e. g., Mbit, Gbit, Mbyte, Gbyte.

Read Latency – This refers to the time between issuing a read request to the memory and
receiving the corresponding data. The typical units of measurement are number of clock
cycles of the memory bus and the explicit amount of time, e. g., in nanoseconds (ns).

28 Chapter 2. Packet Buffers for Network Nodes

Access Time – ”This refers to the minimum amount of time that needs to elapse between any
two consecutive” [11] accesses (read or write) to the memory. Its absolute value depends
on the memory type. Further, it can be either constant or vary between a minimal and
maximal value based on the relation of the consecutive accesses. The access time limits
the possible number of read/write operations to the memory.

Random Access Time – This refers to the maximum of the access time and is thus a constant
value. This time is used for worst-case evaluations.

2.3.2 Static Random Access Memory (SRAM)

This Section introduces SRAM. Therefore, it briefly presents the technology used to implement
SRAM as well as the basic architecture of an SRAM device. Then, it introduces the individ-
ual properties of an SRAM related to its operation. Finally, it gives an overview of currently
available and announced high-speed SRAM types.

Technology

SRAM is a type of volatile semiconductor memory. An SRAM memory cell that stores one bit
”is implemented as two cross-coupled inverters accessed using two pass transistors. This cross-
coupled connection creates a regenerative feedback that allows the cell to indefinitely store a
single bit of data.” [53] The word static in its name indicates, that its cells do not need to be
refreshed periodically and that the stored information is not changed by the read operation.

There are several alternatives to implement a memory cell. Currently, most conventional designs
use the full-CMOS (Complementary Metal Oxide Semiconductor) six-transistor memory cell,
also called 6T memory cell [53]. The high number of transistors required per bit limits the
capacity of commercial SRAM devices, e. g., currently typical SRAM chips have capacities of
up to only 72Mbit [54].

SRAM has two main advantages. Firstly, its performance is superior over other memory struc-
tures because the state of a memory cell can be written and read directly. There is no need to
wait for a capacitor to fill up or drain. E. g., the random access time of SRAM is more then
an order of magnitude smaller than that of DRAM. Secondly, SRAM uses the same fabrication
process as required for the logic circuits of Network Processors, Queue Managers, etc. This
simplifies integration of SRAM onto the Network Processor or Queue Manager die. This so
called on-chip memory can be fitted in depth and word width to the specific requirements. Each
on-chip memory can be placed on a die next to the logic circuit accessing it. This minimizes
signal propagation times and thus increases performance.

Architecture

In an SRAM the individual memory cells are organized as an x×w array, where x is the number
of words and w the number of bits per word. Figure 2.13 shows the basic architecture of an
SRAM device.

2.3 Memory Technologies 29

word

memory

array

address

memory word0

dataout

a

w

w bits

datain

R/W 1

w

one bit

1
2
3

2a-1

Figure 2.13: Basic architecture of an SRAM device

Its superior simplicity originates from the static behavior of the individual memory cells. These
hold the stored information persistently as long as the memory is powered. Due to these prop-
erties SRAM provides a constant access time.

Operation

Now the individual properties of an SRAM related to its operation are introduced. For each
property the degrees of freedom are introduced, that an SRAM manufacturer has for imple-
menting a specific SRAM. The number of choices is large even if these are not all orthogonal
to each other.

Access Method – Two access methods exist: asynchronous and synchronous. Asynchronous
SRAM operates without a clock signal. Synchronous SRAM (sometimes abbreviated
SSRAM) uses a clock signal, i. e., all timings are initiated by the clock edge and all signals
are associated with the clock signal. As the logic circuit accessing the SRAM is also
synchronous typically synchronous SRAM is used. Figure 2.13 depicts the architecture
of a synchronous SRAM noticeable at the registers at the input and output interface.

Communication – The communication with a synchronous SRAM device can be flow through

or pipelined. If flow through communication is used there is no overlapping between
request processing and data transmission. E. g., a new read request can be issued earliest
when the SRAM completely finish processing the last request.

If pipelined communication is used, the individual input and output signals to the SRAM
are registered, i. e., registers are included into the communication path (cf. Figure 2.13).
These registers increase the read and write latency but at the same time allow for higher
clock rates.

Data Words per Clock Cycle – This refers to the number of data words received from or trans-
mitted to the SRAM during one clock cycle. Current SRAM devices support either Single
Data Rate (SDR) or Double Data Rate (DDR), i. e., one or two data words per clock cycle.
With DDR at both, rising and falling clock edge, a new data word is exchanged.

30 Chapter 2. Packet Buffers for Network Nodes

memory

address
A

D
write
data

Q
read
data

memory

address
A

DQ

all
data

Common Input/Output (CIO) Separate Input/Output (SIO)

device device

Figure 2.14: Memory data I/O types

Data I/O Type – The data input/output (I/O) type can be common or separate. Common I/O
(CIO) means that the data bus is bi-directional, i. e., the data bus (DQ) is time multiplexed
to transfer data words from and to SRAM (cf. Figure 2.14). Separate I/O (SIO) means, that
two uni-directional data busses exist: one for read and one for write data (cf. Figure 2.14).
With SIO there is no bus turnaround penalty. This maximizes the throughput for a read
write ratio of 1. However, with only one type of requests (read or write) only one data bus
is utilized and therefore throughput is bound to 50%. In such a scenario an SRAM with
CIO achieves 100% throughput.

Burst Mode – Burst mode means that instead of a single data word a burst of data words is
transferred with each request. The number of data words is called burst length. Burst
mode intends to increase data bus utilization, in best case to 100%. For example, an
SRAM device typically accepts a read or write request only with the rising clock edge.
To fully utilize the data bus (100%) with DDR, a burst length of 2 is required. Another
typical burst length is 4. This burst length is typically used in SRAM devices with SIO
and a common address bus.

Memory Interface Type – The type of the memory interface can be parallel or serial. Nearly
all commercially available SRAMs today have a parallel interface. Parallelism allows
realizing very small read latencies. This can be mandatory depending on the application,
e. g., for a descriptor memory.

Magnalynx [55] offers SRAMs with a serial interface. The main target is to reduce the
number of I/O pins and thus the overall system costs. With fewer I/O pins per mem-
ory device also potentially more memory devices can be connected to a processing chip.
However, serialization introduces additional latencies. If this is acceptable depends on the
application.

Commands – An SRAM requires only two commands for operation: read and write. This
is typically encoded with the one bit signal R/W (cf. Figure 2.13). R/W= ’1’ encodes
a read operation, i. e., the memory word at the addressed memory location is returned
after a constant read latency. The read latency is caused by the registers inserted into the
communication path. R/W= ’0’ encodes a write operation, i. e., the data word on the data
bus will be written to the addressed memory location.

2.3 Memory Technologies 31

Summarizing, independent of the degrees of freedom, the operation of an SRAM is very simple.
This results from the two main properties that only two commands (read, write) are required for
operation and that the read latency is constant.

Commercial High-Speed SRAM Types

At the time of writing, the only practically relevant high-speed SRAM types are provided by the
Quad Data Rate (QDR) consortium [56], which consists of the memory manufacturers Renesas,
Cypress Semiconductor, Hitachi, IDT, Micron Technology Inc., NEC and Samsung. The QDR
consortium jointly defined and developed the following two off-chip SRAM types: Double Data
Rate SRAM (DDR SRAM) and Quad Data Rate SRAM (QDR SRAM).

A competing consortium called SigmaRAM consisting of GSI Technology, Mitsubishi Elec-
tric, Sony Electronics, Toshiba and others seems to be discontinued since several years. The
SigmaRAM consortium offered SRAM devices functionally equivalent to those available from
the QDR consortium’s members called SigmaDDR and SigmaQuad. GSI Technology [57] still
offers these SRAM devices and also develops new versions according to their website.

Both, DDR SRAM and QDR SRAM are synchronous, pipelined and operate with double data

rate and a burst length of 2 or 4. Regarding the I/O type both, CIO and SIO are available. DDR
and QDR SRAM are available in the versions I, II and II+ while version III is announced for the
near future on the manufacturers websites. Towards higher version numbers mainly operating
frequency and memory capacity increase.

The two main differences between DDR and QDR SRAM are:

• QDR6 SRAM is only available with SIO while DDR SRAM is available with CIO and
SIO.

• QDR SRAM allows concurrent operations while DDR SRAM does not, i. e., a QDR
SRAM with burst length 2 accepts one read and one write operation per clock cycle and
so utilizes both of its data busses to 100%.

Figure 2.15 shows for several SRAM types the data bus utilization as a function of the read and
write operation ratio. The first letter in the legend indicates the type of SRAM (DDR or QDR).
B2 and B4 refer to burst length of 2 and 4, respectively. DDR SRAM with CIO achieves 100%
throughput when only read or only write operations are performed. Towards a read/write ratio
of 1 the throughput decreases, while it reaches its minimum at 1. The reason for this is that
there is a bus turn around penalty for the bidirectional data bus. The throughput of QDR SRAM
behaves inversely to that of DDR SRAM, i. e., it reaches its maximum at a read/write ration of
1 as its two data busses are fully utilized simultaneously only at this point.

DDR and QDR SRAMs are targeted for different applications. DDR SRAM targets applications
with unbalanced read write access, e. g., lookup tables that are updated rarely. QDR SRAM

6The name QDR SRAM origins from the fact that these devices are 4 times faster than devices with CIO and
single data rate.

32 Chapter 2. Packet Buffers for Network Nodes

Figure 2.15: SRAM data bus utilization as function of the read and write operation ratio
(Source: [58])

targets applications with balanced read write operation ratio, e. g., packet memory or descriptor
memory.

Table 2.1 gives an overview of currently available and announced high-speed SRAM types and
their properties.

SRAM Type max. max. data pins random burst peak data
capacity clock / chip access length rate / pin

/ chip freq. / bus time
[Mbit] [MHz] [#] [ns] [words] [Gbps]

DDRII (CIO) [54] 72 300 x9, x18, x36 3.33 2, 4 0.6
QDRII (SIO) [54] 72 300 x9, x18, x36 1.67 2, 4 0.6
DDRIII (CIO) [59]∗ 288 500 x9, x18, x36 2.00 2, 4 1.0
QDRIII (SIO) [59]∗ 288 500 x9, x18, x36 1.00 2, 4 1.0

Table 2.1: High-speed SRAM types and their properties; SRAM types marked with a ∗ are not
yet in production, but production is announced for the next years.

2.3.3 Dynamic Random Access Memory (DRAM)

This Section introduces DRAM. Therefore, it briefly presents the technology used to implement
DRAM as well as the basic architecture of a DRAM device. Then it introduces the individual
properties of a DRAM related to its operation. Finally, it gives an overview of currently avail-
able and announced high-speed DRAM types.

2.3 Memory Technologies 33

one row (page)

data

row address a

column address b

one column (w bits)

DRAM banks

I/O

MUX

w

ro
w

 d
e
c
o
d
e
r

sense amps

column MUX

memory array

Figure 2.16: DRAM device architecture. A DRAM device consists of several independent
banks. Each bank consists of the memory array and associated circuitry.

Technology

DRAM is a type of volatile semiconductor memory. A DRAMmemory cell that stores one bit is
implemented as a single transistor-capacitor pair. ”The circuit is dynamic because the capacitors
storing electrons are not perfect devices” [53] and need periodical refresh. More detailed, the
leakage of the capacitors necessitates this. To retain information stored in the DRAM, each of
its capacitors must be periodically refreshed, i. e., read and rewritten [53]. Analogously, each
read access to the DRAM discharges the corresponding capacitors. So to retain information
each read has to trigger a rewrite operation.

In contrast to SRAMs, the dynamic property of DRAMs highly increases the complexity of their
operation. Further, the time required for refreshes and rewrites after a read operation increase
the access time significantly. However, the small footprint of a DRAM memory cell allows to
build chips with huge capacities, e. g., DRAM chips with 4Gbit are state of the art [54].

Summarizing, the large possible capacity in contrast to SRAM comes at the price of a complex
device operation and increased access times. As it is shown in the following, manufacturers try
to alleviate or even completely hide the long access times by providing clever DRAM architec-
tures.

34 Chapter 2. Packet Buffers for Network Nodes

Architecture and Properties

The core of a DRAM is the memory array (cf. Figure 2.16). It is a rectangular grid of storage
cells each holding a bit of data. This array is organized in rows and columns. An 8192×
512×16 memory array consists of 8192 rows, 512 columns while each column has a width of
16 bit. Such a memory array along with it associated control logic (sense amplifier and address
decoders) is called a bank.

The access to a column requires two steps. Firstly, the row is addressed and its memory cells
are sensed via the sense amplifiers. This is a special circuit used to detect the values stored on
the capacitors. This step is called opening a row. The cell capacitors of the complete row are
discharged by sensing. Secondly, the column of the sensed row is addressed and the data is
transferred to the memory I/O. To access a column in another row of the same bank the data
of the current row has to be rewritten and the internal circuits have to be prepared for the next
sensing. This is called closing a row.

To hide the latencies introduced by opening and closing rows, vendors integrate several banks
on a single DRAM device (cf. Figure 2.16). Since each bank has its own circuitry, the banks can
operate independently of each other. This means, that while in one bank a row is open and the
corresponding data is read, a row in another bank can be opened simultaneously in preparation
for the next access. This interleaving of accesses allows in the ideal case to hide all latencies.
For example, if a DRAM bank can deliver a new chunk of data every 40 ns, one can access 4
banks in a round robin fashion to deliver a new chunk of data every 10 ns. This quadruples the
data rate achievable by any one bank. However, this requires that the accesses are distributed to
the individual banks accordingly well.

The access time T of a DRAM has been defined Section 2.3.1 (page 27). For DRAMs, T
depends on the sequence of memory accesses. Access sequences can be categorized into four
groups [11]:

1. Columns in the same row and bank: This access sequence requires the smallest access
time because the corresponding row is already opened and the columns can be accessed
immediately. This is fast and delivers the highest bandwidth. However, it is not a typical
access sequence in a router, as the requested data blocks usually reside in different rows
and banks.

2. Columns in different rows but in the same bank: This access sequence leads to the
longest possible access time because the current row has to be closed and the new row has
to be opened prior reading the requested column. This worst-case access time for random
accesses is named row cycle time (TRC) in memory parlance. This is called a bank conflict
or a bank collision.

3. Columns in different rows and different banks: This access sequence benefits best
from interleaving banks, i. e., while reading from an open row in bank A, in bank B a row
can be opened in preparation for the next access. With a sufficient number of banks this
ideally leads to the same memory bandwidth as it has been achieved with the first access
sequence category. However, to limit the current draw of a single DRAM the row to row
activation delay (TRRD, see Figure 2.18) sets a lower bound for the access time [53]. For

2.3 Memory Technologies 35

8 banks

MUX

I/O

w

wwww

bank

DRAM

DRAM (device)DIMM

one DRAM

Figure 2.17: DRAM - levels of organization; Example shows a DIMM with 4 DRAMs, where
each DRAM consists of 8 banks

the same reason, the four bank activation window (TFAW) additionally raises the lower
bound of the access time by allowing only four rows to be opened in this time window
(TFAW).

4. Columns in adjacent banks: ”Some DRAMs such as RDRAM [60] incur a penalty
when two consecutive” [11] accesses ”are made to adjacent banks. This is called an
adjacent bank conflict” [11] and occurs ”if adjacent banks share circuitry, such as” [11]
sense amplifiers. ”Most modern DRAMs do not share circuitry between adjacent banks,
and hence do not exhibit adjacent bank conflicts.” [11]

Manufacturers usually offer DRAMs for sale as individual memory chips, so called DRAMs or
DRAM devices. Commodity DRAM, which is especially targeted in this thesis, is also offered
as Dual Inline Memory Module (DIMM). A DIMM is a small Printed Circuit Board (PCB) with
several DRAMsmounted inline to achieve a reasonable capacity and data bus width. Figure 2.17
shows such a DIMM7.

Since a system can have multiple DIMMs, the word rank was introduced to distinguish between
DIMM-level independent and bank-level independent operations. A ”rank is a set of DRAMs
that operate in unison” [53]. A DIMM can contain one or two ranks.

Summarizing, DRAMs are complex and have relatively long access times. To enable the user
to hide the access time by interleaving, modern DRAMs use various levels of organization. ”A
system is composed of potentially many independent DIMMs. Each DIMM may contain one
or more independent ranks. Each rank is a set of DRAM devices that operate in unison, an
internally each of these DRAM devices implements one or more independent banks.” [53].

7The word dual in the abbreviation DIMM origins from the fact, that DIMMs have separate electrical contacts
on each side of the module. Hereby wider memory bus widths can be implemented on a PCB. In contrast, Single
Inline Memory Modules (SIMM) have on both sides redundant electrical contacts.

36 Chapter 2. Packet Buffers for Network Nodes

Operation

Now the individual properties of a DRAM related to its operation are introduced. For each
property the corresponding degrees of freedom are shown.

Access Method – Older generations of DRAMswere asynchronous devices, i. e., used no clock
signal for operation. Due to the many timing requirements of a DRAM their operation
was very complex. This drawback was removed by introducing a synchronous DRAM
interface, i. e., all interface signals are associated with the clock signal. Synchronous
DRAM is abbreviated SDRAM. Throughout this thesis, the explicit access method of
DRAM is not essential and therefore the name DRAM is used.

Data Words per Clock Cycle – This refers to the number of data words received from or trans-
mitted to the DRAM during one clock cycle. At the time of writing most DRAM devices
support double data rate, i. e., at both, rising and falling clock edge a new data word is
transferred. However, Rambus [60] announced XDR2 devices with 16× data rate trans-
ferring 16 data words per clock cycle.

Data I/O Type – The data input/output (IO) type can be common (CIO) or separate (SIO),
equivalently to SRAMs. Also equivalently to SRAMs, with CIO there is usually a penalty
for changing the operation type from read to write and vice versa. Which I/O type is more
suitable depends on the access behavior of the corresponding application.

Burst Mode – Burst mode means that instead of a single data word, a burst of data words is
transferred with each request. The number of data words is called burst length. The burst
length is often a memory parameter configured during power up of the DRAM. In general,
with larger burst length data bus utilization increases, because the data bus stays less idle
during the time a row in another bank is prepared for access.

To allow the address bus and DRAM core operating at a lower frequency than the data
bus, modern DRAMs use a so called prefetch architecture. This means a single address
request results in a burst of words on the data I/O pins. For example, DDR3 SDRAM has
an 8n prefetch architecture [29], where n refers to the data I/O width of the DRAM chip,
8 to the burst length, and 8 · n is the size of the burst sequence in bit. DDR3 SDRAM
supports only a burst length of 8, with what it can achieve full data bus utilization.

There is a trend to larger burst lengths, which is expected to continue because of the in-
creasing discrepancy between the increasing interface clock rates and the relatively static
access time. E. g., DRAM bandwidth increases roughly by 30% per year [61] which is
achieved by higher clock rates at the interface while DRAM access time drops only 7%
per year [12].

Memory Interface Type – The type of the memory interface can be parallel or serial. To-
day, most commercially available DRAMs have a parallel interface. Parallelism allows
realizing high throughputs at very small read latencies.

Devices with serial interface usually use several serial lanes in parallel. Serializing greatly
reduces the number of required pins and thereby also cost. Examples are Fully Buffered
DIMMs (FBDIMM, [62]) which are optimized for the use in high-end servers and Serial
Port Memory Technology (SPMT, [63]) which is an industry standard memory interface

2.3 Memory Technologies 37

clk

command

address
bank0
row x

ACT PRE

data

READ

out
0

out
1

out
2

out
3

ACT WRITE

bank0
bank0
col a

bank0
row y

bank0
col b

in
0

in
1

in
2

in
3

ACT WRITE

bank1
row z

bank1
col c

in
0

in
1

in
2

in
3

NOP NOP NOP NOP NOP NOP NOP

TRRD

Figure 2.18: DRAM access to the same and to different banks; The access to the same bank
but different rows is highlighted blue. The access to a different bank is highlighted orange.

designed for mobile and consumer electronics devices. However, serialization introduces
additional latencies. If this is acceptable depends on the application.

Commands – DRAM requires a large number of commands for operation, e. g., a DDR3
SDRAM [29] supports 25 different commands. These can be classified into three cat-
egories: commands for configuration of the DRAM device, commands to enter/leave
different power modes, and commands to access or preserve the data stored in the DRAM
device.

In the following, a brief overview of the most important commands required to access
the data is given. The DRAM-controller sends the read command to read a burst of
words from an open row in a DRAM bank. The corresponding is also true for the write
command. The DRAM-controller sends the activate command to open a row in a bank. To
close a row it sends the precharge command. Figure 2.18 shows exemplary the required
sequence of commands to access columns in two different rows of one bank. The third
access, which is to a different bank, illustrates how the DRAM-controller can interleave
accesses. It issues the corresponding activation (ACT) command earlier as banks are
independent. An even earlier submission of this ACT command is not allowed because
there is a time constraint between two activations (TRRD).

To preserve the data in the DRAM, a periodical refresh is necessary. The corresponding
refresh command first opens and then closes one or more rows in each bank. A DRAM-
internal counter provides the row address. For example, in a DDR3 SDRAM [29] with
4Gbit capacity each row has to be refreshed every 64ms [29]. According to the stan-
dard [29] this requires 8192 refresh commands, i. e., on average one each 7.8 µs. Each
refresh command refreshes several rows in each bank and takes 300 ns. From this follows
that 8192 ·300 ns are required for refresh every 64ms. This means that this 4Gbit DRAM
chip spends up to 3.84% of its operating time with refreshing, what reduces the achiev-
able bandwidth. Alternatively, the refresh command can be omitted when the DRAM-
controller assures to open every row containing user data once every 64ms. Depending
on the application, this may require less or even no overhead for refreshing.

Summarizing, the operation of a DRAM is a complex task. Read/Write performance depends
on the access pattern as well as on the optimizations carried out by the DRAM-controller, e. g.,
out-of-order execution and grouping of reads and writes to minimize penalties. Consequently,
the access time also depends on the access pattern, but has an upper bound.

38 Chapter 2. Packet Buffers for Network Nodes

High-Speed DRAM Types

At the time of writing several types of high-speed DRAM are commercially available. However,
due to the small networking market only one is explicitly specialized for networking applica-
tions. The following gives an overview about the most relevant high-speed DRAM types and
their properties regarding the application in a packet buffer. It considers both, currently avail-
able as well as announced DRAM types.

The most important DRAM types are standardized by the Joint Electron Device Engineering
Council (JEDEC) [64]. Standardization brings crucial benefits for router manufacturers: inter-
operability, competition and several suppliers. Here, the most important DRAM types standard-
ized by JEDEC are the different generations of DDR SDRAM (Double Data Rate Synchronous
Dynamic Random Access Memory) and GDDR SGRAM (Graphics Double Data Rate Syn-
chronous Graphics Random Access Memory). DDR SDRAM is optimized for the use as main
memory in PCs and is today present in most of them. Currently, generation 3 (DDR3 SDRAM)
is in mass production while ratification of the DDR4 SDRAM standard is planned for 2011.
GDDR SGRAM is also a dynamic RAM, but is optimized for graphical applications by sup-
porting special operations8. Today it is present in most graphic cards. Generation 5 (GDDR5
SGRAM) is currently in mass production. Both use parallel and relatively wide busses to con-
nect to the DRAM controller.

The largest competitor for the JEDEC DRAM types is the company Rambus [60] which de-
fines its own memory standards. XDR DRAM is the newest generation high-speed DRAM
being produced. The successor XDR2 is standardized and production is announced for the next
years. Rambus targets with its XDR memory mainly high-performance gaming, graphics and
multi-core compute applications. In contrast to JEDEC DRAM types RAMBUS uses a very
narrow bus to connect the DRAM devices, running a computer-network like protocol on it [53].
Rambus holds the patents for its memory standards but is no manufacturer itself. In order to
use Rambus memory, customers have to license the intellectual property for the whole memory
architecture, i. e., memory controller, memory bus, memory devices.

Micron [65] offers a Reduced Latency DRAM (RLDRAM) that is optimized for networking
applications, e. g., packet buffers, where short access times are required. Qimonda, the sec-
ond manufacturer of RLDRAM, went bankrupt during the economical crisis in 2009. Micron
produces currently the second generation of RLDRAM (RLDRAM II) and announced to start
production of the third generation (RLDRAM III) in 2011. Compared to the aforementioned
memories, RLDRAM has three big advantages: SIO, reduced access time and simplified inter-
face (only few commands necessary to operate the memory device).

Table 2.2 gives an overview of high-speed DRAM types and their properties.

8GDDR SGRAM includes enhanced graphics features for use with display adapters. Its Block Write and Mask
Write functions allow the frame buffer to be cleared faster and selected pixels to be modified faster.

2.3 Memory Technologies 39

D
R
A
M

T
yp
e

m
ax
.

m
ax
.

m
ax
.
bu
s

da
ta

da
ta
pi
ns

ra
nd
om

bu
rs
t

da
ta

ba
nk
s

pe
ak

re
la
ti
ve

ca
pa
ci
ty

ca
pa
ci
ty

cl
oc
k

bu
s

/
ch
ip

ac
ce
ss

le
ng
th

w
or
ds

da
ta
ra
te

pr
ic
e

/
ch
ip

/
pi
n

fr
eq
.

I/
O

/
bu
s

ti
m
e

/c
lk

/
pi
n

/b
it
[6
6]

[M
bi
t]

[M
bi
t]

[M
H
z]

ty
pe

[#
]

[n
s]

[w
or
ds
]

[w
or
ds
]

[#
]

[G
bp
s]

D
D
R
3
S
D
R
A
M

[2
9]

+
81
92

20
48

10
66

C
IO

×
4,
×
8

46
.1

4,
8

2
8

2.
13

1
G
D
D
R
5
S
G
R
A
M

[6
7]

10
24

64
25
00

C
IO

×
16
,×

32
40
.0

8
2

16
5.
00

-
R
L
D
R
A
M

II
[6
8]

57
6

64
53
3

S
IO

,C
IO

×
9,
×
18

15
.0

2,
4,
8

2
8

1.
06

20
R
L
D
R
A
M

II
I
[6
8]

∗
10
24

64
10
66

C
IO

×
18
,×

36
10
.0

2,
4,
8

2
16

2.
13

-
X
D
R
[6
9]

10
24

51
2

80
0

C
IO

×
2,
..,

×
16

-
16

8
8

6.
40

-
X
D
R
2
[7
0]

∗
-

-
80
0

C
IO

×
2,
..,

×
32

-
-

16
-

12
.8
0

-

T
a
b
le
2
.2
:
H
ig
h-
sp
ee
d
D
R
A
M

ty
pe
s
an
d
th
ei
r
pr
op
er
ti
es
;D

R
A
M

ty
pe
s
m
ar
ke
d
w
it
h
a
∗
ar
e
no
ty

et
in

pr
od
uc
ti
on
,b
ut

pr
od
uc
ti
on

is
an
no
un
ce
d

fo
r
th
e
ne
xt

ye
ar
s;

+
th
es
e
ar
e
th
e
m
ax
im

al
va
lu
es

st
an
da
rd
iz
ed

fo
r
D
D
R
3
S
D
R
A
M
.H

ow
ev
er
,c
ur
re
nt
ly

(s
pr
in
g
20
10
)
th
e
fa
st
es
tc
om

m
er
ci
al
ly

av
ai
la
bl
e
D
D
R
3
S
D
R
A
M

fe
at
ur
es

m
ax
im

al
80
0
M
H
z
an
d
m
ax
im

al
40
96

M
bi
t;
×
N

is
th
e
ty
pi
ca
l
no
ta
ti
on

fo
r
th
e
I/
O

da
ta

w
id
th

of
a
D
R
A
M

ch
ip

40 Chapter 2. Packet Buffers for Network Nodes

2.3.4 Discussion

A packet buffer usually contains a packet memory and a descriptor memory (cf. Section 2.2.2).
Utilizing the techniques from Section 2.2.3 the descriptor memory is usually several orders of
magnitude smaller than the packet memory. Consequently, the high-speed SRAMs presented in
Table 2.1 suffice the requirements, as their main drawback is the small capacity.

In the following the requirements for the packet memory are summarized and compared to
the available memory devices. The technological requirements of the packet buffer (cf. Sec-
tion 2.2.4) directly translate to the requirements of the underlying packet memory. Conse-
quently, the packet memory has to have a high bandwidth, a high capacity and a short ac-
cess time. As absolute requirements we use the values required for a 100Gbps Ethernet based
system, as currently manufacturers announce the very first 100Gbps routers to be available
soon [48]. These requirements are a minimal bandwidth of 200Gbps, a capacity of 2.5Gbyte
and an access time of 2.56 ns.

When looking for suitable memory devices we have to consider the following two facts. Firstly,
we can increase bandwidth and capacity by simply operating more devices in parallel. Secondly,
we cannot decrease the access time that simple when deterministic bandwidth guarantee is
requested. Architectural approaches related to the access time will be discussed in Section 2.4.1.

According to Table 2.1 nearly all SRAM devices have a sufficiently small access time but a
far too small capacity. Using parallel SRAM devices to achieve the required capacity is not
practical. The high number of required devices would lead to extreme pin counts and space
requirements. E. g., for 2.5Gbyte a total of 320 QDRII SRAM devices are necessary.

Now, the DRAM devices in Table 2.2 are considered. All devices, suffice the capacity require-
ment of a 100Gbps system by using a few up to some dozen devices in parallel. For example,
DDR3 SDRAM has currently the highest capacity/pin ratio with 1024Mbit/pin requiring just
5 devices in parallel with a total of 20 data pins for 2.5Gbyte. With most other DRAM types
around 300 data pins are required. This is a lot and therefore costly, but still practical.

To achieve the 200Gbps bandwidth in a 100Gbps system roughly 200 pins are necessary with
any of the DRAMs. RLDRAM II has the lowest data rate/pin, but as it utilizes the memory bus
more efficiently, it requires less overdimensioning.

The required access time for a 100Gbps system is 2.56 ns, and thus an order of magnitude
below the random access time of any DRAM in Table 2.2. Regarding the access time, for a
100Gbps system all DRAMs in Table 2.2 fail by roughly an order of magnitude. Consequently,
plain DRAMs are not suitable for high-speed packet buffers. Looking one step into the past
one observes that this problem is relatively new, as it got first relevant with the introduction of
10Gbps systems. E. g., in a 10Gbps Ethernet based system the required access time is 25.6 ns.
Comparison with Table 2.2 shows, that depending on the utilized DRAM the access time is
either met or failed by a factor of just 2.

2.3 Memory Technologies 41

To evaluate the future trend we compare the DRAM properties to the requirements given by
Ethernet9. The 100Gbps Ethernet standard was ratified in June 2010. Hauger et al. estimate in
[2] ratification of 1 Tbps Ethernet for 2015. This translates to a yearly increase of the required
bandwidth and capacity by 58% and a yearly decrease of the required access time by 37%.
Comparing this to the approximate increase in DRAM bandwidth of 30% per year [61], the gap
to the deployed line rates will increase continuously, requiring more parallel memories. Further-
more, the access time of DRAMs decrease by only 7% per year [12] what drastically increases
the gap. However, there are architectural concepts to cope with this access time discrepancy.
These are addressed in the next Section.

As the only specialized DRAM memory for networking applications, RLDRAM has several
advantages over others:

• SIO: the separate buses for input and output match to the balanced read write ratio in
high-speed packet buffers, i. e., packets are written once to and read once from memory

• Significantly reduced access time: the memory can be accessed more frequently

• Simplified interface: this greatly simplifies implementation of the corresponding mem-
ory controller because timings are simplified and only a few commands are necessary to
operate the memory device

Due to these advantages, Alcatel Lucent utilizes in its cutting-edge 100Gbps router [48]
RLDRAM II.

Beside these clear technical aspects, there are also others that are relevant for router manufac-
turers. These are given in the following.

• Independent of its cutting-edge performance GDDR SGRAM is disliked by router man-
ufacturers. One reason for this is that product cycles of GDDR SDRAM are short, but
router manufacturers have to provide long term support for their products.

• Rambus XDR DRAM is as well disliked because of the need of licensing intellectual
property for the memory architecture. This is both, costly and requires tight cooperation
with Rambus during development of the router.

• RLDRAM is usually the favorite choice due to its simplicity and short access times. How-
ever, it has two big drawbacks. Firstly, it is roughly 20 times more expensive per bit [66]
than commodity DRAM (DDR3 SDRAM). This is an essential economic drawback since
packet buffers are present on most line cards. Secondly, there is only one RLDRAM
manufacturer left since the economical crisis in 2009. This poses a high economical risk,
because discontinuation in RLDRAM production due to any reason leads to discontinua-
tion in corresponding router production.

Summarizing, high-speed SRAMs can suffice the requirements of the descriptor memory, but
no memory type is available today nor in foreseeable future that can suffice the requirements

9Ethernet is the dominant transmission technology in LANs and is predicted to be soon predominant in WANs
too. Sommer et al. provide in [9] a survey of its fields of application.

42 Chapter 2. Packet Buffers for Network Nodes

of the packet memory in a high-speed packet buffer. However, many memories meet the re-
quirements partly, e. g., DRAMs meet mostly the capacity requirement, while SRAMs meet
mostly the access time requirement. Concluding, architectural concepts are required that utilize
the strengths of both. Favorably, these should enable utilization of commodity DRAM (e. g.,
DDR3 SDRAM) to reduce system costs.

2.4 Basic Architectural Approaches

The previous Section faced high-speed packet buffer requirements and commercially available
memories and concluded that there is a large discrepancy. This Section introduces basic ap-
proaches how to overcome limitations in memory parameters architecturally. The first Subsec-
tion gives an overview of the concepts while the following ones present explicit approaches.
The last Subsection discusses and compares the approaches shown.

2.4.1 Overview

To solve the discrepancy between available and required memory parameters several archi-
tectural concepts have been proposed. Depending on the memory parameter that causes the
shortcoming, different basic concepts can be applied. Table 2.3 gives an overview.

Shortcoming in parameter Architectural concept to overcome this

bandwidth parallelism
capacity parallelism
access time interleaving

aggregation

Table 2.3: Basic architectural concepts to overcome limitations in memory parameters

To solve a shortcoming in memory bandwidth, simple parallelism is sufficient. The bandwidth
increases linearly with the number of parallel memory devices. The same is true for the capacity,
when disregarding the overhead for managing the increased capacity.

To solve the shortcoming in access time two principle concepts are applicable: interleaving
and aggregation. Interleaving means that memory accesses are distributed to different memory
devices, which are operated all independently. With n parallel memory devices the access time

theoretically can be reduced by factor n, i. e., to T/n. The idea behind aggregation is that instead
trying to decrease the access time the data blocks read/written to/from memory are increased to
meet the access time, i. e., the larger the data block the lower the required access time. Therefore
packet data is aggregated to larger data blocks. For example, in a system with a total memory
bandwidth of 2R and a memory random access time T the block size has to be chosen 2R ·T . In
this system every T one block can be written to or read from memory.

Based on these concepts several architecture approaches for high-speed packet buffers exist.
These can be classified into three basic groups: Parallel Memories, Hybrid Memory Archi-
tecture, and Hybrid Memory Architecture with Parallel Subsystems. All approaches focus on

2.4 Basic Architectural Approaches 43

load balancer

DRAM
2

packets
variable-length

Q

1

block

DRAM
1

Q

1

DRAM
n

Q

1

DRAM
n-1

Q

1

requests
from scheduler

Figure 2.19: Basic architecture approach: Parallel Memories

achieving the required access time using DRAMs as this is the hardest challenge. Bandwidth
and capacity is usually achieved by using more or wider DRAMs. The following Sections
discus in detail their pros and cons. The base requirement for the following approaches is to
support Q flow queues for buffering packets which are accessed only in FIFO manner.

2.4.2 Parallel Memories

Basic Idea

The basic idea of the parallel memories approach is, that with n parallel devices the access time
theoretically can be reduced by factor n, i. e., to T/n, with T being the random access time of
the memory device. Figure 2.19 shows the memory architecture of this approach.

Working Principle

From left to right in Figure 2.19 the load balancer segments incoming variable-length packets to
constant-size blocks and distributes them to the independent DRAMs. Each DRAM maintains
one queue per flow, while Q flows exist. When the external scheduler requests a packet, the
load balancer requests the blocks of this packet from the corresponding DRAMs. In worst case,
each DRAM access takes T , which is the random access time of the DRAM. To hide this long
access time of an individual DRAM, the load balancer interleaves the accesses, i. e., there are
many read and write accesses active concurrently.

Properties

The read accesses to the DRAMs are fixed as the location of the blocks of the requested packets
explicitly determine them. To write the blocks of arriving packets, the load balancer can chose
a DRAM that is currently non-busy. Hereby it distributes the blocks to the DRAMs in a way
that they can be read later interleaved and concurrently. E. g., two blocks residing in the same
DRAM cannot be read simultaneously, only back to back.

44 Chapter 2. Packet Buffers for Network Nodes

To achieve a deterministic bandwidth (100% throughput) with such an architecture in the gen-
eral case (packet arrivals and departures are unknown) a very large number of DRAMs is re-
quired. If 2g DRAMs are required to read and write simultaneously blocks of one data flow
with line rate, then in this general case 2gQ independent DRAMs are required for Q different
data flows.

However, there are also router architectures with deterministic access patterns. In these routers
the packet departure times can be deterministically calculated before the packet is written to the
packet buffer when best-effort routing is considered. Examples are the Parallel Shared Memory
(PSM) router [71] and the load-balanced router architecture [72].

Under this constraint of knowing the packet departure time in advance n= 3N−1 DRAMs are
sufficient. Here N = T

Trequired
= T

b/R is the ratio of the available and the required access time, b is

the block size and R is the line rate at the packet buffer’s input and output. An incoming block
competes with 3N− 2 other blocks for the DRAMs: N− 1 other arrivals, N departures, and
N−1 future departures which will be processed concurrently. Hence, if n≥ 3N−1 the arriving
block can find a non-busy DRAM. [73, 74] propose efficient implementations for such so called
reservation-based packet buffer architectures.

The Ping Pong buffering scheme [75] is a special case of the parallel memory approach, where
n = 2. In a high-speed packet buffer maintaining several FIFO queues there is only one read
and one write process. The bandwidth required to write or read these blocks is at most the
line rate each. This means, with two memories the write process always can chose the non-
busy memory. Ping Pong has two big advantages. Firstly, it does not rely on knowing the
packet departure times in advance. Secondly, it is applicable to nearly all other architecture
approaches where it always reduces the access time by half. Its drawback is that in the worst
case half of the memory capacity is wasted, i. e., blocks cannot be accepted even if there is free
memory capacity. To illustrate this lets assume that the two memories A and B currently have
the following state: A is full and B is nearly empty. While now reading blocks from memory B
incoming blocks cannot be written to memory A as it is full.

2.4.3 Hybrid Memory Architecture

Basic Idea

The basic idea of the hybrid memory architecture approach (cf. Figure 2.20) can be summarized
in three main points.

• Transfer large blocks to/from DRAM to match its long random access time.

• Aggregate user packets to blocks and vice versa utilizing SRAM.

• SRAM at the input and output interface of the packet buffer meets the required access
time.

2.4 Basic Architectural Approaches 45

tail buffer

wide DRAM

head buffer

blockblock

packets SRAM

Q

1

SRAM
length
variable-

Q

1

Q

1

requests

short-cut

from scheduler

Figure 2.20: Basic architecture approach: Hybrid Memory Architecture

Working Principle

To simultaneously meet all requirements of the packet buffer the hybrid memory architecture
combines the advantages of both, SRAM and DRAM. SRAM meets the random access time
and DRAM the capacity requirement, while both meet the bandwidth requirement. For this
approach it is assumed that an SRAM is available that meets the access time required by the
system.

Figure 2.20 shows the basic architecture, which consists of three main components: tail buffer,
head buffer, and wide DRAM. The tail buffer (SRAM) contains the tails of all flow queues, i. e.,
the packets that arrived last. The head buffer (SRAM) contains the heads of the flow queues,
i. e., the packets that are going to leave soon. The DRAM in the middle holds all the other
packets of the queues. It is realized by a sufficient number of DRAMs that are operated in
unison, i. e., it corresponds to one wide logical DRAM. A Memory Management Algorithm
(MMA) controls the data transfers between SRAM and DRAM. Its challenge is to never let the
tail buffer overflow and to make sure that packets are always present in the head buffer when
needed.

From left to right in Figure 2.20 the tail buffer aggregates per flow incoming packets to blocks.
When enough data has arrived for one flow, i. e., a block is full, the tail-MMA initiates a data
transfer to DRAM. Then this data block is transferred from tail buffer to the corresponding
queue in DRAM. Similarly, in preparation for a packet departure, the head-MMA initiates block
transfers from the corresponding queues in the DRAM to the head buffer.

A side effect of aggregation is that non-full blocks are never written to DRAM. Thus, for flows
with light traffic it may happen that such a block is requested by the head part, but is not
available in the DRAM. A short-cut path from tail to head buffer solves the problem.

Properties

To achieve a deterministic bandwidth the tail buffer is not allowed to overrun and the head buffer
to underrun. The accordingly required tail and head buffer (SRAM) sizes are bounded and are
a function of Q, R, and T .

46 Chapter 2. Packet Buffers for Network Nodes

re
q
u
e
s
te

r

d
is

p
a

tc
h

e
r

tail buffer head buffer

block

independent

1

hybrid subsystem

requests

DRAMSRAM SRAM

Q

1
1 1

k
Q

1
1 1

packets
length
variable-

from scheduler

Figure 2.21: Basic architecture approach: Hybrid Memory Architecture with Parallel Subsys-
tems

This approach enables a trade-off between the head buffer size and the read latency10 of the
packet buffer. With a read latency of zero, the packet buffer delivers each packet immediately
after receiving the request. To achieve this, for each flow enough data has to be cached in the
head buffer to not underrun until newly requested data from DRAM arrives. This has to hold
for any access patterns. In contrast, if we accept a pipeline delay, i. e., a read latency > 0, a
significantly smaller head buffer is required as the head-MMA starts requesting packets from
DRAM only after it received a packet request. [76, 27] propose packet buffer architectures
based on this approach.

This hybrid approach has two big advantages. Firstly, the aggregation to blocks eliminates frag-
mentation in SRAM and DRAM, i. e., no capacity overdimensioning is required. Further, as
only full blocks are transferred to/from DRAM the DRAM bandwidth also requires no overdi-
mensioning. Secondly, it delivers deterministic bandwidth without any assumption about the
arrival or departure pattern.

However, it has also two main drawbacks. Firstly, the required sizes of the head and tail buffer
are linearly tied to the parameters Q, R, and T . Accordingly, to support a large number of
flows Q also a large tail and head buffer is necessary. Secondly, this approach cannot utilize
the banks available in the DRAM. Consequently, without bank interleaving the DRAM bus is
poorly utilized. Due to this the DRAM bus has to be dimensioned much wider to support the
required bandwidth.

2.4 Basic Architectural Approaches 47

2.4.4 Hybrid Memory Architecture with Parallel Subsystems

Basic Idea

The idea of the hybrid memory architecture approach with parallel subsystems is to improve
the plain parallel approach (Section 2.4.2) by utilizing SRAM like in the hybrid approach (Sec-
tion 2.4.3). Figure 2.21 shows its architecture. The three key points thereby are:

• With n parallel devices the access time can be reduced theoretically by factor n, i. e., to
T/n.

• Reduction of the number of parallel subsystems to a minimum (here k) that is sufficient
to support the required access time.

• Utilization of SRAM to resolve temporal overbooking of a DRAM and for reordering.

Working Principle

Figure 2.21 shows the basic architecture that consists of k parallel subsystems that are operated
interleaved. Each subsystem has a hybrid architecture similar to the one introduced in Sec-
tion 2.4.3 consisting of three components: tail buffer, head buffer, and DRAM. Each tail buffer
(SRAM) contains one DRAM queue. Here blocks are stored in the case when the DRAM is
temporary overbooked, i. e., the DRAM receives more write requests than it can process. Each
head buffer (SRAM) contains one DRAM queue which acts as a reorder buffer. The head buffer
assures that independently of the load of the individual DRAMs the requested packets are de-
livered in-order.

In each subsystem the DRAM holds Q queues, i. e., all logical Q flow queues provided to the
user are spread over all subsystems. An MMA controls the data transfers between SRAM and
DRAM. Its challenge is to never let the tail buffer overflow and to make sure that packets are
always present in the head buffer when needed.

From left to right in Figure 2.21 the dispatcher segments incoming variable-length packets to
blocks and distributes them per flow equally to the individual subsystems. Only equal distribu-
tion allows to write and to read data of every flow with line rate, because only all subsystems
together can support line rate. When a block is available in a tail buffer, the correspondingMMA
initiates a data transfer to DRAM. Similarly, in each subsystem in preparation for a packet de-
parture, the MMA initiates block transfers from the corresponding queues in the DRAM to the
head buffer. [77, 78] propose architectures based on this approach.

10Read Latency refers to the time between issuing a read request to the packet buffer and receiving the corre-
sponding data. This corresponds to the minimum delay that a packet buffer introduces to every packet.

48 Chapter 2. Packet Buffers for Network Nodes

block block

tail buffer DRAMs head buffer

packets

SRAM SRAMlength
variable-

from scheduler
packet requests

Q

1
Q

1

Q

1
Q

1

Figure 2.22: Hybrid Memory Architecture with Ping Pong Approach; This example illustrates
a time instant, where the MMA writes a block to the upper DRAM and simultaneously reads a
block from the lower DRAM.

Properties

To achieve a deterministic bandwidth no tail buffer is allowed to overrun and no head buffer to
underrun. The accordingly required tail and head buffer (SRAM) sizes are bounded and are a
function of Q, R, and T .

The DRAMs of the individual subsystems can be implemented as DRAM banks, e. g., if k = 8
subsystems are required then the corresponding DRAMs can be implemented with two DRAMs
with 4 banks each. Consequently, interleaved operation of DRAM banks greatly increases the
DRAM bus utilization.

This hybrid approach with parallel subsystems has three main advantages. Firstly, it supports
banking, i. e., the interleaved access to DRAM banks. The increased DRAM bus utilization
leads to more narrow DRAM bus what lowers costs. Secondly, due to the individual subsystems
distributed implementation is possible. Thirdly, it delivers deterministic bandwidth without any
assumption about the arrival or departure pattern.

Its main drawback is that the required sizes of the head and tail buffer are linearly tied to the
parameters Q, R and T . Accordingly, to support a large number of flows Q also a large tail and
head buffer is necessary.

2.4.5 Discussion

The previous Sections presented three architectural approaches to overcome the shortcomings
in memory parameters. These are discussed in the following.

To provide deterministic bandwidth in the first approach (parallel memories, cf. Section 2.4.2)
the packet buffer needs to know the packet departure times before packets enter. This is not the
case in general high-speed routers supporting QoS. Therefore, this approach is disregarded in
the following.

In contrast, the two hybrid approaches make no assumption about the traffic arrival and de-
parture pattern. Beside this, the hybrid approaches scale towards higher line rates and are in
principle resource efficient in terms of DRAM capacity and bandwidth.

2.5 Survey of Hybrid Memory Architectures 49

Their main drawback is that the required SRAM size to realize head and tail buffer scales
linearly with number of supported flows Q. To alleviate this shortcoming the Ping Pong ap-
proach [75] described in Section 2.4.2 can be used. Therefore each individual DRAM is divided
to a DRAM pair, i. e., each DRAM of the DRAM pair has half of the original bus width and
accordingly delivers half of the bandwidth. This step does not change the total DRAM capacity
or bandwidth. The random access time of a DRAM pair is only T

2 , i. e., compared to a single
DRAM it is cut by half. Figure 2.22 shows the resulting architecture. Due to the linear con-
nection between head and tail buffer sizes to the random access time of the DRAM head and
tail buffer sizes are also cut by half. The price for this SRAM size reduction is that in worst
case only 50% of the DRAM capacity can be used (cf. Section 2.4.2). Alisafaee et al. propose
in [79] a Ping Pong based packet buffer architecture that tries to alleviate the problem of DRAM
capacity usage.

Another approach to reduce the SRAM size is to simply underdimension it. This leads in-
evitably to occasional loss of blocks in the packet buffer. The external effects are incoming
packets that are not buffered, requested but not delivered packets, eventually non-constant read
latencies and of course only a statistical bandwidth guarantee. This can be acceptable depend-
ing on the system. The authors in [77, 80, 81] analyze the effect of SRAM underdimensioning
on the drop probability in hybrid packet buffers.

2.5 Survey of Hybrid Memory Architectures

In this Section hybrid memory architectures for packet buffers are discussed in more detail.
According to the scope of this thesis, here only architectures with deterministic bandwidth are
considered. Deterministic bandwidth does not only mean 100% throughput, but also no loss,
strict in-order delivery, and constant read latency. These properties imply a simple SRAM-like
packet buffer interface.

The first Subsection introduces important metrics to allow quantified comparison. Following
Subsections present in detail hybrid memory architectures known in literature. Functionality of
these complies with the packet buffer definition from Section 2.2.2, except the fact that they do
not provide queuing information to an external scheduler. The latter task can be implemented
completely independently. To simplify reading the term packet buffer will be used for the
architectures presented in the following as well. A discussion on their pros and cons concludes
the Section.

2.5.1 Metrics

To compare packet buffer architectures we need to quantify their properties. The approach used
here is requirements-driven, i. e., the resource requirements for a specific number of supported
flow queues (Q) at line rate (R) are compared. An alternative approach would be to take a
fixed amount of resources and derive the amount of flow queues (Q) supported by the indi-
vidual architectures at line rate (R). The individual metrics can be classified into two groups:
architecture- and realization-related.

50 Chapter 2. Packet Buffers for Network Nodes

Architecture-related metrics include all resource requirements and properties that originate from
the underlying architecture. These are explicitly the tail buffer size, head buffer size, and the
read latency introduced.

Realization-related metrics include the real resource requirement of an implementation and the
achieved performance. Explicit examples are the real required SRAM size, the DRAM I/O
pin count, the DRAM bus utilization, and the achievable performance, e. g., clock frequency or
supported line rate.

As no relevant realization-related information is available in literature, the comparison focuses
on the architecture-related metrics. However, if possible, discussions in the following Sections
will cover also realization-related aspects. The architecture-related metrics are defined in the
following:

Definition 2.1. Tail Buffer size, Stail This is the tail buffer size (SRAM) that is required in the

worst case. An tail buffer dimensioned accordingly will never overflow.

Definition 2.2. Head Buffer size, Shead This is the head buffer size (SRAM) that is required

in the worst case. An head buffer dimensioned accordingly will never underrun.

Definition 2.3. Read Latency, L This is the time between issuing a read request to the packet

buffer and receiving the corresponding data. Due to the deterministic behavior the read latency

is constant. It corresponds to the minimum delay that a packet buffer introduces to every packet.

2.5.2 Related Work

Three basically different hybrid memory architectures have been proposed in literature that
provide deterministic bandwidth. These are introduced in the following.

2.5.2.1 Hybrid SRAM/DRAM System (HSD)

Sundar Iyer et al. were the first to introduce a hybrid packet buffer architecture with determin-
istic bandwidth guarantee and give strict bounds for the head and tail buffer size. They first
published the architecture in [76] and detailed it in [82, 45].

Architecture

The architecture corresponds to the hybrid memory architecture approach presented in Sec-
tion 2.4.3. In the following it will be called theHybrid SRAM/DRAM System (HSD). Figure 2.23
shows its architecture. It maintains Q flow queues (one per flow) and stores the heads and tails
of all queues in the corresponding buffer. It stores the remaining part in DRAM. The DRAM
is realized by a sufficient number of DRAMs that are operated in unison, i. e., it corresponds to
one wide logical DRAM.

2.5 Survey of Hybrid Memory Architectures 51

block B

tail buffer
wide DRAM

head buffer

packets SRAM

Q

1

SRAM
length
variable-

Q

1

Q

1

from scheduler
requests

short-cut

direct-write

block B

RR

Figure 2.23: Hybrid SRAM/DRAM System (HSD) of Iyer et al.

Working Principle

The tail buffer aggregates packets to blocks while the head buffer de-aggregates them accord-
ingly. The single DRAM has a random access time of T and is accessed alternatingly by head
and tail buffer. This means both, head and tail buffer, can access the DRAM once every 2T .
Data is transferred to and from DRAM always in blocks of size B = 2TR. As during 2T no
more than 2TR of data can arrive and no more than 2TR of data can depart, the system is stable.

As soon as for a flow B byte of data have arrived in the tail buffer, the Tail Memory Management
Algorithm (tail-MMA) initiates the transfer of B byte to the corresponding queue in DRAM.
Similarly, in preparation for a packet departure, the Head Memory Management Algorithm
(head-MMA) initiates a data transfer of B byte from the corresponding queue in DRAM to the
head buffer.

It may happen that several blocks get full in the tail buffer in a short time period. The tail-MMA
queues the blocks and transfers them one by one to the DRAM. The head-MMA requests a
block that is not yet written to the DRAM directly from the tail buffer. These blocks are then
delivered via the short-cut path.

The head-MMAs proposed by the authors require that the first B−1 byte data of every flow are
directly written to the head buffer. This is done via the direct write path from the packet buffer
input to the head buffer.

Properties

The authors prove, that the required tail buffer size is

Stail−HSD = QB

when using dynamic memory allocation in the tail buffer.

The head buffer size and the read latency depend on the implemented head-MMA. The smallest
possible head buffer size

Shead−HSD−ECQF = QB(1− 1byte

B
)

52 Chapter 2. Packet Buffers for Network Nodes

T

open row
data data

close row open row close row

transfer of one block
from or to DRAM

t

Figure 2.24: DRAM access in HSD

is achieved with the Earliest Critical Queue First (ECQF) head-MMA using dynamic memory
allocation if a read latency of

LHSD−ECQF =
QB(1− 1byte

B
)+1byte

R

is accepted. With the Most Deficit Queue First (MDQF) head-MMA the head buffer delivers
every requested packet immediately upon a request, i. e., the read latency is zero. In this case
the required head buffer size is

Shead−HSD−MDQF = QB(3+ lnQ)

while the head buffer is allocated statically to the individual queues. However, the MDQF
head-MMA is only practical for small number queues [45].

The tail buffer itself introduces no delay due to the short-cut path, i. e., it does not increase the
read latency. Finally, a DRAM bandwidth of 2R is sufficient, as only full blocks are transferred
to and from DRAM.

Discussion

The HSD aggregates packets to blocks. Aggregation eliminates fragmentation in SRAM and
DRAM, i. e., no capacity overdimensioning is required.

The HSD assumes one wide DRAM that can be accessed once per random access time and does
not utilize bank interleaving. This leads to a low DRAM bus utilization because the DRAM is
most of the time occupied with opening and closing the rows. Figure 2.24 illustrates this. For a
numerical example a DRAM of the type DDR3-1600K SDRAM [29] is assumed. Currently, this
is one of the DRAMs with the highest bandwidth. The author uses an approximate calculation
to derive the random access time T of this DRAM device. From this it results, that for a
read/write ratio of 1 and transferring one burst per access, the mean random access time is
T = 53.1 ns. The mean value is required, because a read and a write access have different access
times. This means, ignoring other effects11 one read and one write access can be performed in
2T = 106.2 ns, while the read access takes 48.75 ns and the write access 57.45 ns. Transferring

11Using DRAMs, there are large penalties when changing the access type, i. e., from read to write or vice
versa [29]. To minimize the effect of these penalties the DRAM controller can accumulate read and write access
and then process them as batch [31], i. e., the access pattern RWRWRWRW is transformed to RRRRWWWW at the cost
of the latency and buffer that is required for accumulation.

2.5 Survey of Hybrid Memory Architectures 53

block b

tail buffer DRAM head buffer
SRAM SRAMsize cells

constant-

Q

1

Q

1

requests

block b
DSS

1 2 M

bank

RR

from scheduler

Figure 2.25: Conflict-Free DRAM System (CFDS) of Garcia et al.

one burst of 8 words takes 4 clock cycles of 1.25 ns each, i. e., 5 ns. This leads to a DRAM bus
utilization of 5

53.1 ≈ 10%. Utilization can be increased by transferring more than one burst per
access. With i bursts per access the mean random access time is Ti = (53.1+(i−1) ·5) ns, and
consequently, the bus utilization is i·5

53.1+(i−1)·5 . However, increasing the random access time

increases also the block size B and, thus, the head and tail buffer size.

Finally, the proposed head-MMAs require an additional direct write path to the head buffer.
Thus the head buffer needs a minimum bandwidth of 3R.

2.5.2.2 Conflict-Free DRAM System (CFDS)

Garcia et al. propose a hybrid architecture that exploits banking to reduce tail and head buffer
size. They first published the idea in [83] and detailed it in [84, 27, 85]. It exploits the fact, that
with n banks the random access time T of a system theoretically reduces to T/n, as interleaving
of bank accesses ideally increases the total number of accesses per time unit by factor n. A
shorter access time leads to a smaller block size which leads to a smaller head and tail buffer
size and a shorter read latency.

Architecture

The architecture is similar to the HSD architecture of Iyer et al. presented in Section 2.5.2.1.
The main difference is that here the authors utilize the banks in the DRAM to improve the archi-
tecture. The authors call their system the Conflict-Free DRAM System (CFDS) as it accesses the
individual banks in a way that no bank conflicts occur at all. Figure 2.25 shows its architecture.

It maintains Q flow queues (one per flow) and stores the heads and tails of all queues in the
corresponding buffer. It stores the remaining part in DRAM spread over all banks. The DRAM
is realized by a sufficient number of DRAM devices that are operated in unison, i. e., it cor-
responds to one wide logical DRAM. The authors assume this logical DRAM to have up to
M = 512 banks, i. e., each of its DRAM devices has to have M banks. The DRAM Scheduling
Subsystem (DSS) component hides the DRAM bank organization from the former MMA.

54 Chapter 2. Packet Buffers for Network Nodes

blocks of queue i

for B/b=2

bank
group 1 group 2 group G

0 2 4 6

0 2 4 6

8
1 3 5 7

1 3 5 ...

9

bank 1 bank 2

block distribution

blocks of queue j

1 B/b 1 B/b 1 B/b

M banks

Figure 2.26: Bank organization of the CFDS; The example on the lower left shows the per
queue round robin distribution of the blocks to the banks using B/b= 2 (Source [27])

Working Principle

The authors assume their packet buffer receiving and delivering constant-size data units of
64 byte which they call cells. A preceding component generates the cells by segmenting
variable-length packets.

The tail buffer aggregates per flow an integer number of cells to a block while the head buffer
de-aggregates them accordingly. The single DRAM has an imaginary random access time of
Timag due to the use of banking and is accessed alternately by head and tail buffer. This means
both, head and tail buffer, can access the DRAM once every 2Timag. Data is transferred to and
from DRAM always in blocks of size b = 2TimagR. b is an integer number of cells, i. e., Timag
has to be dimensioned accordingly.

As soon as for a flow b cells arrived in the tail buffer, the tail-MMA initiates the transfer of
b cells to the corresponding queue in DRAM. Similarly, in preparation for a packet departure,
the head-MMA initiates a data transfer of b cells from the corresponding queue in DRAM to
the head buffer.

The organization of the memory banks in DRAM is as follows. The total number of M banks
is organized as G = M/(B/b) groups of B/b banks per group (cf. Figure 2.26). B = 2TR is
the block size in the case when bank interleaving is not used with T being the random access
time of the DRAM. Each group stores blocks of Q/G queues. With bank interleaving the block
size b is reduced compared to B by the factor B

b
= T

Timag
. Consequently, to read or write blocks

b of a flow with line rate, B
b
more accesses are necessary compared to the case without bank

interleaving and block size B. Due to this reason, in order to avoid bank conflicts, the blocks

2.5 Survey of Hybrid Memory Architectures 55

in each queue are distributed in a round robin manner among all B
b
banks of the group to which

the queue is assigned. B
b
has a hard a technological upper bound as the DRAM bus frequency

and the timing constraints limit the number of accesses that can be performed during the time
T (cf. Section 2.3.3).

The DSS hides the bank organization from the tail- and head-MMA, which operate under the
illusion that the DRAM access time is Timag. This is the main difference to the HSD architecture
of Iyer et al. (cf. Section 2.5.2.1). To resolve the unavoidable bank conflicts the DSS has
a request buffer where it queues read and write requests which it processes out-of-order. This
means the requests experience a delay here. Accordingly, the DSS also contains a reorder buffer
to re-sequence the read blocks before they are delivered to the head buffer. With this out-of-
order processing the DSS can resolve all bank conflicts what makes the system to appear from
outside conflict-free.

Properties

Garcia et al. analyze only the head side of the architecture. The authors prove that with the
described bank organization the delay introduced by the DSS is bounded. Accordingly, the
required reorder buffer is also bounded in size.

The total required amount of SRAM on the head side is composed of two parts: the amount
required due to the used head-MMA and the amount due to the DSS. Using the ECQF head-
MMA from the HSD architecture, which minimizes the head buffer size, the total SRAM size
required on head side is

Shead−CFDS−ECQF = Qb
︸︷︷︸

due to head-MMA

+(2Q/G)−1)(B/b−1)b
︸ ︷︷ ︸

due to DSS

The introduced read latency is analog to the SRAM size in the head composed of two parts

LCFDS−ECQF =
Qb

R
︸︷︷︸

due to head-MMA

+
(2Q/G)−1)(B/b−1)2b

R
︸ ︷︷ ︸

due to DSS

The MDQF head-MMA from the HSD architecture, which reduces the read latency, is also ap-
plicable here. Utilizing the MDQF head-MMA, total SRAM size and read latency just change,
compared to the ECQF head-MMA, in the part introduced by the head-MMA.

There is an optimal value b for a given CFDS implementation that minimizes the total required
SRAM size. The reason for this is the trade-off between the head buffer size on the one hand,
which is proportional to b, and the reorder buffer size in the DSS on the other hand, which is
proportional to 1

b
.

The CFDS has the drawback of DRAM fragmentation. The reason for this is, that it statically
assigns queues to the G memory groups. For example, if the banks associated to a group are
full, no more data for the corresponding queues can be accepted, even if the rest of the DRAM
is empty.

56 Chapter 2. Packet Buffers for Network Nodes

To alleviate the fragmentation problem the authors introduce in [27] a queue renaming mecha-
nism. Therefore they differentiate betweenQ logical queues visible at the packet buffer interface
and P physical queues that are maintained by the architecture. At the packet buffer input, the
logical queues are mapped (renamed) to physical queues. A renaming buffer for each logical
queue stores these mappings. Lets assume, that the logical queue q1 is mapped to the physical
queue p3. If a new arriving cell for q1 finds that the DRAM associated to the group of p3 is full,
then q1 is additionally mapped to a new physical queue in a different group which can offer free
DRAM. By doing this, blocks from a logical queue can reside in more than one memory group
and potentially can occupy the whole DRAM. Each physical queue is mapped exclusively to
one logical queue. With this queue renaming mechanism all results remain valid, when Q is
replaced by P in the formulas.

In order to work it has to be P > Q, what leads to an increase in SRAM size and read latency.
Further, DRAMmemory fragmentation can still arise for specific traffic patterns. Fragmentation
occurs, when all physical queues are mapped to logical queues, e. g., this can happen when there
are logical queues with blocks scattered over many physical queues. New renamings are now
not possible any more, even if the DRAM is nearly empty.

Discussion

Garcia et al. propose a system, that improves the HSD architecture by exploiting banking. They
thereby improve both, overall SRAM requirement and read latency. Improvements increase
with the number of available DRAM banks. Therefore, the authors assume DRAMswith several
hundred banks, e. g.,M= 512. However, to the best of our knowledge such DRAMs do not exist
now and in foreseeable future.

Nevertheless, for a system with R= 100Gbps and DDR3 SDRAM (M = 8 banks) the SRAM
on head side is reduced compared to the HSD architecture. Comparison assumes the ECQF
head-MMA. To find the optimal configuration for this CFDS Table 2.4 shows all possible con-
figurations when using a standard DRAM with M = 8 banks (cf. Table 2.2). Accordingly, the
parameters G = 4 groups with B/b = 2 banks per group lead to the minimum SRAM require-
ment of 3

4QB byte on head side. Compared to the HSD architecture with QB byte on head side
this is a saving of 25%.

configuration head buffer reorder buffer total SRAM
B
b

groups G size [byte] size in DSS [byte] in head part [byte]

1 8 QB 0 QB

2 4 1
2QB

1
4QB

3
4QB

4 2 1
4QB

3
4QB QB

8 1 1
8QB

14
8 QB

15
8 QB

Table 2.4: Possible CFDS configurations utilizing a DRAM with M = 8 banks

Due to the systematic use of bank interleaving the CFDS utilizes the DRAM bus efficiently.
This is highly cost and resource saving. The price is the additional effort for DRAM bank
management performed by the DSS.

2.5 Survey of Hybrid Memory Architectures 57

tail buffer head request

block

DRAMsSRAM buffer

Q

1

flow queue

size blocks
constant-

RR Q

1

Q

1

Q

1

set of interleaved

ta
il-

M
M

A

h
e
a
d
-M

M
A

requests
from scheduler

Figure 2.27: Hybrid memory architecture with interleaved DRAMs of Wang et al.

The authors never mention the presence of a short-cut from tail to head buffer like it is available
in the HSD architecture (cf. Section 2.5.2.1). However, their formula for the latency L does not
account for any latency introduced by the tail part. Without short-cut the latency L doubles due
to symmetry.

The authors claim to use the same ECQF MMA as in the HSD architecture. The ECQF MMA
requires a direct write path from packet buffer input to the head buffer. The authors never
mention this. Consequently, the head buffer needs a minimum bandwidth of 3R.

The CFDS suffers from external and internal fragmentation. The authors alleviate the external
fragmentation, which affects the usable DRAM capacity, by their queue renaming mechanism,
but actually cannot eliminate it. The main price for this is, that they have to maintain P instead
of Q queues, with P > Q. This increases the required SRAM size as well as the read latency.
Further, the required renaming buffers (Q pieces) add costs too.

Internal fragmentation occurs because the authors assume cells arriving at and departing from
their packet buffer. As cells are segmented packets this leads to the 65-byte-problem, i. e., there
is a worst-case packet size that leads to two cells where the second contains just one byte. This
means, that all internal (SRAM) and external (DRAM) memory capacity is double as large as
without the 65-byte-problem. In other words, the system is dimensioned for a gross input/output
data rate instead for the net data rate R, which is just half of that.

2.5.2.3 Parallel Hybrid SRAM/DRAM System (PHSD)

Wang et al. propose a hybrid memory architecture that exploits parallelism. The authors target
with their architecture a better scalability to larger packet buffer capacities and a short read
latency.

The authors first published their idea in [86, 87]. Here they introduce a hybrid memory archi-
tecture with interleaved DRAMs and single SRAM in the tail and head (cf. Figure 2.27). They
study the properties of the tail-MMA, which bases on a matching algorithm, and the tail buffer.

58 Chapter 2. Packet Buffers for Network Nodes

re
q
u
e
s
te

r

d
is

p
a

tc
h

e
r

tail buffer head request

block

independent
hybrid subsystemDRAMSRAM buffer

1
Q

1
1

1

p
e
r-

fl
o
w

 R
R

p
e

r-
fl
o
w

 R
R

k
Q

1
1

1

DRAM queue flow queue request queue

size blocks
constant-

RR

tail-transferor head-transferor

requests
from scheduler

Figure 2.28: Parallel Hybrid SRAM/DRAM System (PHSD) of Wang et al.; The reader is
noticed, that the head side of the architecture is drawn differently compared to the original
figure of Wang et al., because the original figure does not differentiate between blocks and
block requests.

They conclude that the tail-MMA implementation complexity is high. In [78, 88, 89] Wang
et al. propose an improved architecture, which they call Parallel Hybrid SRAM/DRAM System

(PHSD) as it is hybrid and features parallelism. This Section introduces the PHSD in detail.

Architecture

The PHSD bases on the hybrid memory architecture with parallel subsystems approach pre-
sented in Section 2.4.4. The main difference is that the PHSD has no head buffer.

Figure 2.28 shows its architecture. It consists of k hybrid subsystems that are arranged in
parallel. Each subsystem consists of 3 components: tail buffer, DRAM and head request buffer.
Each tail buffer (SRAM) contains one DRAM queue. This queue stores blocks in the case when
the DRAM is temporary overbooked, i. e., the DRAM receives more write request than it can
process. In each subsystem the DRAM holds Q queues, i. e., the logical Q flow queues provided
to the user are all spread over all subsystems. Each head request buffer (SRAM) contains one
request queue. This queue stores block requests in the case when the DRAM is temporary
overbooked, i. e., it receives more read requests than it can process.

Two MMAs control the data transfers between SRAM and DRAM: the head-MMA and the tail-
MMA. The tail-MMA consists of two components: the dispatcher and the tail-transferor. The
dispatcher distributes incoming blocks to the individual subsystems while the tail-transferor
initiates the block transfers from tail buffers to DRAMs. Analogously, the head-MMA also
consists of two components: the requester and the head-transferor. The requester distributes

2.5 Survey of Hybrid Memory Architectures 59

incoming block requests to the individual subsystems while the head-transferor initiates the
transfer of block request from head request buffers to DRAMs.

Working Principle

The authors assume their packet buffer receiving and delivering constant-size data blocks. A
preceding component generates these blocks by segmenting variable-length packets.

To minimize waiting times, incoming blocks are not aggregated to larger units. This has two
consequences. Firstly, the access granularity of SRAM and DRAM is one block. Secondly, the
block size defines the minimal number of parallel subsystems (kmin) required for the system to
be stable. kmin is the ratio of the block transmission time at line rate R and twice the DRAM
random access time because head and tail side can access the DRAM each once every 2T :

kmin =
2T

tblock
=

2T
b
R

=
2TR

b
=

B

b

With this dimensioning each subsystem provides 1/kmin of the total required bandwidth.

To be able to read and write blocks of a flow with line rate its blocks have to be uniformly
distributed to all subsystems, as only all together can deliver line rate. Therefore, the dispatcher
distributes the blocks per flow in a round robin manner to the subsystems.

From left to right in Figure 2.28 the dispatcher distributes the incoming blocks to the individual
subsystems. As soon as a tail buffer is non-empty the tail-transferor initiates the transfer of the
queue head to the corresponding queue in the DRAM. Similarly, from right to left in Figure 2.28
the requester distributes incoming block requests and the head-transferor initiates the transfer
of the block requests to the DRAM. Blocks delivered by the DRAMs are directly transferred to
the packet buffer output.

Properties

Like targeted by the authors, the PHSD scales to very large capacities by simply increasing the
number of parallel subsystems k. For the system to be stable each subsystem has to still provide
1/kmin of the total required bandwidth. Inversely this means, that when k > kmin the system is
overdimensioned.

The authors prove, that the total tail buffer size of all subsystems is

Stail−PHSD = Qbk(1− 1

k
)

The factor−1
k
accounts for the fact, that due to the absence of aggregation, blocks arriving to an

empty DRAM queue can be immediately transferred to DRAM, i. e., less blocks can accumulate
per DRAM queue. Disregarding the factor−1

k
and k= kmin the tail buffer size is equal to that in

the HSD architecture: Qkb=Qk 2TR
k

=QB. In other words, the blocks in the PHSD are k times

60 Chapter 2. Packet Buffers for Network Nodes

R

head request
DRAM buffer

Q

1
k

Q

1

Q

1
1

Q

1

In-Order Matching
scheduler

re
q

u
e

s
te

r
p

e
r-

fl
o
w

 R
R

block

requests
from scheduler

Figure 2.29: Head side of PHSD with in-order matching scheduler; The reader is noticed, that
the architecture is drawn differently compared to the original figure of Wang et al., because the
original figure does not differentiate between blocks and block requests.

smaller compared to the HSD, but the PHSD also has k times more tail buffers. Consequently,
choosing k > kmin leads also to a proportional increase in tail buffer size (Stail−PHSD).

Block requests are more than an order of magnitude smaller than blocks. Consequently, the size
of the head request buffer, which is also realized with SRAM, can be neglected.

The read latency is introduced by waiting block requests in the head request buffer. Its value is
non-constant due to the absence of a reorder buffer, i. e., head buffer. The authors prove, that its
value is bounded to

LPHSD−max =
Qbkmin(1− 1

k
)

R
=

QB(1− 1
k
)

R

Analogously to the tail side, disregarding the factor −1
k
the maximum read latency introduced

by the PHSD is equal to the constant read latency of the HSD architecture.

The largest drawback of the PHSD is that blocks requested by the scheduler are delivered out-
of-order. Out-of-order delivery implies additionally a non-constant read latency as mentioned
before.

In [88] the authors modify their architecture to alleviate the out-of-order problem algorithmi-
cally. The main change is that the k head transferors no longer work independently, but are
coordinated by an In-Order Matching (IOM) scheduler. Figure 2.29 shows the head side of the
new PHSD. The IOM scheduler implements a matching algorithm that is operated in rounds
of 2T . Each round it selects from each head request buffer one block request considering the
constraint that the blocks of each flow are delivered in-order. To be able to select block request
of any flow each head request buffer maintains Q request queues instead of the one before.

2.5 Survey of Hybrid Memory Architectures 61

However, the achieved per-flow in-order delivery is still out-of-order compared to the requests
sent by the scheduler and the read latency is also still variable. Proposed matching algorithms
that are practical require an overdimensioning in the number of parallel subsystems k.

The architecture has further advantages. Firstly, it can be implemented distributed as the indi-
vidual subsystems are independent. Secondly, due to the absence of a head buffer it requires
in total only half of the SRAM size compared to the HSD architecture. Finally, the mean read
latency is significantly below LPHSD−max.

Discussion

Wang et al. propose a packet buffer architecture that allows distributed implementation. Due
to the similarity to the HSD architecture (cf. Section 2.5.2.1) the properties are also similar.
The authors omit the head buffer to save resources at a very high price: only per-flow in-order
delivery, variable read latency, and mandatory overdimensioning in the number of subsystems k.
If this non-deterministic behavior is acceptable depends on the targeted system. Nevertheless,
the tail side of the architecture behaves deterministically.

The DRAM bus utilization is equally poor as in the HSD since no banking is used. Even
if not regarded by the authors, the individual DRAMs in the subsystems can be replaced by
individual DRAM banks increasing the bus utilization. Using banks would reduce the total
DRAM capacity of the system. However, this is contrary to the authors’ intention to achieve
large packet buffer capacities.

The authors never mention the presence of a short-cut from tail buffer to head part like it is
available in the HSD architecture. However, their formula for the latency LPHSD−max does not
account for any latency introduced by the tail part. Without a short-cut the maximum latency
LPHSD−max doubles due to symmetry.

Finally, the PHSD suffers from internal fragmentation. This occurs because the authors assume
constant-size blocks, arriving at and departing from their packet buffer. As these blocks are
segmented packets this leads to the 65-byte-problem, i. e., there is a worst-case packet size that
leads to two cells where the second contains just one byte. This means, that all internal (SRAM)
and external (DRAM) memory capacity is double as large as without the 65-byte-problem. In
other words, the system is dimensioned for a gross input/output data rate instead for the net data
rate R, which is just half of that.

2.5.2.4 Discussion

This Section discusses the properties of the three architectures presented in detail: HSD, CFDS,
and PHSD. Table 2.5 summarizes their main metrics, i. e., formulas for tail and head buffer size
and read latency.

For comparison, one should consider, that to alleviate external fragmentation, the CFDS has to
maintain P instead of Q queues, with P > Q. This increases the tail and head buffers size as
well as the read latency of the CFDS (cf. Section 2.5.2.2).

62 Chapter 2. Packet Buffers for Network Nodes

tail buffer size head buffer size read latency
Stail Shead L

HSD (ECQF) QB QB
QB
R

CFDS (ECQF) not analyzed Qb+ Qb
R
+

(2Q/G)−1)(B/b−1)b (2Q/G)−1)(B/b−1)2b
R

PHSD Qbk 0 QB
R

(max. latency)

Table 2.5: Summary of the related work’s main metrics; For simpler comparison, the metrics
of HSD and PHSD are cleared from effects that come from different assumptions on arriving
data granularity, i. e., they are slightly larger then the original metrics. From the metrics of the
CFDS this effect is not removable.

Disregarding the 65-byte-problem, all metrics of all architectures are quite similar. Tail buffer
size of HSD and PHSD are even equal. The CFDS reduces the head buffer size compared to
the HSD by 25% when utilizing DDR3-SDRAM (cf. example in Section 2.5.2.2). All metrics
are proportional to the number of flows (Q) and due to the relationship B = 2TR also to the
line rate (R) and DRAM random access time (T). Since R and T are technologically given
parameters and the SRAM sizes are limited today to a few Mbyte, the number supported flows
in a deterministic packet buffer is moderate.

Considering the 65-byte-problem that causes internal fragmentation, the metrics of the architec-
tures differ largely. Explicitly, CFDS and PHSD suffer from internal fragmentation, i. e. these
architectures have to support in worst case an incoming line rate of R′ = 2R. Consequently, for a
deterministic packet buffer this means, that all internal (SRAM) and external (DRAM) memory
capacity and bandwidth doubles. Concluding, under this constraint the HSD is nearly double as
resource efficient according to the metrics than CFDS and PHSD.

no internal no external DRAM in-order constant
fragmentation fragmentation banking delivery read latency

(SRAM and DRAM) (DRAM only)

HSD X X – X X

CFDS – – X X X

PHSD – X – per-flow –

Table 2.6: Summary of the related works’ properties

Table 2.6 summarizes further important properties of the three architectures: internal and exter-
nal fragmentation, banking, in-order delivery, and read latency.

The requiredDRAM bandwidth and theDRAM data bus utilization of a system directly translate
to the required DRAM pin count, which is a large cost factor. The required DRAM bandwidth
is minimal, when there is no internal fragmentation. DRAM data bus utilization is high, when
the system uses banking. However, no presented system features both.

2.5 Survey of Hybrid Memory Architectures 63

The PHSD supports only per-flow in-order delivery and has consequently a variable read la-
tency. If this is acceptable depends on the target system. Nevertheless, its tail side operates
deterministically.

Summarizing, the presented architectures have all strengths but also weaknesses, especially
concerning the efficient use of resources. These weaknesses not only increase system costs but
also limit their feasibility considering future line rates.

A desirable future proof architecture optimally utilizes its resources and so requires no overdi-
mensioning at all, i. e., it suffers from no fragmentation and it uses DRAM banking. It also
requires a relatively small tail and head buffer size to be cost efficient.

64 Chapter 2. Packet Buffers for Network Nodes

3 A Novel Hybrid Memory Architecture

for High-Speed Packet Buffers

The core of the Internet is built of high-speed routers and switches containing up to hundred and
more ports. Temporary unbalanced traffic in a router and the presence of different CoS require
high-speed packet buffers to hold packets during times of congestion.

Chapter 2 introduced the functional and technological requirements a packet buffer has to fulfill.
It also introduced performance data and other properties of current and announced memory
devices. Facing these with the technological requirements of a high-speed packet buffer shows,
that at a line rate of R = 10Gbps only one memory device and at R = 100Gbps no memory
device can fulfill all requirements simultaneously. This performance gap is going to increase in
future as line rates increase much faster than memory performance.

A hybrid memory architecture can overcome the technological limitations by combining the
strengths of the two major memory technologies: short random access time of SRAM and large
capacity of DRAM. However, as discussed in Chapter 2, architecture proposals in literature that
provide deterministic bandwidth suffer from high memory resource requirements.

This Chapter introduces a novel hybrid memory architecture for packet buffers delivering deter-
ministic bandwidth. Its main advantage over current solutions is its significantly lower resource
requirement. Among others, one main achievement is the large reduction in SRAM size, which
is usually limiting feasibility. Consequently, this not only leads to a better scalability but also
makes its implementation more cost efficient. The author presented and discussed these results
on an international conference on router architectures [1].

This Chapter is organized as follows. Section 3.1 gives a detailed overview of the design tar-
gets for the hybrid packet buffer architecture. For each target Section 3.2 derives the required
architectural features which enable them. Section 3.3 introduces in detail the hybrid memory
architecture proposal while Section 3.4 quantitatively evaluates its resource requirements and
compares the results to those of related architectures. A dimensioning example for the proposed
architecture closes this Chapter.

65

66 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

3.1 Targets

This Section introduces the targets set for the hybrid memory architecture presented in this the-
sis. The main objective was to reduce resource requirements without reducing functionality.
The three explicit targets are listed in the following:

• Small SRAM size – SRAM is the most critical resource in a hybrid packet buffer. It may
even limit feasibility if the required SRAM size is too large. Consequently, the architec-
ture should require a significantly smaller SRAM size than competing architectures. This
leads to a better scalability and to reduced costs. The thesis focuses especially on the
SRAM size in the architecture’s tail part, i. e., the tail buffer size.

• Minimal DRAM resources – Due to the extreme bandwidth and capacity requirements
DRAM is a critical resource in a packet buffer, too. Therefore, the architecture should
fulfill the following requirements:

– Utilization of the total DRAM capacity, i. e., no suffering from fragmentation

– Minimization of the total required DRAM bandwidth

– High DRAM data bus utilization

The first two are hard requirements to not waste any DRAM resources. The third require-
ment means, the DRAM should be operated as efficiently as possible to achieve high data
bus utilization, as this decreases the total DRAM data bus width. All three requirements
lead to a reduced number of required DRAM devices and consequently to less I/O pins.
This means a better scalability and reduced costs.

• Deterministic bandwidth – The architecture should assure deterministic operation and
guarantee maximum bandwidth under any traffic condition. This target implies the fol-
lowing properties:

– No packet loss (packets are accepted as long as there is free buffer space in DRAM)

– In-order packet delivery

– Constant packet read latency

These properties lead to many advantages (cf. Section 2.2.4), e. g., a simple and determin-
istic packet buffer interface or safety against adversarial attacks.

The first target requires a significant reduction in SRAM size compared to other architectures.
Accordingly, this will be a unique feature of the presented architecture. The second target is
elementary to be cost efficient and scalable. According to the discussion in the related work
Section other architectures feature the corresponding requirements at most partly. The third

target is a basic requirement. All architectures presented in the related work Section feature this
(the PHSD features this only partly).

This work focuses on the memory architecture for packet buffering. This means, it complies –
as competing architectures too – with the packet buffer definition from Section 2.2.1 (page 17)
except the fact that they do not provide queuing information to an external scheduler. The
following Section introduces the design considerations to meet the targets.

3.2 Design Considerations and Challenges 67

3.2 Design Considerations and Challenges

The targets set require for design consideration to identify necessary functions and properties.
Related architectures already fulfill the targets partially (cf. Section 2.5.2). Consequently, we
combine their best approaches and enrich them with own ones to form a new architecture that
meets all targets simultaneously. In the following for each target the necessary functions and
properties are identified.

Deterministic Bandwidth

To achieve a deterministic bandwidth two requirements have to be fulfilled:

Firstly, the utilized MMAs have to guarantee that they process incoming write or read request
within bounded time. This implies that used memories (SRAM, DRAM) behave deterministi-
cally, i. e., each access takes the same constant duration of time. SRAM always fulfills this. To
behave deterministically the DRAM has either to be accessed just once per random access time
T or if banking is utilized the banks have to be accessed in a systematic way. This is the task of
the MMAs.

Secondly, head and tail buffer (SRAM) of the architecture have to be dimensioned according to
the introduced bounded delays of the MMAs. This means, the tail buffer has to be large enough
to never drop an incoming packet. Accordingly, the head buffer – which serves as a reorder
buffer – has to be large enough so that the system can always deliver requested packets in-order
after a constant read latency.

To provide a hard guarantee the upper bounds for both requirements have to be proven, i. e.,
processing delays as well as tail and head buffer size.

Minimal DRAM Resources

This target intends to minimize the DRAM resources, i. e., capacity, bandwidth, and data bus
width. To achieve this, the target architecture has to have the following four properties: no
internal fragmentation, no external fragmentation, utilization of banking, and no speedup. Why
these properties are necessary and how to achieve them is derived in the following:

No internal fragmentation – Internal fragmentation accounts for most overdimensioning in
related architectures. To eliminate it, incoming packet data has to be aggregated to blocks.
Then internally, i. e., between tail buffer and DRAM as well as DRAM and head buffer,
the required bandwidth is minimal, as always full blocks are exchanged. Analogously
for capacity, as DRAM stores only full blocks it requires no overdimensioning. Before
leaving the packet buffer the individual packets are reassembled from the blocks. When
the packet buffer receives packets already segmented to cells, it has to interpret these
and extract the packet data. Concluding, the architecture has to support aggregation to
eliminate internal fragmentation.

68 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

Additionally, aggregation to blocks decouples packet size from DRAM access granularity.
This is very desirable, as both can change over generations which could require for large
overdimensioning without aggregation, e. g., when the DRAM access granularity doubles
or even quadruples in future, internal fragmentation will increase.

No external fragmentation – External fragmentation accounts for the overdimensioning of
the DRAM capacity. Overdimensioning is necessary, when the architecture disallows the
usage of the total capacity. To eliminate external fragmentation, the architecture and the
MMAs have to enable that the data of each maintained queue is spread equally over all
utilized DRAMs.

Utilization of banking – The DRAM bus carries blocks from and to DRAM. The more ef-
ficiently this is utilized the narrower it can be dimensioned, while providing the same
bandwidth. DRAM banking, i. e., interleaved accessing of DRAM banks, allows using
the DRAM data bus efficiently, i. e., leads to a high data bus utilization. However, due to
complex timing constraints that have to be met the achieved bandwidth highly depends on
the sequence of the accessed memory locations. To keep DRAM accesses deterministic
the MMAs have to access the individual banks systematically. E. g., when the MMA ac-
cesses the banks in a strict round robin manner there is enough time between two accesses
to the same bank to prepare the bank for the new access. Usage of banking implies that
the architecture has parallel resources – the individual banks.

No speedup – Speedup is the number of times a module works faster then than the line rate.
A speedup can be required by the architecture, the MMAs, or just to compensate for in-
efficient operation. We target to have no speedup. Consequently, having also no internal
fragmentation the total required DRAM bandwidth is 2R. This is the theoretical mini-
mum, as the packet buffer has to store and retrieve packet data with line rate R each. To
achieve this, the MMAs and the architecture have to be designed accordingly.

Small SRAM Size

In hybrid memory architectures that guarantee a deterministic bandwidth the required SRAM
size is linearly tied to the number of supported queues. Consequently, for larger number of
queues the required SRAM size may limit feasibility and increase costs. There is potential to
reduce the required SRAM size by exploiting two observations:

• Internal fragmentation accounts for most SRAM overdimensioning – analogously to the
DRAM. To eliminate it, incoming packet data has to be aggregated to blocks like already
requested before.

• As it will be shown later, the higher the parallelism of an architecture, the smaller is the
required block size. Small blocks are earlier ready to be written to DRAM as the time
for aggregation is shorter. Consequently, in total fewer blocks can accumulate in the tail
buffer. When additionally the DRAM queues dynamically share the tail buffer, the tail
buffer size significantly decreases compared to other architectures.

3.3 Architecture Proposal 69

Summary

The most important requirements to meet the targets are listed here:

• MMAs need to operate deterministically

• Incorporate parallelism

• Utilize banking

• Aggregate packets to blocks

• Spread each flow queue equally over all DRAMs

• DRAM queues have to share the tail buffer dynamically (reduces tail buffer size)

Consider that related architectures (cf. Section 2.5.2) also fulfill individual requirements – ex-
cept the last, which is new. The novelty of the architecture being presented in the next Section
is that it fulfills all requirements simultaneously.

3.3 Architecture Proposal

This Section presents the novel hybrid memory architecture fulfilling all targets simultaneously.
The first Subsection introduces the overall architecture while the subsequent detail functionality
and properties.

3.3.1 Architecture

The proposed architecture is called the Semi-Parallel Hybrid SRAM/DRAM System (SPHSD).
The name reflects its two main properties. Firstly, it is a hybrid memory architecture similar to
the ones presented in Chapter 2, i. e., it utilizes both, SRAM and DRAM. Secondly, it contains
a set of parallel DRAMs but all other building blocks have just a single instance.

The SPHSD is assumed to receive and deliver variable-length packets1 with a net bandwidth of
R each. Utilization of the SPHSD on an input or output line card may require a higher output or
input bandwidth, respectively, depending on the speedup of the switch fabric. However, such an
imbalance changes only the dimensioning but not the basic architecture or its general properties.

Figure 3.1 shows the functional architecture of the SPHSD. It consists of three main parts: the
tail part containing the tail buffer (SRAM), parallel DRAMs, and the head part containing the
head buffer (SRAM). Compared to the architectures in the related works Section, this figure also
shows the request processing in the head part and therefore obviously looks more complicated.
The individual parts of the SPHSD are introduced in the following.

1It is common practice in high-speed routers to segment a packet into a stream of constant-size cells on its
arrival. On its input the SPHSD reassembles a stream of cells to a packet to perform aggregation. On its output
the SPHSD itself delivers a packet as a stream of cells. This means, on the logical level the SPHSD receives and
delivers variable-length packets.

70 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

e
m

b
le

r

D
R

A
M

 q
u

e
u

e
fl
o
w

 q
u

e
u

e

k

p
a

c
k
e

ts

R
R

s
h

o
rt

-c
u

t

le
n

g
th

va
ri

a
b
le

-
1 k

D
R

A
M

 q
u

e
u

e

re
q

u
e

s
t

q
u

e
u

e
b

u
ff

e
r

re
q

u
e

s
t

mux

re
a

s
s
-

h
e

a
d

 b
u

ff
e

r
S

R
A

M

h
e

a
d

 p
a

rt
p

a
ra

ll
e

l
D

R
A

M
s

ta
il

 p
a

rt

re
a

d
 l
a

te
n

c
y
 F

IF
O

s
e

g
m

e
n
.

h
e

a
d

-

b
lo

c
k

b
lo

c
k

s
e

g
m

e
n

.
ta

il-

re
q

.
b
lo

c
k

re
q

.

s
e

g
m

e
n

t

re
q

u
e

s
t

b
lo

c
k

s
c
h

e
d

u
le

r

re
q

u
e

s
ts

s
e

g
m

.

s
e

g
m

e
n

t

dispatcher
per-flow RR

s
e

g
m

.

requester
per-flow RR

s
e

g
m

.

p
a

c
k
e

t

Q1

tail transferor

1 k

fr
o

m

D
R

A
M

D
R

A
M

ta
il

 b
u

ff
e

r
S

R
A

M

1 kre
q

u
e

s
t

b
lo

c
k

s
h

o
rt

-c
u

t

Q1

head transferor

1

F
ig
u
re

3
.1
:
S
em

i-
P
ar
al
le
l
H
yb
ri
d
S
R
A
M
/D
R
A
M

sy
st
em

(S
P
H
S
D
)

3.3 Architecture Proposal 71

packets of flow a

→

1 a1a2a32

blocks of flow a segment

Figure 3.2: Packet segmentation and subsequent aggregation to blocks for one flow

Parallel DRAMs

The core of the SPHSD consists of k parallel DRAMs or DRAM banks, that can be operated
independently. A DRAM in Figure 3.1 represents a resource that can be accessed once per
random access time T . Consequently, such a DRAM can be also implemented by an individual
bank of a DRAM device. This enables in combination with the proper MMA the utilization of
banking. For simplicity, the term DRAM is used in the following.

Each DRAM provides 1/k of the required bandwidth and contains Q FIFO flow queues, i. e.,
each logical flow queue is spread over all k DRAMs. The SPHSD aggregates packet data per-
flow to constant-size blocks. As always full blocks are written to DRAM and read from DRAM
the total DRAM bandwidth is dimensioned to 2R. This is the minimum possible because the
SPHSD has to both, accept and deliver packets with line rate R. Hence, each DRAM provides
a bandwidth of 2R/k, i. e., R/k for reading and R/k for writing. The random access time of a
DRAM is T and so each DRAM performs one read and one write every 2T .

Definition 3.1. Block Size Access time (2T) and bandwidth (R/k) of a single DRAM define the

block size as

b=
2TR

k
(3.1)

Definition 3.2. Time Slot A time slot is the time to receive a block of b byte at line rate R.

1 time slot=
b

R
=

2TR

kR
=

2T

k

From this it follows that 2T = k time slots. In k time slots all DRAMs together can accept k
blocks and deliver k blocks simultaneously.

Tail Part

The tail part consists of the building blocks to the left of the DRAMs in Figure 3.1: tail-
segmenter, dispatcher, tail buffer, and tail transferor. Its task is to write incoming packet data to
the DRAMs in a deterministic way. Therefore it aggregates packet data per-flow to constant-size
blocks, distributes full blocks to the DRAMs and buffers full blocks when the corresponding
DRAM is temporarily overbooked.

In Figure 3.1 from left to right, the tail-segmenter receives variable-length packets, divides
them into segments and forwards them to the dispatcher. The size of a segment is always
chosen in a way that a block gets full – except for the last segment of a packet. In the example
in Figure 3.2 the first packet is segmented into one segment of same size, while the second
packet is segmented into three segments.

72 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

The dispatcher distributes segments over k DRAM queues (one for each DRAM). For each
flow, each time after one DRAM queue received segments with a total size of b byte, the dis-
patcher chooses the next DRAM queue. E. g., in Figure 3.2 the first two segments are dispatched
to the same DRAM queue so they can be aggregated to block a1. ai denotes the ith block of
flow a.

The tail buffer, which will be implemented with SRAM, maintains the k DRAM queues. A
DRAM queue serves two purposes. Firstly, it holds data of non-full blocks during aggregation.
Secondly, it holds full blocks in case the corresponding DRAM is temporarily overbooked.

The tail transferor knows the state of the DRAM queues. When these contain full blocks the
tail transferor transfers the blocks to the corresponding DRAMs.

The MMA in the tail part (tail-MMA) is responsible for the deterministic property of the tail
part. Therefore it dictates the behavior of two components: the dispatcher and the tail trans-

feror. Section 3.3.3 describes the functionality of the tail-MMA in detail.

Head Part

The head part delivers packets requested by an external scheduler in-order with constant read
latency. Therefore, for each packet, it requests the blocks from the DRAMs that contain the
packet, reorders these when necessary and finally reassembles the packet from the blocks.

The head part consists of the building blocks to the right of the DRAMs in Figure 3.1. These
can be grouped into components processing requests (on top right in Figure 3.1) and into com-
ponents processing packet data (on bottom right in Figure 3.1). Since the SPHSD is symmetric,
the tail part and the components processing requests in the head part are similar. The only dif-
ference is that the components in the tail part operate on packet data, while the others operate
on requests.

In Figure 3.1 beginning from the top right, the external scheduler sends packet requests for
variable-length packets. The head-segmenter receives these, generates the corresponding seg-
ment requests and forwards them to both, requester and read latency FIFO. The packet requests
contain the packet’s length what makes it simple to generate the segment requests. As each flow
queue is accessed in strict FIFO manner the head-requester can generate segment requests that
are equivalent to the segments generated by the tail-segmenter before. E. g., the tail-segmenter
segments packet 2 of flow a in Figure 3.2 into three segments. Upon receiving the packet re-
quest for packet 2 of flow a the head-segmenter will generate the corresponding three segment
requests.

The requester determines the DRAMs that contain a block with a segment of the packet. If the
corresponding blocks were not requested yet due to previously required segments, it generates
the block requests for the corresponding DRAMs and forwards them to the request buffer.

The request buffer maintains k request queues, i. e., one per DRAM. Its purpose is to hold the
block requests in case the corresponding DRAM is overbooked.

3.3 Architecture Proposal 73

The head transferor knows the state of the request queues and transfers contained block re-
quests to the corresponding DRAMs. Blocks returned by the DRAMs are written to the corre-
sponding DRAM queues in the head buffer.

The head buffer maintains k DRAM queues, i. e., one per DRAM. Thereby it serves two pur-
poses. Firstly, it stores blocks received from the DRAMs until these can be delivered. Storage
is necessary because the head buffer serves as a reorder-buffer. Secondly, it holds segments that
were not yet requested by the scheduler.

The read latency FIFO delays every segment request by a constant time – the read latency
of the packet buffer. After this constant time the read latency FIFO requests the individual
segments from the head buffer. The head buffer forwards the segments to the reassembler,
which reassembles the original packets.

The MMA in the head part (head-MMA) is responsible for the deterministic property of the
head part, e. g., segments are always available in the head buffer when requested. Therefore it
dictates the behavior of two components: the requester and the head transferor. Section 3.3.4
describes the functionality of the head-MMA in detail.

Switch fabrics usually operate with constant-size cells (cf. Section 2.1.3). Consider the case
when the corresponding packet buffer is on an input line card and serves the switch fabric. If
now the block size is dimensioned equal to the cell size then the head-segmenter and reassem-
bler can be omitted. Accordingly, the external scheduler then requests blocks (cells) instead of
packets.

Shortcut from Tail to Head Part

A side effect of aggregation is that non-full blocks are never written to DRAM. However, for
flows with light traffic it may happen that such a non-full block is required in the head part but
is not available in the DRAM. A short-cut path from tail to head buffer solves the problem.

The head part decides for each block request if it sends it to the DRAM or to the tail buffer. To
make this decision we exploit the fact that flow queues are always read in FIFO manner. Conse-
quently, the head transferor sends the block request to the corresponding DRAM whenever this
contains a block of the corresponding queue. Else, when there is no block of the corresponding
flow queue in the corresponding DRAM, it sends it to the tail buffer.

3.3.2 Degree of Parallelism

Parameter k defines the number or parallel DRAMs utilized in the architecture – the degree of
parallelism. This Section introduces the constraints for choosing k.

The aggregation implemented by the architecture decouples packet size and DRAM access
granularity. The tail buffer aggregates incoming packets to blocks and the tail transferor ac-
cesses the DRAMs in granularity of one block. The block size b= 2TR/k is inversely propor-

74 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

tional to k. Decoupling allows to use k as degree of freedom. The system designer can chose k
between a lower and an upper bound, which are derived in the following.

Lower bound of k – The architecture defines the lower bound of k = 1, i. e., the system is not
parallel any more. For k = 1 the block size and the architecture are equal to that of the
HSD of Iyer et al. [45]. Only the MMAs are still different.

Upper bound of k – The DRAM type utilized defines a meaningful upper bound for k. Each
memory has a minimal access granularity, which is the product of its data bus width and
the burst length of an access. For example, a DDR3 SDRAM DIMM has 64 data pins
and is only operated efficiently with a burst length2 of 8, i. e., its access granularity is
8 ·64bit= 64byte. Alternatively, a single DDR3 SDRAM chip has just 4 data pins, i. e.,
its access granularity is 8 ·4bit= 4byte.

The block size is an integer multiple of the DRAM access granularity and so is at least
equal to it. At a given line rate this determines the upper limit of k, e. g., for R= 100Gbps
and T = 53.1 ns using DDR3 SDRAMDIMMs ⌈k⌉= 21 and using DDR3 SDRAM chips
⌈k⌉= 332.

The system designer can chose k to optimize resource requirements. Thereby one has to con-
sider the following three main impacts of k on the system:

Tail buffer size decreases with increasing k – It will be proven in Section 3.4.1 that when
the DRAM queues share the tail buffer dynamically its size decreases with increasing k.
Thereby the tail buffer size asymptotically converges towards a lower bound.

Queue management overhead for blocks increases with k – The system operates internally
in granularity of blocks. Maintaining queues of these blocks in tail part, head part and
DRAMs introduces a management overhead. The block size (b = 2TR/k) decreases lin-
early with increasing k. Consequently, the number of blocks as well as the management
overhead increase towards larger k. At some point management overhead outweighs other
savings.

k allows minimizing DRAM resources in real implementation – Commercial DRAM chips
are only available in a few configurations, e. g., DDR3 SDRAM has always 8 banks and is
available with 4, 8 or 16 data pins combined with a few different capacities and bus speeds.
The organization of these DRAM chips depends on k. E. g., for k = 16 DRAM could be
organized in two DRAM groups with 8 banks each, while a DRAM group consist of a
set DRAM chips operated in unison. Each organization in combination with an explicit
DRAM chip introduces more ore less DRAM overdimensioning. The system designer
now can use k to find a DRAM organization that minimizes DRAM overdimensioning.
Section 3.5 gives a corresponding detailed example.

Beside these explicit DRAM resources k also allows to influence the pin count to control
the DRAMs. The individual DRAM groups are operated independently, i. e., each DRAM
group has its dedicated address and control bus. Hence, the higher the number of DRAM

2The DDR3 SDRAM standard [29] defines the burst lengths BC4 (4 data words) and BL8 (8 data words). BC4
is a chopped burst and therefore consumes almost the same time but transfers only half as much data words as
BL8. Consequently, with BL8 data bus utilization is nearly double as high.

3.3 Architecture Proposal 75

3

4

2

1

a6

a5

a4

a3

a2

a1

a7

block 1 of flow a k

(a) round robin dispatching
principle

3

4

2

1a1c1 b1c5

b2c2

c3

c4

kshaded: transferred

a2

(b) arrival of blocks from sev-
eral flows

3

4

2

1

k

c1 b1d1e1f1 a1

Q

(c) flows synchronized to round
robin scheme

Figure 3.3: Status of the DRAM queues in the tail buffer

groups, the higher the required pin count of the chip implementing the packet buffer. Each
DRAM group increases k by at most the number of its banks. Concluding, the lower k,
the lower the number of required DRAM groups, the lower the pin count for address and
control busses to operate the DRAMs.

3.3.3 Tail Memory Management Algorithm

This Section describes the MMA utilized in the tail part (tail-MMA). This is identical to the
tail-MMA proposed by Wang et al. in [88], but is utilized in a new architecture. Consequently,
it leads to different results. The tail-MMA is implemented by two components: the per-flow

round robin dispatcher and the tail transferor. Dispatcher and transferor work independently.
The functionality of these is described in the following.

Per-flow Round Robin Dispatcher

To provide a deterministic bandwidth the SPHSD has to be able to write/read blocks of each
flow to/from DRAMwith line rate. As only all DRAMs together provide line rate the dispatcher
has to distribute the blocks of each flow equally over all DRAMs.

Accordingly, the per-flow round robin dispatcher distributes packet data of each flow block-wise
in a round robin manner over all k DRAMs, i. e., every kth block of each flow is dispatched to
the same DRAM. As the dispatcher actually dispatches segments, for each flow it chooses the
next DRAM if the current already received segments with a total size of b byte. The dispatcher
completes writing b byte into the tail buffer in one time slot. To simplify the description we will
say in the following, that the dispatcher dispatches blocks. Further, we will call the arrival of
b byte for one flow block arrival.

Figure 3.3(a) illustrates the consecutive dispatching of blocks of a single flow to the DRAM
queues in the tail buffer. The example assumes k = 4 DRAMs. Due to the per-flow dispatching
each flow queue is distributed over all k DRAMs. Figure 3.4 illustrates this distribution by
showing the individual blocks in the flow queues. The example assumes a system with k = 4

76 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

3

4

2

1

5

6

3

4

2

1

5

6

DRAMs k

1

2

3

4

2

1

5

6

4

p
e

r-
fl
o
w

 r
o

u
n

d
 r

o
b

in
 d

is
p

a
tc

h
in

g

block 4 of flow a

a1a5a9a13a17

a2

b5b9

c1c5c9

d1d5

e1

f1

e5

f5f9

a6a10

b2b6b10

a14a18

c2

d2

e2

f2

c6c10

d6

f6f10

a4

b4

c4

d4

e4

f4

a8a12a16

b8b12

c8c12

d8

f8

b1

Figure 3.4: Distribution of blocks to the flow queues in the DRAMs; Blocks are dispatched
per-flow in a round robin manner to the DRAMs. This example assumes k = 4 DRAMs and
Q= 6 flows named a to f .

DRAMs and Q= 6 flows named a to f . Two of the presented architectures in the related work
Section (CFDS and PHSD) also use the same per-flow round robin dispatching.

Tail Transferor

The task of the tail transferor is trivial. It transfers full blocks from tail buffer to DRAM as
fast as possible in order to keep tail buffer occupation low. Each DRAM completes writing a
block in 2T = k time slots. The transferor performs parallel writes to all k DRAMs if all DRAM
queues have full blocks. With full blocks in each DRAM queue the tail buffer fill level cannot
raise, as per time slot, b byte leave and at most b byte arrive.

3.3 Architecture Proposal 77

Example of tail-MMA Operation

The following example illustrates the operation of the tail-MMA. We assume to have k = 4
DRAMs, Q= 6 flows named a to f and to start from an empty system at the beginning of time
slot 1. Figure 3.3(b) shows the tail buffer state after the arrival of a total of 9 blocks from several
flows, i. e., the state of the k = 4 DRAM queues. To simplify the example we assume that the
received packets’ size is an integer multiple of the block size. The 9 blocks arrive at the tail
buffer back to back in the following order: a1, b1, b2, c1, c2, c3, c4, c5, a2. The dispatcher
dispatches block a1 and b1 to DRAM queue 1, block b2 to DRAM queue 2, etc.

In DRAM queues 1 and 2 blocks are accumulated, as due to the round robin dispatching these
DRAMs are temporarily overbooked. Simultaneously to the block arrivals, the tail transferor
transfers full blocks from the DRAM queues to the corresponding DRAM. The grey shaded
area marks blocks that have been transferred to the DRAMs meanwhile. E. g., after block c4
two more blocks arrive. During these two time slots the transferor transfers block c4 to DRAM
half. It takes k = 4 time slots to transfer it completely. The state of DRAM queue 1 explains
the following. The first block a1 arrived in time slot 1 to DRAM queue 1. The snapshot in
Figure 3.3(b) shows the state at the end of time slot 9. Accordingly, the transferor could transfer
(9−1)/k = 2 blocks to DRAM 1, i. e., explicitly blocks a1 and b1.

Lemma 3.1. No more than Q blocks are accumulated per DRAM queue for Pmin ≈ 0≪ b, where

Pmin is the minimal packet size.

Proof. Assume all Q flows have a nearly full block in the tail buffer. Then each flow receives
a minimal size packet completing aggregation of all Q blocks. If all flows are synchronized to
the round robin sequence, then all Q blocks are in the same DRAM queue. Figure 3.3(c) shows
the case after the sequential completion of the blocks a1 to f1.

The per-flow round robin dispatcher assigns every kth block of a flow to the same DRAM queue.
However, in k time slots the transferor can remove one block from every DRAM queue and write
it to DRAM. So no more than Q blocks are accumulated per DRAM queue.

3.3.4 Head Memory Management Algorithm

This Section describes the MMA utilized in the head part (head-MMA). Equivalently to the tail,
the head-MMA is implemented by two components: the per-flow round robin requester and the
head transferor. Requester and transferor work independently.

The SPHSD architecture is symmetric. Symmetric is the complete tail part to the head part
components processing requests (cf. bottom left and top right in Figure 3.1). The main differ-
ence between symmetric components is that the ones in the tail part operate on packets, while
the ones in the head part operate on packet requests. Accordingly, there is also some symmetry
between tail-MMA and head-MMA. The components of the head-MMA are introduced in the
following.

78 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

Per-flow Round Robin Requester

To be able to retrieve data blocks in-order from the DRAMs the requester implements the equal
per-flow round robin scheme as utilized in the tail part.

The requester generates block requests per-flow in a round robin manner for all k DRAMs,
i. e., every kth block request for each flow is for the same DRAM. Upon arrival of a segment
request it generates a block request for this flow, except when it already generated this block
request before. The latter may happen, when a previous segment request already triggered the
generation of this block request.

Head Transferor

The head transferor transfers block requests from request buffer to the DRAMs. Each DRAM
completes reading a requested block in 2T = k time slots. Initiating parallel reads from all k
DRAMs the head transferor retrieves from DRAMs k blocks in k time slots. Transferring block
requests from a request queue it has two degrees of freedom: when to transfer a block request
and which block request to transfer next.

Here two algorithms are introduced. Both process block requests in each request queue in strict
FIFO manner. This minimizes the maximal delay that can be introduced to a block request.

1. MiRBD algorithm – The head transferor implements the same algorithm as the tail trans-
feror and is thus also identical to the algorithm proposed by Wang et al. in [88]. However,
as it is utilized in a new architecture it leads to different results. The head transferor trans-
fers available block requests as soon as possible to the DRAMs to keep request buffer
occupation as low as possible. In this thesis the algorithm is called the Minimize Request
Buffer Delay (MiRBD) algorithm, as it minimizes the delay introduced by the request
buffer. In this case, the properties of the request queues are identical to that of the DRAM
queues in the tail part, i. e., Lemma 3.1 holds also here and so no more than Q block re-
quests are accumulated in a request queue. Equivalently to the tail part, due to temporal
overbooking of the DRAMs block requests may be processed out of order compared to
their generation order. The head buffer reorders the blocks before they leave the packet
buffer.

Observation 3.1. With the MiRBD algorithm’s strategy of processing every block request as

soon as possible many blocks wait an unnecessary long time in the head buffer. This leads to an

unnecessary large required head buffer size.

⋆ Idea. Keeping block requests as long as possible in the request buffer intuitively
leads to less blocks to be reordered. This means, a smaller head buffer is sufficient.

The algorithm proposed in the following bases on this idea.

3.3 Architecture Proposal 79

2. MaRBD algorithm – The head transferor behaves inversely to the MiRBD algorithm and
delays processing of a block request as long as possible. It is called the Maximize Request
Buffer Delay (MaRBD) algorithm. The constraint thereby is to not raise the maximum
latency introduced to a block request compared to the MiRBD algorithm, i. e., the system
properties will not change. To achieve this, the algorithm has to guarantee that here
also never more the Q block requests accumulate in a request queue. The algorithm
therefore has to suffice two rules. Both define when at the latest the head transferor has to
process the headmost block request in a request queue. The rules are orthogonal as they
monitor different properties. The head transferor has to start transferring the headmost
block request in a request queue as soon as one of the rules triggers this.

• Rule 1: Maximally delay a block request – The queue state defines how long
processing of the headmost block request can be delayed. For example, assume that
a request queue contains just one block request and no other request arrives to this
queue in the next Qk time slots. Then the head transferor can delay this by (Q−1)k
time slots. When the queue contains Q requests, processing cannot be delayed at
all. In both border cases the maximum latency introduced to a block request is Qk
time slots.

• Rule 2: Consider round robin requesting state to never accumulate more than

Q blocks – Processing of the headmost block request in a request queue depends on
the current round robin requesting state of the individual flows. The latter contains
for each flow the information which DRAM received the last block request and how
much of the corresponding block data was requested up to now. The transferor has
to keep the request queue fill level such low, that independent of the outgoing traffic
pattern newly generated block requests cannot raise the fill level of a request queue
above Q. This is simple due to the deterministic behavior of the per-flow round
robin requesting.

For example, assume that the last block request of all queues was enqueued in re-
quest queue i. Up to now only a minimal size packet Pmin was requested from each
of the corresponding data blocks. Before now the packet requests from the ex-
ternal scheduler can trigger the generation of Q block requests for request queue
i+ 1 it has to request all the remaining data from the previous Q blocks, i. e.,
Q · (b−Pmin) ≈ Qb. Requesting Qb data takes Q time slots. In these Q time slots
the head transferor can remove Q/k block requests from request queue i+1. Con-
sequently, at this point in time request queue i+ 1 is allowed to contain up to Q/k
block requests. Analogously, until request queue i can receiveQ new block requests
it takes at least Qk time slots. Consequently, at this point in time request queue i is
allowed to contain up to Qk/k = Q block request.

A head-MMA that utilizes the MiRBD head transferor algorithm will be called MiRBD head-

MMA in the following. Accordingly, a head-MMA that utilizes the MaRBD head transferor
algorithm will be called MaRBD head-MMA. The required head buffer sizes will be evaluated
in Section 3.4.2. As requests are negligible in size compared to blocks, the request buffer is not
considered further.

80 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

3.4 Quantitative Assessments

As introduced in Chapter 2 the main metrics of hybrid memory architectures for packet buffers
are the required tail and head buffer size as well as the introduced read latency. For a quan-
titative assessment in the following the upper bounds for these will be derived and proven.
Further, these metrics are compared to those of related architectures. Finally, DRAM resource
requirements are also compared to those of related architectures.

For the following proofs we assume that the minimal packet size Pmin, that can arrive to or
depart from the packet buffer, is approximately 0. This is a worst-case approximation that
slightly raises the bounds but simplifies the proofs.

3.4.1 Tail Buffer Size

The proposed hybrid memory architecture utilizes a tail buffer to hold blocks in times when
DRAMs are overbooked. This Section first derives an upper bound for the tail buffer size and
then assesses it quantitatively.

3.4.1.1 Upper Bound

Observation 3.2. As soon as a DRAM queue contains at least one full block the transferor

starts transferring it to the corresponding DRAM. Consequently, not all DRAM queues can be

full simultaneously, i. e., contain Q blocks.

⋆ Idea. We can let the DRAM queues dynamically share the tail buffer and thereby
significantly decrease the total required tail buffer size.

Theorem 3.1. If the DRAM queues dynamically share the tail buffer by utilizing dynamic mem-

ory allocation, the upper bound for the tail buffer size in blocks is

Q
(k+1)

2
(3.2)

Proof. We assume that packets arrive at the packet buffer continuously with full line rate R.
This represents the worst case if we want to show that the buffer size is bounded. The proof
consists of four steps leading to Lemma 3.2, 3.3, 3.4 and 3.5.

Observation 3.3. As long as any DRAM is idle because its DRAM queue contains no full blocks,

tail buffer size will grow.

3.4 Quantitative Assessments 81

3

4

2

1

k

a1c1 b1d1e1f1

Q

(a) t = Q time slots

3

4

2

1

kshaded: transferred

a1c1 b1d1

a2b2c2

e1f1

d2e2f2

(b) t = 2Q time slots

3

4

2

1

kshaded: transferred

a3b3c3d3e3f3

a4b4c4d4e4f4

a1c1 b1d1e1f1

b2c2d2e2f2 a2

(c) t = kQ time slots

Figure 3.5: Tail buffer status during the arrival of traffic pattern P1

The worst-case traffic pattern maximizes DRAM idle time and by this it defines the upper bound
for the tail buffer size. In the following we define a traffic pattern and prove that it is the worst-
case traffic pattern, as it maximizes required buffer size.

Definition 3.3. Traffic Pattern P1 The traffic pattern P1 has the following properties:

• Q blocks accumulate to one DRAM queue according to Lemma 3.1.

• This consecutively happens ≥ k times

Figure 3.5 gives an example for P1 assuming Q = 6 and k = 4. Starting from an empty tail
buffer at t = 0 after Q−ε time slots no block is fully aggregated yet. Until now all DRAMs are
idle. At t = Q time slots all Q blocks get full in the first DRAM queue (cf. Figure 3.5(a)).

At t = 2Q time slots Q blocks get full in DRAM queue 2 (cf. Figure 3.5(b)). Up to now
DRAM queue 1 transferred Q/k= 1.5 blocks to DRAM 1. Transferred blocks are shaded in the
figure, i. e., these are not any more in the tail buffer. Up to now all other DRAMs are still idle.
Figure 3.5(c) shows the tail buffer status at t = kQ time slots.

Lemma 3.2. With P1, starting from an empty tail buffer the maximally required tail buffer size

in blocks is

Q · (k+1)

2
(3.3)

Proof. The non-shaded area in the Figure 3.5(c) represents the required tail buffer size. Based
on this we can calculate the buffer size for arbitrary k and Q.

Accumulation of Q blocks in each of the DRAM queues takes Q time slots. The transferor
removes in Q time slots Q/k blocks from any DRAM queue with full blocks. In this example,
at t = kQ time slots DRAM queue i has Q i

k
full blocks, e. g., DRAM queue k−1 has Q k−1

k
full

blocks. Summing up the blocks of all DRAM queues gives us

SP1 = Q ·
k

∑
i=1

i

k
= Q · (k+1)

2

82 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

3

4

2

1

kshaded: transferred

a3b3c3d3e3f3

a1c1 b1d1e1f1

b2c2d2e2f2 a2

(a) t = 3Q time slots

3

4

2

1

kshaded: transferred

a1c1 b1d1e1f1

b2c2d2e2f2 a2

a4b4

a3b3c3d3e3f3

(b) t = 3Q+2 time slots

3

4

2

1

kshaded: transferred

a1c1 b1d1e1f1

b2c2d2e2f2 a2

a3b3c3d3e3f3

a4b4c4d4e4f4

(c) t = kQ time slots

Figure 3.6: Tail buffer status during the arrival of traffic pattern P2

At any time t = xQ time slots, with x > k the buffer size is equal to SP1 because the fill levels
just rotate through the DRAM queues. E. g., starting from Figure 3.5(c), at t = (k+ 1)Q time
slots DRAM queue 1 will have the fill level of DRAM queue k, 2 that of 1 and so on. As all
DRAM queues have full blocks all the time, the tail transferor can remove blocks with full line
rate. This leaves enough free buffer space for new segments arriving with line rate.

Now we show that starting from an empty tail buffer any traffic pattern different from P1 leads
to a lower bound for the tail buffer size.

Definition 3.4. Traffic Patter P2 The traffic pattern P2 includes all possible traffic patterns

except P1.

Lemma 3.3. With P2, starting from an empty tail buffer the maximal required tail buffer size is

always less than with P1.

Proof. Starting from an empty tail buffer, with P2 some blocks get full earlier than with P1.
Consequently, the transferor also starts writing blocks to DRAM earlier. This always leads to a
smaller maximal required tail buffer size than P1.

Figure 3.6 gives an example for P2. We assume Q = 6 and k = 4. Starting from an empty tail
buffer, up to t = 3Q time slots in this example, there is no difference to P1 (cf. Figure 3.6(a)).
At t = 3Q+ 2 time slots already 2 blocks get full in DRAM queue 4 (cf. Figure 3.6(b)). At
t = kQ time slots 4 further blocks get full in DRAM queue 4 (cf. Figure 3.6(c)). The difference
to P1 is, that the tail transferor could start writing blocks to DRAM 4 earlier. This leads to a
smaller total tail buffer size compared to P1. Figure 3.6(c) visualizes this by having more shade
area than Figure 3.5(c).

Now we consider starting from a non-empty tail buffer.

Lemma 3.4. Starting from any valid non-empty tail buffer status P1 does not raise the tail

buffer size from Lemma 3.2.

Proof. The proof requires two definitions.

3.4 Quantitative Assessments 83

Definition 3.5. System A System A, is a system that receives from the beginning only P1. FAi
denotes the length of DRAM queue i in its tail buffer. Figure 3.5 depicts the tail buffer status of

such a system.

Considering System A, independent how long P1 is received, the required buffer size is bounded
(cf. Lemma 3.2).

Definition 3.6. System B System B, is a system that receives from the beginning only P2. Then

packet arrivals of the flows synchronize to the round robin scheme so that the system can receive

P1 in the following. FBi denotes the length of DRAM queue i in its tail buffer. Figure 3.6 depicts

the tail buffer status of such a system.

Now we compare the tail buffer status of systems A and B. We consider the status of system A
depicted in Figure 3.5(c) and the status of system B depicted in Figure 3.6(c). System B is at the
point in time before it starts receiving P1. Comparison shows that FAi ≥ FBi,∀i ∈ {1,2, . . . ,k}.
Concluding, when system B starts now receiving P1 then this cannot raise the upper bound from
Lemma 3.2 as it has a better starting position than system A.

Lemma 3.5. Starting from any valid non-empty tail buffer status P2 does not raise the tail

buffer size from Lemma 3.2.

Proof. We have to distinguish if P1 or P2 introduces the starting non-empty tail buffer status.
For the case that P2 introduces it, Lemma 3.3 already proves that P2 cannot raise the bound
from Lemma 3.2.

The case that P1 introduces the non-empty tail buffer status is considered in the following. We
make the following two observations concerning the increase and decrease of a system’s tail
buffer size.

Observation 3.4. Receiving packets at full line rate R, the tail buffer size of a system cannot

decrease as the DRAM bandwidth available for writing is also R. This is true independent of

the incoming traffic pattern.

Observation 3.5. Receiving packets at full line rate R, the tail buffer size of a system cannot

increase as long as each DRAM queue has one ore more full blocks. This is true independent of

the incoming traffic pattern because the transferor can write blocks to DRAMs with line rate R.

We show now, that in the considered scenario at full line rate none of the DRAM queues can
run empty of full blocks. According to the last observation the tail buffer size then also cannot
increase.

The tail buffer status in Figure 3.5(c) is the starting point, i. e., a status introduced by P1. To see
if a DRAM queue i can run empty of full blocks we need a traffic pattern that maximizes the
waiting time of DRAM queue i for full blocks. Only P1 has this property. E. g., the maximum
time for DRAM queue 1 until a new block gets full is Q time slots. The Q/k blocks in DRAM
queue 1 are exactly enough not running empty in these Q time slots. From this we conclude,
that here with P1 no DRAM queue can run empty. Consequently, with P2 also no DRAM queue
can run empty, because with P2 blocks get full earlier compared to P1. Concluding, P2 does
not raise the tail buffer size from Lemma 3.2.

84 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

From Lemma 3.2, 3.3, 3.4 and 3.5 it follows, that independent of the received traffic pattern
(i. e., only P1, only P2, first P1 then P2, or first P2 then P1) the upper bound of the required tail
buffer size is that given in Lemma 3.2. According to the definitions of P1 and P2 these cover
together all existing traffic patterns. Finally, P1 leads to the maximum tail buffer size from
Lemma 3.2 and is therefore the worst-case traffic pattern.

For sake of completeness, the tail buffer size is also derived for the case, where the DRAM
queues do not share memory.

Theorem 3.2. If the tail buffer is statically divided in k partitions (one for each DRAM queue)

and each partition utilizes dynamic memory allocation, then the upper bound for the tail buffer

size in blocks is

Qk (3.4)

Proof. We know from Lemma 3.1 that no more than Q blocks can accumulate per DRAM
queue. With k DRAM queues the upper bound is Qk blocks.

This already includes the memory required for aggregation. Assume that at t0 = Q time slots
Q blocks got full in a DRAM queue, i. e., the DRAM queue contains a total of Q full blocks
(cf. Figure 3.5(a)). Beginning from t0 the transferor removes data from that DRAM queue, i. e.,
one block (b byte) per k time slots. This DRAM queue will receive any further segment from
any flow earliest during the time slot t0+ k. At the end of time slot t0+ k new b byte may be
received but the transferor also removed b byte. Concluding, the tail buffer size is sufficient.

Finally, requirement for dynamic memory allocation is proven. Assume, the same example as
before, i. e., a tail buffer partition is completely full by storing Q blocks. The tail transferor
removes the blocks one by one from the tail buffer. However, new packet data for this DRAM
queue may arrive for any flow in any granularity, so aggregation of several new blocks may be
started. Incoming packet data of the different flows have to share the freed buffer space. This is
only possible by utilizing dynamic memory allocation.

3.4.1.2 Assessment

This Section assesses the required tail buffer size of the SPHSD. The previous Section in-
troduced upper bounds for two different organizations of the tail buffer. Here only the first
organization is evaluated (cf. Theorem 3.1 on page 80) as only this reduces tail buffers size
significantly compared to other architectures.

The following paragraphs first evaluate the dependency of the tail buffer size on the parameter
k. Then it compares the tail buffer size of the SPHSD to that of other architectures.

3.4 Quantitative Assessments 85

0 2 4 6 8 10 12 14 16 18 20
k (number of parallel DRAMs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ta
il

b
u
ff
e
r

s
iz

e
 (

n
o
rm

a
liz

e
d
)

lower bound

upper bound

Figure 3.7: Tail buffer size of SPHSD as a function of parameter k

Evaluation of the Dependency on k

According to Theorem 3.1 the tail buffer size of the SPHSD in blocks is

Stail−SPHSD = Q
(k+1)

2

while a block has the size in byte

b=
2TR

k
=

B

k
(3.5)

where B= 2TR (cf. page 51). Expressed in byte the tail buffer size is

Stail−SPHSD = QB
(k+1)

2k
(3.6)

Figure 3.7 shows how the tail buffer size depends on k – the number of parallel DRAMs used in
the system. To remove dependency from explicit system parameters like T and R the tail buffer
size is printed normalized, i. e., for k = 1 the tail buffer size is 1.

Stail−SPHSD asymptotically converges with increasing k towards the lower bound of

Stail−SPHSD−min = QB
1

2
(3.7)

This means, the tail buffer size decreases by 50%. Before discussing meaningful choices, re-
call that the system designer can freely choose k between a lower and an upper bound (cf. Sec-
tion 3.3.2). According to Figure 3.7 Stail−SPHSD comes close to its lower bound with already
small values for k. For example, with k = 10 Stail−SPHSD already decreases by 45%. Conclud-
ing, the queue management overhead that increases with k (cf. Section 3.3.2) is acceptable as
reasonable k are small.

86 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

Comparison to Other Architectures

In the following the tail buffer size of the SPHSD is compared to the tail buffer sizes of the
architectures introduced in the related work Section: HSD, PHSD, and CFDS. For a simpler
comparison we use as far as possible formulas that are cleared from effects that come from the
author’s different assumptions on arriving data granularity (cf. Table 2.5 in Section 2.5.2.4).
Further, we disregard the 65 byte problem to which PHSD and CFDS are suffering as this re-
quires assumptions about the minimal packet size and the cell size used in these systems. Re-
garding it would mean for these systems a resource increase of up to a factor of two, depending
on the implementation.

For comparison we assume a SPHSD with k= 16. According to the previous paragraphs this is
a reasonable value. This leads to a tail buffer size of

Stail−SPHSD−k16 = QB
16+1

2 ·16 = 0.53QB

The HSD has a tail buffer size in byte of Stail−HSD = QB. The minimal tail buffer size of the
PHSD in byte is Stail−PHSD = Qbk = QB. Consider that the parameter k of the PHSD also
defines the parallelism of the system but it influences the system properties differently.

With k = 1 in the SPHSD (Eq. (3.6)) the tail buffer size is equal to HSD and PHSD:

Stail−SPHSD−k1 = Stail−HSD = Stail−PHSD

However, a SPHSD with k = 16 requires a 47% smaller tail buffer size compared to HSD and
PHSD.

Garcia et al. analyze only the head buffer size of the CFDS. However, according to our under-
standing of the CFDS its tail and head buffer size should be roughly similar. Consequently, to
allow a rough comparison to the CFDS we assume Stail−CFDS = Shead−CFDS−ECQF .

Comparison with CFDS requires an assumption about the number of individual banks available
in the utilized DRAM. Currently relevant DRAMs for packet buffers are DDR3-SDRAM and
RLDRAM II (cf. Section 2.3.4). Both feature M = 8 banks (cf. Table 2.2 in Section 2.3.3).
Future DRAMs tend to have more banks, e. g., RLDRAM III is announced to have 16 banks.

Here we consider M = 8, M = 16, and M = 32 banks to cover current DRAMs and ones being
possibly available in closer and farer future. The corresponding tail buffer sizes in the CFDS
are 0.75QB, 0.62QB, and 0.43QB, respectively. Comparison shows that forM = 8 the SPHSD
requires a 29% and forM = 16 a 14.5% smaller tail buffer size. ForM = 32 the CFDS requires
a smaller tail buffer size than the SPHSD. However, such forecasts are difficult as corresponding
DRAMs in farer future may not only have a larger number of banks, but also other properties,
compared to today’s DRAMs.

Only the CFDS suffers from external fragmentation in the DRAM. To make comparison more
fair we consider also a CFDS that utilizes its queue renaming mechanism, which alleviates
external fragmentation (cf. Section 2.5.2.2, page 53). This CFDS requires P>Q flow queues to
be managed, while P replacesQ in the formulas. We assume P= 1.5Q. ForM= 8,M= 16, and

3.4 Quantitative Assessments 87

M = 32 banks this leads to a tail buffer size in the CFDS of 0.75PB= 0.75 ·1.5QB= 1.125QB,
0.93QB, and 0.645QB, respectively. Comparison shows that the SPHSD requires a 53%, 43%,
and a 17.8% smaller tail buffer size, respectively.

Summarizing, the tail buffer size of the SPHSD decreases with increasing k. Thereby it con-
verges towards a lower bound. Reasonable values for k are in the range of 8 to 20 as these
decrease the tail buffer size close to the lower bound and at the same time keep queue manage-
ment overhead acceptable.

The SPHDS significantly outperforms other architectures with respect to the tail buffer size.
Quantitatively, the SPHSD reduces the tail buffer size by 47% to 53% depending on the com-
pared architecture. This result disregards the 65 byte problem to which PHSD and CFDS suffer.
Regarding it would further raise reduction compared to these systems by up to a factor of two.

3.4.2 Head Buffer Size

The SPHSD utilizes a head buffer to enable a deterministic output behavior of the system. This
Section first derives the required head buffer size and then quantitatively assesses it.

3.4.2.1 Upper Bound

Section 3.3.4 introduced two different algorithms for the head transferor: the MiRBD algo-
rithm and the MaRBD algorithm. These lead to different head buffer sizes and are considered
individually.

MiRBD Head Transferor Algorithm

Theorem 3.3. If the head buffer utilizes dynamic memory allocation and the architecture uti-

lizes the MiRBD head transferor algorithm, then the upper bound for the head buffer size in

blocks is

Q(k+1) (3.8)

Proof. As described in Section 3.3.1 the head buffer stores data for two purposes. Firstly (a), it
stores blocks received from the DRAMs until these can be delivered to provide a constant read
latency. Storage is necessary because the head buffer serves as a reorder-buffer. Secondly (b),
it stores segments that were not yet requested by the scheduler. The required memory sizes for
(a) and (b) are derived individually.

Memory size for (a) depends on the maximal delay a block request can experience in the request
buffer plus the time for its retrieval from DRAM.

88 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

Lemma 3.6. The maximal delay a block request can experience in the request buffer plus the

time for retrieval of the corresponding block from DRAM is in time slots

Qk (3.9)

Proof. In a DRAM queue in the tail part up to Q blocks are accumulated (cf. Lemma 3.1).
Due to symmetry, in a request queue also up to Q block requests are accumulated. The head
transferor can read from one DRAM one block every k time slots. Concluding, the maximum
delay is Qk time slots, i. e., (Q− 1)k time slots queuing delay in the request queue and k time
slots for retrieving the Qth block from DRAM.

From Lemma 3.6 we derive the following to support reordering and a constant read latency at
the output interface: every pair of block request and corresponding block has to be delayed

in total Qk time slots. This delay may be completely introduced by the request buffer and
retrieving the block from DRAM (cf. Lemma 3.6). However, under specific traffic patterns the
request buffer introduces no queuing delay because no block requests accumulate. In this case
the head buffer is responsible to introduce the complete queuing delay of (Q−1)k time slots.

A corresponding traffic pattern is easy to find. E. g., starting from an empty request buffer the
scheduler requests packets of a single flow with a total size of at least Qk blocks. Figure 3.8
illustrates this case and shows the status of request buffer and head buffer at the end of time slot
Qk. The example assumes k = 4 DRAMs and Q = 6 flows. Under this request pattern block
requests are already generated at the beginning of a time slot. Accordingly, block request aQk
(here a24) arrives to the request buffer at the beginning of time slot Qk. Until the end of this
time slot the head transferor processes this block request by 1

k
(here 1

4).

According to Figure 3.8 the head buffer stores (Q− 1)k completely received blocks. This is
required to introduce the necessary queuing delay. The k partly received blocks in the head
buffer are required to match the bandwidth gap between a single DRAM and the output line
rate. Summed and rounded up, the head buffer requires for purpose (a) maximal a size of Qk
blocks.

Memory size for purpose (b) is maximized, when in the given example the Q− 1 other flows
each have one segment of nearly the size of a full block available in the head buffer, i. e., nearly
Q− 1 blocks. Summed and rounded up, the upper bound for the head buffer size is Q(k+ 1)
blocks.

MaRBD Head Transferor Algorithm

As already mentioned the MaRBD head transferor algorithm has the potential to reduce the
required head buffer size. We have shown experimentally by a software implementation that
when utilizing the MaRBD algorithm and the DRAM queues share the head buffer dynamically,

3.4 Quantitative Assessments 89

3

4

2

1

k

a1

a2

3

4

2

1

k

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a20

a21

a22

a23

a24

a18

a19

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a20

a21

a22

a23

a24

a18

a19

shaded:

Q

shaded:

request buffer

Q

head buffer

not yet received block part

transferred block request

block 4 of flow a

block request 24 of flow a

Figure 3.8: Status of request buffer and head buffer: case with maximal head buffer size;
Arriving traffic pattern: consecutive request of Qk blocks of a single flow; Figure shows state
after t = Qk time slots. The example assumes k = 4 DRAMs and Q= 6 flows.

the head buffer size decreases by roughly 50% compared to Theorem 3.3 for reasonable k, i. e.,

to ≈ Q
(k+1)

2 .

As this thesis focuses on the tail part no further investigations of the exact upper bound for the
head buffer size utilizing the MaRBD algorithm are necessary. For a real implementation this
has to be caught up to be able to provide a bandwidth guarantee.

The following paragraph sketches in two steps the idea how this saving is achieved. First the
theoretical lower bound of the head buffer size’s upper bound is derived. Then it is shown how
the MaRBD algorithm preserves this.

Lemma 3.7. The theoretical lower bound of the head buffer size’s upper bound when using

per-flow round robin dispatching is in blocks

Q
(k+1)

2
(3.10)

90 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

3

4

2

1

k

a1

3

4

2

1

k

b1 c1 d1 e1 f1

request buffer

Q

head buffer

block request 1
of flow f

(a) t = ε time slots

3

4

2

1

k

a1

3

4

2

1

k

b1 c1 d1 e1 f1

Q/k

request buffer

Q/k

head buffer

shaded: transferred
block request

shaded: not yet
received block (part)

a1b1c1d1e1f1

(b) t = Q time slots

3

4

2

1

k

a1

3

4

2

1

k

b1 c1 d1 e1 f1

request buffer

Q

head buffer

a2 b2 c2 d2 e2 f2

a3 b3 c3 d3 e3 f3

a3 b4 c4 d4 e4 f4

a1b1c1d1e1f1

a2b2c2d2e2f2

a3b3c3d3e3f3

a3b4c4d4e4f4

Q

(c) t = kQ time slots

Figure 3.9: Request buffer and head buffer status during the arrival of requests according to
traffic pattern P1; The example assumes k = 4 DRAMs and Q= 6 flows.

Proof. The lower bound of the head buffer size’s upper bound is introduced by a traffic pattern
where the MaRBD algorithm is without effect, i. e., no block request is delayed additionally.
This means under this traffic pattern the MaRBD algorithm behaves identically to the MiRBD
algorithm.

From symmetry we know that the traffic pattern P1 (cf. Definition 3.3) that maximizes tail buffer
size also maximizes request buffer size. A maximal request buffer size leads to maximized
queuing delays for the block requests. According to the proof of Theorem 3.3 on page 87
request buffer and head buffer introduce together a delay of (Q−1)k time slots to every pair of
block request and block. Concluding, when the request buffer size is maximal the head buffer
size is minimal.

Starting from an empty system Figure 3.9 shows P1 arriving to the head part. During the short
time period ε, with ε ≈ 0, the external scheduler generates Q minimal size packet requests. The
requester accordingly generates the Q block requests which all accumulate in request queue 1.
Figure 3.9(a) shows request buffer and head buffer state at t = ε time slots. During the next
Q time slots the head transferor can process Q/k of the block request from request queue 1.
Accordingly, DRAM queue 1 in the head buffer holds the Q/k blocks retrieved from DRAM.
Figure 3.9(b) shows the state at t = Q time slots. Figure 3.9(c) shows the state at t = Qk time

3.4 Quantitative Assessments 91

slots, i. e., just before data starts leaving the head buffer. The non-shaded area marks the minimal

head buffer size. This is in blocks Q (k+1)
2 . Beyond t = Qk time slots the head buffer size is

constant as data arrives and leaves with line rate.

According to the proof of Theorem 3.3 request buffer and head buffer introduce together a delay
of (Q−1)k time slots to every pair of block request and block. The MaRBD algorithm allows
now to introduce roughly half of this delay in the request buffer by processing the block requests
delayed. Consequently, for reasonable k the head buffer has to hold roughly only half of the
blocks reducing its size to ≈ 50% compared to Theorem 3.3.

To validate this result, the author implemented a software model of the head part. The model
operates in time slots and in granularity of blocks, i. e., each time slot one block request may
arrive and one block may be delivered simultaneously. To account for the memory required
due to de-aggregation – what is not covered by the model – one has to add Q−1 blocks to the
head buffer size delivered by simulation model (cf. proof of Theorem 3.3 on page 87). The
author used the following request patterns for validation: only requests of one flow (worst-case
traffic pattern for the MiRBD head transferor algorithm), P1 (cf. Definition 3.3 on page 81), and
random patterns. All simulations acknowledged the result.

The MaRBD algorithm derives its decision to forward the headmost block request to the
DRAMs or not on a simple arithmetic. This bases on the arrival time of the headmost block
and the fill levels of the request queues. Concluding, high performance implementations of the
MaRBD algorithm should be easily possible in hardware.

3.4.2.2 Assessment

This Section assesses the required head buffer size of the SPHSD. Thereby it addresses both
head transferor algorithms as they lead to different head buffer sizes. For each it first evaluates
dependency on the parameter k and then shows comparison to other architectures.

MiRBD Head Transferor Algorithm

According to Theorem 3.3 the head buffer size of the SPHSD using the MiRBD head transferor
algorithm is in blocks

Shead−SPHSD−MiRBD = Q(k+1)

while Eq. (3.5) gives the size of a block. Expressed in byte the head buffer size is

Shead−SPHSD−MiRBD = QB(1+
1

k
) (3.11)

Depending on k Shead−SPHSD−MiRBD varies between the lower bound QB for k → ∞ and the
upper bound 2QB for k = 1. With reasonable k like derived during assessment of the tail buffer
size (cf. Section 3.4.1.2) the head buffer size comes close to its lower bound, e. g., for k = 16
Shead−SPHSD−MiRBD−k16 = 1.0625QB.

92 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

In the following the head buffer size of the SPHSD is compared to the head buffer sizes of
HSD and CFDS. For a simpler comparison we use as far as possible formulas that are cleared
from effects that come from the author’s different assumptions on arriving data granularity
(cf. Table 2.5 in Section 2.5.2.4). Further, we disregard here the 65 byte problem to which
CFDS suffers due to the same reason as in Section 3.4.1.2.

The HSD has a head buffer size of Shead−HSD−ECQF = QB. Assuming DRAMs with M = 8
banks the head buffer size of the CFDS is in byte Shead−CFDS−ECQF = 0.75QB. On the one
hand, HSD marginally and CFDS somewhat more outperform the SPHSD regarding the head
buffer size. On the other hand, the MMAs utilized in HSD and CFDS require a direct write
path from the packet buffer input to the head buffer. This increases the required bandwidth to
their head buffer significantly compared to SPHSD (cf. Section 2.5.2.1 and Section 2.5.2.2),
i. e., HSD and CFDS require 3R while the SPHSD requires 2R.

Equivalently to the assessment of the tail buffer size, to make comparison fairer, here also
additionally a CFDS is considered that suffers from less external DRAM fragmentation. We
assume P = 1.5Q. Assuming DRAMs with M = 8 banks the head buffer size of this CFDS is
in byte Shead−CFDS−ECQF = 1.125QB. Now the SPHSD slightly outperforms the CFDS.

The PHSD has no head buffer, i. e., it is not comparable.

MaRBD Head Transferor Algorithm

Utilizing the MaRBD algorithm the head buffer size is roughly similar to the tail buffer size
including the dependence on parameter k. Related architectures (HSD and CFDS) have also
similar head and tail buffer sizes. Concluding, the SPHSD reduces head buffer size roughly by
the same amount as the tail buffer size, i. e., up to 50%.

Summarizing, the MiRBD head transferor algorithm leads – regarding the head buffer size –
to a marginal decrease of 12% compared to CFDS and a marginal increase of 6% compared
to HSD. The MaRBD head transferor algorithm seems to reduce the head buffer up to 50%
compared to other architectures. As this thesis focuses on the tail part, the latter is not proven.
Independent of its size the head buffer in the SPHSD requires a lower bandwidth compared to
HSD and CFDS, i. e., 2R instead of 3R.

3.4.3 Read Latency

The SPHSD provides a constant read latency at its output interface. As already defined, the read
latency is the time between receiving a read request from an external scheduler and delivering
the corresponding packet. The maximal read latency that the architecture introduces to any
request defines its value. This Section first derives the constant read latency of the architecture
and then quantitatively assesses it.

3.4 Quantitative Assessments 93

3.4.3.1 Derivation

Theorem 3.4. The SPHSD introduces a constant read latency in time slots of

Qk (3.12)

Proof. The total read latency is the sum of the individual maximum latencies introduced by head
part and tail part. These are derived in the following. Thereby we assume that all components
operate ideally, i. e., introduce no delay for processing. Consequently, we consider only queuing
delays and the time for accessing the DRAMs. Further we assume that a DRAM access and
short-cutting a block request from tail to head buffer introduces the same latency.

Lemma 3.8. The tail part introduces no latency.

Proof. The short-cut path can be used to transfer any block from tail to head buffer, i. e., full
and non-full blocks. As the tail part immediately delivers every block requested via short-cut,
the tail part introduces no latency.

Lemma 3.9. The head part introduces a constant read latency in time slots of

Qk (3.13)

Proof. The maximal delay a block request can experience in the request buffer plus the time for
retrieval of the corresponding block from DRAM is Qk time slots (Lemma 3.6). A correspond-
ing block experiences no delay for reordering in the head buffer, as this is already the block
with the largest latency. To provide a constant read latency the head buffer delays blocks of
which the corresponding block requests were delayed less than maximal in the request buffer.
Concluding, the constant read latency introduced by the head part is Qk time slots.

From Lemma 3.8 and 3.9 we conclude, that the read latency of the architecture is constantly Qk
time slots.

3.4.3.2 Assessment

This Section assesses the introduced read latency of the SPHSD. Therefore it first evaluates
dependency on the parameter k. Then a comparison to the read latencies of other architectures
is performed.

94 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

According to Theorem 3.4 the read latency of the SPHSD is in time slots

LSPHSD = Qk

while Definition 3.2 defines a time slot in seconds as

b

R
=

B

kR

Expressed in seconds the read latency is

LSPHSD =
QB

R
(3.14)

As it can be seen, the read latency of the SPHSD is independent of k.

In the following the read latency of the SPHSD is compared to that of HSD and CFDS. For
a simpler comparison we use as far as possible formulas that are cleared from effects that
come from the authors’ different assumptions on arriving data granularity (cf. Table 2.5 in
Section 2.5.2.4).

The HSD has a read latency of LHSD−ECQF = QB/R. Assuming DRAMs with M = 8 banks
the read latency of CFDS is LCFDS−ECQF−M8 =QB/R. Concluding the read latency of all three
systems is equal

LSPHSD = LHSD−ECQF = LCFDS−ECQF−M8

Assuming future relevant DRAMs with M = 16 and M = 32 banks (cf. Section 3.4.1.2) read
latency in CFDS decreases to 0.74QB/R and 0.61QB/R, respectively, i. e., it outperforms the
SPHSD.

Equivalently to the assessment of the tail buffer size, to make comparison fairer, here also
additionally a CFDS is considered that suffers from less external DRAM fragmentation. We
assume P= 1.5Q. Assuming DRAMs with M = 8, M = 16 andM = 32 banks the read latency
of the CFDS is 1.5QB/R, 1.11QB/R, and 0.915QB/R, respectively. Now the SPHSD slightly
outperforms the CFDS for M = 8 andM = 16 banks.

The PHSD has a variable read latency and is therefore not considered.

Summarizing, for current and closer future DRAMs the SPHSD has the equal or shorter read
latency compared to other systems. For farer future DRAMs with increased number of banks
the CFDS slightly outperforms the SPHSD. If necessary, the system designer can decrease the
read latency of the SPHSD to zero, by utilizing the MDQF head transferor algorithm proposed
by Iyer et al. in [11] – however at the price of a significantly larger head buffer size.

3.4.4 DRAM Resources

One of the design targets for the SPHDS has been the efficient usage of the DRAM resources.
This Section assesses the DRAM resource utilization in the SPHSD and compares this to that
of other architectures.

3.4 Quantitative Assessments 95

Based on the design target to minimize DRAM resources Section 3.2 derived the necessary
functions to be added to the SPHSD architecture. Accordingly, the SPHSD inherently meets
this target.

Minimizing DRAM resources refers to three aspects: capacity, bandwidth, and data bus width.
Explicitly, the SPHSD minimizes these by having the following properties

• Capacity: SPHSD does not suffer from internal or external fragmentation

• Bandwidth: SPHSD requires no speedup and does not suffers from internal fragmentation

• Data bus width: SPHSD utilizes banking

Table 3.1 faces the properties of the SPHSD and of the architectures presented in the related
work Section.

no internal no external DRAM no speedup of
fragmentation fragmentation banking DRAM bandwidth

HSD X X – X

CFDS – – X X

PHSD – X – –
SPHSD X X X X

Table 3.1: Summary of properties related to DRAM resource requirements

Concluding, the SPHSD architecture is the only that simultaneously features all properties and
so utilizes DRAM most efficiently.

3.4.5 Summary of Results

Table 3.2 summarizes the metrics of the SPHSD: its tail buffer size, its head buffer size, and its
read latency.

Metric Formula Source

Tail buffer size Q
(k+1)

2 [blocks] Theorem 3.1
Head buffer size, MiRBD alg. Q(k+1) [blocks] Theorem 3.3

Head buffer size, MaRBD alg. ≈ Q
(k+1)

2 [blocks] Section 3.4.2, not proven
Read latency Qk [time slots] Theorem 3.4

Table 3.2: Summary of metrics of the SPHSD; The size of a block is given in Eq. (3.5) while
the duration of a time slot is given in Definition 3.2.

Consider that all values of all metrics of all architectures are theoretical bounds. In real imple-
mentation these bounds may cause roundings to meet real components’ properties. For example,
a DDR3 SDRAM chip has a burst length of 8 and at least 4 data pins what allows increasing the
access granularity and total DRAM data bus width only in discrete steps.

96 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

Design of the SPHSD architecture was led by three main targets (cf. Section 3.1). The following
summarizes the evaluation results with respect to these targets.

1. Small SRAM size

With reasonable k the SPHSD requires a 47% to 53% smaller tail buffer size compared
to other architectures (cf. Section 3.4.1.2). The head buffer size depends on the utilized
algorithm. With the MiRBD algorithm and reasonable k the head buffer size is marginally
larger or smaller depending on the compared architecture (cf. Section 3.4.2.2). With the
MaRBD algorithm the reduction of the head buffer size is expected to be similar to the
reduction of tail buffer size, i. e., approx. 50%.

2. Minimal DRAM resources

In contrast to related architectures the SPHSD features all necessary properties to mini-
mize the DRAM resources: it eliminates any type of fragmentation, requires no speedup,
and utilizes DRAM banking. Consequently, the SPHSD requires the theoretical minimal
possible DRAM bandwidth of 2R, no capacity overdimensioning, and a low DRAM data
bus width.

3. Deterministic bandwidth

The SPHSD inherently guarantees a deterministic bandwidth as it was designed and di-
mensioned accordingly.

3.5 Dimensioning Example

This Section illustrates by means of an example how SRAM and DRAM resources are dimen-
sioned for a packet buffer that bases on the SPHSD architecture. The objective of this Section
is to show the possibilities and degrees of freedom during the dimensioning process.

This Section is organized as follows. First it introduces the system requirements for the packet
buffer. Second it presents the properties of the DRAM that should be utilized to implement
the packet memory. Following, exemplarily three different alternatives are shown to access
the DRAM which lead to different trade-offs. Finally it introduces two principally different
dimensioning strategies and performs dimensioning for these.

System Requirements

The system to be dimensioned should suffice the following requirements

• Line rate: R= 100Gbps

• Capacity: C= 2.5Gbyte (C= R ·RTT with RTT = 200ms, cf. Section 2.2.4 on page 24)

• Number of flow queues: Q= 1000

We assume that the SRAM used to implement tail and head buffer has a short enough access
time to accept and deliver the minimal size packets with line rate. Accordingly, knowledge
about packet sizes is not required for this dimensioning example.

3.5 Dimensioning Example 97

DRAM Properties

To keep costs low we chose to utilize DDR3 SDRAM to implement the packet memory. DDR3-
1600K SDRAM [29] is currently one of the DDR3 SDRAMs delivering the highest bandwidths.
In this dimensioning example we use a corresponding commercial DRAM chip from Micron:
Part number MT41J256M4, speed bin -125 [65]. Table 3.3 lists its properties.

property value unit comment

banks 8 #
T 53.1 ns mean random access time3

burst length 8 data words
data pins/DRAM chip 4 #
capacity/pin 0.25 Gbit four times higher capacities also available
bus frequency 800 MHz
tck 1.25 ns clock cycle time
peak bandwidth 1.6 Gbps theoretical value
data words/clk 2 # DDR (double data rate)

Table 3.3: DDR3-1600K SDRAM chip properties (Micron part number MT41J256M4, speed
bin -125)

In the following presented DRAM parameters and performance properties are partly estimated.
This is sufficient for this example to provide close to reality calculations. Consider that exact
dimensioning for a real implementation requires also exact parameters, as the packet buffer has
to guarantee the bandwidth. Deriving these has to take into account the large number of timing
constraints the DRAM has to meet.

The used DRAM chips feature 8 banks. To achieve a high data bus utilization we access the
banks of the DRAM interleaved. However, its TRRD and TFAW timing constraints prohibit to
perform one access to all 8 banks in a time period of T , i. e., to decrease the access time to T/8
(cf. Section 2.3.3 on page 32).

We estimated that up to 6 banks can be accessed in a time period of T when each access transfers
just a single burst. Equivalently to footnote 3 we abstract thereby from penalties for changing
the access type (read, write) as they can be alleviated by batching equal access types [31].
Figure 3.10 exemplarily illustrates interleaved access to 6 banks during a time period of T .

3A DDR3-1600K SDRAM device has an estimated mean random access time of T = 53.1 ns when the
read/write ratio is 1 and each access transfers just a single burst. The mean value is required, because a read
and a write access have different access times. This means in 2T = 106.2 ns one read and one write access can
be performed, while the read access takes 48.75 ns and the write access 57.45 ns. This calculation abstracts from
penalties for changing the access type (read, write) as this can be alleviated to a large extent by batching equal
access types [31], e. g., instead RWRWRWRW perform RRRRWWWW.

98 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

T

open row close row

transfer of one data burst
from or to DRAM t

bank6
data

bank5
data

bank4
data

bank1
data

bank2
data

bank3
data

bank4
data

bank5
data

bank6
data

bank1
data

bank2
data

bank3
data

T

Figure 3.10: Interleaved access to 6 banks in round robin manner during a time period of T

DRAM Access Alternatives

There are many alternatives accessing the banks in this DRAM. Based on the previous estimated
upper bound for bank interleaving we exemplarily show three reasonable alternatives which all
lead to different trade-offs.

1. We can access the maximal number of 6 banks in a time period T while each access
transfers one burst. To guarantee that this dense interleaving is consecutively possible the
used banks have to be accessed in a strict round robin manner, i. e., 1, 2, 3, 4, 5, 6, 1, 2, 3,
4, 5, 6, 1, etc. (cf. Figure 3.10). This leads to a data bus utilization of

ρ =
clock cycles used

clock cycles of T
=

banks · burst length2
T
tck

=
6 · 82
53.1ns
1.25ns

= 56.5%

As only 6 of 8 banks are used we waste 25% of the available capacity. However, in reality
this is not an issue as DDR3 SDRAM is extremely cheap and capacity of the final system
will be anyway overdimensioned as it is harder to achieve the bandwidth requirement.

2. To be able to access all 8 banks we group them into 4 groups, e. g., (1,2), (3,4), (5,6),
and (7,8). Now we perform each T one access to each bank group in strict round robin
manner, i. e., group 1, group 2, group 3, group 4, group 1, etc. This means 4 banks are
accessed during each interval of T , i. e., one of each group. The per-flow round robin

dispatcher distributes the blocks of a flow in first order round robin over all groups and in
second order round robin over all banks of a group. E. g., it dispatches consecutive blocks
of a flow to the following banks: 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, etc. However, performing just
4 accesses per time period T decreases data bus utilization by 1

3 to

ρ = 37.7%

3.5 Dimensioning Example 99

3. To increase the poor data bus utilization provided by the previous alternative we can
just transfer two data bursts per access. This increases the mean random access time to
T = 55.6 ns4. The data bus utilization increases to

ρ =
clock cycles used

clock cycles of T
=

groups · 2· burst length2
T
tck

=
4 · 2·82
55.6ns
1.25ns

= 72%

However, the required head and tail buffer sizes (SRAM) increase proportionally with T ,
i. e., by 4.7%.

Providing the highest data bus utilization, we chose possibility 3 for all further calculations. At
this point we can already derive the necessary width of theDRAM data bus in pins. To achieve
the required capacity we need at least

pcap =

⌈
C

capacity/pin

⌉

=

⌈
2.5Gbyte

0.25Gbit/pin

⌉

= 80pins

To achieve the total required bandwidth of 2R we need at least

pbw =

⌈
2 ·R

ρ ·peak bandwidth/pin

⌉

=

⌈
2 ·100Gbps

0.72 ·1.6Gbit/pin

⌉

= 174pins

Consequently, the DRAM data bus has to be dimensioned to have at least

p= max(pcap, pbw) = 174pins

Dimensioning Strategy Alternatives

The formula b = 2TR/k expresses the relation between the block size b and the degree of
parallelism k. R is a fixed system parameter. T is defined by the utilized DRAM and the
chosen access alternative. When dimensioning a packet buffer based on SPHSD we have now
the freedom to either choose b and then calculate k or vice versa. In the following for both
alternatives an exemplary dimensioning is performed.

Alternative 1: choose b, calculate k – Designing a packet buffer for an input line card it is
favorable to choose the block size equal to the cell size of the switch fabric. E. g., choosing
b= cell= 64 byte leads to

k =

⌈
2TR

b

⌉

=

⌈
2 ·55.6ns ·100Gbps

64byte

⌉

= 22

In the first step we have to group the available DRAM chips to DRAM groups to achieve
the required access granularity of b= 64 byte. All DRAMs in a DRAM group are operated
in unison. With 8 DRAM chips with 4 pins each transferring two bursts per access (burst
length 8) the access granularity is 8 ·4 ·2 ·8bit= 64byte.

4Calculation bases on the same assumptions as for the mean access time in Table 3.3. Transferring two bursts
per access requires a read access time of 48.75 ns and a write access 62.45 ns, i. e., in mean 55.6 ns.

100 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

192 pins

2
1

1

8

7

3

4

DRAM group 5

4
2

3

6

5

4

bank group

bank

DRAM chip 1

2
1

1

8

7

3

4

4
2

3

6

5

4

DRAM chip 8

2
1

1

8

7

3

4

DRAM group 6

4
2

3

6

5

4

bank group

bank

DRAM chip 1

2
1

1

8

7

3

4

4
2

3

6

5

4

DRAM chip 8

2
1

1

8

7

3

4

DRAM group 1

4
2

3

6

5

4

bank group

bank

DRAM chip 1

2
1

1

8

7

3

4

4
2

3

6

5

4

DRAM chip 8

unused
banks

32 pins 32 pins 32 pins

Figure 3.11: DRAM organization for dimensioning alternative choose b

In the second step we have to dimension the necessary number of DRAM groups to
achieve k. With 4 accesses per DRAM group per T we need

⌈
k

4

⌉

=

⌈
22

4

⌉

= ⌈5.5⌉= 6 DRAM groups

The 6th DRAM group will receive only 2 accesses per T to achieve exactly k = 22,
i. e., it will utilize only 4 of 8 banks and will also deliver only 50% of its bandwidth.
Full utilization of the 6th DRAM group would lead on the one hand to a less filled tail
buffer in average, but on the other hand to more DRAM queues to be managed in the
tail buffer, without decreasing the upper bound of the tail buffer size. The 6 DRAM
groups have in total 6 · 32 = 192 pins. The corresponding DRAM overdimensioning is
(192−174)/174= 10.3%. The number of required pins is inherently correct due to used
relation to calculate k: k = 2TR

b
:

utilized DRAM groups · pins of a DRAM group= 5.5 ·32pins= 176pins> 174pins

Figure 3.11 illustrates this DRAM organization.

As parameter k was rounded up, the real block size b = 64byte is marginally larger than
the theoretical b= 2TR

k
= 63.18byte. Tail and head buffer size are calculated according to

the formulas given in Theorem 3.1 and Theorem 3.3. Thereby we use the real block size
to capture this marginal additional increase of the buffer sizes.

Stail−SPHSD = Q
(k+1)

2
blocks= 1000 · (22+1)

2
·64byte= 719Kbyte

Shead−SPHSD−MiRBD = Q(k+1) blocks= 1000 · (22+1) ·64byte= 1438Kbyte

Alternative 2: choose k, calculate b – Designing a packet buffer where the block size b is
not dictated we have an additional degree of freedom. Consequently, k can be used to
minimize DRAM overdimensioning.

According to Section 3.4.1.2 a reasonable value for k is roughly in the range of 8 to 20.
To determine which k lead to a small DRAM overdimensioning the author calculated

3.5 Dimensioning Example 101

0

4

8

12

16

20

24

28

32

36

40

44

48

k
k

0 16 32 48 64 80 96 112 128 144 160 176 192

DRAM group size [pins]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
R

A
M

 o
v
e
rd

im
e
n
s
io

n
in

g

DRAM overdimensioning

choice
2. extrem case

1
.
e
x
tr

e
m

 c
a
s
e

range for k
reasonable

Figure 3.12: Parameter k and DRAM overdimensioning as function of the DRAM group size
in pins, i. e., data pin count of one DRAM group

DRAM overdimensioning for all possible DRAM group sizes. The two extreme cases are
having just one DRAM chip in each DRAM group and having all DRAM chips in just one
DRAM group. Figure 3.12 shows parameter k and DRAM overdimensioning as a function
of the DRAM group size in pins between these two extreme cases. As each DRAM group
increases k by 4, the first extreme case leads to k = DRAM groups · 4 =

⌈
174
4

⌉
· 4 = 176

(not visible in Figure 3.12 due to scaling of the y-axis), while the second leads to k = 4
(cf. Figure 3.12).

Two effects contribute to DRAM overdimensioning. Firstly, when the required DRAM
bus width is not an integer multiple of the data pins of a DRAM chip we have unavoidable
overdimensioning. For example, we need here at least ⌈p/4⌉ = ⌈174/4⌉ = ⌈43.5⌉ =
44 DRAM chips. The half additional DRAM chip leads to 0.5/43.5= 1.1% unavoidable
DRAM overdimensioning. The second effect is that the chosen DRAM group size can
lead to an increased number of required DRAM chips, i. e., here more than the minimum
of 44. This overdimensioning is avoidable. E. g., when we chose having 43 DRAM chips
per DRAM group we need in total two DRAM groups. This leads to an overdimensioning
of nearly 100% (cf. Figure 3.12).

To minimize DRAM overdimensioning we chose from Figure 3.12 to have 44 pins per
DRAM group, i. e., 11 DRAM chips per DRAM group and 4 DRAM groups in total.
This leads to k = 16, a minimal possible DRAM overdimensioning of 1.1%, and a block
size of b= 44 ·2 ·8bit= 88byte. Figure 3.13 illustrates this DRAM organization.

Tail and head buffer size are calculated according to the formulas given in Theorem 3.1
and Theorem 3.3.

Stail−SPHSD = Q
(k+1)

2
blocks= 1000

(16+1)

2
·88byte= 730Kbyte

Shead−SPHSD−MiRBD = Q(k+1) blocks= 1000 · (16+1) ·88byte= 1461Kbyte

102 Chapter 3. A Novel Hybrid Memory Architecture for High-Speed Packet Buffers

2
1

1

8

7

3

4

DRAM group 3

4
2

3

6

5

4

bank group

bank

DRAM chip 1

2
1

1

8

7

3

4

4
2

3

6

5

4

DRAM chip 11

2
1

1

8

7

3

4

DRAM group 4

4
2

3

6

5

4

bank group

bank

DRAM chip 1

2
1

1

8

7

3

4

4
2

3

6

5

4

DRAM chip 11

2
1

1

8

7

3

4

DRAM group 1

4
2

3

6

5

4

bank group

bank

DRAM chip 1

2
1

1

8

7

3

4

4
2

3

6

5

4

DRAM chip 11

176 pins

44 pins 44 pins 44 pins

Figure 3.13: DRAM organization for dimensioning alternative choose k

4 Prototypical Implementation of a

Packet Buffer for an Input Line Card

Packet buffering is a self-contained functionality. Consequently, to validate the SPHSD archi-
tecture introduced in Chapter 3 it is sufficient to implement and operate a corresponding packet
buffer instead of a complete router. This Chapter presents a prototypical packet buffer imple-
mentation based on the SPHSD.

The SPHSD is applicable to any packet buffer that maintains a set of FIFO queues. Conse-
quently, the author had to choose between implementing a packet buffer for an input or an out-
put line card. He chose to implement a packet buffer for an input line card due to the following
two reasons.

Firstly, in the SPHSD head and tail buffer sizes are proportional to the number of maintained
queues Q. Consequently, the SPHSD is more suitable for packet buffers, where the number of
queues maintained is moderate. This is the case on the input line card where the number of
VOQs is in the range of hundreds to thousands [24, 27, 11].

Secondly, choosing the block size equal to the cell size of the switch fabric and letting the
cells for the switch fabric contain aggregated packet data leads to two benefits: the required
switch fabric bandwidth is significantly decreased and the head part implementation simplifies
as assembly of cells from blocks is not necessary. As assembly is a simple functionality this
choice does not decrease the prototype’s validity.

To realize a hybrid packet buffer the designer needs SRAM and DRAM and a device that im-
plements queue management. A packet buffer accepts and delivers packets with line rate in the
fast path of a router. Consequently, in high-speed routers queue management is only feasible by
implementation as dedicated logic circuit, i. e., in hardware.

The prototype is completely implemented in hardware and fully functional. Parts of it have
been realized by student research projects supervised by the author [7, 8]. The author presented
the main results regarding the tail part implementation on an international conference [1].

This Chapter is organized as follows. Section 4.1 shows the targets of the implementation. Sec-
tion 4.2 introduces the hardware platform hosting the implementation. Section 4.3 presents the
overall structure of the prototype. Section 4.4 and Section 4.5 show in detail the implementation
of tail part and head part, respectively. Section 4.6 shows the validation of the prototype with
respect to functionality, hardware resource requirements and supported line rate.

103

104 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

4.1 Targets

The main objectives of the prototypical packet buffer implementation are to show:

• Functionality of the SPHSD – Implementation in hardware respects all details of an
architecture. It is therefore well suited to show that the SPHSD is operational.

• Feasibility of the SPHSD architecture in hardware supporting high line rates – Ap-
plication of the SPHSD in a router is only possible, when the SPHSD can be implemented
in hardware and implementation supports reasonable line rates.

4.2 Platform

This Section first gives an overview of devices suitable for dedicated logic circuit implementa-
tion. Then it introduces the utilized hardware platform and the digital systems design workflow.

Devices for Packet Buffer Implementation

FPGAs and ASICs are the two types of devices that enable dedicated logic circuit implementa-
tion at high frequencies. The following gives an overview of these two types of devices.

ASICs (Application Specific Integrated Circuits) are electronic devices that are designed for
a specific task. Due to this high specialization, these devices can deliver the highest
throughputs while requiring a very small chip area and minimal power consumption.
However, the price for this is that manufactured ASICs cannot be changed any more
and that the design and production process of a new device is very expensive and time
consuming [90, 91]. In contrast to full-custom ASICs where implementation can be done
on transistor level, also semi-custom ASICs and so called Gate-Arrays exist which base
on a set of already designed and tested standard cells or a matrix of logic gates, respec-
tively. The latter device variants drop price and development time by factors compared to
full-custom ASICs.

FPGAs (Field Programmable Gate Arrays) are Programmable Logic Devices (PLDs). FPGAs
not only allow configuring functionality of the device but doing this at any time and
arbitrary often. This means system designers can implement on an FPGA with relatively
small effort arbitrary digital systems. High flexibility at reasonable design frequencies
made FPGAs very popular in the area of prototyping and even for products with smaller
quantities. Due to the ability for reconfiguration, the achievable design frequencies are
much lower than with ASICs.

The abbreviation FPGA is misleading, as an FPGA does not contain logic gates but
Lookup Tables (LUTs). A LUT is a very small memory, which contains for every input
combination the corresponding output value. Therewith, an LUT can efficiently realize
any logic function. Further, programming an FPGA means configuring its elements (e. g.,
LUTs) and interconnecting them. Programming of modern SRAM-based FPGAs is done
by transferring the according configuration bits to the FPGA.

4.2 Platform 105

The basic element of an FPGA is the configurable logic block, which contains one or
more LUTs to realize logical functions as well as flip-flops. Modern FPGAs contain a
matrix of 100,000 and more of these logic blocks, which can be connected by a large
number of configurable interconnects to realize complex logical functions. The individ-
ual FPGA manufacturers use different architectures and names for the logic blocks used
in their devices. Architecture of a logic block also evolves with the FPGA generations as
manufacturers for example try to minimize the chip area required to realize logic func-
tions.

Beside logic blocks, modern FPGAs also contain a large number of small SRAMs, i. e.,
embedded memory blocks. These memory blocks can be configured to operate at different
port widths (e. g., 32K× 1bit, 16K× 2bit up to 512× 64bit), support one read and one
write operation simultaneously (called dual-port memory1), and can be combined to larger
memories [92]. The cutting-edge products of the two major FPGA manufacturers Altera
and Xilinx provide currently 38.3Mbit= 4.7Mbyte [93] and 50Mbit= 6.1Mbyte [94] of
on-chip SRAM, respectively.

High-speed serial transceivers for inter-chip communication and a large number of
general-purpose I/Os that allow connecting high-speed SRAM and DRAM devices make
modern FPGAs a good candidate to implement queue management for high-speed routers.

Concluding, the low price and the ability to run a new hardware design by just configuring the
FPGA makes FPGAs much more appropriate for a prototypical implementation compared to
ASICs.

Universal Hardware Platform

The Universal Hardware Platform (UHP) [95] of the Institute of Communication Networks and
Computer Engineering at the University of Stuttgart is a hierarchical platform for prototyping.
It consists of a main board (called UHP-1) that can connect to several FPGA based daugh-
ter boards (called UHP-2). Further, so called UHP-3 UHP-3 Mezzanin-Extension-Cards can
connect to the UHP-2 boards.

To implement the prototype the author uses the current generation of the so-called UHP-2 board,
which is available since 2005. The UHP-2 contains an Altera Stratix II FPGA of the type
EP2S 60 F1020 C3 [96]. Additionally, the board contains many interfaces that are all con-
nected to the central FPGA: DDR2 SDRAM slot, 2 electrical 1Gbps Ethernet interfaces includ-
ing the PHY-chip, a parallel interface (Centronics), a serial interface (Universal Asynchronous
Receiver/Transmitter, UART), and 4 extension slots for UHP-3 Mezzanin-Extension-Cards for
further extension. Figure 4.1 shows a photo of the UHP-2 board with two exemplarily plugged
extension cards.

1Some modern FPGAs also contain so called true dual-port memory that is able to perform any two operations
per clock cycle, e. g., two writes.

106 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

Figure 4.1: UHP-2 board

Digital Systems Design Workflow

The workflow for designing digital systems for FPGAs (but also ASICs) consists of five steps:
description of the system, simulation, synthesis, place & route, and finally the configuration of
the FPGA.

System Description – The designer describes the digital system with help of a Hardware De-
scription Language (HDL). The two most popular HDLs are Verilog and VHDL (VHSIC
Hardware Description Language, while VHSIC is the abbreviation for Very High Speed

Integrated Circuit). These HDLs allow structural and behavioral description of a mod-
ule. Description is mostly done on register transfer level, but use of logic gates is also
supported. To design the current prototype the author used VHDL and the design envi-
ronment HDL Designer [97] from Mentor Graphics.

Simulation – To validate the functionality of modules or even the complete system the designer
simulates their behavior together with a test bed. The test bed, which is often implemented
using an HDL too, stimulates the system under test by generating input signals and vali-
dates the output signals. The author used the simulation toolModelsim [98] from Mentor
Graphics to simulate the whole prototype design. Simulation is clock accurate and allows
monitoring of any individual signal inside the system.

4.3 Prototype Overview 107

Synthesis – The synthesis step converts the system description into a netlist containing only
elements that are available on the targeted FPGA or ASIC, i. e., in case of an FPGA
these are LUTs, flip-flops, memory blocks, or other special blocks (e. g., CPU cores).
A special software – the synthesis tool – performs the synthesis step by interpreting the
HDL-code describing the system. The author used Precision RTL Synthesis [99] from
Mentor Graphics to synthesize the VHDL code of the prototype.

Place&Route – In the Place&Route step a software efficiently places and interconnects the
elements from the netlist on the target device. The challenge is thereby to keep delays
low so that the design can operate at a high clock frequency. The software outputs a
configuration file, which is required to configure the FPGA. Additionally, the software
outputs detailed lists about timings and resource usage. For Place&Route the author
used Quartus II [100], which is provided by the FPGA manufacturer Altera.

Configuration – The final step is configuring the FPGA. After configuration, the FPGA real-
izes the digital system described in the first step and is ready to use.

Management

For the operation of the prototype on an FPGA, it is desirable to have a tool that is able to
set and monitor register values in the FPGA during operation. The author developed by help
of colleagues and student research projects [101, 102, 103] such a tool called Management-
System [104].

The Management-System enables to monitor register values (e. g., block counters) at any place
in the design to detect malfunction. Further, we can re-configure modules that allow parame-
terization via register values by just modifying the according registers, i. e., without performing
time consuming synthesis and place& route of the design. Finally, we also start and stop oper-
ation of the prototype with this tool.

The Management-System consists of two parts: modules that the designer adds to its HDL
design and software that reads and writes the register values in the FGPA. The PC running the
software and the FPGA communicate via an Ethernet connection.

4.3 Prototype Overview

This Section presents the overall prototype realizing a packet buffer for an input line card. It
shows the prototype’s structure, discusses design decisions, and introduces basic design prop-
erties.

4.3.1 Overall System

Figure 4.2 shows the overall block diagram of the prototype. The proposed hybrid mem-

ory architecture (SPHSD) (cf. Chapter 3) in the middle of the figure is the design under test.

108 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

packets
var.-length block request

block

block

flow queue states

cell
cell

validator

proposed hybrid memory architecture (SPHSD)

tail part

DRAM 1

DRAM 2

DRAM k

DRAM model

m
e
rg

e
r

short-cut

short-cut block req.

packet meta-info

cell request

schedulerinformation

scheduling

manager (SIM)

FPGA

packet

generator

managem.

system

(debug)

run

stop

cnt 81593

head part

1 Gbps

Ethernet

PHY

last block req. of flow i left

block

block
w ww

w

PC running the

Management-System software

Figure 4.2: Overview of the complete prototype

The tester, consisting of packet generator, cell validator, scheduler, and Scheduling Information
Manager (SIM) surrounds the SPHSD. Tester and SPHSD are realized on a single FPGA. Fi-
nally, a PC running the Management-System software connects to the FPGA via an Ethernet
link.

The SPHSD receives at its input variable-length packets and delivers constant-size cells at its
output. As already mentioned on page 103, we let the cells contain aggregated packet data to
minimize the bandwidth of the subsequent switch fabric. Further, we choose the internal block
size of the SPHSD equal to the cell size used by the switch fabric. This simplifies the head
part implementation as assembly of cells from blocks is not necessary. As assembly is a simple
functionality this choice does not decrease the prototype’s validity. The switch fabric itself is
not essential for the validation of the SPHSD and is therefore omitted.

The following paragraphs describe the functionality of the individual building blocks of the
prototype.

Scheduler and Scheduling Information Manager

The scheduler represents the switch fabric scheduler. It requests cells from the flow queues
maintained by the SPHSD. As the explicit scheduling algorithm used is nonessential, the sched-
uler implements a round robin scheduling algorithm. To be able to schedule, the scheduler has
to know the state of the flow queues. The SPHSD cannot provide this information as none of

4.3 Prototype Overview 109

its three main parts (tail, head, DRAMs) has a global view of the flow queues’ states. Conse-
quently, an additional module – the scheduling information manager (SIM) – maintains the
flow queue state information required for scheduling. To keep the status up-to-date the SIM
receives the meta-information (i. e., packet length and flow-id) of every packet entering the
SPHSD and every cell request generated by the scheduler.

How much flow queue state information the SIM has to hold depends on the scenario and the
algorithm the scheduler implements. In this scenario we assume that the scheduler has to know
only the length of the individual flow queues in byte to schedule blocks. Accordingly, the SIM
in the prototype maintains just one byte-counter per flow queue and is therefore simple2. We
assume that the packet lengths are stored along with the packets, as the output buffer needs this
information to reassemble the packets.

Aggregation and potential queuing of block requests in the head part lead to following problem.
Assume the case when the scheduler requests the last cell of flow i that is currently available
in the SPHSD. At this time, with a high probability the corresponding block is non-full and
therefore resides in the tail part. The head part cannot process the corresponding block request
immediately, but after a queuing delay. Meanwhile, the tail part may receive additional pack-
ets for flow i and this block may get full. Concluding, upon generating a cell request for a
corresponding non-full block, the scheduler cannot know if the block will be full or not at the
time of delivery. By this, the state information in the SIM and the state in the SPHSD may get
out-of-sync.

The following observation makes it simple to solve the problem: at any time, only the last
requested block of a flow can be potentially non-full. Explicitly, the head part signals to the
SIM, when from the block requests of a flow currently residing in the head part, the last leaves
towards DRAMs or tail part, i. e., the last block request of flow i left (cf. Figure 4.2). Knowing
the exact time when a block request leaves the head part the SIM can take corrective access to
the byte-counter of the corresponding flow if necessary.

Packet Source and Cell Sink

The contents of the buffered packets are without any relevance when validating SPHSD func-
tionality. Consequently, one can use an on-chip packet generator, which has two main advan-
tages over real network traffic. Firstly, the packet generator can easily generate packets with full
line rate. Secondly, a corresponding cell validator can verify the cells delivered by the SPHSD
on the fly. Validation of the cells’ content is simple, as one knows the content of the generated
packets. Here the individual bytes of a packet contain the byte count of the corresponding flow,
i. e., 0, 1, 2, . . . , 254, 255, 0, 1, etc. Two pseudo-random number generators3 in the packet
generator deliver for each packet a length and a flow-id. Pseudo-random behavior is important
as it allows reproducing results and errors.

2The SIM is more challenging when it has to hold the individual packet lengths. Iyer proposes in [11] an
approach that allows to extract queue state information from a hybrid memory architecture on the fly. Applying
this approach, the SIM can be omitted.

3The pseudo-random number generation was implemented with help of 32 bit linear feedback shift registers

with maximal period.

110 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

We chose this simple packet content to simplify debugging during simulations. Despite sim-
plicity, the probability to miss an error is practically zero. This has three reasons. Firstly,
the probability that two identical blocks exist in the SPHSD system is small due to the pres-
ence of randomness and short-cut. Secondly, in our implementation the blocks always carry
meta-information, except when they are stored in the tail buffer. Meta-information prohibits
undetected mix-up of two blocks. Thirdly, the tail buffer is a simple dual-port memory that se-
quentially receives and delivers blocks. Consequently, for an undetected mix-up of two blocks
two errors have to happen, which affect exactly two equal blocks.

Management

For management and debugging purposes we use the Management-System introduced in Sec-
tion 4.2. The PC running the Management-System software connects to the FPGA via a 1Gbps
Ethernet link. Examples for the usage are start or stop of testing, setting the starting condition
of the pseudo-random packet generators, monitoring of numerous block and packet counters to
locate failures in the design, etc.

SPHSD

From the two head transferor algorithms introduced in Section 3.3.4 we choose to implement
the MiRBD algorithm as for this the head buffer size has been proven.

The SPHSD accesses the DRAMs systematically, i. e., it accesses each of the k DRAMs once
per random access time T and it performs access to the k DRAMs in strict round robin manner
(cf. DRAM access alternatives in Section 3.5). Consequently, we can use a simple DRAM
model that reflects these properties to implement the parallel DRAMs. Beside simplicity, the
model has a main advantage over DRAM devices: it can be configured to provide any k and any
T .

The DRAM model does not need to account for the refresh cycles necessary in DRAM devices
due to the following two reasons. Firstly, DRAM dimensioning is performed based on the net
bandwidth of a DRAM device. Secondly, the DRAM controller can compensate the temporal
loss of bandwidth due to a refresh cycle with help of a small buffer. For example, assume that
the DRAM controller has to buffer two blocks due to the occurrence of a refresh cycle. When
the next refresh cycle is necessary, this buffer is empty as the DRAM device caught up in the
mean time. In other words, the random access time T used to dimension the SPHSD is slightly
larger than the real random access time of the DRAM device in order to account for the refresh
cycles.

The author implemented the simple DRAMmodel with on-chip SRAM available on the FPGA.
Further, each DRAM in the model already supports a set of Q queues. This supersedes im-
plementation of a memory manager to manage the flow queues in the DRAM. As queue man-
agement with linked lists (cf. Section 2.2.3) is state of the art, this does not impact the results
regarding the feasibility of the SPHSD.

4.3 Prototype Overview 111

The author implemented tail and head buffer with on-chip dual-port SRAM. The dual-port
property cuts its access time by half, what enables implementation for very high line rates on
an FPGA.

During implementation, the focus was set on achieving full design functionality and keeping
it highly configurable. Optimization on throughput, i. e., design frequency, would require a
second implementation considering the lessons learned from the first. Throughout this Chapter,
the author will point out the suboptimal design decisions that limit design frequency and propose
throughput optimized alternatives.

4.3.2 Basic Design Properties

This Section introduces the basic properties of the prototype implementation. This means, it
discusses the choice of the bus width, the design frequency, the block size, etc. Finally, it
introduces the control and meta-information required for the packets, blocks, and cells in the
design.

Dimensioning of Bus Width and Frequency

The input and output bus of the SPHSD as well as all its internal busses have a width of w
(cf. Figure 4.2). The size of w is an integer multiple of a byte, as the size of packets is usually
byte granular. w is a configurable design parameter.

A module transfers a packet on the bus as a sequence of N words, while the last word may be
utilized only partly. Further, a bus word always contains just data of a single packet.

The input bus provides a maximal data rate of Rgross = f ·w, where f is the operating frequency.
The larger w is the lower is the required frequency f to achieve a data rate R, i. e., this allows
a trade-off between w and f . However, since a bus word always carries just data of a single
packet for the minimal frequency fmin it has to hold

fmin ≥ rmax =
R

Pmin+Gmin
(4.1)

rmax is the maximal packet rate. Its value depends on the minimal allowed packet size Pmin.
Gmin is the minimal inter-framing gap of the used network technology.

Choosing w = Pmin is by far not the optimal solution with respect to the operating frequency.
To carry a stream of packets of the size Pmin+1byte a frequency of nearly 2 · fmin is necessary
to achieve the same net data rate. This phenomenon was referred to in the previous Chapters as
65-byte-problem.

Now a formula is derived to calculate w at a given frequency. As the objective is to keep f

small, here only the case w≥ Pmin is considered. As mentioned before, the worst-case packet
size is Pwc = w+1byte as this requires a frequency of

f ≥ 2 · rwc (4.2)

112 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

while rwc is the packet rate at the worst-case packet size Pwc. Packet rate r derives from the line
rate R and the packet size P

r =
R

P+Gmin
(4.3)

From Eq. (4.2) and Eq. (4.3) follows for the case w≥ Pmin

f ≥ 2R

w+1byte+Gmin
⇔ w≥ 2R

f
−1byte−Gmin (4.4)

To give an explicit example, Ethernet has a Pmin = 64byte and a Gmin = 20byte. Accordingly,
a 100Gbps Ethernet line card requires an fmin = 148.8MHz at a bus width of w = 1176bit =
147byte. For an exemplary bus width of w = 512bit = 64byte the required frequency is f =
294.1MHz.

System Clock Frequency

It is easier to achieve a deterministic bandwidth in a system which contains no asynchronous
clock domain crossings. Consequently, we choose the operating frequency f of the input bus to
be the operating frequency of nearly the complete system, called system clock frequency. As it
will be shown later, some memories need to run at twice the system clock frequency. However,
this introduces synchronous clock domain crossings only.

Block Size

The on-chip memories used to implement head and tail buffer feature an input and output port
width of w, so they can operate at the same frequency as the rest of the design. One of the
design objectives in Chapter 3 was to minimize the required SRAM sizes by eliminating any
internal fragmentation. Consequently, the block size b has to be an integer multiple of words w.

The prototype uses a block size that is equal to the bus width, i. e., b = w. This choice allows
realizing the smallest tail buffer size (cf. Section 3.4.1). Any larger block size b = n ·w with
n ≥ 2 does neither change the architecture properties nor complexity of the implementation as
long as each module transfers a block as a whole to the next module, i. e., in n consecutive clock
cycles.

Time Slot

A time slot is the time to receive b byte at line rate R (cf. Definition 3.2, page 71). In a digital
system with a block size of b = w the duration of a time slot is in the range of [1;2) system
clock cycles. This is true, when using a system clock frequency according to Eq. (4.4), i. e., the
system clock frequency is not overdimensioned.

The minimal value of 1 means, that on the input bus b byte can arrive every clock cycle. This is
only possible when there is no fragmentation on the input bus, i. e., the arriving packets’ size is
always an integer multiple of the block size.

4.4 Tail Part 113

The maximal value of nearly 2 means, that it takes in average nearly two clock cycles two
receive b byte on the input bus. This case occurs, when the designer chooses w = Pmin (cf. bus
width dimensioning prior in this Section, page 111).

In the SPHSD, the time budget to process a full block b is one time slot. This means, in the first
case the system has to finish processing one full block each clock cycle, while in the second
case it has nearly two clock cycles for the same task. Consider, that not the absolute duration of
a time slot changes, but the system clock frequency.

To allow this highly configurable prototype to operate correctly with any given configuration,
the author designs it to be always able to finish processing one aggregated block per system
clock cycle. This corresponds to a worst-case assumption regarding the available processing
time.

Control- and Meta-Information

Each data element (word of a packet, block, block request, cell, and cell request) has associated
control and meta-information. Control-information signals whether an element is valid or not
and on the input bus additionally if it is the first or the last word of a packet. Meta-information
contains further information about an element that is necessary for its processing and associa-
tion. Table 4.1 lists the meta-information of all data elements.

4.4 Tail Part

This Section introduces the implementation of the tail part. To simplify reading of this Chapter
the author chooses a top to bottom approach. Section 4.4.1 introduces the block diagram of the
tail part and describes its functionality. Subsequent Sections describe the individual modules of
the tail part in more detail and discuss design alternatives.

4.4.1 Block Diagram

This Section presents the block diagram of the SPHSD’s tail part. Therefore, it introduces the
functional requirements of tail part and derives a block diagram that fulfills these. Finally, it
describes the functionality of the individual modules.

The tail part has five main functions. Table 4.2 lists these. Further, the tail part has to fulfill all
functions in a way, that it guarantees deterministic bandwidth. This means explicitly, it has to
be able to accept packet words on its input and deliver blocks to the DRAMs continuously, i. e.,
without any interrupt.

The functions can be directly mapped to one or more modules of the tail part. Table 4.2 shows
this mapping. Figure 4.3 depicts the block diagram of the tail part. A design alternative, which
would slightly change the structure, is discussed in Section 4.4.2. The block diagram is ex-
plained in the following.

114 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

meta-inforamtion range of values comment

word of a packet

flow-id [0, Q−1] Flow, to which the packet belongs. This is the classi-
fication result determined by a not considered preced-
ing network processor.

packet length [0, Pmax] This is the length of the packet in byte. The number of
valid bytes in the last word of a packet follows from
the packet length.

block

flow-id [0, Q−1] Flow queue, to which the block belongs. This is equal
to the flow number, as one flow queue is maintained
per flow.

dram-id [0, k−1] DRAM, to which the block belongs. The dispatcher
in the tail part assigns the value.

valid-bytes [0, w] The number of valid byte in the block. Information is
required, as short-cut blocks can be non-full.

block request, short-cut block request

flow-id [0, Q−1] Flow queue, from which the block is requested. This
is identical to the flow-id, as one flow queue is main-
tained per flow.

dram-id [0, k−1] DRAM, from which the block is requested. The re-
quester in the head part assigns the value.

cell request

flow-id [0, Q−1] Flow, from which the cell is requested.
cell

flow-id [0, Q−1] Flow, from which the cell is requested.
valid-bytes [0, w] The number of valid bytes in the cell. Information

is required, as due to short-cut cells (blocks) may be
non-full.

Table 4.1: Meta-information of the different data elements in the prototype

function tail part module implementing it

1. aggregation of packets to blocks → aggregation module
2. dispatching of blocks to DRAMs → dispatcher module
3. buffering of blocks → tail buffer

(queues share buffer dynamically) → dynamic memory manager module
4. triggering block transfers to DRAM → tail transferor module
5. processing of short-cut requests → short-cut module

→ short-cut reorder buffer

Table 4.2: Functions of the tail part and their mapping to modules

4.4 Tail Part 115

module
dispatcher

short-cut module

packets

block req.

www

dynamic memory manager
module

tail transf.
module

module
aggregation

w

ww
short-cut reorder buffer

var.-length
to DRAMs

blocks

to head part

blocks

buffer
tail

block req.
short-cut

state

tail part

Figure 4.3: Tail part

From left to right in Figure 4.3 the aggregation module segments incoming packets and aggre-
gates them to blocks per flow. To hold non-full blocks it utilizes a small memory. Whenever
it starts aggregating a completely new block, it retrieves the corresponding target dram-id from
the dispatcher module. When a block is full, the aggregation module forwards it to the Dy-

namic Memory Manager module (DMM module). The DMM module maintains the DRAM
queues in the tail buffer and allows them sharing it dynamically. Further, it provides the state
information of the individual DRAM queues to the tail transferor module. The tail transferor
module checks the state of each DRAM queue periodically, i. e., every k time slots. Whenever it
finds a DRAM queue non-empty, it triggers the transmission of a block from this DRAM queue
to DRAM. Therefore, it sends a block request to the DMM module, which delivers the block
after a few clock cycles to the DRAMs.

The short-cut module processes incoming short-cut block requests generated by the head part.
A short-cut block request addresses the headmost block of a flow dispatched to a specific
DRAM. The addressed block can be anywhere in the tail part along the data path. Upon ar-
rival of a short-cut block request, the short-cut module searches in parallel the block’s location.
Then it triggers the corresponding module to forward the block to the short-cut reorder buffer.
This reorder buffer is a small buffer, which can hold a few blocks. It is necessary, as the head
buffer requires in-order delivery but retrieval time of a block to be cut short depends on its lo-
cation along the data path. After reordering and with a constant read latency the reorder buffer
forwards the short-cut blocks towards the head part.

The following Sections discuss the realization of the individual modules in more detail. Thereby
they explicitly point out how short-cut functionality and the deterministic property influence
implementation.

4.4.2 Aggregation Module

This Section discusses the aggregation functionality performed in the tail part and consists of
three paragraphs. The first paragraph introduces and compares two implementation alternatives

116 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

tail buffer

w

tail buffer

w

non-full block

w

incoming
word of a packet

1st write

2nd write

non-full block

new

after aggregationbefore aggregation

full block

Figure 4.4: Aggregation in the tail buffer: requires two write accesses to the tail buffer per
incoming word

where to realize aggregation in the tail part. Then it concludes that a separate aggregation
module is more reasonable as it simplifies implementation. The second paragraph shows the
influence of the short-cut functionality on the aggregation module while the third presents its
block diagram.

Alternatives Implementing Aggregation in the Tail Part

Two basic alternatives exist to implement the aggregation functionality in the tail part: per-
forming aggregation in the tail buffer or in a separate module containing memory dedicated to
aggregation. These alternatives are discussed in the following.

Aggregation in the tail buffer – Performing aggregation in the tail buffer means that the tail
buffer also holds non-full blocks. Consequently, an incoming word leads to two write
accesses to the tail buffer: one write access to complete a non-full word already residing
in the tail buffer and another to store the remaining data of the incoming word. Figure 4.4
illustrates this by showing the tail buffer before and after the two write accesses. This
alternative has two consequences. Firstly, the DMM module has to manage aggregation
additionally. Secondly, today’s FPGAs do not support memories with two write ports and
one read port. Emulating a second write with dual-port memory (cf. Section 4.2) requires
either running the tail buffer at double frequency compared to the system frequency or

doubling the tail buffer. However, utilizing an ASIC that contains on-chip memory with
two write ports is also an option.

Aggregation in a separate module – Performing aggregation in a separate module, i. e., in the
aggregation module, separates the tasks aggregation and buffering in overload situations.
The aggregation module performs only aggregation and utilizes therefore a dedicated
memory. This contains only non-full blocks. The tail buffer performs buffering of blocks
in overload situations and contains only full blocks. Separation reduces complexity by
modularization without requiring more memory than the first alternative. The latter is

4.4 Tail Part 117

true as the memory required for aggregation (Q blocks) is just relocated from tail buffer
to the aggregation module.

We chose to implement the second alternative having a dedicated aggregation module. This has
two reasons. Firstly, this choice reduces implementation complexity. Secondly, a design target
of the SPHSD is reduction of the tail buffer size as this is a critical resource. Emulation of a
second write port would make it even more critical.

Influence of Short-Cut Functionality

To suffice the deterministic property of the SPHSD architecture the aggregation module has
to accept every clock cycle a new incoming word and a short-cut request from the short-cut
module simultaneously.

For aggregation of incoming words, the aggregation module accesses the aggregation memory
twice: reading a non-full block and writing a new non-full block. To process the short-cut
request the aggregation memory has to support an additional read per clock cycle, i. e., to read
the non-full block to be short cut. In total the aggregation memory has to support two read and
one write access per clock cycle (2×R, 1×W).

Today’s FPGAs do not support memories with two read ports and one write port. As in the case
where an additional write port was required (cf. page 116) we have three options: emulation
by doubling frequency or memory itself, or utilization of an ASIC instead of an FPGA. The
first two options are a trade-off between clock frequency and memory size. To keep design
complexity of the prototype low we choose to double the aggregation memory.

Block Diagram

Figure 4.5 depicts the block diagram of the aggregation module. It consists of three types of
modules: memories that hold aggregation state information, a merger module that performs the
actual aggregation, and a control module that coordinates aggregation.

The aggregation state information of a flow consist of a non-full data block plus meta-
information (cf. Table 4.1), i. e., valid-bytes, flow-id, and dram-id. The aggregation module
holds maximally one non-full block per flow, i. e., Q non-full blocks in total. This allows as-
signing each flow a static memory location (address), i. e., each memory consists of Q memory
words. Static assignment reduces implementation complexity without introducing drawbacks.
Consequently, this supersedes explicit storage of the flow-id. The aggregation module holds the
remaining aggregation state information in separate memories: aggregation memory, valid-
bytes memory, and dram-id memory.

As already introduced, the aggregation memory requires two read ports and one write port
(2×R, 1×W). The valid-bytes memory also has to fulfill this requirement, as the valid-bytes
information is always necessary to process a non-full data block. Upon a short-cut request, the
corresponding entry in the valid-bytes memory must be set to zero, i. e., reset. This requires
an additional write port for the valid-bytes memory, i. e., in total 2×R, 2×W. We implement

118 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

memory
dram-id

RW

module
control

module
merger

non-full blocknew

full block

blockold non-full

new

word of a packet

set to zero

short-cut
valid-bytes

valid-bytes
of new
non-full block

dram-id
from dispatcher

bytes to shift

dram-id request
to dispatcher

meta-info

short-cut non-full block

dram-id

W

memory
valid-bytes

R

W

R

ww

W

w–1byte

memory
aggregation

R

R

to tail buffer

aggregation module

w–1bytew–1byte

w–1byte

Figure 4.5: Aggregation module

this similarly to the aggregation memory while we additionally utilize a Q bit wide register.
The register allows marking individual entries of the memory as reset by storing a ’1’ at the
corresponding bit position. Finally, the dram-id memory stores the dram-id of the non-full
block. It requires just one read and one write port, since short-cut block requests already contain
the dram-id themselves.

The merger module performs the actual segmentation and aggregation. It receives a new in-
coming word of a packet and the old non-full data block and merges them to a full block and
a new non-full block. Figure 4.6 visualizes this functionality. However, as the last word of a
packet may contain just a small number of valid-bytes, two corner cases exist. Firstly, when
the last word exactly completes aggregation of a block the merger generates only a full block.
Secondly, when the valid-bytes of the word are not enough to complete aggregation of a block
the merger generates just a new non-full block.

The merger module implements shifting of the new packet word by help of a barrel shifter [105].
The barrel shifter itself realizes shifting with help of multiplexers. The number of required
multiplexers depends on the word width and the shifting range. These are here w and [0,w−1],
respectively. In a configuration supporting high line rates at moderate frequencies w is very
large (cf. Section 4.3.2). Consequently, in such a configuration the merger module is resource-
intensive. The signal propagation delay through the merger module increases with the shifting

4.4 Tail Part 119

x

non-full block

x

w

w

new

non-full block
old

word of packet
new

full block

shift by x

Figure 4.6: Aggregation performed in the merger module

range. However, it can be pipelined easily what enables high operating frequencies. For the
sake of simplicity we implemented a combinatorial merger module for the prototype.

The control module coordinates aggregation. It has three different tasks. Firstly, it requests
from the dispatcher a new dram-id whenever it starts the aggregation of a new block. Secondly,
it calculates the valid-bytes of the current word of a packet from the packet length. Thirdly, it
controls write accesses to the memories.

Summarizing, the aggregation module implements one of the most crucial functions of the
proposed SPHSD architecture. The module is of medium complexity and pipelineable, what
enables high operating frequencies. The largest impact on its implementation has the short-
cut functionality, which requires additional read and write accesses to some of the internal
memories.

4.4.3 Dispatcher Module

This Section presents the dispatcher module and is organized in two paragraphs. The first shows
the module’s task and placement in the tail part. The second introduces its block diagram.

120 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

Task and Module Placement in the Tail Part

The dispatcher module implements the per-flow round robin dispatcher introduced in Sec-
tion 3.3.3. Its task is assigning each block a dram-id according to the per-flow round robin
algorithm.

The head part of the SPHSD implements a requester module with similar functionality. When
the head part generates a block request it cannot know if the corresponding block will be full
or non-full at the time of its retrieval. Consequently, to keep dispatching in the tail part and re-
questing in the head part synchronized, both assign every non-zero block a dram-id. Therewith,
the head part always knows for each flow which DRAM contains the next block.

For the placement of the dispatcher module two alternatives exist: right behind the aggregation
module or in parallel to it.

Placing it right behind the aggregation module has the pro that the aggregation module does
not need to know about dram-ids and consequently does not need a dram-id memory. The con
is that the dispatcher module has to be able to process two dram-id requests per clock cycle: one
for the block that currently finished aggregation and one for the non-full block that is short-cut
simultaneously.

Placing it in parallel to the aggregation module has the pro that it has to processes maximally
one dram-id request per clock cycle, since the aggregation module generates at most one new
block (full or non-full) per clock cycle. The con is that the aggregation module has to imple-
ment a dram-id memory to store the dram-ids of the non-full blocks. This dram-id memory is
relatively small and needs to support just one read and one write access per clock cycle.

The two placement alternatives are a trade-off between chip area (i. e., memory) and module
operating frequency. For the prototype we choose the second alternative as it relaxes frequency
requirements.

Block Diagram

Figure 4.7 depicts the block diagram of the dispatcher module. It consists of just two sub-
modules: dram-id memory and modulo k adder. The dram-id memory stores for each flow
the dram-id that will be delivered at the next request. The modulo k adder calculates the next
dram-id according to the round robin scheme, i. e., it always adds 1 to the current dram-id.

Concluding, the dispatcher module is quite simple and can be operated at high frequencies.

4.4.4 Dynamic Memory Manager Module

This Section introduces the Dynamic Memory Manager (DMM) module utilized in the tail
part. The Section is structured into four paragraphs. The first introduces the tasks of the DMM
module. The second points out how the short-cut functionality influences the DMM module

4.4 Tail Part 121

flow-id
wena

1

W

ld(k)bit

memory
dram-id

R

dispatcher module

dram-id request

addr.

new dram-id

dram-id

fr
o

m
 a

g
g
r.

 m
o

d
u

le

to
 a

g
g
r.

 m
o

d
u

le

mod k

ADD

Figure 4.7: Dispatcher module

implementation. The third discusses implementation consideration and the fourth presents its
block diagram.

Tasks

According to Section 3.4.1 the DRAM queues have to share tail buffer dynamically in order
to reduce the tail buffer’s size. The DMM module implements the functionality required there-
fore. It manages a set of queues and dynamically allocates and de-allocates block wise tail
buffer space for them. Dynamic memory management is a state-of-the-art functionality and
was introduced in Section 2.2.3. However, the DMM module has to provide two additional
functionalities. Firstly, it has to operate deterministically, i. e., each clock cycle it has to be
able to enqueue and dequeue one block. Secondly, it has to support short-cutting, i. e., allow
searching for blocks and short-cutting blocks.

Influence of Short-Cut Functionality

The short-cut functionality has three main impacts on the DMM module implementation: in-
creased number of queues, state information provisioning to short-cut module, and short-cutting
of blocks. The following discusses these in detail.

Increased number of queues – According to Chapter 3 the DMM module has to manage k

DRAM queues. A DRAM queue holds blocks of all flows. An arriving short-cut request
always addresses the headmost block of a flow in an explicit DRAM queue. Consequently,
this will require in many cases non-FIFO access to the DRAM queues. Figure 4.8(a) gives
an example. The duration of non-FIFO dequeue operations is variable and can be very
long. The required amount of time depends on the position of the corresponding block
in the DRAM queue. However, to provide a deterministic throughput dequeue operations
have to finish in constant time.

122 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

3

2

1

k

shaded: transferred

d3

a1c1 b1d1d4

d2

short-cut block request
dram-id: 1, flow-id: 4

short-cut block

(a) k queues (one per DRAM
queue)

1

k

d1

a1

short-cut block request
dram-id: 1, flow-id: 4

short-cut block

d2

d4

d3

b1

c1 3

2

1

Q

4

3

2

1

4

2

3

2

1

4

3

Q

(b) Qk queues (Q per DRAM
queue)

Figure 4.8: Variants for DRAM queue organization in the tail buffer; Example assumes k = 3
DRAMs and Q = 4 flows named a to d; Both Subfigures show the tail buffer state after the
sequential arrival of the blocks a1, b1, c1, d1, d2, d3.

4.4 Tail Part 123

We achieve a constant dequeue time by eliminating non-FIFO accesses. This can be done
efficiently by managing Q FIFO queues per DRAM queue4, where each FIFO queue con-
tains only blocks of a single flow. FIFO access is sufficient, since a short-cut request
addresses always the headmost block of a flow. Consequently, the DMM module man-
ages a total of Qk queues. Figure 4.8(b) gives an example for this new DRAM queue
organization. Consider that the block requested via short-cut is now the headmost block
of the corresponding queue.

This new DRAM queue organization has two impacts on the implementation of the DMM
module. Firstly, the queue table holding the queue descriptors (cf. Section 2.2.3) requires
Qk instead of just k entries. Secondly, the sequence information between blocks of differ-
ent flows in a DRAM queue is not available any more. However, due to presence of the
short-cut functionality, this is also not required, i. e., the tail transferor can remove blocks
from a DRAM queue in any order as long as it is FIFO per flow.

State information provisioning to short-cut module – For short-cut processing the short-cut
module requires state information from each module containing blocks, i. e., information
about the contained blocks. The DMM module provides two types of state information
to the short-cut module. Firstly, it provides dram-id and flow-id of the blocks it currently
writes to or reads from tail buffer. Secondly, it provides the basic queue state information
of all Qk queues managed in the tail buffer, i. e., empty/non-empty.

Short-cutting of blocks – There are two principle variants to short-cut a block from the DMM
module which is currently written to the tail buffer. Firstly, the short-cut module lets the
write operation finish and triggers the tail-transferor some clock cycles later to request
the block. Secondly, the DMM module aborts the write operation and delivers the block
immediately. We chose the second variant for the prototype as it reduces the short-cut
read latency, i. e., the time between the arrival of a short-cut request at the tail part and
delivery of the corresponding block to the head part. Further, direct processing avoids
accumulation of unprocessed short-cut requests and therewith the DMM module needs
to provide only basic queue state information to the short-cut module, i. e., empty/non-
empty. Section 4.4.5 introduces short-cut functionality in more detail.

Implementation Considerations

The DMM module provides beside state-of-the-art dynamic memory management two addi-
tional functionalities: deterministic operation and short-cutting. This paragraph presents imple-
mentation considerations related to these additional functionalities.

Deterministic operation – This means the DMM module has to be able to enqueue and de-
queue one block each clock cycle. Consequently, the tail buffer has to process one read
and one write access per clock cycle. Utilizing standard dual-port memory for the tail
buffer satisfies this requirement. However, to enqueue or dequeue a block up to two ac-
cesses to the queue table memory are necessary. This leads to a maximum of four accesses

4Garcia et al. proposed this queue organization in [84]. However, they use it to reorder blocks that arrive out
of order.

124 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

to the queue table memory per clock cycle what requires operating it at twice the system
clock frequency.

Queue state information provisioning for short-cut module and tail transferor module –
Both, short-cut module and tail transferor module query the basic state information of the
FIFO queues from the DMM module, i. e., empty/non-empty. One bit per FIFO queue is
sufficient to store this information. Two reasonable possibilities exist to hold this state
information in the DMM module: utilize a Qk bit wide register or a memory (on-chip
SRAM) with a size of Qk bit.

Using a register has the pros that a query can be answered during the same clock cycle
and that an arbitrary number of modules can read the register simultaneously. However,
the con is that each read port requires an up to Qk-times multiplexer, what may limit
operation frequency for large Qk.

Using a memory has the pro that it has a very low resource requirement and can operate
even for large Qk at high frequencies. However, its con is that on-chip memories have an
access latency of typically one clock cycle. This requires pipelining the short-cut request
processing.

For the prototype we use a register to hold basic queue state information to simplify short-
cut processing. However, the lesson learned is that using a memory (on-chip SRAM) is
more reasonable, since pipelining short-cut request processing increases implementation
complexity only marginally.

Queue state information provisioning for DMM module itself – For each enqueue and de-
queue operation the DMM module has to know the corresponding queue’s state in fol-
lowing detail: empty, one element, or more than one element.

To obtain this state information enqueue and dequeue logic can perform a read access to
the queue-table memory. From this they can derive the required information, e. g., when
head and tail pointer are equal and the queue is valid (non-empty) the queue contains
one element. Further, to cope with special cases, like simultaneous enqueue and dequeue
to/from a queue currently containing one element, enqueue logic and dequeue logic have
to interact.

We chose an alternative solution and use a counter module which stores the exact number
of elements of each queue. This simplifies the DMM module implementation in two
ways. Firstly, it reduces the number of access to the part of the queue table memory that
holds the tail pointers. This allows keeping clock frequency identical to the system clock
frequency for this part. Secondly, it decouples enqueue and dequeue logic what leads to a
more modular implementation.

However, from the current point of view (after prototype implementation) this did not
reduce but shifted complexity to a separate module.

Block Diagram

Figure 4.9 depicts the block diagram of the DMM module. It consists of two types of sub-
modules: read/write pipeline and memories to hold state information.

4.4 Tail Part 125

to DRAMs
block

queue table

D
M

M
 m

o
d
u
le

w

pointer memory

free-list cache

head memory

tail memory

counter module

write
pipeline

(WPP)

read
pipeline

(RPP)

tail
buffer

w

s
h
o
rt

-c
u
t

re
q
u
e
s
t

q
u
e
u
e
 s

ta
te

q
u
e
u
e
 s

ta
te

b
lo

c
k
 s

ta
te

s
h
o
rt

-c
u
t

re
q
u
e
s
t

short-cut module
to/from

short-cut module
to/from

tail transf.

short-cut blocks to short-cut reorder buffer

ww

block

block request
from tail transf. module

from aggr. module

b
lo

c
k
 s

ta
te

to

module

Figure 4.9: Dynamic memory manager module; counter module and head memory are clocked
with twice the system clock frequency while all other modules are clocked with system clock
frequency

The Read Pipeline (RPP) and the Write Pipeline (WPP) control the accesses to the memo-
ries to perform a block-write (enqueue) or a block-read (dequeue), respectively. The memory
accesses they perform are equivalent to those introduced in Section 2.2.3. Using a pipeline
enables accepting and delivering one block each clock cycle.

The counter module stores for each queue the number of contained blocks. To store this
information the corresponding memory has a width of ld(Q) bit as a DRAM queue contains
maximallyQ blocks. For each increment and decrement the counter module has to read, modify,
and write the value back to memory. Consequently, to support simultaneous accesses from
WPP and RPP this memory uses a clock with twice the system clock frequency. Further, the
counter module maintains a Qk bit wide register containing the basic queue state information
(empty/non-empty) of each queue. It provides this information to the short-cut module and tail
transferor module.

126 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

Due to the presence of the counter module WPP and RPP need selective access to head and
tail pointers. To benefit from this, we implement the queue table with two separate memo-
ries: the head memory storing the queues’ head pointer and the tail memory the queues’ tail
pointer. Therewith, we could reduce the clock frequency of the tail memory to the system clock
frequency.

Finally, the DMM module contains a free-list cache. Every clock cycle it can deliver one
free element to the WPP and receive one from the RPP. Its presence reduces the number of
accesses to the pointer memory from four to two per clock cycle, i. e., from 2×R and 2×W
to 1×R and 1×W. The necessary cache size is just a single free element due to the following
two observations. Firstly, the cache fill level does not change when WPP fetches and the RPP
returns simultaneously a free element. Secondly, when a pipeline does not access the free-list
cache it also does not access the pointer memory. The free-list cache uses this free pointer
memory bandwidth to store/retrieve free list elements, i. e., it keeps its fill level constant.

Table 4.3 lists the pointer memory and free-list cache accesses for all possible operating condi-
tions. As an example, the first row of the table shows the operating condition where the WPP
enqueues a block (store) and the RPP performs no operation (–). Therefore the WPP fetches a
free element from the free-list cache (fetch) and writes to the pointer memory to enqueue the
new block (Wqueue). Simultaneously, the free-list cache reads the pointer memory to retrieve a
new free element (Rfreelist).

operating condition WPP RPP free-list cache pointer memory

1 store – fetch – Rfreelist Wqueue

2 – retrieve – return Rqueue Wfreelist

3 store retrieve fetch return Rqueue Wqueue

4 – – – – – –

Table 4.3: Pointer memory and free-list cache accesses at any possible operating condition; ’–’
stands for no operation

Summarizing, the DMM module is complex and strongly influenced by the short-cut function-
ality and the required deterministic bandwidth. Their largest influence is that some memories
in the DMM module have to operate with twice the system clock frequency. However, this is
not limiting as the corresponding memories are very small compared to the tail or head buffer
size and small memories can run at higher frequency than large ones.

4.4.5 Short-Cut Module

This Section introduces the short-cut module. It is structured into two paragraphs. The first
introduces the short-cut module’s tasks while the second presents its block diagram.

4.4 Tail Part 127

block searcher

stamper
time-

p
ip

e
lin

e
 s

ta
te

tr
ig

g
e

r
s
h

o
rt

-c
u

t

p
ip

e
lin

e
 s

ta
te

tr
ig

g
e

r
s
h

o
rt

-c
u

t

(DMM module)

q
u

e
u

e
 s

ta
te

tr
ig

g
e

r
s
h

o
rt

-c
u

t

from
DMMtail transf.

to

module module

to/fromto/from
write pipeline

(DMM module)
read pipeline

tr
ig

g
e

r
s
h

o
rt

-c
u

t

aggregation
to

module

1234

search order

short-cut module

short-cut block request
from head part

ti
m

e
s
ta

m
p

ti
m

e
s
ta

m
p

from
short-cut

reorder buffer

Figure 4.10: Short-cut module

Tasks

The global task of the short-cut module is processing incoming short-cut block requests from
the head part. This global task can be subdivided into three tasks, which are described in the
following.

Search tail part for addressed block – An arriving short-cut block request always addresses
the headmost block of a flow in an explicit DRAM queue, e. g., headmost block of flow 5
in DRAM queue 1. The short-cut module searches the tail part to find the block’s location.

Trigger short-cutting of block – Knowing the block’s location the short-cut module triggers
the corresponding module to short-cut the block.

Timestamp short-cut block request – Retrieval time of a block depends on its location and is
either constant or varies within a bounded number of clock cycles. For example, the write
pipeline in the DMMmodule can short-cut a block immediately while retrieval of a block
from the tail buffer varies based on the tail transferor’s state. To be able to reorder the
short-cut blocks, the short-cut module timestamps each incoming short-cut block request.
Later on, the short-cut reorder module uses this information for reordering.

Block Diagram

Figure 4.10 depicts the block diagram of the short-cut module. It consists of two sub-modules:
timestamper and block searcher.

The timestamper is a simple module that tags each short-cut block request with a timestamp.
The short-cut reorder buffer therefore provides a unique time stamp at each clock cycle.

The block searcher determines the location of the addressed block in the tail part. Four possible
locations exist: DMM module’s read pipeline, tail buffer, DMM module’s write pipeline, and

128 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

aggregation module. The search order is from read pipeline to aggregation module. The block
searcher receives state information about contained blocks only from the first three locations.
When these do not contain the block, it has to be in the aggregation module.

Knowing the location the block searcher sends a trigger to the corresponding module (cf. Fig-
ure 4.10). The trigger requests the forwarding of the block to the short-cut reorder buffer. When
the block resides in the tail buffer the block searcher sends the trigger to the tail transferor
module, which is responsible for requesting blocks from tail buffer.

To reduce prototype implementation complexity the block searcher operates combinatorial.
This limits system frequency of the prototype for large Qk as the DMM module provides the
queue state information as a Qk wide vector. However, pipelining of the block searcher would
remove this limitation and requires just small additional implementation effort. This is a lesson
learned. To additionally minimize resource usage, Section 4.4.4 presents an alternative solution
for queue state information provisioning.

Summarizing, the short-cut module is a crucial module for short-cut processing. It supports
pipelining and therewith scales towards large Qk.

4.4.6 Short-Cut Reorder Buffer

This Section introduces the short-cut reorder buffer and is structured into three paragraphs. The
first introduces its tasks. The second discusses implementation considerations, while the third
presents its implementation.

Tasks

The individual modules of the tail part deliver short-cut blocks with different and variable la-
tencies. The tail transferor module even processes short-cut requests out of order (cf. Sec-
tion 4.4.7).

To provide a simple short-cut interface with constant read latency the short-cut reorder buffer
performs two tasks. Firstly, it reorders the short-cut blocks according to the order of the re-
quests. Secondly, it delays the individual blocks to achieve the constant read latency.

Implementation Consideration

The short-cut reorder buffer can receive blocks from three different modules: the aggregation
module, the DMM module’s write pipeline, and the DMM module’s read pipeline (cf. Fig-
ure 4.3, page 115). Consider that the read pipeline contains only block requests and that a block
from the tail buffer is only available in the last stage of the read pipeline.

Due to the different short-cut latencies of the modules, the short-cut reorder buffer has to accept
up to three blocks simultaneously, i. e., during one clock cycle. However, in average at most

4.4 Tail Part 129

w

short-cut block
to head part

t3

=?

block 1

block 2

block 3

ts 1
ts 2
ts 3

t2

=?

block 1

block 2

block 3

ts 1
ts 2
ts 3

t1

=?

block 1

block 2

block 3

ts 1
ts 2
ts 3

‘0’

tL

=?

block 1

block 2

block 3

ts 1
ts 2
ts 3

timestamp
to short-cut

short-cut reorder buffer

timestamp of block its i:

short-cut block iblock i:

module

w

w

wb
lo

c
k

b
lo

c
k

b
lo

c
k

b
lo

c
k

Figure 4.11: Short-cut reorder buffer

one block per clock cycle arrives at the reorder buffer, since the head part sends at most one
short-cut block request per clock cycle.

A simple way to implement a buffer with this amount of write ports is to use registers. This is
the approach taken for the prototype, since the buffer has to hold a few blocks only. A more
resource efficient solution is using a memory for buffering and a set of registers for absorbing
simultaneous writes.

A short-cut block arrives at the reorder buffer earliest lmin and latest lmax clock cycles after the
arrival of the corresponding short-cut block request. To achieve a constant read latency of lmax

the reorder buffer has to delay a block at most L= lmax− lmin clock cycles. This corresponds to
the buffer size in blocks. In this prototype lmin and lmax have the following values.

lmin = 0 (write pipeline forwards a short-cut block immediately)
lmax = k+2 (tail transferor’s + read pipeline’s maximal short-cut latency)

Block Diagram

Figure 4.11 shows the block diagram of the short-cut reorder buffer. Its input interface connects
to the three modules that can deliver short-cut blocks. It receives with each short-cut block also
the timestamp of the corresponding short-cut block request. On its output interface it delivers
the reordered short-cut blocks to the head part.

The implementation consists of L = k+ 2 identical pipeline stages. Each can store one block
and one timestamp. Upon startup, each stage is initialized with a unique timestamp. Each clock
cycle timestamp and block move to the next stage. Thereby, the input timestamp of the first
stage is the output timestamp of the last stage. The reorder buffer provides this input timestamp
also to the short-cut module.

130 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

Upon arrival of one or more blocks at the input interfaces, each pipeline stage compares its time
stamp to that of the arriving blocks. When there is a match, the stage stores the corresponding
block. Collisions, i. e., overwriting of a valid block, cannot occur, because a unique timestamp
is assigned to each short-cut block request.

Summarizing, the short-cut reorder buffer is a simple and highly pipelined module. Conse-
quently, it does not limit design frequency.

4.4.7 Tail Transferor Module

This Section introduces the tail transferor module and is structured into three paragraphs. The
first introduces its tasks. The second discusses implementation issues, while the last presents
its block diagram.

Tasks

The tail transferor module hast two tasks. Firstly, it triggers transmission of blocks from DRAM
queues in the tail buffer to the DRAMs according to the tail-MMA (cf. Section 3.3.3, page 75).
Explicitly, it has to periodically check the state of each DRAM queue in the tail buffer, i. e.,
every k time slots. Whenever it finds a DRAM queue non-empty, it has to generate a block
request for the DMM module to retrieve a block from the corresponding DRAM queue. Sec-
ondly, it processes short-cut block requests that have to be served from tail buffer. Therefore, it
also generates block requests for the DMM module. These block requests contain a tag, which
lets the retrieved blocks follow the short-cut path.

Implementation Considerations

To suffice the tail-MMA, the tail transferor module has to check the DRAM queue state and gen-
erate block requests for the DRAM queues in strict round robin manner, i. e., 0,1, . . . ,k-1,0,
In full load situation it generates one block request per system clock cycle. Consequently, an
immediate processing of an arriving short-cut block request is not possible, as it would violate
the round robin sequence.

A possible solution for this is increasing the system clock frequency to have enough free cycles
for processing short-cut block requests. However, this puts the feasibility of the whole system
at a risk.

We solve the problem by using a buffer that stores arriving short-cut block requests. When the
tail transferor module is about to generate a block request for DRAM queue i it also checks
this buffer. When there is a short-cut block request for DRAM queue i it forwards this to the
DMM module. This means, each short-cut block request leaves the tail transferor module after
at most k clock cycles. Further, the head part sends at most every k clock cycles a short-cut
block request addressing the same DRAM queue. Consequently, the buffer has to hold at most
one short-cut block request per DRAM queue and is therewith negligible in size.

4.4 Tail Part 131

dram-id

Q·k

short-cut block request

1

k
short-cut block request
from short-cut module

buffer

counter
mod k

flow
selector

DRAM queue state
from DMM module

short-cut block request

block request

(short-cut) block request
to DMM module

p
ri

o
ri

ty
 m

u
lt
ip

le
xe

r

1

2

tail transferor module

Figure 4.12: Tail transferor module

Block Diagram

Figure 4.12 shows the block diagram of the tail transferor module. It consists of four sub-
modules.

The mod k counter assures that the DRAM queues are processed in round robin sequence. It
continuously counts from 0 to k−1 and increments its value each clock cycle by one. Its output
value serves as dram-id and determines the DRAM queue for which the tail transferor module
generates the next block request. When the DRAM queue addressed by dram-id is empty, it
generates no block request in this clock cycle.

Like introduced in Section 4.4.4 the DMM module implements each DRAM queue as a set
of Q FIFO queues, i. e., one per flow. The flow selector receives the DRAM queues’ state
information from the DMM module and the dram-id from the mod k counter. Based on this,
it selects from the DRAM queue addressed by dram-id a flow, which’s FIFO queue contains
a block. Knowing flow-id and dram-id the flow selector finally generates a block request and
delivers it to the priority multiplexer. The flow selection task is pipelineable and therewith it
does not limit system clock frequency. The prototype contains a flow selector with one pipeline
register. If pipelined the flow selector requires as input a future dram-id.

The short-cut block request buffer stores the requests arriving from the short-cut module.
Since the buffer is very small we implement it using registers.However, an implementation with
on-chip memory is also feasible. Each clock cycle the buffer checks if the short-cut block
request addressed by the dram-id is valid. If valid, it delivers it to the priority multiplexer.

Finally, the priority multiplexer chooses the block request with the higher priority and for-
wards it to the DMM module. Thereby, it always prioritizes a short-cut block request over
a block request. This means, in the case when both block requests are valid, it forwards the
short-cut block request and discards the block request.

132 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

Summarizing, the tail transferor module is the central control unit in the tail part, responsible
for block retrieval from the tail buffer. The proposed implementation is capable to run at high
frequencies as the sole combinatorially complex task (flow selection) is pipelineable.

4.5 Head Part

This Section presents the block diagram of the SPHSD’s head part. Therefore, it introduces
the functional requirements of head part and shows the resulting architecture fulfilling these.
Finally, it describes the functionality of the individual modules.

In the considered input line card scenario the head part has six main functions. Table 4.4 lists
these. Like the tail part, the head part implementation has to provide beside its functions a
deterministic bandwidth. The functions can be directly mapped to one or more modules of the
head part. Table 4.4 shows this mapping.

function head part module implementing it

1. generation of block requests for DRAMs → requester module
based on arriving cell requests

2. buffering block requests → request buffer
3. triggering block request transfers → head transferor module

to DRAM and tail part
4. determining blocks’ location and accordingly → block location checker

forwarding block requests to DRAM or tail part
5. provisioning of cells to cell validator → head buffer

with constant read latency → read latency FIFO
6. provisioning last block request of flow i left → sequence number generator

information to SIM → last block request buffer
→ block location checker

Table 4.4: Functions of the head part and their mapping to modules

Figure 4.13 shows the block diagram of the head part. In the figure from right to left the head
part receives cell requests from the scheduler. Consider that in this input buffer scenario each
cell request leads to one block request and one block. Upon arrival of a valid cell request the
sequence number generator generates a sequence number. Based on the same cell request, the
requester module generates a block request. Therefore, it determines the DRAM storing the
block, i. e., the dram-id. Then it tags the block request with the sequence number and forwards
it to request buffer and read latency FIFO.

The sequence number uniquely identifies a block request in the head part. Therefore the se-
quence number needs to have a width of only ld(Q · k), since never more than Q · k block
requests reside simultaneously in the head part.

Simultaneously to block request generation the Last Block Request Buffer (LBRB) stores this
sequence number. The LBRB stores the sequence number of the last block request for each
flow. We implement it as a memory with Q× ld(Q · k) bit in size.

4.5 Head Part 133

block req. block req.

module
requester

buffer
request

state

location
block

checker

module
head transf.

request
last block

buffer

number
sequence

generator
trigg. transf.

wfrom DRAM

blocks

and tail part

s
e

q
.

n
o
.

la
s
t

b
lo

ck
 r

e
q

.
o

f
fl
o
w

i

to
 S

IM

with seq. no.with seq. no.

get last block request’s seq. no.

to DRAMs

block req.

to tail part

short-cut block req.

w
buffer
head

read latency
FIFO

cell request

from scheduler

cells

to

head part

cell validator

flow queue state

from DRAM mem. manag.

snoop port

from tail part

of flow i

Figure 4.13: Head part

The request buffer buffers the block requests including the sequence number and therefore
maintains k request queues. Further, it provides state information of the individual request
queues to the head transferor module. The head transferor module checks the state of each
request queue periodically, i. e., evey k time slots. Whenever it finds a request queue non-empty,
it triggers the forwarding of the queue’s headmost block to the block location checker.

The block location checker has two tasks. Firstly, it checks for each received block request
if the corresponding block resides in DRAM or in the tail part. Therefore, it requests the flow
queue state information of the corresponding DRAM from the memory manager maintaining
the flow queues in the DRAMs. When the flow queue state of the corresponding DRAM is
non-empty it forwards the block request to the DRAM. When the flow queue state of the cor-
responding DRAM is empty the block still resides in the tail part. Then it forwards the block
request to the tail part. These block requests are called short-cut block requests. Since accessing
a DRAMs flow queue state information may take some clock cycles, the received state infor-
mation may be outdated. Therefore, the block location checker additionally snoops the block
transfers from tail part to DRAMs. So it can detect, if an addressed block moved from tail part
to DRAM during checking.

Secondly, the block location checker informs the SIM if the block request leaving the head part
is the last block request of flow i or not. i is the flow-id of the leaving block request. Therefore it
requests the last block’s sequence number of flow i from LBRB and compares it to the sequence
number of the leaving block request. The author implements the block location checker as a
pipeline.

134 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

After a constant read latency, the blocks from DRAMs and tail part arrive at the head part. The
head buffer buffers the blocks and therefore maintains k DRAM queues. Consider that this
block arrival is out of order compared to the arrival of the cell requests.

The read latency FIFO is responsible to achieve a constant read latency and therewith in-order
delivery. Therefore, it buffers each block request received from the requester module for the
time of the read latency (cf. Section 3.4.3). After this time, it forwards the block request to the
head buffer. The head buffer now retrieves the corresponding block, converts it to a cell by
removing the dram-id from its meta-information, and forwards it to the cell validator.

Implementation of the head part turned out to be less complex compared to the tail part. This has
three main reasons. Firstly, the considered input buffer scenario requires no packet reassembly
functionality. Secondly, the MiRBD head transferor algorithm in combination with delivery of
full blocks (no reassembly) allows to use static memory allocation in the head buffer without
increasing its size. Thirdly, the head part just generates short-cut block requests, while the tail
part performs the complex processing of the short-cut block requests.

Summarizing, the head part’s implementation is complex but at the same time very modular with
narrow interfaces. Since all its modules can be implemented pipelined, its operating frequency
is only limited by the head buffer size.

4.6 Validation

This Section presents the validation of the implemented architecture and covers the main as-
pects functionality, resource requirement, and supported line rate. Section 4.6.1 introduces the
functional tests performed to show that the prototype is fully functional. Section 4.6.2 intro-
duces resource requirement and throughput of the prototype implementation. Section 4.6.3
summarizes the validation results.

4.6.1 Functional Tests

The introduced prototype has been tested for correct functionality in different parameterizations
and under different load situations, including full load situation. A functional test under full load
is at the same time also a throughput test, since the proposed SPHSD architecture provides a
deterministic bandwidth and a constant read latency. Section 4.3.1 starting on page 107 already
introduced the overall prototype structure used for functional testing.

For the sake of completeness two further properties of the prototype are introduced here. Firstly,
the contained scheduler supports two scheduling strategies. Both request cells from the individ-
ual flows in a round robin manner. The difference is, that the one requests all the data currently
buffered from a flow, while the other requests each time just a single cell from a flow.

Secondly, we set the read latency of the DRAM model to be equal to the constant read latency
of a short-cut request. Therewith, the merger in Figure 4.2 on page 108 is a simple multiplexer.

4.6 Validation 135

In a real system an additional small FIFO buffer may be necessary delaying the blocks of the
faster module.

Two types of functional tests were performed: clock cycle accurate simulation and operation on
FPGA. To achieve many different configurations the system parameters were varied, i. e., bus
width w, degree of parallelism k, and number flows queues Q.

Test via clock cycle accurate simulation – The author used the simulations software Model-

sim [98] from Mentor Graphics to simulate individual modules as well as the complete
prototype. Clock cycle accurate simulation is computationally intensive, i. e., simulation
of milliseconds takes several minutes of real time on a standard PC. Consequently, to test
the correct operation of SPHSD implementation with a huge number of incoming packets,
tests on real hardware are mandatory, e. g., on an FPGA.

Test on an FPGA – The tests on FPGAwere done on an UHP-2 board like shown in Figure 4.1
on page 106. The test run for each configuration of the SPHSD was in the range of
minutes to hours. This means in each test run many gigabytes to terabytes of data in form
of many billion blocks passed the SPHSD. Each test run was performed with different
parameterizations of the random number generators in the packet generator to cover many
different packet arrival patterns. Tests included low and full load situations.

A test run passes, when the requested cells arrive after a constant read latency at the cell valida-
tor (cf. Figure 4.2 on page 108) and contain the correct data. The prototype passed all test runs
performed with the final version of the implementation. Concluding, the SPHSD architecture is
fully operational and its implementation in hardware is feasible.

4.6.2 Hardware Resource Requirement and Supported Line Rate

This Section presents the hardware resource requirement and supported line rate of the proto-
type implementation. Therefore, the first paragraph introduces the conditions, like used tools,
settings, and target FPGA devices. The second paragraph introduces the metrics to interpret
the result, while the third introduces the system parameters and assumptions. The last para-
graph presents the explicit hardware resource requirements for different configurations of the
prototype along with the correspondingly supported line rate.

Conditions

As target FPGA for analysis the author uses an Altera Stratix II FPGA of the type
EP2S 60 F1020 C3 [96], which is available on the UHP-2 board used for functional testing.
For prototype configurations, which do not fit on this FPGA the author uses an Altera Stratix II
FPGA of the type EP2S 130 F1020 C3 [96] with similar properties but higher logic block count.

Synthesis of the prototype’s VHDL description was performed with the software Precision RTL
Synthesis, version 2011a [99] from Mentor Graphics. The tool was set to use register retim-

ing as this improves circuit performance [106]. Further it was set to preserve the hierarchical

136 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

boundaries of the head part and the tail part. This enables reporting the exact resource require-
ments utilized by the head and the tail part as Precision now performs optimizations including
register retiming only inside and outside of these two modules.

Place&Route was performed with Quartus II, version 11.0 [100] from Altera. Quartus II de-
livers information about the resource requirement as well as the maximal achieved clock fre-
quency. Quartus II was used with its default settings.

To achieve results reflecting the limits of the SPHSD implementation the author replaced the fol-
lowing modules with dummy modules: DRAM model, SIM, Scheduler. The dummy modules
feature the equal registered interfaces as the original modules. As Precision was set to preserve
the hierarchical boundaries of the head and the tail part the results regarding the SPHSD are
realistic despite using dummy modules.

Metrics

Stratix II devices consist of matrix of Adaptive Logic Modules (ALM) [96]. An ALM mainly
consists of a set of look-up table (LUT) based resources and two Flip-Flops (FF). The LUT
resources of an ALM can be divided between two so called Adaptive LUTs (ALUT). Conse-
quently, an ALM can implement two ALUT/FF pairs, each consisting of a combinational logic
portion and a FF.

Therewith, an ALUT/FF pair can implement a combinational function with subsequent FF, just
a combinational function (without FF), or just a FF. The used EP2S60 device contains 24 176
ALMs corresponding to 48 352 ALUT/FF pairs, while the EP2S130 device contains 53 016
ALMs corresponding to 106 032 ALUT/FF pairs.

This thesis presents the resource usage in used ALUT/FF pairs like provided by the Quartus II
software. The values represent the number of uses ALUT/FF pairs after place& route.

An FPGA contains a large number of small SRAM memories, called RAM-blocks, distributed
over the whole FPGA. The used EP2S60 device contains a total of 2 485 kbit of memory, pro-
vided by 329 M512-RAM-blocks (each 576 bit), 255 M4K-RAM-blocks (each 4.5 kbit), and
2 M-RAM-blocks (each 576 kbit). The used EP2S130 device contains a total of 6 590 kbit of
memory, provided by 699 M512-RAM-blocks, 609 M4K-RAM-blocks, and 6 M-RAM-blocks.

The memory usage given in this thesis corresponds to the number of bits required by a module,
i. e., the amount given in the module’s VHDL implementation. The actually occupied memory
resources on the FPGA are always larger or equal than this. This has two reasons. Firstly, the
Place&Route tool Quartus II always instantiates memories with word numbers being a power
of two. This leads in worst case to an overdimensioning by nearly 100,%, e. g., use of 1024
instead of 513 words. The designer can avoid this overdimensioning by manually decomposing
the memory into memories with word numbers being a power of two. Such a change influences
timing of the design. Secondly, due to the fixed sizes of the RAM-block types there is often
fragmentation when they are used to implement a memory with custom width and depth.

4.6 Validation 137

Given clock frequencies represent the maximal achievable clock frequency. Quartus II derives
it from the critical path in the design, which corresponds to the longest FF to FF delay.

System Parameters and Assumptions

Resource requirements and throughput results are presented for several parameterizations of the
prototype. The main configurable parameters of the prototype implementation are the bus width
w (equal to the block size b), degree of parallelism k, and the number of flows Q. These can be
set before synthesis.

Additionally, assumptions are made about the DRAM random access time T and the used net-
work technology. Consider that these two assumptions only influence the clock frequency of the
system. For the DRAM random access time we assume a typical value of T = 50 ns. As network
technology we assume an Ethernet based system, i. e., Pmin = 64byte and Gmin = 20byte.

Since the SPHSD system delivers deterministic bandwidth, one can derive all further parameters
of the system based on the ones mentioned. With Eq. (3.1) on page 71 the supported line rate R
of a configuration can be calculated:

w= b=
2TR

k
→ R=

wk

2T
e. g. R=

512bit ·4
2 ·50ns = 20.48Gbps

Considering additionally the used network technology the minimal required system clock fre-
quency can be calculated based on Eq. (4.4) on page 112:

f ≥ 2R

w+1byte+Gmin
e. g. f ≥ 2 ·20.48Gbps

512bit+1byte+20byte
= 60.2MHz

Implementation Results

Table 4.5 shows the hardware resource requirements and the supported line rates for different
configurations. The table contains three main parts: the configured parameters (k, w,Q), the cal-
culated values (R and f), and the achieved system clock frequency and resource requirements.
As the SPHSD provides a deterministic bandwidth, the calculated line rate R corresponds to its
throughput.

Recall for reviewing of these results, that the prototype implementation achieves full function-
ality, but is not optimized for throughput (e. g., high frequency) or low resource usage (e. g.,
design contains Management-System for configuration an debugging). Nevertheless, the im-
plementation supports a line rate of 10Gbps easily and fails support of 20Gbps only marginally
(due to an 8MHz too low frequency).

Independent of the prototype configuration in Table 4.5, the critical path is always a path to the
counter module (cf. Figure 4.9 on page 125). The counter module operates at twice the system
clock frequency, i. e., signals interfacing with the counter module have to have a path delay that
is less or equal the half system clock period.

138 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card
co
n
fi
g
u
ra
ti
o
n

ca
lc
u
la
ta
ti
o
n

sy
st
em

cl
o
ck

fr
eq

u
en

cy
a
n
d
h
a
rd
w
a
re

re
so
u
rc
e
re
q
u
ir
em

en
ts

pr
ot
ot
yp
e+

ta
il
pa
rt

he
ad

pa
rt

k
w

Q
R

f r
eq
u
ir
ed

f m
a
x

A
L
U
T
/F
F

A
L
U
T
/F
F

m
em

or
y

A
L
U
T
/F
F

m
em

or
y

S
tr
at
ix

II
F
P
G
A

[b
it
]

[G
bp
s]

[M
H
z]

[M
H
z]

[#
]

[#
]

[k
bi
t]

[#
]

[k
bi
t]

4
12
8

64
5,
1

34
,6

50
,0

17
01
0
(3
5
%
)

50
05

38
,9

17
82

40
,9

E
P
2S

60
F
10
20

C
3

4
25
6

64
10
,2

48
,3

53
,0

23
16
8
(4
8
%
)

86
69

71
,1

28
29

73
,2

E
P
2S

60
F
10
20

C
3

4
51
2

64
20
,5

60
,2

52
,5

36
11
6
(7
5
%
)

16
71
0

13
5,
2

48
76

13
7,
4

E
P
2S

60
F
10
20

C
3

4
10
24

64
41
,0

68
,7

41
,5

66
06
6
(6
2
%
)

36
00
0

26
3,
3

90
49

26
5,
7

E
P
2S

13
0
F
10
20

C
3

8
51
2

64
41
,0

12
0,
5

45
,1

47
23
4
(4
5
%
)

22
49
7

20
6,
7

10
15
9

27
5,
4

E
P
2S

13
0
F
10
20

C
3

4
51
2

12
8

20
,5

60
,2

42
,2

41
10
4
(8
5
%
)

18
50
9

27
2,
1

50
07

27
7,
0

E
P
2S

60
F
10
20

C
3

T
a
b
le

4
.5
:
H
ar
dw

ar
e
re
so
ur
ce

re
qu
ir
em

en
ts

an
d
su
pp
or
te
d
li
ne

ra
te
s
of

th
e
pr
ot
ot
yp
e
im

pl
em

en
ta
ti
on

a
di
ff
er
en
t
co
nfi

gu
ra
ti
on
s;

V
al
ue
s
in

pa
re
nt
he
si
s
re
fe
r
to

th
e
re
la
ti
ve

am
ou
nt

of
A
L
U
T
/F
F
re
so
ur
ce
s
oc
cu
pi
ed

on
th
e
F
P
G
A
;

+
du
m
m
y
m
od
ul
es

us
ed

fo
r
D
R
A
M

m
od
el
,
S
IM

,
an
d

sc
he
ud
le
r

4.6 Validation 139

According to Table 4.5 the tail part uses twice or more ALUT/FF pairs compared to the head
part. This difference origins from the aggregation and short-cut functionality additionally im-
plemented by the tail part. Further, one can see, that the ALUT/FF pairs required for head and
tail part increase roughly proportional with the bus width w.

In the following we focus on the memory requirement (SRAM). Table 4.5 shows the total mem-
ory utilized by head part and tail part. To the memory of the head part contribute the head buffer,
the request buffer, the read latency FIFO, and several other smaller memories (cf. Section 4.5).
To the memory of the tail part contribute the tail buffer (stores only full blocks), the aggregation
memory, the pointer memory, and several other smaller memories (cf. Section 4.4).

Regarding the memory requirement of head and tail part, one can see, that for k= 4 the tail part
requires only marginally less memory compared to the head part. This has four main reasons.

• Firstly, with such a small value for k tail buffer size decreases only medium in size, i. e.,
37.5% for k = 4.

• Secondly, for small k the aggregation memory (Q blocks) and the tail buffer (Q k−1
2 blocks)

are similar in size (cf. Section 4.4.2 for formulas), e. g., for k = 4 the tail buffer is
1.5Q blocks. To support short-cutting the aggregation memory requires a second read
port. We implemented this by doubling the aggregation memory, i. e., the total aggrega-
tion memory size is 2Q blocks.

• Thirdly, as the Place&Route tool Quartus II can only instantiate memories with word
numbers being a power of two, the author rounded up all memory word numbers in the tail
part to the next power of two in implementation. For example, the topmost configuration
in Table 4.5 requires theoretically Q k−1

2 blocks= 12 kbit but the author implements it as
16 kbit memory. This is not true for the head part, but there anyway all relevant memories
have word numbers being a power of two due to the chosen configurations. To detect tail
buffer fill levels that exceed the theoretical bound from Section 3.4.1 the design contains
a fill level checker module. Expectedly, this never detected an exceeding.

• Fourthly, the dynamic memory management implemented in the tail part introduces an
overhead in form of the pointer memory, queue table, etc.

For larger k the tail part implementation utilizes in total significantly less memory than the
head part, e. g., cf. configuration with k = 8 in Table 4.5. Two facts contribute to this. Firstly,
increasing k leads to a decrease in tail buffer size. Secondly, as at a given line rate R the block
size decreases with increasing k, the contribution of the aggregation memory is smaller.

4.6.3 Summary and Conclusions

We validated the prototypical SPHSD implementation with respect to functionality, resource
requirement, and supported line rate. The functional tests (simulation and operation on an
FPGA) showed that the SPHSD architecture is fully operational and that its implementation in
hardware is feasible.

140 Chapter 4. Prototypical Implementation of a Packet Buffer for an Input Line Card

The SPHSD’s tail and head buffer sizes are conform to the formulas in Chapter 3. In its tail
part it requires additional memory capacity to support short-cutting and dynamic memory man-
agement. Consider that related architectures (HSD and CFDS, cf. Section 2.5.2) also require
dynamic memory management in the tail buffer.

The presented SPHSD implementation supports a line rate of over 10Gbps supporting Q= 64
flow queues despite using a 6 year old FPGA. The possible implementation optimizations de-
scribed in Section 4.4 paired with a cutting-edge FPGA will enable much more flow queues and
significantly higher system frequencies simultaneously. According to Section 4.3.2 an Ethernet
based 100Gbps system requires a minimal system frequency of 148.8MHz. Concluding, an
FPGA implementation of an SPHSD based packet buffer for R = 100Gbps is challenging, but
should be feasible.

Kuon et al. compare in [107] FPGAs and semi-custom ASICs. Both devices were manufac-
tured with a 90 nm CMOS process technology. Kuon et al. found experimentally, that ASICs
achieve a 3 to 4 time shorter critical path delay compared to FPGAs, i. e., the same circuitry
can run at a 3 to 4 times higher frequency on an ASIC. Therewith, even the current SPHSD
implementation could run at approximately 4 ·50MHz= 200MHz on an ASIC with the config-
urations in Table 4.5. With the provided implementation optimizations (cf. Section 4.4) and due
to the fact that critical modules can be pipelined a redesign is expected to run at much higher
frequencies despite using larger values for the parameters k, w, and Q. Concluding, we estimate
a throughput optimized ASIC implementation of an SPHSD based packet buffer to support a
line rate of 100Gbps and far more.

5 Conclusions

5.1 Summary

This thesis introduced a novel hybrid memory architecture – named SPHSD – for high-speed
packet buffers that delivers deterministic bandwidth. The novelty of the SPHDS architecture is
that it significantly reduces the memory resources compared to related architectures from litera-
ture. Memory resources refer to the required capacity and bandwidth of SRAM and DRAM, as
well as to the DRAM data bus pin count. The author implemented a packet buffer based on the
SPHSD that shows the feasibility of the SPHSD in real hardware at high speeds. The following
paragraphs summarize the thesis in larger detail.

To motivate the necessity of new memory architectures for high-speed packet buffers Chapter 2
introduced the main requirements a high-speed packet buffer has to fulfill. On the functional
level it has to provide a set of FIFO queues that hold the packet data. On the technological level
it has to provide a specific capacity, bandwidth, and access time. Comparison with state-of-the-
art memory devices of different memory technologies showed that devices of a single memory
technology cannot fulfill all technological requirements simultaneously. For example, for a
100Gbps line card already 5 DDR3 SDRAM devices in parallel fulfill the capacity requirement
but they fail the access time requirement by a factor of 20. The basic architectural concepts to
solve the shortcomings are parallelism, interleaving, and aggregation.

A hybrid memory architecture enables to build high-speed packet buffers that provide a deter-
ministic bandwidth. Hybrid refers to the fact that it utilizes memory devices of two different
memory technologies: SRAM and DRAM. The architecture combines the strengths of both
memory technologies: short access time of SRAM and large capacity of DRAM. Chapter 2 in-
troduced the necessary metrics to evaluate hybrid memory architectures. Then it surveyed and
evaluated the three types of hybrid memory architectures providing deterministic bandwidth
available in literature. These were namely HSD, CFDS, and PHSD (only partially provides a
deterministic bandwidth). Each uses a different subset of the aforementioned basic architec-
tural concepts. Finally, Chapter 2 summarized and compared the pros and cons of the surveyed
architectures.

In Chapter 3 a novel hybrid memory architecture for high-speed packet buffers that delivers de-
terministic bandwidth was presented. The main objective was to reduce resource requirements
without reducing functionality. The design targets were:

141

142 Chapter 5. Conclusions

• Small SRAM size

• Minimal DRAM resources

– Utilization of the total DRAM capacity, i. e., no suffering from fragmentation

– Minimization of the total required DRAM bandwidth

– High DRAM data bus utilization (reduces DRAM data bus pin count)

The author combined the best approaches of related architectures and enriched them with own
approaches to form a new architecture. Section 3.2 derived the explicit architectural features
that are necessary to meet all targets simultaneously. The proposed architecture’s name is Semi-
Parallel Hybrid SRAM/DRAM system (SPHSD). The name reflects its two main properties.
Firstly, it is a hybrid memory architecture. Secondly, it contains a set of k parallel DRAMs (or
DRAM banks) but just a singe tail buffer (SRAM) and a single head buffer (SRAM). Packets
are aggregated to blocks and only blocks are buffered in SRAM and DRAM.

The two unique features of the SPHSD architecture are:

• DRAM queues dynamically share the tail buffer. This significantly decreases tail buffer
size compared to other architectures. The same holds also for the head buffer when the
proposed MaRBD head-MMA is used.

• The degree of parallelism (i. e., the value of k) can be freely chosen, e. g., it is not lim-
ited by the number of banks in a DRAM device. k impacts the architecture in two ways.
Firstly, the tail buffer size decreases towards increasing k. Secondly, the total available
DRAM banks have to be organized into k groups. As DRAM chips have discrete proper-
ties (e. g., data bus pin count, number of banks) k influences the DRAM overdimension-
ing. The designer can now choose a k that minimizes both, tail buffer size and DRAM
overdimensioning. Section 3.5 showed an according dimensioning example.

The author utilizes a tail-MMA and a head-MMA (here called MiRBD) from literature and
proposes a new head-MMA (MaRBD). An MMA defines how blocks are distributed to the
DRAMs and how blocks are transferred between SRAM and DRAM. Using the tail-MMA and
the MiRBD head-MMA the metrics of the new architecture were derived and formally proven:
upper bounds for the tail buffer size and head buffer size, as well as the read latency. Using the
MaRBD head-MMA the upper bound of the head buffer was derived and validated via software
simulation. Table 3.2 on page 95 summarizes the resulting metrics.

Quantitative comparison to the surveyed architectures showed the following improvements. The
SPHSD reduces the tail buffer size by 47% to 53% depending on the compared architecture.
Utilizing the MiRBD head-MMA the head buffer size is roughly equal to that of the surveyed
architectures. Explicitly, it increases by 6% or decreases by 12% depending on the compared
architecture. Utilizing the proposed MaRBD head-MMA the head buffer size decreases by
approx. 50%. Further, both head-MMAs require a lower head buffer bandwidth compared to
HSD and CFDS, i. e., 2R instead of 3R, where R is the input line rate of the packet buffer. The
PHSD has no head buffer. The read latency of the SPHSD is the same for any head/tail-MMA
combination. Its value is equal or slightly lower depending on the compared architecture. For
comparison to the CFDS the use of high-speed DDR3 SDRAM was assumed.

5.1 Summary 143

To minimize DRAM resources, the SPHSD supports the following four features: it eliminates
internal and external fragmentation in DRAM, it requires no DRAM bandwidth speedup, and it
supports DRAM bank interleaving. Elimination of fragmentation and the absence of speedup
reduces the required DRAM bandwidth to the theoretical minimum of 2R. Bank interleaving
enables to maximize the DRAM data bus utilization what minimizes the number of required
DRAM data bus pins. Comparison to the surveyed architectures showed, that only the SPHSD
supports all four features simultaneously (cf. Table 3.1 on page 95).

Reduction of memory resource requirements leads to reduction of implementation costs and a
better scalability. Beside these, less memory resources inevitably lead to a decrease in power
consumption, as a packet consist for the most part from memory.

Chapter 4 presented exemplarily the prototypical implementation of a packet buffer for an input
line card utilizing the SPHSD. The implementation targets were to show:

• Functionality of the SPHSD – Implementation in hardware respects all details of an
architecture. It is therefore well suited to show that the SPHSD is operational.

• Feasibility of the SPHSD architecture in hardware supporting high line rates – Applica-
tion of the SPHSD in a router is only possible, when the SPHSD can be implemented in
hardware and the implementation supports reasonable line rates.

In a first step, Chapter 4 motivated and introduced the overall prototype structure. The prototype
was described in VHDL and an FPGA development board served as platform. In a second step,
it presented in detail the implementation of the head and tail part of the SPHSD. In a third
step, it evaluated the architecture with respect to the targets, i. e., functionality and feasibility in
hardware.

Two types of functional tests were performed: clock cycle accurate simulation and operation
on FPGA. Functionality of the prototype was tested with many different parameterizations. A
packet generator served as data source and a cell validator served as data sink. All testes passed.

Feasibility of the architecture with its MMAs in hardware was also shown by implementation.
The prototype supports a line rate of over 10Gbps providing Q= 64 FIFO queues despite using
an over 6 year old FPGA. The objective of the implementation was to achieve full functional-
ity. Optimization for high line rates R and/or a large number of FIFO queues requires a second
iteration of the implementation. The proposed implementation optimizations described in Sec-
tion 4.4 paired with a cutting-edge FPGA will enable significantly higher line rates and much
more flow queues simultaneously. Therewith even a line rate of R = 100Gbps can be feasible
on a cutting-edge FPGA. The author estimated a new optimized implementation for an ASIC to
support a line rate of R= 100Gbps and far more (cf. Section 4.6.3).

Concluding, the SPHSD requires significantly less memory resources compared to related ar-
chitectures from literature, while providing the same functionality. Further more, it is feasible
in hardware at high line rates. This leads to two main advantages compared to related architec-
tures: (i) improved scalability towards higher line rates and more queues and (ii) reduced power
consumption.

144 Chapter 5. Conclusions

5.2 Limitations

The SPHSD has limitations concerning scalability towards extreme requirements and read la-
tency.

Scalability – Head and tail buffer size of the SPHSD are proportional to the following param-
eters: line rate R, number of queues Q, and random access time T of the used DRAM
chips. If any of these parameters gets very large the head and tail buffer get very large,
too. At some point this makes implementation impractical. For example, core routers
exist that require tens of thousand of queues.

Read latency – The constant read latency provided by the SPHSD is proportional to the num-
ber of queues Q and the DRAM random access time T . Consequently, large values of Q
or T lead to a large read latency. It depends on the application whether this is tolerable
or not. For example, in case of an input buffer this depends on the switch fabric and the
switch fabric scheduler. To reduce or even completely eliminate the read latency the de-
signer can utilize the MDQFP head-MMA in the SPHSD. The MDFQP head-MMA was
proposed by Iyer et al. in [45] and allows to reduce the read latency by increasing the
head buffer size.

5.3 Outlook

Further work could formally prove the upper bound of the head buffer size when utilizing the
MaRBD head-MMA. Multicast support could be added to enable the application of the SPHSD
also in multicast routers. In [11] Iyer addresses the implementation of multicast in high-speed
routers.

Finally, the energy efficiency of the SPHSD could be further increased. A basic idea to achieve
this is keeping the tail buffer nearly full even in low load situations. This may increase the use
of the potentially chip-internal short-cut path and save the energy intensive data transfer via the
external DRAM bus. Due to the presence of the short-cut path this would not increase the read
latency. A corresponding tail-MMA could therefore apply the same strategy as the MaRBD
head-MMA does. Another possibility is to allow parts of the architecture to be powered off.

Bibliography

[1] Arthur Mutter. A novel hybrid memory architecture with parallel DRAM
for fast packet buffers. In Proceedings of the IEEE Workshop on

High Performance Switching and Routing (HPSR), pages 44–51, June 2010.
doi:10.1109/HPSR.2010.5580282.

[2] Simon Hauger, Thomas Wild, Arthur Mutter, Andreas Kirstädter, Kimon Karras,
Rainer Ohlendorf, Joachim Scharf, and Frank Feller. Packet processing at 100 Gbps
and beyond—challenges and perspectives. In Proceedings of the 10. ITG Symposium

on Photonic Networks, Leipzig, May 2009.

[3] Arthur Mutter, Martin Köhn, and Matthias Sund. A generic 10 Gbps assembly edge
node and testbed for frame switching networks. In Conference on Testbeds and

Research Infrastructures for the Development of Networks and Communities (Tri-

dentCom2009), April 2009. doi:10.1109/TRIDENTCOM.2009.4976201.

[4] Arthur Mutter, Sebastian Gunreben, Wolfram Lautenschläger, and Martin Köhn. A
testbed for validation and assessment of frame switching networks. In Conference on
Testbeds and Research Infrastructures for the Development of Networks and Com-

munities (TridentCom2010), 2010. http://www.ikr.uni-stuttgart.de/
Content/Publications/Archive/Mu_TridentCom2010_40010.

pdf.

[5] Wolfram Lautenschläger, Arthur Mutter, and Sebastian Gunreben. Frame assembly
in packet core networks – overview and experimental results. In Proceedings of

the 10. ITG Symposium on Photonic Networks, Leipzig, Germany, May 2009.
http://www.ikr.uni-stuttgart.de/Content/Publications/

Archive/Mu_FrameAssemblyInPacketCore_36813.pdf.

[6] S. Hauger, S. Junghans, A. Mutter, and D. Sass. A flexible microprogrammed
packet classifier for edge nodes of transport networks. In Proceedings of the

7. ITG Symposium on Photonic Networks, Leipzig, 2006. http://www.

ikr.uni-stuttgart.de/Content/Publications/Archive/Hg_

UST-IKR-MicroprogrammedClassifier_36486.pdf.

[7] Michael Lebschi. Entwurf und Realisierung eines parametrisierbaren Speicherman-
agers in VHDL für einen FPGA-basierten Netzknoten. Studienarbeit, Institut für
Kommunikationsnetze und Rechnersysteme, Universität Stuttgart, August 2008.

145

http://dx.doi.org/10.1109/HPSR.2010.5580282
http://dx.doi.org/10.1109/TRIDENTCOM.2009.4976201
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Mu_TridentCom2010_40010.pdf
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Mu_TridentCom2010_40010.pdf
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Mu_TridentCom2010_40010.pdf
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Mu_FrameAssemblyInPacketCore_36813.pdf
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Mu_FrameAssemblyInPacketCore_36813.pdf
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Hg_UST-IKR-MicroprogrammedClassifier_36486.pdf
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Hg_UST-IKR-MicroprogrammedClassifier_36486.pdf
http://www.ikr.uni-stuttgart.de/Content/Publications/Archive/Hg_UST-IKR-MicroprogrammedClassifier_36486.pdf

146 BIBLIOGRAPHY

[8] Philipp Müller. Entwurf und Realisierung einer parametrisierbaren Eingangsstufe
für einen hybriden Paketpuffer in VHDL. Studienarbeit, Institut für Kommunika-
tionsnetze und Rechnersysteme, Universität Stuttgart, November 2010.

[9] J. Sommer, S. Gunreben, A. Mifdaoui, F. Feller, M. Köhn, D. Sass,
and J. Scharf. Ethernet - A Survey on its Fields of Application.
IEEE Communications Surveys and Tutorials, pages 263–284, 2010.
doi:10.1109/SURV.2010.021110.00086.

[10] Itamar Elhanany and Mounir Hamdi. High-performance Packet Switching Architec-

tures. Springer-Verlag London Limited, 2006.

[11] Sundar Iyer. Load Balancing and Parallelism for the Internet. PhD the-
sis, Stanford University, 2008. http://yuba.stanford.edu/~sundaes/

Dissertation/sundar_thesis_1sided.pdf.

[12] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router
buffers. SIGCOMM Comput. Commun. Rev., 34(4):281–292, 2004.
doi:10.1145/1030194.1015499.

[13] ISO. International Standard 7498–1: Information technology – Open Systems Inter-
connection – Basic Reference Model: The basic model, 1994.

[14] Paul J. Kühn. Lecture Notes: Communication Networks 2. IKR Institut für Kom-
munikationsnetze und Rechnersysteme, Pfaffenwaldring 47, 70549 Stuttgart, 2007
edition, 2007.

[15] Deepankar Medhi and Karthikeyan Ramasamy. Network Routing - Algorithms, Pro-
tocols, and Architectures. Elsevier Inc., 2007.

[16] IEEE Computer Society. 802.1Q: IEEE Standard for Local and Metropolitan Area
Networks–Virtual Bridged Local Area Networks, 2005.

[17] Charles Clos. A study of non-blocking switching networks. Bell System Technical

Journal, 41:406–424, March 1953.

[18] F.A. Tobagi and T.C. Kwok. The tandem banyan switching fabric: a simple high-
performance fast packet switch. In Proceedings of the Tenth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM ’91), pages 1245
–1253 vol.3, apr 1991. doi:10.1109/INFCOM.1991.147647.

[19] N. McKeown, C. Calamvokis, and S.-T. Chuang. A 2.5tb/s lcs switch core. In Hot

Chips, Aug 2001.

[20] M.G. Hluchyj and M.J. Karol. Queueing in high-performance packet switching.
Selected Areas in Communications, IEEE Journal on, 6(9):1587–1597, Dec 1988.
doi:10.1109/49.12886.

[21] N. McKeown. The iSLIP scheduling algorithm for input-queued switches.
Networking, IEEE/ACM Transactions on, 7(2):188 –201, apr 1999.
doi:10.1109/90.769767.

http://dx.doi.org/10.1109/SURV.2010.021110.00086
http://yuba.stanford.edu/~sundaes/Dissertation/sundar_thesis_1sided.pdf
http://yuba.stanford.edu/~sundaes/Dissertation/sundar_thesis_1sided.pdf
http://dx.doi.org/10.1145/1030194.1015499
http://dx.doi.org/10.1109/INFCOM.1991.147647
http://dx.doi.org/10.1109/49.12886
http://dx.doi.org/10.1109/90.769767

BIBLIOGRAPHY 147

[22] Cisco Systems Inc. Cisco CRS-1 Carrier Routing System, Brochure, June
2011. http://www.cisco.com/en/US/prod/collateral/routers/

ps5763/prod_brochure0900aecd800f8118.pdf.

[23] Will Eatherton. The push of network processing to the top of the pyramid. Presen-
tation at ANCS 2005, 2005. http://www.cesr.ncsu.edu/ancs/slides/
eathertonKeynote.pdf.

[24] H. Jonathan Chao and Liu Bin. High Performance Switches and Routers. JohnWiley
& Sons, Inc., August 2006. doi:10.1002/0470113952.

[25] Simon Hauger. Architektur für flexible Paketverarbeitung in Hochgeschwindigkeit-

skommunikationsnetzen. PhD thesis, University of Stuttgart, July 2011.

[26] Simon Hauger. A novel architecture for a high-performance network processing
unit: Flexibility at multiple levels of abstraction. In Proceedings of the IEEE In-

ternational Conference on High Performance Switching and Routing, June 2009.
doi:10.1109/HPSR.2009.5307421.

[27] Jorge García, Jesús Corbal, Llorenç Cerdà, andMateo Valero. Design and implemen-
tation of high-performance memory systems for future packet buffers. In Proceed-

ings of the 36th annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 36), page 373, Washington, DC, USA, 2003. IEEE Computer Society.

[28] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. SIGCOMM Comput. Commun. Rev., 19:1–12, August 1989.
doi:10.1145/75247.75248.

[29] DDR3 SDRAM standard, JESD79-3D, Sep 2009. http://www.jedec.org/.

[30] S. Dharmapurikar, S. Kumar, J. Lockwood, and P. Crowley. Optimizing memory
bandwidth of a multi-channel packet buffer. In Global Telecommunications Con-

ference, 2005. GLOBECOM ’05. IEEE, volume 1, page 6 pp., nov.-2 dec. 2005.
doi:10.1109/GLOCOM.2005.1577359.

[31] Jahangir Hasan, Satish Chandra, and T. N. Vijaykumar. Efficient use of memory
bandwidth to improve network processor throughput. SIGARCH Comput. Archit.

News, 31(2):300–313, 2003. doi:10.1145/871656.859653.

[32] Abhijit K. Choudhury and Ellen L. Hahne. Dynamic queue length thresholds for
shared-memory packet switches. In In Proceedings of INFOCOM, pages 679–687,
1998.

[33] Santosh Krishnan, Abhijit K. Choudhury, and Fabio M. Chiussi. Dynamic partition-
ing: A mechanism for shared memory management. In proceedings IEEE INFO-

COM, pages 144–152, 1999.

[34] Daniel Llorente, Kimon Karras, Thomas Wild, and Andreas Herkersdorf. Buffer
allocation for advanced packet segmentation in network processors. Application-

Specific Systems, Architectures and Processors, IEEE International Conference on,
0:221–226, 2008. doi:10.1109/ASAP.2008.4580182.

http://www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8118.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8118.pdf
http://www.cesr.ncsu.edu/ancs/slides/eathertonKeynote.pdf
http://www.cesr.ncsu.edu/ancs/slides/eathertonKeynote.pdf
http://dx.doi.org/10.1002/0470113952
http://dx.doi.org/10.1109/HPSR.2009.5307421
http://dx.doi.org/10.1145/75247.75248
http://www.jedec.org/
http://dx.doi.org/10.1109/GLOCOM.2005.1577359
http://dx.doi.org/10.1145/871656.859653
http://dx.doi.org/10.1109/ASAP.2008.4580182

148 BIBLIOGRAPHY

[35] Sven Wuytack, Julio L. da Silva, Jr., Francky Catthoor, Gjalt de Jong, and Chantal
Ykman-Couvreur. Memory management for embedded network applications. Read-
ings in hardware/software co-design, pages 465–476, 1999.

[36] Aristides Nikologiannis and Manolis Katevenis. Efficient per-flow queueing in
DRAM at OC-192 line rate using out-of-order execution techniques. In In Pro-

ceedings of ICC 2001, pages 2048–2052, 2001.

[37] A. Nikologiannis, I. Papaefstathiou, G. Kornaros, and C. Kachris. An FPGA-based
queue management system for high speed networking devices. Microprocessors and

Microsystems, 28(5-6):223 – 236, 2004. Special Issue on FPGAs: Applications and
Designs. doi:10.1016/j.micpro.2004.03.014.

[38] G. Kornaros, I. Papaefstathiou, A. Nikologiannis, and N. Zervos. A fully-
programmable memory management system optimizing queue handling at multi
gigabit rates. In Proceedings of the 40th annual Design Automation Con-

ference (DAC 2003), pages 54–59, New York, NY, USA, 2003. ACM.
doi:10.1145/775832.775849.

[39] I. Papaefstathiou, T. Otphanoudakis, G. Kornaros, C. Kachris, I. Mavroidis, and
A. Nikologiannis. Queue management in network processors. Proceedings of the

Conference Design, Automation and Test in Europe (DATE), 2005., pages 112–117
Vol. 3, 7-11 March 2005. doi:10.1109/DATE.2005.251.

[40] Ch. Ykman-Couvreur, J. Lambrecht, D. Verkest, F. Catthoor, A. Nikologiannis, and
G. Konstantoulakis. System-level performance optimization of the data queueing
memory management in high-speed network processors. In Proceedings of the 39th

annual Design Automation Conference (DAC 2002), pages 518–523, New York, NY,
USA, 2002. ACM. doi:10.1145/513918.514050.

[41] M. Alisafaee, S.M. Fakhraie, and M. Tehranipoor. Architecture of an embed-
ded queue management engine for high-speed network devices. In 48th Mid-

west Symposium on Circuits and Systems, pages 1907 –1910 Vol. 2, August 2005.
doi:10.1109/MWSCAS.2005.1594498.

[42] D. Llorente, K. Karras, M. Meitinger, H. Rauchfuss, T. Wild, and A. Herkersdorf.
Accelerating packet buffering and administration in network processors. In Inte-

grated Circuits, 2007. ISIC ’07. International Symposium on, pages 373 –377, sept.
2007. doi:10.1109/ISICIR.2007.4441876.

[43] Intel. Intel Internet Exchange Architecture Portability Framework Developers Man-

ual, SDK 3.5 Release. Intel corporation, November 2003.

[44] Sailesh Kumar, Jonathan Turner, and Patrick Crowley. Addressing queuing bottle-
necks at high speeds. InHOTI ’05: Proceedings of the 13th Symposium on High Per-

formance Interconnects, pages 107–113, Washington, DC, USA, 2005. IEEE Com-
puter Society. doi:10.1109/CONECT.2005.7.

[45] S. Iyer, R.R. Kompella, and N. McKeown. Designing packet buffers for router
linecards. IEEE/ACM Transactions on Networking, 16(3):705–717, June 2008.
doi:10.1109/TNET.2008.923720.

http://dx.doi.org/10.1016/j.micpro.2004.03.014
http://dx.doi.org/10.1145/775832.775849
http://dx.doi.org/10.1109/DATE.2005.251
http://dx.doi.org/10.1145/513918.514050
http://dx.doi.org/10.1109/MWSCAS.2005.1594498
http://dx.doi.org/10.1109/ISICIR.2007.4441876
http://dx.doi.org/10.1109/CONECT.2005.7
http://dx.doi.org/10.1109/TNET.2008.923720

BIBLIOGRAPHY 149

[46] Curtis Villamizar and Cheng Song. High performance TCP in ANSNET.
SIGCOMM Computer Communication Review, 24:45–60, October 1994.
doi:http://doi.acm.org/10.1145/205511.205520.

[47] Joel Sommers, Paul Barford, Albert Greenberg, and Walter Willinger. An SLA per-
spective on the router buffer sizing problem. SIGMETRICS Perform. Eval. Rev.,
35(4):40–51, 2008. doi:10.1145/1364644.1364645.

[48] Roy Rubenstein. Pushing packet performance - leading edge chipset pow-
ers 100Gbit/s IP router platform. New Electronics, January 2010. http://

fplreflib.findlay.co.uk/articles/22079%5Cp27-28.pdf.

[49] Spirent Communications. http://www.spirent.com.

[50] Agilent Technologies. http://www.agilent.com.

[51] Garry Lemasa and Silvano Gai. Fibre Channel over Ethernet in the data center: An
introduction (white paper), 2007. www.fibrechannel.org.

[52] Classle. http://www.classle.net/node/23951.

[53] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann, 2008.

[54] Samsung Semiconductor. http://www.samsung.com/global/

business/semiconductor/.

[55] MagnaLynx. http://www.magnalynx.com.

[56] QDR Consortium. http://www.qdrconsortium.org/.

[57] GSI Technology. http://www.gsitechnology.com/.

[58] NEC Electronics Corporation. How to Use QDR II SRAMs and DDR II

SRAMs, 1st edition, March 2008. http://www2.renesas.com/memory/

en/download/M19119EJ1V0UM00.pdf.

[59] Michael Pearson. QDRIII: Next generation SRAM for networking, October 2004.
http://www.qdrconsortium.org/presentation/QDR-III-SRAM.

pdf.

[60] Rambus. www.rambus.com.

[61] Samsung semiconductor, DDR3-SDRAM, 2009. http://www.samsung.com/
global/business/semiconductor/products/dram/Products_

DDR3SDRAM.html.

[62] DDR2 SDRAM Fully Buffered DIMM (FBDIMM) design standard, JESD205, Mar
2007. http://www.jedec.org.

[63] SPMT (Serial Port Memory Technology). http://www.spmt.org/.

http://dx.doi.org/http://doi.acm.org/10.1145/205511.205520
http://dx.doi.org/10.1145/1364644.1364645
http://fplreflib.findlay.co.uk/articles/22079%5Cp27-28.pdf
http://fplreflib.findlay.co.uk/articles/22079%5Cp27-28.pdf
http://www.spirent.com
http://www.agilent.com
www.fibrechannel.org
http://www.classle.net/node/23951
http://www.samsung.com/global/business/semiconductor/
http://www.samsung.com/global/business/semiconductor/
http://www.magnalynx.com
http://www.qdrconsortium.org/
http://www.gsitechnology.com/
http://www2.renesas.com/memory/en/download/M19119EJ1V0UM00.pdf
http://www2.renesas.com/memory/en/download/M19119EJ1V0UM00.pdf
http://www.qdrconsortium.org/presentation/QDR-III-SRAM.pdf
http://www.qdrconsortium.org/presentation/QDR-III-SRAM.pdf
www.rambus.com
http://www.samsung.com/global/business/semiconductor/products/dram/Products_DDR3SDRAM.html
http://www.samsung.com/global/business/semiconductor/products/dram/Products_DDR3SDRAM.html
http://www.samsung.com/global/business/semiconductor/products/dram/Products_DDR3SDRAM.html
http://www.jedec.org
http://www.spmt.org/

150 BIBLIOGRAPHY

[64] JEDEC (joint electron devices engineering council). http://www.jedec.

org/.

[65] Micron Technology, Inc. http://www.micron.com/.

[66] Ralph Schlenk and Christian Hermsmeyer. Scalable architectures for 100 GbE
packet processing. In Proceedings of the 10. ITG Symposium on Photonic Networks,
Leipzig, Germany, May 2009.

[67] GDDR5 SGRAM standard, JESD212, Sep 2009. http://www.jedec.org/.

[68] Micron Technology, Inc., RLDRAM. http://www.micron.com/products/
dram/rldram.html.

[69] Rambus XDR-DRAM, 2010. http://www.rambus.com/us/technology/
solutions/xdr/index.html.

[70] Rambus XDR2-DRAM, 2010. http://www.rambus.com/us/

technology/solutions/xdr2/index.html.

[71] Sundar Iyer, Rui Zhang, and Nick McKeown. Routers with a single stage of
buffering. SIGCOMM Computer Communications Review, 32(4):251–264, 2002.
doi:10.1145/964725.633050.

[72] Cheng-Shang Chang, Duan-Shin Lee, and Ching-Ming Lien. Load balanced
Birkhoff-von Neumann switches with resequencing. SIGMETRICS Perform. Eval.

Rev., 29(3):23–24, 2001. doi:10.1145/507553.507563.

[73] Hao Wang and Bill Lin. Block-based packet buffer with deterministic packet depar-
tures. In Proceedings of the IEEE Workshop on High Performance Switching and

Routing (HPSR), June 2010.

[74] J.M. McCollum, Xike Li, and I. Elhanany. A multistage pipelined memory man-
agement algorithm for parallel shared memory switches. In Circuits and Sys-

tems, 2005. 48th Midwest Symposium on, pages 1911 –1914 Vol. 2, 7-10 2005.
doi:10.1109/MWSCAS.2005.1594499.

[75] Y.-M. Joo and N. McKeown. Doubling memory bandwidth for network buffers. In
Proceedings of the Seventeenth Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM ’98), volume 2, pages 808 –815 vol.2, 29
1998. doi:10.1109/INFCOM.1998.665104.

[76] Sundar Iyer, Ramana Rao Kompella, and Nick Mckeown. Analysis of a memory
architecture for fast packet buffers. In Proceedings of the IEEE Workshop on High

Performance Switching and Routing (HPSR), pages 368–373, 2001.

[77] Sailesh Kumar, Patrick Crowley, and Jonathan Turner. Design of random-
ized multichannel packet storage for high performance routers. In HOTI

’05: Proceedings of the 13th Symposium on High Performance Intercon-

nects, pages 100–106, Washington, DC, USA, 2005. IEEE Computer Society.
doi:10.1109/CONECT.2005.17.

http://www.jedec.org/
http://www.jedec.org/
http://www.micron.com/
http://www.jedec.org/
http://www.micron.com/products/dram/rldram.html
http://www.micron.com/products/dram/rldram.html
http://www.rambus.com/us/technology/solutions/xdr/index.html
http://www.rambus.com/us/technology/solutions/xdr/index.html
http://www.rambus.com/us/technology/solutions/xdr2/index.html
http://www.rambus.com/us/technology/solutions/xdr2/index.html
http://dx.doi.org/10.1145/964725.633050
http://dx.doi.org/10.1145/507553.507563
http://dx.doi.org/10.1109/MWSCAS.2005.1594499
http://dx.doi.org/10.1109/INFCOM.1998.665104
http://dx.doi.org/10.1109/CONECT.2005.17

BIBLIOGRAPHY 151

[78] Feng Wang and M. Hamdi. Matching the speed gap between SRAM and DRAM.
In Proceedings of the IEEE Workshop on High Performance Switching and Routing

(HPSR), pages 104 –109, May 2008. doi:10.1109/HSPR.2008.4734429.

[79] Mohammad Alisafaee, Shabnam Ataee, and Sied Mehdi Fakhraie. Abstract
bandwidth-enhanced waste-free control technique for multi-queue network buffers.
In International Symposium on Telecommunications (IST2005), Shiraz, Iran,
September 2005.

[80] G. Shrimali, I. Keslassy, and N. McKeown. Designing packet buffers with
statistical guarantees. In Proceedings of the 12th Annual IEEE Sympo-

sium on High Performance Interconnects, 2004., pages 54 – 60, 25-27 2004.
doi:10.1109/CONECT.2004.1375202.

[81] G. Shrimali and N. McKeown. Building packet buffers using interleaved memories.
InHigh Performance Switching and Routing, 2005. HPSR. 2005 Workshop on, pages
1–5, May 2005. doi:10.1109/HPSR.2005.1503183.

[82] Sundar Iyer, Ramana Rao Kompella, and Nick Mckeown. Designing packet buffers
for router linecards. Technical report, Stanford University, Department of Computer
Science, High Performance Networking Group, 2002.

[83] J. Garcia, L. Cerda, J. Corbal, and M. Valero. A conflict-free memory banking
architecture for fast VOQ packet buffers. In IEEE Global Telecommunications

Conference (GLOBECOM’03), volume 7, pages 4158 – 4162 vol.7, Dec 2003.
doi:10.1109/GLOCOM.2003.1259010.

[84] J. Garcia, L. Cerda, and J. Corbal. A conflict-free memory banking architecture for
fast packet buffers. Technical report, Polytechnic University of Catalonia (UPC),
Computer Architecture Department, Jul 2002.

[85] Jorge Garcia-Vidal, Maribel March, and Jesus Corbal. A DRAM/SRAM memory
scheme for fast packet buffers. IEEE Transactions on Computers, 55(5):588–602,
2006. doi:10.1109/TC.2006.63.

[86] Feng Wang and M. Hamdi. Scalable router memory architecture based
on interleaved DRAM. In Proceedings of the IEEE Workshop on High

Performance Switching and Routing (HPSR), pages 6 pp.–, 0-0 2006.
doi:10.1109/HPSR.2006.1709682.

[87] Feng Wang and M. Hamdi. Scalable router memory architecture based
on inter-leaved dram: Analysis and numerical studies. In IEEE Interna-

tional Conference on Communications (ICC), pages 6380 –6385, June 2007.
doi:10.1109/ICC.2007.1056.

[88] Feng Wang, Mounir Hamdi, and Jogesh K. Muppala. Using parallel DRAM to scale
router buffers. IEEE Transactions on Parallel and Distributed Systems, 20:710–724,
2009.

[89] Feng Wang and Mounir Hamdi. Memory subsystems in high-end routers. IEEE

Micro, 29:52–63, May 2009. doi:10.1109/MM.2009.45.

http://dx.doi.org/10.1109/HSPR.2008.4734429
http://dx.doi.org/10.1109/CONECT.2004.1375202
http://dx.doi.org/10.1109/HPSR.2005.1503183
http://dx.doi.org/10.1109/GLOCOM.2003.1259010
http://dx.doi.org/10.1109/TC.2006.63
http://dx.doi.org/10.1109/HPSR.2006.1709682
http://dx.doi.org/10.1109/ICC.2007.1056
http://dx.doi.org/10.1109/MM.2009.45

152 BIBLIOGRAPHY

[90] Ed Clarke. FPGAs and structured ASICs: Low-risk SoC for the masses. Design &

Reuse – Industry Articles, January 2006.

[91] Jordan Plofsky. The changing economics of FPGAs, ASICs and ASSPs. RTC Mag-

azine, April 2003.

[92] Xilinx Corporation. Virtex-6 FPGA Memory Resources, UG363 (v1.5) edition,
August 2010. http://www.xilinx.com/support/documentation/

user_guides/ug363.pdf.

[93] Xilinx Corporation. Virtex-6 Family Overview, DS150 (v2.2) edition, January
2010. http://www.xilinx.com/support/documentation/data_

sheets/ds150.pdf.

[94] Altera Corporation. Stratix V Device Family Overview, SV51001-1.3 edition, July
2010. http://www.altera.com/literature/hb/stratix-v/stx5_

51001.pdf.

[95] Institute of Communication Networks and Computer Engineering. The Universal
Hardware Platform (UHP), 2005. http://www.ikr.uni-stuttgart.de/

Content/UHP/.

[96] Altera Corporation. Stratix II Device Handbook, May 2007. http://www.

altera.com/literature/hb/stx2/stratix2_handbook.pdf.

[97] Mentor Graphics Corporation – HDL Designer. Homepage, July 2010. http://
www.mentor.com/products/fpga/hdl_design/hdl_designer_

series/.

[98] Mentor Graphics Corporation – Modelsim. Homepage, July 2010. http://www.
mentor.com/products/fpga/simulation/modelsim.

[99] Mentor Graphics Corporation – Precision Synthesis. Homepage, Novem-
ber 2010. http://www.mentor.com/products/fpga/synthesis/

precision_rtl/.

[100] Altera Corporation. Quartus II Handbook, 10.0 edition, July 2010. http://

www.altera.com/literature/hb/qts/quartusii_handbook_10.

0.pdf.

[101] Thomas Unmuth. Entwurf und Realisierung eines Management-Systems in VHDL.
Studienarbeit, Institut für Kommunikationsnetze und Rechnersysteme, Universität
Stuttgart, October 2006.

[102] Oliver Refle. Entwurf und Implementierung einer Software-Architektur zur
Steuerung eines Hardware-Management-Systems. Studienarbeit, Institut für Kom-
munikationsnetze und Rechnersysteme, Universität Stuttgart, July 2006.

[103] Alexander Schabel. Realisierung einer konfigurierbaren grafischen Bedienoberfläche
in Java für ein FPGA-Management-System. Studienarbeit, Institut für Kommunika-
tionsnetze und Rechnersysteme, Universität Stuttgart, January 2008.

http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.ikr.uni-stuttgart.de/Content/UHP/
http://www.ikr.uni-stuttgart.de/Content/UHP/
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.mentor.com/products/fpga/hdl_design/hdl_designer_series/
http://www.mentor.com/products/fpga/hdl_design/hdl_designer_series/
http://www.mentor.com/products/fpga/hdl_design/hdl_designer_series/
http://www.mentor.com/products/fpga/simulation/modelsim
http://www.mentor.com/products/fpga/simulation/modelsim
http://www.mentor.com/products/fpga/synthesis/precision_rtl/
http://www.mentor.com/products/fpga/synthesis/precision_rtl/
http://www.altera.com/literature/hb/qts/quartusii_handbook_10.0.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook_10.0.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook_10.0.pdf

BIBLIOGRAPHY 153

[104] Arthur Mutter and Martin Köhn. Management-System for hardware designs. Pre-
sentation, November 2006.

[105] Matthew R. Pillmeier, Michael J. Schulte, E. George, and E. George Walters III.
Design alternatives for barrel shifters, 2002. http://www.princeton.edu/
~rblee/ELE572Papers/Fall04Readings/Shifter_Schulte.pdf.

[106] Mentor Graphics Corporation. Precision Synthesis Reference Manual, 2011.

[107] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
26(2):203 –215, February 2007. doi:10.1109/TCAD.2006.884574.

[802.1ah] IEEE Computer Society. 802.1ah: Draft Standard for Local and Metropolitan Area
Networks–Virtual Bridged Local Area Networks, Amendment 6: Provider Backbone
Bridges, November 2007.

[802.3] IEEE Computer Society. 802.3: IEEE Standard for Local and Metropolitan Area
Networks–Carrier sense multiple access with collision detection (CSMA/CD) access
method and physical layer specifications, 2005.

http://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/Shifter_Schulte.pdf
http://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/Shifter_Schulte.pdf
http://dx.doi.org/10.1109/TCAD.2006.884574

154 BIBLIOGRAPHY

Acknowledgments

In the years 2004 to 2010 I was a scientific stuff member at the Institute of Communication
Networks and Computer Engineering (IKR) at the University of Stuttgart. In these six years
I worked in the area of communication networks and digital system design. The interesting
research projects I could work on and the nice colleagues and project partners I had turned this
time into an exiting and great stage of my life.

At first, I’d like to thank Prof. Paul J. Kühn for the opportunity to be a research stuff member
and for the supervision of this thesis. Especially in the last phase of the thesis he gave me a
lot of constructive feedback and never stopped motivating me to go on. I also want to thank
Prof. Andreas Kirstädter –the new institute leader– and Prof. Ernst Biersack from EURECOM
in France for reviewing my thesis and joining the defense.

I want to thank all my former colleagues for the great working environment at IKR. Particular
thanks go to my friends from the High Speed Networks group Sebastian Gunreben (my room
mate), Simon Hauger, Martin Köhn (my mentoring colleague), Sascha Junghans, Detlef Saß,
Joachim Scharf, Frank Feller, Guoqiang Hu, Elisabeth Georgieva as well as to my friends from
the Hardware group Matthias Meyer and Oswin Horvath.

Many people shared the ideas of this theses with me and gave me feedback, reviewed this do-
cument, and helped me during the preparation for the oral defense. As they enabled me to write
this thesis I am very grateful to these people: Simon Hauger, Oswin Horvath, Joachim Scharf,
Jochen Kögel, Marc Necker, Marc Barisch, Thomas Werthmann, and Christian Blankenhorn.
Finally, many thanks to Ulrich Gemkow for the professional advise and feedback on how to
write a thesis.

During my time at university I worked on several bilateral projects with Altcatel Lucent Bell
Labs Germany. These projects were important to me, as the brought the idea for my thesis. For
the great cooperation I’d like to thank especially Gert Eilenberger, Wolfram Lautenschläger,
Lars Dembeck, Jens Milbrandt, and Stefan Bunse.

Finally, I’d like to thank my wife Christine and our daughter Sarah for their patience during
thesis writing and the motivation they gave me every day. I’m looking forward to spend our
time together – starting now. My parents and my brother also supported me consequently. I am
very thankful for this.

155

	Abstract
	Kurzfassung
	Contents
	Figures
	Tables
	Abbreviations and Symbols
	Introduction
	Motivation
	Thesis Contribution
	Thesis Organization

	Packet Buffers for Network Nodes
	Network Nodes
	Types of Network Nodes
	Types of Routers
	Router Architectures
	Backplane
	Buffer Location

	Combined Input/Output-Queued Router

	Packet Buffers
	Overview
	Basic Architecture
	Memory Organization
	Requirements

	Memory Technologies
	Terminology
	Static Random Access Memory (SRAM)
	Dynamic Random Access Memory (DRAM)
	Discussion

	Basic Architectural Approaches
	Overview
	Parallel Memories
	Hybrid Memory Architecture
	Hybrid Memory Architecture with Parallel Subsystems
	Discussion

	Survey of Hybrid Memory Architectures
	Metrics
	Related Work
	Hybrid SRAM/DRAM System (HSD)
	Conflict-Free DRAM System (CFDS)
	Parallel Hybrid SRAM/DRAM System (PHSD)
	Discussion

	A Novel Hybrid Memory Architecture for High-Speed Packet Buffers
	Targets
	Design Considerations and Challenges
	Architecture Proposal
	Architecture
	Degree of Parallelism
	Tail Memory Management Algorithm
	Head Memory Management Algorithm

	Quantitative Assessments
	Tail Buffer Size
	Upper Bound
	Assessment

	Head Buffer Size
	Upper Bound
	Assessment

	Read Latency
	Derivation
	Assessment

	DRAM Resources
	Summary of Results

	Dimensioning Example

	Prototypical Implementation of a Packet Buffer for an Input Line Card
	Targets
	Platform
	Prototype Overview
	Overall System
	Basic Design Properties

	Tail Part
	Block Diagram
	Aggregation Module
	Dispatcher Module
	Dynamic Memory Manager Module
	Short-Cut Module
	Short-Cut Reorder Buffer
	Tail Transferor Module

	Head Part
	Validation
	Functional Tests
	Hardware Resource Requirement and Supported Line Rate
	Summary and Conclusions

	Conclusions
	Summary
	Limitations
	Outlook

	Bibliography
	Acknowledgments

