
Provisioning and Operation of Virtual Networks

KIVS 2011 Workshop on Network Virtualization

Sebastian Meier sebastian.meier@ikr.uni-stuttgart.de 10.03.2011

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter

Outline

What Offers Network Virtualization

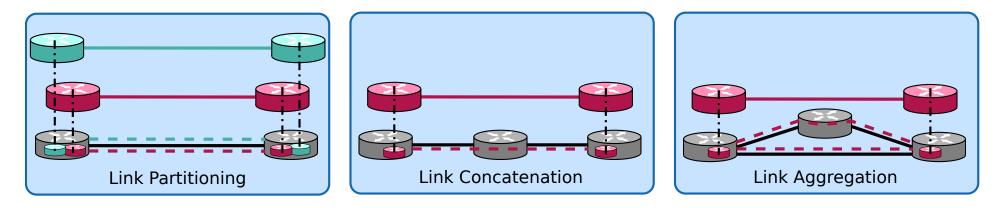
Operation of Virtual Networks

Control and Monitoring Patterns

GMPLS Control Plane

Conclusion and Outlook

Network Virtualization


Network Nodes + Links

Virtual Network Virtual Nodes + Virtual Links

Our View on Virtual Links

- May abstract from physical topology and characteristics
- Can share physical resources with other virtual links

Examples for Virtual Links

Network Virtualization

Network Nodes + Links

Virtual Network Virtual Nodes + Virtual Links

Views on Virtual Nodes

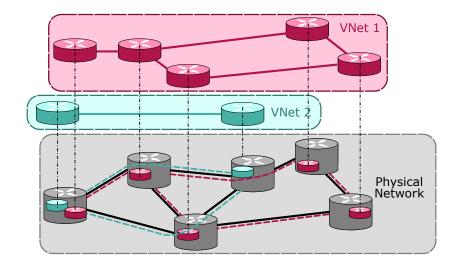
- Network centric view virtual node performs routing and switching
- IT centric view virtual node provides computing or storage resources

Both views have to be well understood

- Identify similarities and differences
- Identify common mechanisms and interfaces for provisioning and management

What offers Network Virtualization?

Abstraction


- From physical topology
- From technology in physical layer

Isolation

- Own address space, protocol stack, routing
- QoS guarantees (e.g. delay, bandwidth, ...)

Cost Efficiency

- "On-Demand" provisioning of virtual networks
- Consolidation, e.g. multiple virtual servers on shared physical server
 - \rightarrow Economy of scale

What offers Network Virtualization?

New Role Model (Based on 4WARD Role Model)

- Traditionally Internet Service Provider (ISP) owns and operates the network
- Virtualization separates network operation from infrastructure administration Virtual Network Operator (VNO)
 - Administrates enabler services (e.g. Routing, DNS)
 - Controls and monitors virtual network

Phyical Infrastructure Provider (PIP)

- Owns physical infrastructure
- Offers virtual resources hosted by physical resources
- May specialize on certain resource types
- Mapping of virtual network to resources of PIPs is difficult
 → Additional Role: Virtual Network Provider (VNP)
- New services might require expert knowledge for operation
 - \rightarrow Additional Role: Application Service Provider (ASP)

ISP

ASP

VNO

VNP

PIP

Role Interaction

Virtual Network Provisioning

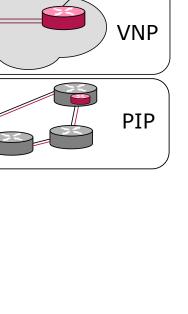
- Focus on creation of virtual network
- Negotiation between VNO, VNP and PIP
- Requires interfaces to request, interconnect and manage virtual resources
- \rightarrow Addressed by a couple of projects

Our focus: Operation of Carrier Grade Virtual Networks

- Adjustment of existing virtual networks
- Optimization of mapping between virtual and physical resources
- Error handling
- Proactive network adjustments
- \rightarrow Reuse and refine existing provisioning interfaces
- \rightarrow Define additional role interactions and interfaces if required

Virtual Network Operation

Indirection and Abstraction

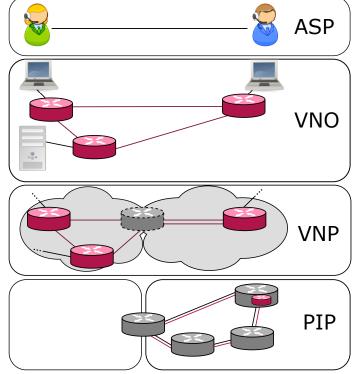

- Each role may introduce abstractions
- Each role may have its own view
- Virtual Network Operation requires interaction between different roles
- \rightarrow Mapping of abstract views is required

Example on Different Views

- ASP users, end-to-end delay, buffer fill levels, ...
- VNO addresses, routing settings, link utilization, ...
- VNP composition of virtual network
- PIP mapping of virtual to physical resources,detailed information on physical resources in own domain

Mapping of different abstract views is challenging

A

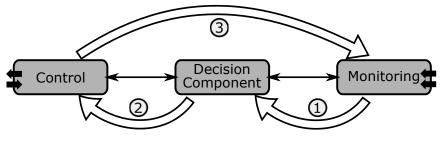

ASP

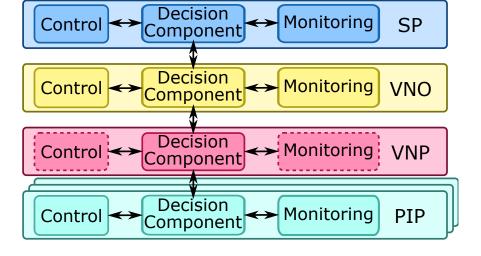
VNO

Virtual Network Operation

Example for Mapping of Abstract Views

- Identification of entities
 - ASP users (user clients), servers
 - VNO IP addresses
 - \rightarrow Mapping required
- Identification of (mis)behaviour
 - ASP
 - observes a symptom (e.g. video buffer low)
 - may only guess cause (e.g. insufficient bandwidth)
 - VNO
 - observes underlying cause (e.g. fully loaded link)
 - must be able to relate cause to a symptom
 (e.g. a fully loaded link may be fine for some services, but a problem for others)
- \rightarrow Typical and problematic characteristics have to be known across roles
- \rightarrow Characteristics have to be specified by overlying role

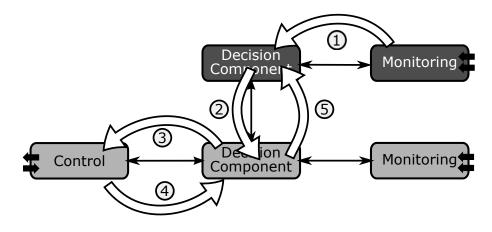

Control and Monitoring Patterns


Horizontal Control Loops

- Monitoring supervises functionality provided by role
- Decision component (DC)
 - is informed by monitoring of current state
 - decides whether adjustments are required
 - decides whether adjustment can be done within role
- Control carries out adjustments

Example for Horizontal Control Loop in PIP

- Monitoring detects increasing bit error rate on interface of physical node
- DC decides to relocate virtual paths using affected interface
- Control triggers signaling to relocate virtual paths

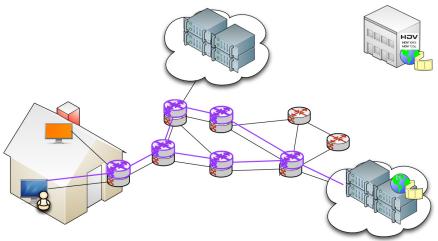

Control and Monitoring Patterns

Vertical Control Loops

- Vertical Control loops are used for interaction between adjacent role
- For example, interactions might be necessary for
 - problem escalation
 - proactive adjustments
- DC is responsible for mapping between different views when interacting

Example for Vertical Control Loop between ASP and VNO

- 1. Monitoring in ASP detects high end-to-end delay
- 2. DC of ASP reports problem to DC of VNO
- 3. DC of VNO tries to solve problem by route optimization
- 4. Control is triggered to adjust routing
- 5. Result is reported to ASP's DC



Demonstrator Implementation

Demo Scenario: Video Streaming Service

- Focus
 - Application and network operation
 - Interaction between application and network
- Simplifications
 - role model (combine ASP+VNO, VNP+PIP)
 - single domain scenario
- Application HD Video streaming using scalable video codec
- Network

IPv4 Network operated via Generalized Multi-Protocol Label Switching (GMPLS)

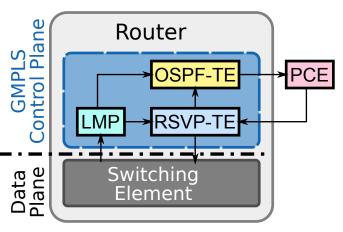
GMPLS Control Plane

Overview

Motivation for Control Plane Usage

• Complexity of today's and future networks calls for control plane assisted management

KIVS WS NV 2011


• Dynamic modifications to virtual networks require automation to some extent

Generalized Multi-Protocol Label Switching (GMPLS)

- Technology independent framework for network control
- Relies on protocols standardized by IETF

GMPLS Components

- LMP (Link Management Protocol)
 Discovers adjacencies on data and control plane
- OSPF-TE (Open Shortest Path First) Disseminates network topology and traffic engineering information
- PCE (Path Computation Element)
 Performs constraint based path computation
- RSVP-TE (Resource Reservation Protocol) Signals path requests and configures switching elements

13

GMPLS Control Plane

Virtualization Extensions

Why GMPLS?

- Components are well standardized and quite matured
- Supports computation, and signaling of Label Switched Paths (LSP)
- \rightarrow LSP is quite similar to a virtual link!
- \rightarrow Reuse existing parts, extend missing components for network virtualization

Towards a Virtualization Enabled GMPLS Control Plane

- Open source GMPLS implementation required for extension
 - No up-to-date implementation for signaling protocol RSVP-TE
 - No implementation for path computation element (PCE)
- We implement missing components based on RFCs
- Status of the implementation
 - RSVP-TE is almost complete
 - PCE implementation started last month

COMCON – COntrol and Monitoring of COexisting Networks Consortium of G-Lab Phase 2

• 5 partners from industry and academia

Excerpt of Current Topics

- DOCOMO Mapping of reference architecture
 on Next Mobile Network
- Infosim
 Definition of monitoring architecture
 for virtual networks
- NSN Analysis of combined resource management and control of IT and network resources
- Universität Stuttgart Fixed core network control plane
- Universität Würzburg Monitoring for multi-path scalable video codec transmission

docomo

DOCOMO Euro-Labs

Universität Stuttgart

Conclusion

- Indirection and abstraction is a major challenge for operation of virtual networks
- In error cases even simple problems might be difficult to resolve
- Typical and problematic characteristics have to be known across roles

Outlook

- Implement Demonstrator for simple scenario
- Extend GMPLS for network virtualization
- Evaluate interaction between different roles for selected scenarios