
YouQoS – A new Concept for Quality of Service
in DSL based Access Networks

Sebastian Meier, Alexander Vensmer, and Kristian Ulshöfer?

Institute of Communication Networks and Computer Engineering (IKR),
University of Stuttgart, 70569 Stuttgart, Germany,

{sebastian.meier,alexander.vensmer}@ikr.uni-stuttgart.de
kristian.ulshoefer@gmail.com

Abstract. Today’s Internet users typically own multiple devices and
consume several services simultaneously. Due to this usage pattern, band-
width in Access Networks (ANs) is often insufficient. Increasing band-
width is not always feasible or economic. A well-known approach to cope
with limited bandwidth is Quality of Service (QoS) enforcement. How-
ever, today’s QoS solutions are neither accepted by providers nor by
users. Users are concerned because of network neutrality. Operators hes-
itate adopting QoS frameworks because they typically require end to
end deployment. In this paper we present YouQoS – a solution, which
addresses operators’ as well as users’ concerns by providing a QoS solu-
tion, which works locally in the AN based on user defined QoS policies.
We introduce our evolutionary approach to QoS management in today’s
Digital Subscriber Line (DSL) based ANs by utilizing and enhancing
existing QoS mechanisms. Furthermore, we provide an initial proof of
concept with a Linux demonstrator.

Keywords: Quality of Service, Access Networks

1 Introduction

Bottlenecks in packet switched networks negatively influence QoS. In particu-
lar they have impact on packet loss, delay, and bandwidth. In the past, many
approaches (such as IntServ [5] and DiffServ [4]) have been proposed to mi-
grate from best effort to QoS enabled networks. QoS architectures have been
deployed to some extent in ANs to manage services offered by the Internet Ser-
vice Provider (ISP) (e.g. IP telephony). However, to the best of our knowledge
these approaches have not been deployed widely for managing QoS of Inter-
net traffic in the AN. One of the reasons for not adopting these approaches (in
particular IntServ) is that they typically assume end to end deployment.

However, in today’s networks, bottlenecks are commonly located in the ANs.
Particularly in rural areas, many households are connected to the Internet with
low bandwidth. A Study for DSL ANs in Germany has shown that 38% of

? At the time of writing, Kristian Ulshöfer was a student at the IKR.

A. Gravey, Y. Kermarrec (Eds.) 1 EUNICE 2014



2. STATE OF THE ART OF QOS MANAGEMENT IN DSL ANS

subscribers are connected to the Internet with as little as 6 MBit/s. The “ICT
Facts and figures” report from 2014 [9] shows that these observations can be
transferred to other countries, as well.

These conditions are insufficient for today’s user behavior, which is char-
acterized by consuming several services (e.g. VoIP and Download) and using
several end-devices simultaneously. We assume that this problem persists even
with improving (e.g. very high speed digital subscriber lines [11]) and new AN
technologies (e.g. gigabit passive optical networks [10]) as service demands will
increase as well (e.g. 4K video streaming).

In contrast to previous end to end QoS approaches we propose a QoS solution,
which operates locally in the AN based on user defined policies. This approach is
promising, since it has several advantages for network operators as well as users
(subscribers) as outlined in the following.

On the one hand, our approach supports gradual deployment as YouQoS ex-
tensions can be limited to a single AN. In the simplest case, upgrading a single
AN device is sufficient. On the other hand, user satisfaction can be increased
by efficient QoS management without having to increase the subscriber’s band-
width.

Furthermore, the user is able to specify the prioritization of the services she
consumes. This is beneficial in two ways. On the one hand, the user knows best,
which services are important compared to others. On the other hand, enabling
the user instead of the service provider to influence service prioritization miti-
gates the problem of network neutrality.

Our solution enforces QoS on the last mile, which is usually the Local Loop
(LL) in DSL ANs. The last mile is typically assigned to an individual subscriber.
In contrast to DiffServ we therefore can trust a user’s prioritization as his deci-
sions only impact his services but never influence the services of other users.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the state of the art of QoS management in DSL ANs. Section 3
presents an overview of the YouQoS architecture, its functional blocks and their
placement. We detail the architecture of the functional block for YouQoS Pol-
icy Selection in section 4, and its implementation in section 5. In section 6 we
conclude the paper and discuss our next steps.

2 State of the Art of QoS Management in DSL ANs

Figure 1 depicts the basic structure of a DSL AN. Although we simplified the
topology, it contains all relevant network elements, including the Local Area
Network (LAN) of a residential customer.

A Home Gateway (HG) connects one or several User Devices (UDs) (e.g.
PC, smart TV, mobile) to the network. Today’s HGs usually deploy basic QoS
mechanisms (e.g. stochastic fairness queuing [12]). Although statically config-
ured, they guarantee some fairness between several UDs or services competing
for upstream bandwidth.

A. Gravey, Y. Kermarrec (Eds.) 2 EUNICE 2014



2. STATE OF THE ART OF QOS MANAGEMENT IN DSL ANS

1 2 3

4 5 6

7 8 9

* 0 #

POWER

SIGNAL

Access Network

LAN

BRAS
DSLAM

HG

LL
(Bottleneck)

UD

UDUD

ISP 
core network,

Internet,...

Fig. 1. DSL Access Network

A Digital Subscriber Line Access Multiplexer (DSLAM) terminates DSL LLs
of several subscribers. Depending on the deployment model, a DSLAM connects
from several dozens subscribers (decentralized outdoor deployment) up to several
thousand subscribers (central office deployment) [14]. First generation DSL ANs
utilized Asynchronous Transfer Mode (ATM) on the data link layer. Although
ATM offers sound QoS mechanisms, network operators typically made little use
of ATM’s QoS features in DSLAMs. Today’s Ethernet based DSLAMs become
increasingly sophisticated. Recently, IP functionality is being added to DSLAMs.
This trend is motivated by operators’ demand for “Broadband Remote Access
Server (BRAS) offloading”, i.e. moving functionality from BRAS to DSLAMs.
Offloading may include QoS differentiation, e.g. based on priority levels of virtual
LAN tags [8].

A BRAS connects DSLAMs to the ISP’s core network. It may handle up to
128.000 subscribers [13]. Since the introduction of “Triple-Play”, the BRAS plays
a central role in managing QoS for downstream traffic [2], [13]. Early architecture
proposals [2] envisioned the BRAS to perform scheduling on packet level based on
policies associated with subscriber sessions. However, these policies were rather
static and only able to apply QoS differentiation to a small set of services offered
by the ISP (e.g. IPTV). They didn’t cover Internet traffic, which was always
classified as best effort traffic. New proposals [6] identify requirements regarding
extensions to the existing multi-service architecture, e.g. “QoS on Demand” and
“near real time QoS changes”. These proposals introduce sophisticated queuing
and scheduling hierarchies within a BRAS for QoS enforcement on subscriber
and even application level. These architecture extensions would allow applying
QoS differentiation to Internet services and applications.

However, to the best of our knowledge, there are still plenty of open issues
regarding the specification and realization of this architecture. In this paper
we tend to go beyond the state of the art by providing a solution for swift
determining and signaling of application QoS requirements.

A. Gravey, Y. Kermarrec (Eds.) 3 EUNICE 2014



3. YOUQOS ARCHITECTURE

3 YouQoS Architecture

This section provides an overview on the overall YouQoS architecture. We in-
troduce its functional blocks, which are depicted in figure 2 and discuss their
placement. Additionally, we introduce our approach for specifying user defined
QoS policies.

Policy Selection

Policy Change

Request
Policy

Enforcement
YouQoS
Policies

Context
Aquisition

Policy Processing

Fig. 2. Functional blocks of the YouQoS architecture

3.1 YouQoS Policies

YouQoS Policies are user defined rules for specifying the prioritization of the
services that the user consumes. The underlying assumption is that there doesn’t
exist a “one size fits all” QoS parameterization. For instance, a gamer might be
interested in prioritizing gaming traffic while a home office user might want to
prioritize video conference calls.

Furthermore, we assume that QoS prioritization depends on context informa-
tion. For instance, a video stream played back on a smart phone might decrease
in priority, if the user places the phone screen side down on a table. Detecting
this kind of dependencies automatically can be challenging if not impossible.

Therefore, our YouQoS policy approach combines context information as well
as user preferences for determining QoS prioritization. To achieve this task, we
propose a policy based approach. A YouQoS Policy consists of attributes and a
prioritization result. Attributes may match on flow state and properties as well
as device state and properties, see table 1 for examples. Currently, a policy’s
prioritization result encodes a relative priority.

The following subsection details, how our architecture selects YouQoS Poli-
cies and utilizes their prioritization result for policy enforcement.

Policy Attribute Examples

User name Sebastian, Alexander, Kristian

User activity foreground tab in browser, screen saver state

Application name Chrome, Skype

Flow information Transport layer port, source IP address

Table 1. Attributes of YouQoS Policies (excerpt)

A. Gravey, Y. Kermarrec (Eds.) 4 EUNICE 2014



3. YOUQOS ARCHITECTURE

3.2 Policy Selection

This functional block selects YouQoS Policies based on context information. It
consists of the two sub functions: Context Acquisition and Policy Processing.

Context Acquisition keeps track of all information, which is relevant to
policy attributes, in particular state changes in the system. This includes system
wide state information (e.g. active/visible application) on the one hand, as well
as flow related state information (e.g. application name) on the other hand.

Policy Processing is triggered by Context Acquisition. Based on the trigger
it searches for policies, which are sensitive to the state changes discovered by
Context Acquisition. Based on matching policies the selection block generates
Policy Change Requests, which are signaled towards the functional block Policy
Enforcement.

A Policy Change Request specifies a QoS priority and defines, which
packets should be treated with the designated priority. For the latter, a Policy
Change Request provides a flow definition consisting of source/destination IP
address, source/destination port, and transport layer protocol.

3.3 Policy Enforcement

The main task of Policy Enforcement is to differentiate the priority of flows.
Policy Enforcement achieves this by creating an artificial, yet fully controllable
bottleneck. With this approach, QoS differentiation can be achieved by dropping,
delaying or preferring individual packets. These tasks are typically carried out
by packet schedulers whose internal algorithms decide the order in which packets
from each flow are transmitted on the link.

As shown in section 2, QoS adaptations become increasingly dynamic. We
therefore assume that network devices (e.g. BRAS) provide interfaces for con-
figuration and parameterization of their queues and schedulers. These interfaces
may be proprietary or device specific and their realization is out of our scope.

With QoS Policy Change Requests, we provide a device independent de-
scription for signaling per flow prioritization information. Concerning packet
processing on the data plane, little extensions to a network device are required.
A small extension for translating between our device independent QoS Policy
Change Requests and proprietary packet scheduler interfaces is sufficient.

Enforcement of QoS Policy Change Requests should only affect traffic of the
user that created the request and must not interfere with the QoS perceived by
other subscribers. Typically, this requirement is implicitly fulfilled by the AN
topology, in which the LL is the bottleneck and other shared resources are over-
dimensioned. In case of oversubscribed ANs, the provider typically enforces fair
sharing of available resources by traffic shaping. Regarding QoS Policy Change
Requests, the network operator has to ensure, that operator defined traffic shap-
ing has precedence over user defined policies. This ensures, that user defined QoS
policies cannot impact the QoS of other subscribers.

Since network operators are likely critical of user initiated QoS Policy Change
Request signaling, special care has to be taken regarding the control plane.

A. Gravey, Y. Kermarrec (Eds.) 5 EUNICE 2014



3. YOUQOS ARCHITECTURE

Although control plane details are out of scope of this paper, we have identified
several challenges which we intend to address, e.g.:

– Authentication and authorization of QoS Policy Change Requests. In case
of DSL ANs, reuse of existing infrastructure for subscriber management
seems feasible at first glance. However, a more thorough evaluation of our
assumption is necessary.

– Robustness in terms of signaling and processing load. Network devices are
typically dimensioned to handle a predefined number of policies per sub-
scriber on the one hand, and a maximum signaling rate on the other hand.
Suitable mechanisms are required to enforce these limitations, preventing
a (misbehaving) user to compromise the stability of the system. For our
scenario, a very simple approach for achieving this goal is discarding QoS
Policy Change Requests, in case a user violates any of the aforementioned
constraints.

3.4 Placement of YouQoS Functional Blocks

As figure 3 depicts, we consider the following devices for functional placement:
UD, HG, DSLAM, and BRAS. Regarding the functions we differentiate between
Context Aquisition (CA), Policy Processing (PP), and Policy Enforcement (PE).
In this section we discuss, which devices are suitable for hosting which functional
blocks.

1 2 3

4 5 6

7 8 9

* 0 #

POWER

SIGNAL

AN

LAN

BRAS
DSLAM

HG

LL

UD

UDUD

PP

PE

CA

PPCA

PE

(a) PP and CA on UDs,
PE on BRAS and HG

1 2 3

4 5 6

7 8 9

* 0 #

POWER

SIGNAL

AN

LAN

BRAS
DSLAM

HG

LL

UD

UDUD

PE

CA

PP

CA

PE

(b) CA on UDs, PP on HG,
PE on DSLAM and HG

Fig. 3. Functional placement examples

Context Acquisition is typically carried out on UDs, as necessary infor-
mation is only available there. We acknowledge the existence of legacy devices,
which might not be able to perform context acquisition themselves (e.g. IP tele-
phones). We cover that case in our Policy Processing function, which we explain
in the following.

Policy Processing can be performed on all considered devices, in principle.
However, there are advantages and disadvantages regarding each choice.

Processing on the UD has the advantage that the policies are always available,
independently of UD location, which facilitates using YouQoS on mobile devices.

A. Gravey, Y. Kermarrec (Eds.) 6 EUNICE 2014



4. POLICY SELECTION BLOCK ARCHITECTURE

On the other hand, keeping policies on separate UDs is cumbersome, in case
a user owns several UDs (e.g. smart TV, smart phone, laptop). Furthermore,
following this approach strictly, would exclude consideration of legacy devices.

Processing on the HG has the advantage that devices are managed centrally
from the user’s point of view. Keeping a central repository facilitates manage-
ment of YouQoS Policies for devices present in a user’s LAN. A HG could further-
more support management of legacy devices such as IP telephones, for instance
by defining static device policies.

Processing on the DSLAM or BRAS (i.e. on devices owned by the network
operator) is possible in principle. However, changes in context information may
occur frequently. As these changes trigger Policy Processing, signaling these
frequent changes introduces overhead. This overhead might be acceptable while
being local to a device or LAN. However, we assume that the overhead becomes
unacceptably high, if signaling has to traverse the LL bottleneck. Therefore, we
don’t consider DSLAM or BRAS as suitable candidates for Policy Processing.

Policy Enforcement has to be placed before the bottleneck. As “before”
depends on the traffic direction, we discuss upstream and downstream traffic
separately.

For prioritizing upstream traffic HG and UD are suitable candidates. In a
LAN environment, typically multiple devices compete for bandwidth on the LL
bottleneck. Therefore, policy enforcement is best placed at an element, which
has full control over this bottleneck. In our scenarios, this element is usually the
HG.

For prioritizing downstream traffic, BRAS and DSLAM are suitable candi-
dates. In contrast to the upstream direction, selecting the best location is less
obvious. The decision depends on factors such as network topology, network
size, number of subscribers, network element capabilities, and network operator
preferences.

In the next section we detail the design of our architecture’s functional blocks.
Since Policy Enforcement is usually a simple translation between QoS Policy
Change Requests and internal scheduler interfaces (see section 3.3), we focus on
the Policy Selection functional block in the following.

4 Policy Selection Block Architecture

4.1 Basic principles

Regarding the Policy Selection block, our main goal is to provide an easy to use,
application independent solution.

Easy to use means that complexity is hidden from the user. We do not expect
that a user knows, whether his services are sensitive to packet delay, loss, or
bandwidth. Particularly, we do not want users to define QoS targets (e.g. delay,
loss) on a flow basis. Instead, we intend to provide a simple interface to the
user, which allows intuitive prioritization, i.e. a “priority dial” for applications.
Special care has to be taken that a user can always undo any priority changes,
in case they have unforeseen or unintended impact.

A. Gravey, Y. Kermarrec (Eds.) 7 EUNICE 2014



4. POLICY SELECTION BLOCK ARCHITECTURE

Monitor

Context Manager

Monitor Dispatcher

YouQoS Daemon

GUI Classifier

Policy Enforcement

U

Y

M

Policy Selection

Policy Processing

Context Acquisition 

Fig. 4. Functional block for Policy Selection

Application independent means that we don’t intend to patch applications
for providing YouQoS functionality. Instead our approach is to utilize existing
operating system interfaces for acquiring system and application state informa-
tion. A YouQoS Daemon collects and processes this information.

The advantage of this approach is that all applications that run on a YouQoS
enabled platform may benefit from our QoS policies. Although our initial design
was intended for Linux, our approach is generic enough for being ported to other
platforms, such as iOS or Android, for instance.

The following subsection details the internals of the YouQoS Daemon and its
interaction with external entities.

4.2 Components and Interfaces

Figure 4 shows the three core components (Monitors, YouQoS Daemon, and
GUI ) as well as external interfaces (U, M, Y ) of the YouQoS Policy Selection
block.

Monitors are the main component of Context Acquisition. They are re-
sponsible for collecting state information related to the entire system, particu-
lar applications, or individual flows. Each individual Monitor is responsible to
collect exactly one type of state information (e.g. active network flows). Moni-
tor implementations may differ in many aspects, such as exported data (kind,
frequency, amount), privileges (user privileges, root privileges), or environment
(kernel space, user space). Despite those differences, the YouQoS Daemon pro-
vides a unified interface M for interacting with Monitors. Our approach was
to define a simple yet flexible and extensible message based protocol for the M
interface. In the current implementation of our architecture, we utilize this inter-
face for Inter-process communication (IPC) between Monitors and the YouQoS
Daemon. However, the design approach supports information exchange across
system boundaries, in principle. This allows to carry out Context Acquisition
and Policy Processing on different systems, which gives us more degrees of free-
dom for functional placement, see section 3.4.

A. Gravey, Y. Kermarrec (Eds.) 8 EUNICE 2014



5. POLICY SELECTION BLOCK IMPLEMENTATION

The YouQoS Daemon consists of three sub-components: a Monitor Dis-
patcher for managing Monitor instances, a Context Manager for keeping track
of state information, and a Classifier for selecting policies. It relies on these
components to generate Policy Change Requests, which are signaled over the Y
interface to the Policy Enforcement. We provide a more detailed description of
these sub-components in the following.

The Monitor Dispatcher selects Monitors, which are suitable for the sys-
tem environment. For instance, on a Linux system with an X Window System,
the Monitor Dispatcher selects a Monitor instance for capturing X Window
events (e.g. foreground window). Furthermore, the Monitor Dispatcher param-
eterizes properties of Monitors. Properties are typically related to the kind and
amount of data a Monitor exports. For instance, a Monitor that provides flow
information may be configured to not export information about short-lived flows
(e.g. DNS requests).

The Context Manager creates for each application, which is managed by
the YouQoS Daemon, context information necessary for policy management.
This includes keeping track of and acting upon state changes. However, the
Context Manager doesn’t perform actions on its own. It rather creates and dis-
patches events based on context changes and selects suitable sub-components
for event handling. For instance, a new connection typically requires classifica-
tion for QoS policy selection. Therefore, in this example the Context Manager
would trigger the Classifier component for further processing. Other events, e.g.
when the user closes an application require policy deletion, which is handled by
another sub-component (not depicted).

The Classifier has an internal database for storing user-defined YouQoS
Policies. Based on trigger events from the Context Manager, the Classifier creates
database requests for retrieving matching policies. A YouQoS Policy matches
if and only if all of its attributes coincide with the current system state and
application specific context information. In case multiple policies match, the
Classifier may select a subset based on further criteria such as policy priorities,
or number of exactly matching attributes. The classification result is signaled to
the Policy Enforcement by an additional sub-component (not depicted).

The GUI provides user friendly access to the U interface, which allows to list,
add, edit, and delete user defined YouQoS Policies. Similar to the M interface,
the U interfaces relies on a simple protocol for managing YouQoS Policies. The
architecture doesn’t have any constraints regarding the realization of the GUI -
in particular neither where nor how the GUI should be implemented.

5 Policy Selection Block Implementation

We implemented a fully functional prototype of the YouQoS Daemon for a Linux
system. In addition to the daemon we also implemented two monitors and a web
based graphical user interface.

For functional evaluation of interaction between Policy Selection (i.e. YouQoS
Daemon) and Policy Enforcement we relied on the Linux traffic shaping frame-

A. Gravey, Y. Kermarrec (Eds.) 9 EUNICE 2014



5. POLICY SELECTION BLOCK IMPLEMENTATION

work[1]. This framework is powerful enough to emulate the scheduling capabili-
ties of a DSLAM or BRAS.

In the following we present selected components and aspects of our imple-
mentation.

5.1 Functional View

The X Server Monitor is realized as a user space process. By using the Xlib
helper library it queries information about the graphical user interface envi-
ronment from the X Server [7]. It monitors which application is running in
foreground and whether the screen saver is active.

The Connection Monitor is implemented as a Linux kernel module. It utilizes
information gathered by the Linux kernel Conntrack subsystem [15], which keeps
track of a computer’s connections by inspecting network packets.

We implemented the M interface, which we utilize for communication between
YouQoS Daemon and Monitors by relying on Netlink [3]. Netlink provides socket
oriented communication, which supports IPC between user space processes, as
well as exchanging information between user space and kernel space.

The YouQoS Daemon is implemented as a user space process. For our pro-
totype, the Classifier uses a SQL based database as a backend for storing and
retrieving YouQoS Policies. We decided to provide a web based graphical user
interface and therefore utilize HTTP for the U interface. This enables a user
to list, add, delete, and edit YouQoS policies conveniently by using a browser.
Therefore, our implementation includes a simple web server for translating be-
tween SQL database entries and Ajax enriched HTML.

5.2 Information Flow

In the following we outline interactions and information flow in our prototypic
implementation of the YouQoS architecture by using a small example. We con-
sider a UD, which hosts the YouQoS Policy Selection consisting of YouQoS
Daemon, Monitors and GUI. Our starting point is that the YouQoS Daemon is
running and its initialization (e.g. Monitor setup) is complete. We assume that
the user previously defined two simple YouQoS Policies: a gaming policy which
gives high priority to an online game application and a second policy giving low
priority to FTP downloads. Now, the user starts an online game, while an FTP
download is running in the background.

Figure 5 depicts the procedure from initial connection detection until Policy
Change Request signaling in the YouQoS architecture.

The Connection Monitor detects a connection establishment of the online
game and extracts a 6-Tuple consisting of source and destination IP address,
source and destination port number, transport protocol, and process ID. It en-
capsulates this information in a Netlink messages and forwards this message
from kernel space to the user space YouQoS Daemon.

The Monitor Dispatcher receives the message, extracts its payload and for-
wards the extracted state information to the Context Manager.

A. Gravey, Y. Kermarrec (Eds.) 10 EUNICE 2014



6. SUMMARY AND FUTURE WORK

Monitor
Dispatcher

Context
Manager

Signaling
BackendClassifier

get 6-tuple

Netlink
message

new connection
(incl. 6-tuple) update

online game
context

perform
policy lookup

Policy Change
Request

new connection
event

policy change
event

Policy
Enforcement

Policy Selection

YouQoS Daemon

Connection
Monitor

Fig. 5. Message sequence chart for triggering a Policy Change Request

The Context Manager checks, whether there already exists a context for
association of the received state information. In our example that’s not the
case. Therefore, the Context Manager creates a new application context and
assigns related state to the newly created context (e.g. connection information).
Furthermore, the Context Manager performs a lookup based on the process ID
for identification of the application name. Afterwards, the Context Manager
creates an event which triggers the Classifier to perform a policy lookup.

For determining matching YouQoS Policies, the Classifier performs a database
lookup. The database query is based on the application’s context which includes
information about it’s connections, but also about the overall system state. In
our example we assume that the Classifier finds a matching policy. It triggers
the Signaling Backend to create a Policy Change Request for the online game,
which is sent to the Policy Enforcement.

The Policy Enforcement point receives the Policy Change Request and ex-
tracts all required information for identifying packets belonging to the online
game’s connection. It parameterizes its internal packet scheduler to treat on-
line game traffic with a higher QoS priority than packets belonging to the FTP
download. Therefore, the user is able to enjoy the online game, without being
impaired by the FTP transfer running simultaneously.

6 Summary and Future Work

In this paper we introduced our YouQoS architecture, its functional blocks and
their placement for user defined Quality of Service enforcement in DSL access
networks. Based on the current state of the art, we presented how our architec-
ture utilizes and enhances existing QoS mechanisms. We detailed the design of

A. Gravey, Y. Kermarrec (Eds.) 11 EUNICE 2014



7. ACKNOWLEDGEMENTS

the YouQoS Policy Selection block and demonstrated its feasibility by a proto-
typic Linux implementation. It is worth considering, whether our approach can
be transferred to other access network technologies beyond DSL, as well.

Our next steps include enhancing our Policy Change Request, which cur-
rently requests relative QoS priorities towards requesting QoS requirements in
more detail (e.g. delay and bandwidth requirements). Considering the overall
architecture, we intend to explore the role of the Home Gateway considering
aspects such as integration of legacy devices and central Policy Selection for
multiple user devices.

7 Acknowledgements

This work was funded by the Federal Ministry of Education and Research of
the Federal Republic of Germany (Förderkennzeichen 16BP1211, YouQoS). The
authors alone are responsible for the content of the paper.

References

1. Almesberger, W., Ica, E.: Linux Network Traffic Control - Implementation
Overview (1999)

2. Anschutz, T., Allan, D., Thorne, D.: DSL Evolution - Architecture Requirements
for the Support of QoS-Enabled IP Services. Tech. rep., DSL Forum

3. Ayuso, P.N., Gasca, R.M., Lefèvre, L.: Communicating between the kernel and
user-space in Linux using Netlink sockets (2010)

4. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services (1998), http://www.ietf.org/rfc/rfc2475.txt

5. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture:
an Overview (1994)

6. Cui, A., Allan, D., Thorne, D.: Broadband Multi-Service Architecture & Frame-
work Requirements. Tech. rep., DSL Forum

7. X.Org Foundation: Homepage of X.Org Project. http://www.x.org/ (May 2014)
8. IEEE: 802.1Q-2011, Media Access Control (MAC) Bridges and Virtual Bridged

Local Area Networks. IEEE Standard 802.1Q-2011 (2011)
9. ITU: The World in 2014: ICT Facts and Figures. Tech. rep., ITU

10. ITU-T: G.984.1 : Gigabit-capable passive optical networks (GPON): General char-
acteristics. ITU-T Recommendation G.984.1 (2008)

11. ITU-T: G.993.2 : Very high speed digital subscriber line transceivers 2 (VDSL2).
ITU-T Recommendation G.993.2 (2011)

12. McKenney, P.E.: Stochastic fairness queueing. In: INFOCOM’90, Ninth Annual
Joint Conference of the IEEE Computer and Communication Societies. The Mul-
tiple Facets of Integration. Proceedings, IEEE. pp. 733–740. IEEE (1990)

13. Shrum, E., Allan, D., Thorne, D.: Broadband Remote Access Server (BRAS) Re-
quirements Document. Tech. rep., DSL Forum

14. Agilent Technologies: Understanding DSLAM and BRAS Access Devices. White
Paper (2006)

15. Welte, H., Ayuso, P.N.: Homepage of Netfilter project. http://conntrack-tools.
netfilter.org/ (May 2014)

A. Gravey, Y. Kermarrec (Eds.) 12 EUNICE 2014


