
Copyright Notice
c© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications,
pp. 517–524, August 2005, Hong Kong.

An On-Chip Garbage Collection Coprocessor for Embedded Real-Time Systems

Matthias Meyer
Institute of Communication Networks and Computer Engineering

University of Stuttgart, Germany
meyer@ikr.uni-stuttgart.de

Abstract
Garbage collection considerably increases programmer pro-
ductivity and software quality. However, it is difficult to
implement garbage collection both efficiently and suitably for
real-time systems. Today, garbage collection is exclusively
realized in software and either fails to guarantee a small
upper bound for pause times or suffers from considerable
synchronization overhead.

In this paper, we present the design and implementation
of an on-chip garbage collection coprocessor that closely
cooperates with the main processor. The benefits of this con-
figuration include low garbage collection overhead, low-cost
synchronization of collector and application programs, and
hard real-time capabilities.

We successfully realized the garbage collection coproces-
sor along with a pipelined RISC processor on a single FPGA.
Performance measurements on the prototype show that the
longest pauses caused by the garbage collector are less than
500 clock cycles and that the total runtime overhead is as lit-
tle as a few percent if the application is provided with a rea-
sonable amount of memory headroom.

1. Introduction
Software quality is the most fundamental requirement for
security- and safety-critical embedded systems. While a
faulting desktop application might be annoying and ruin
hours worth of work, a single error in an embedded system
can have disastrous consequences such as causing consider-
able damage or even harming people. Facing the constantly
growing complexity of embedded systems, it becomes more
and more important to support correct and robust software for
these sensitive systems by appropriate design methods and
architectures.

A widely accepted method to control software complex-
ity and to increase software quality is automatic dynamic
memory management, also referred to as garbage collection.
Unfortunately, it is difficult to implement garbage collection
for real-time systems. Because of high overhead and unpre-
dictable pauses, most embedded system designers still con-
sider garbage collection an unaffordable luxury. Conse-
quently, they have to resort to manual memory management
with the well-known problems: Freeing memory too early
causes “dangling references”, while freeing memory too late

or not at all gives rise to memory leaks. But worst of all, man-
ual memory reclamation requires the programmer’s global
view of a software system and contradicts modularization.

Most garbage collection algorithms trace memory start-
ing with a set of roots, usually consisting of processor regis-
ters and the program stack [4]. Objects that cannot be reached
from the root set are safely reclaimed. While “stop-the-
world” implementations suspend all application processing
for the entire duration of a garbage collection cycle, incre-
mental garbage collectors allow the application (in this con-
text referred to as the mutator) to proceed while garbage col-
lection is performed. In return, it becomes necessary to
synchronize the application with the garbage collector to
ensure the integrity of the heap. In software, this synchroni-
zation has to be realized by a compiler that inserts code
sequences into the generated machine code. The most com-
mon type of synchronization sequences are read and write
barriers that need to be inserted after each pointer load or
before each pointer store, respectively. Regrettably, synchro-
nization in software results in considerable code blow-up and
runtime overhead [10].

Real-time applications require a small upper bound on
any pause the garbage collector might cause. Garbage collec-
tion in software, however, faces an inevitable trade-off
between the granularity of garbage collection (i.e. the maxi-
mum pause length) and the code-size and runtime overhead
caused by synchronization. To prevent this overhead from
becoming unjustifiably high, software collectors have to rely
on indivisible operations such as processing an entire object
or the complete root set [4]. Since the duration of these oper-
ations is potentially unlimited, these software collectors are
not suited for hard real-time environments.

In this paper, we present a specialized garbage collection
coprocessor for real-time embedded systems. It tightly coop-
erates with the main processor, thereby allowing for fine-
grained synchronization with very little runtime overhead
and without any code-size overhead. Most importantly, the
system ensures by design that the duration of garbage collec-
tion pauses never exceeds a small constant in the order of a
couple of hundred clock cycles.

This paper is organized as follows. Section 2 discusses
representative related work. Section 3 gives an overview of
our system and motivates the chosen configuration. Section 4
outlines the special architecture of the main processor and

2

our implementation thereof. Section 5 describes the garbage
collector in detail, including the used algorithm, the copro-
cessor’s architecture and the hardware implementation of all
synchronization mechanisms. Section 6 presents experimen-
tal results from our prototype, and Section 7 discusses the
contributions of this work. Finally, Section 8 provides a con-
clusion.

2. Related work
Hardware support for garbage collection has been introduced
by language-directed architectures in the 1980s. Examples
include processors specialized for LISP (e.g. Symbolics [6])
or Smalltalk (e.g. Mushroom [9]). All these architectures
support read or write barriers in hardware and primarily
focus on improving a system’s throughput and interactive
response rather than guaranteeing worst-case latencies.

The best known hardware-supported garbage collector
for real-time applications is the garbage-collected memory
module proposed by Nilsen and Schmidt [7]. The module
connects to a standard microprocessor and accommodates the
actual memory devices, a private microprocessor, and a num-
ber of custom devices, including two elaborate CAM-like
devices. With respect to real-time performance, the authors
report worst-case latencies of typically 16,000 clock cycles at
the beginning of a garbage collection pass. Unfortunately, the
hardware costs for the memory module are prohibitive, par-
ticularly for most embedded applications. Furthermore, the
module’s data throughput is considerably inferior to that of
standard memory, especially when compared with modern,
burst-oriented memory devices. Lastly, a significant overhead
is caused by communicating the location of pointers to the
module, most notably regarding stack operations.

Siebert [8] proposes a garbage collector for hard real-
time environments without any hardware support. To avoid
pauses that depend on the size of objects and to fight frag-
mentation in a non-moving collector, he suggests building
objects from constant-sized 32-byte blocks. As a conse-
quence, a program has to follow linked lists or tree structures
for every single object and array access. In addition to this
overhead, frequent compiler-inserted code sequences such as
write barriers and synchronization points further degrade
application performance and inflate the program code.
Finally, the constant block size introduces a considerable
amount of internal fragmentation.

Bacon et al. [2] have presented the most recent software-
only implementation of a real-time garbage collector. They
achieve a low memory space overhead (factor 1.6–2.5) by
using a mostly non-copying algorithm. Time-based schedul-
ing guarantees a CPU utilization of at least 45% for the muta-
tor while the garbage collector is active. The overall runtime
overhead of the garbage collector amounts to approx. 30–
40%. A highly optimized software read barrier accounts for
an additional 4% of runtime overhead. To bound the duration
of the collector’s atomic actions, the compiler splits large
arrays into so-called arraylets. Incremental stack processing,
however, is an open issue. Apart from the stack problem, the
duration of pauses is limited to 6 ms (3,000,000 CPU cycles
at 500 MHz).

3. System overview
The key idea of our approach is to extend a processor by a
small, low-cost coprocessor dedicated to and specialized for
garbage collection, and to integrate them both onto a single
device. Figure 1 shows the configuration of the two proces-
sors. Each is provided with separate ports to an on-chip mem-
ory controller. At its external interface, the device behaves
like a standard uniprocessor and interfaces to standard mem-
ory devices such as SDRAM.

A major problem with software garbage collectors is
their devastating effect on cache locality. During a single gar-
bage collection cycle, they usually examine the entire heap,
and, in doing so, repeatedly displace the entire contents of the
cache. To resolve this issue, our coprocessor directly con-
nects to the memory controller rather than accessing memory
through the main processor’s cache. In this way, the cache
remains largely unaffected by the garbage collector’s activi-
ties. To ensure cache coherency, the coprocessor inspects
and, if necessary, flushes single cache lines by means of a
dedicated cache port that resembles the snoop port of a stan-
dard cache. At the end of a garbage collection cycle, the
coprocessor invalidates all cache lines that contain dead
objects and thereby efficiently eliminates unnecessary mem-
ory traffic they would otherwise cause.

Because of the poor temporal locality of garbage collec-
tion algorithms, garbage collection itself will not profit from
a cache, and consequently we realized the coprocessor with-
out one. However, most garbage collection activities such as
scanning and copying objects show a fair amount of spacial
locality. To exploit this property, the coprocessor internally
buffers a number of subsequent memory locations and, simi-
lar to the main processor’s cache controller, takes advantage
of efficient burst memory transfers.

Apart from cache coherency, the main processor and the
garbage collection coprocessor tightly cooperate in many
ways. Section 5 covers these synchronization mechanisms in
detail. But first, the next section describes the main proces-
sor’s architecture and the particular implementation we have
realized as the basis for our system.

4. Main processor

4.1. Processor architecture
Hardware support for garbage collection requires the knowl-
edge of pointers and objects at the architectural level. How-

Figure 1. System overview

Garbage
Collection

Coprocessor

Main
Processor

Cache

Memory controller

3

ever, standard processors are neither able to distinguish
pointers from non-pointers, nor are they able to identify
objects in memory. Therefore, the main processor in our sys-
tem is realized according to a novel RISC architecture that
was first presented in [5]. Instead of using tag bits for identi-
fying pointers, this architecture strictly separates pointers
from ordinary non-pointer data. At any time, it maintains the
invariant that (1) every pointer can be exactly identified, and
(2) every pointer value is either null or uniquely associated
with an existing object (system invariant).

To realize the separation of pointers from non-pointers in
the register set, the architecture provides a data register set
and a pointer register set. Data registers are used as general-
purpose registers whereas pointer registers are exclusively for
referring to objects in memory. It is not possible to copy val-
ues from data registers to pointer registers or vice versa.

Similarly, objects in memory are composed of a separate
pointer area and a separate data area (Figure 2). The size of
the pointer area is referred to as the object’s π-attribute and
the size of the data area as the object’s δ-attribute. In this
way, an object offers two parallel index spaces, each starting
with zero. Load and store instructions for pointers implicitly
target the pointer area while load and store instructions for
non-pointer data implicitly target the data area. Pointer integ-
rity is enforced by range checks. The processor stores the
attributes inside an object header that is entirely invisible at
the assembly language level. An allocate instruction creates
new objects and initializes the object’s pointer area with null
pointers. To guarantee hard real-time response times, allocate
instructions may be temporarily suspended by interrupts.

As mentioned before, incremental stack processing rep-
resents a serious issue for real-time garbage collection. To
solve this problem, the processor provides a special stack
object of dynamic size. Like ordinary objects, the stack
object is incrementally processed by the garbage collector. A
special pointer register holds the reference to the stack object,

and two stack indices in special data registers describe the
actual size of the two areas (Figure 3).

To realize more than one stack for multithreaded environ-
ments, the processor supports static objects. They are man-
aged by the operating system apart from the heap and never
moved by a collector. During a context switch, the processor
writes the current stack indices into the attribute header of the
corresponding static object. This way, the garbage collector
exactly knows which pointers inside a currently inactive
stack are actually valid.

In addition to ordinary and static objects, the architecture
defines two further kinds of objects. Constant objects provide
a safe and uniform mechanism to access constant data struc-
tures that are stored as part of the program code. Uninitial-
ized objects are created when the initialization of objects dur-
ing allocation is suspended due to interrupts. Uninitialized
objects and static objects are restricted to supervisor mode.

4.2. Processor implementation
The main processor of our system is a 32-bit implementation
of the architecture outlined above. Memory is byte-address-
able in order to provide for byte and half-word accesses
within the data area, and so the attributes π and δ actually
describe the number of bytes in the respective area.

The processor is statically scheduled and issues up to
three instructions in a clock cycle. Despite its features for
pointer identification and object protection, the pipeline of
the processor (Figure 4) is very similar to that of a standard
RISC and can thus be implemented in an efficient way. Com-
pared to a standard RISC, the processor pipeline shows the
following three enhancements.

First, the register set within the decode stage is split into
16 data registers and 16 pointer registers. Each pointer regis-
ter is supplemented by two attribute registers. Whenever a

Figure 2. Object layout

pointer area data area

π δ

attributes

π–1210 δ–1210

pointer word data word

Figure 3. Stack object

pointer word data word undefined word

π–110 δ–110π δΠ–1 ∆–1

pointer stack index (psix) data stack index (dsix)

pointer stack area data stack areaattributes

π δ

Figure 4. Processor pipeline

Unit A

Unit B

Instruction
Cache

Branch
Prediction

Instruction
Queue

Dispatcher
&

Unit C
Decoder

Unit A
Decoder

Unit B
Decoder

Register
Set

Data
Cache

DECODE EXECUTE MEMORYFETCH ATTRIBUTE

PGU

Branch Unit

AGU

ALU

Unit C

ALU

Attribute
Cache

4

pointer register contains a non-null value, the corresponding
attribute registers hold the attributes of the object the pointer
register refers to.

Second, the execution stage contains different execution
units for different types of target operands. While the two
ALUs are responsible for instructions targeting data registers,
the PGU (Pointer Generation Unit) takes care of instructions
targeting pointer registers (e.g. allocate, copy pointer), and
the AGU (Address Generation Unit) performs range checks
and generates addresses for the cache in the subsequent
memory stage. Since this cache is identical to the data cache
in a standard processor, it is designated as “data cache” even
though it contains pointers and non-pointer data. It is realized
as an ordinary two-way set-associative copy-back cache with
a cache line size of 8 words and a capacity of 8KBytes.

Third and finally, the pipeline exhibits an additional
attribute stage after the usual memory stage. Whenever a
non-null pointer is loaded from memory, this stage loads the
attributes of the corresponding object. It features an attribute
cache in order to allow for attribute accesses without perfor-
mance penalty in the common case. The attribute cache has
256 entries and, like the data cache, is realized as a two-way
set-associative copy-back cache.

5. Garbage Collector

5.1. Garbage Collection Algorithm
Basically, the garbage collection coprocessor realizes a
Baker-style copying collector [1] with several extensions.
Baker’s algorithm is extremely simple and elegant and there-
fore well suited for a hardware implementation. Since it is a
copying algorithm, it furthermore compacts the heap and
considerably eases allocation. Finally, copying collectors are
usually more efficient than their mark-sweep counterparts.

5.1.1. Basic algorithm. For illustration purposes, object
states during garbage collection are often described by Dijk-
stra’s tricolor abstraction [3]. In this abstraction, black indi-
cates that the collector has finished with an object for the cur-
rent garbage collection cycle, gray indicates that the collector
has not finished with the object or, for some reason, has to
visit the object again, and white indicates that the object has
not been visited by the collector. At the end of a garbage col-
lection cycle, white objects are reclaimed.

Copying collectors like Baker’s divide the heap into two
areas called semispaces. During a garbage collection cycle,
all objects that are reachable from a set of roots are copied
from one semispace (fromspace) to the other semispace
(tospace), thereby inherently compacting the heap. At the
beginning of a cycle, the collector flips the roles of fromspace
and tospace and initializes two pointers called scan and free
to point to the bottom of tospace. Next, the collector evacu-
ates all objects referenced by the root set from fromspace to
tospace (Figure 5a, assuming that objects A and B are refer-
enced by the root set).

In order to bound the time needed to evacuate an object,
the collector does not actually copy an object during evacua-
tion. Instead, it merely reserves space in tospace and doubly
links the empty object slot to the fromspace original. For this

purpose, the collector first saves the object’s δ-attribute to
tospace and then overwrites it with a forwarding pointer (fp)
to the tospace copy. In tospace, it initializes the field for the
π-attribute with a backlink (bl) to the fromspace original
(Figure 5a). In both the word holding the π-attribute in from-
space and the word holding the backlink in tospace, the col-
lector sets a reserved bit called gray-bit. Finally, it updates
free to indicate the next free location in tospace.

At each iteration of the main loop, the garbage collector
follows the backlink in the attribute header currently pointed
to by scan to find the corresponding source object in from-
space. Then, it scans the pointer area of the fromspace object.
If a pointer refers to an object whose gray-bit has not yet
been set, the collector evacuates the corresponding object.
Otherwise, the object has already been evacuated and the col-
lector reads the forwarding pointer. In either case, the collec-
tor writes the resulting tospace pointer to the tospace copy.
Subsequently, it copies the data area to tospace. Finally, the
collector “blackens” the tospace object by replacing the
backlink with the π-attribute and by clearing the gray-bit and
advances scan to point to the next object header (Figure 5b).
The gray-bit of the fromspace original remains set. The algo-
rithm terminates when scan catches up with free.

Baker’s algorithm is incremental and allows the mutator
to proceed during a garbage collection cycle. If, however,
both the mutator and the collector are allowed to access the
heap without restriction, problems may arise if the mutator
writes a pointer to a white object into a black object. If the

Figure 5a. Basic algorithm (1)

δδ

π δ

π δ

A

scan free

FROMSPACE

TOSPACE

B

C

B

A

D

gray-bit

π

πfp
bl

bl fp

Figure 5b. Basic algorithm (2)

δδπ δ

π δ

A

scan free

FROMSPACE

TOSPACE

B C

C

B

A

D

π

π π

5

original pointer to the white object is destroyed and no fur-
ther pointer to the white object exists, the object will be ille-
gally discarded at the end of the garbage collection cycle. For
this reason, Baker’s algorithm erects a read barrier between
the mutator and the heap to protect the garbage collector.
This barrier examines every pointer load to ensure that the
mutator never sees a white object. Whenever the mutator is
about to access a pointer to an object in fromspace, the read
barrier immediately evacuates the object, or, if the object has
already been evacuated, reads the forwarding pointer.

A software garbage collector has to rely on the compiler
to insert code sequences in order to realize this barrier. In
contrast, the main processor in our system efficiently realizes
the read barrier in hardware. Consequently, there is no need
to insert any code sequences, and the compiler as well as the
compiled code are entirely independent of the particular type
or realization of a garbage collector.

5.1.2. Special objects. The algorithm described so far only
works with ordinary objects created by successfully com-
pleted allocate instructions. During garbage collection, the
collector scans these objects for pointers and moves them for
compaction. To add support for constant, static, and uninitial-
ized objects, we extended the algorithm as follows.

Constant objects are neither scanned for pointers nor
moved and can be ignored by the collector. During the scan
phase, the collector handles pointers to constant objects like
null pointers and simply copies them to the tospace object.

Static objects are never moved, but they have to be
scanned for pointers. One approach to handle static objects is
to treat them as a part of the root set. In this case, the operat-
ing system has to inform the collector about the set of static
objects. Although this approach is feasible, it unnecessarily
widens the interface between operating system and garbage
collector. For this reason, we propose a different solution.

During each garbage collection cycle, the collector builds
a singly-linked list of handles for static objects. Whenever the
collector encounters a pointer to a static object, it appends a
handle for this static object to the list. To avoid duplicates
without searching, it sets a visited-bit in the π-attribute of the
static object. It then writes the handle to the position pointed
to by free. When scan eventually reaches a handle, the collec-
tor enters a special loop that scans and updates the object’s
pointers without actually moving the object.

Uninitialized objects, finally, have to be moved, but must
not be scanned. The processor tags uninitialized objects with
an uninitialized-bit in the π-attribute. When the garbage col-
lector evacuates an uninitialized object, an uninitialized-bit in
the backlink entry is set as well, and when scan reaches such
a backlink, it enters a special loop that ignores the values in
the fromspace pointer area and writes null pointers to the
tospace pointer area.

5.1.3. Scheduling garbage collection. Baker’s original algo-
rithm interleaves the mutator with the garbage collector on a
single processor and does a bit of garbage collection during
every allocation. This procedure is usually referred to as
work-based scheduling. In contrast to Baker, we use a sepa-
rate coprocessor for garbage collection, and the collector and
the mutator are actually active at the same time. Thanks to

the parallelism gained by the coprocessor, our garbage col-
lector, similar to time-based scheduling, does not unevenly
slow down the mutator during allocations.

Whenever the amount of available memory falls below an
adjustable threshold, the coprocessor starts a new garbage
collection cycle. Setting this threshold to zero results in non-
concurrent and non-incremental “stop-the-world” behavior.
Setting this threshold close to the semispace size will keep
the garbage collector running continuously. For hard real-
time performance, the garbage collector requires some mem-
ory headroom, and the threshold parameter has to be adjusted
so that the collector finishes with a garbage collection cycle
before the mutator starves, i.e. runs out of memory.

5.2. Garbage Collection Coprocessor
The structure of the garbage collection coprocessor is shown
in Figure 6. Compared to a standard processor, it is rather
simple and can be implemented at little cost. It is composed
of a microcoded control unit, a register file, and a number of
execution units. Two separate load/store units (LSUs) are
responsible for accessing memory. While the burst LSU effi-
ciently transfers the contents of objects between the collector
and memory, the attribute LSU loads and stores individual
double words containing attributes. Two arithmetic units exe-
cute register-to-register operations. The microcoded control
unit operates all execution units in parallel.

The register file of the coprocessor contains 32 registers,
including general purpose registers for microprogram vari-
ables and intermediate results, memory interface registers for
interfacing the burst LSU and the attribute LSU, and some
special registers for accessing the pointer registers and the
stack indices of the main processor. In addition, the main pro-
cessor’s system registers for heap configuration are directly
mapped to the coprocessor’s register file.

The burst LSU contains two burst registers. Each burst
register is eight words wide and covers the address range of a
cache line in the main processor’s data cache. To read from
memory, the microprogram first loads the source burst regis-
ter by means of an efficient burst transfer. Then, it subse-
quently processes the loaded words. To write to memory, the
microprogram first assembles a burst in the target burst regis-
ter. Then, an explicit microoperation triggers a burst transfer
to store the contents of the target burst register to memory.

For each burst register, the unit maintains a micropro-
grammable lock that prevents the processor from accessing
memory locations that are currently covered by the burst reg-

Figure 6. Garbage collection coprocessor

Memory controller

Attribute
LSU ALU 1

Register File

ALU 2

Control
unit

M
ai

n
pr

oc
es

so
r

Burst
LSU

6

isters. Before the burst LSU locks a cache line, it inspects the
main processor’s data cache. In case the requested address
range is contained in the cache, it inserts an “artificial” flush
instruction into the main processor pipeline. This artificial
flush writes any modified data back to memory and invali-
dates the corresponding cache line.

The attribute LSU unit loads and stores individual double
words and maintains a lock that prevents the processor from
accessing the attributes at the locked address. An explicit
microoperation inspects the main processor’s attribute cache,
flushes the corresponding attribute cache line if necessary,
and locks the corresponding attributes.

All units inside the garbage collection coprocessor are
controlled by 80-bit microcode words that are stored inside a
256 x 80 bit on-chip microcode memory. Consequently, the
coprocessor does not require any memory bandwidth for
instruction fetching. The control unit itself supports condi-
tional branch operations and one-level subprogram calls, is
able to entirely stop the main processor’s pipeline, and allows
the read barrier to interrupt the microprogram at synchroniza-
tion points that are marked by explicit microoperations.

5.3. Synchronization
Synchronization between garbage collector and main proces-
sor is supported by relatively simple hardware extensions to
the processor pipeline. These extensions are the key for the
efficient implementation of all the synchronization mecha-
nisms that are required for concurrent garbage collection
without unbounded pauses.

Exclusive access to objects is assured by the source, tar-
get, and attribute locks described in the last subsection. They
are realized by means of simple comparators in the memory
and the attribute stages. When the processor tries to access a
locked memory location, the corresponding instruction is
aborted by the processor’s standard exception handling
mechanism. The only difference is that instead of invoking an
exception handler, the processor restarts the aborted instruc-
tion as soon as the garbage collector signals that the corre-
sponding lock has been released.

Similarly, the hardware read barrier is implemented by
the use of two comparators in the attribute stage that check
whether a fromspace pointer has been loaded. In this case,
the respective instruction is suspended and the garbage col-
lector’s read barrier interrupt is triggered.

Before the garbage collector reads or writes a memory
location, it has to make sure that the information is not con-
tained in one of the processor’s caches. This is facilitated
without any runtime overhead by extending the data and the
attribute caches with a snoop port for the address tags and the
valid bits. In case the garbage collector detects that the
required data is contained in the corresponding cache, it halts
the main processor’s instruction fetch stage for a single clock
cycle and inserts an artificial flush instruction into the pipe-
line. If necessary, this instruction writes back any dirty data
and invalidates the respective cache line.

To allow for concurrent object copying without the need
to lock entire objects, the main processor has to decide
whether the fromspace original or the tospace copy of an
object is to be accessed. For this purpose, a backlink entry is

added to every pointer register and to every attribute cache
line. When the attributes of a gray object are loaded from
memory, the corresponding backlink is loaded as well. If the
processor is about to access a field inside a gray object, the
AGU checks whether the field’s address based on the tospace
pointer lies beyond the current target address of the garbage
collector. If so, the processor uses the fromspace address
based on the backlink instead of the tospace address.

The garbage collector is able to stop the main processor
by halting the instruction fetch stage and by inserting NOPs
into the pipeline. In this state, the collector can read and
update the processor’s pointer registers for root set scanning.
When a pointer register is updated by the collector, the
attribute registers remain unchanged, and the previous con-
tent of the pointer register is copied to the backlink register.

The microprogram takes special care with all synchroni-
zation mechanisms under microprogram control. First, any
loop that may iterate for more than a few times contains
explicit synchronization points in order to bound the latency
of the read barrier interrupt. Second, the collector explicitly
stops the main processor for at most 500 clock cycles during
root set scanning. Third and last, any lock established by the
microprogram is changed or released in a strictly bounded
amount of time.

6. Experimental results
To demonstrate the feasibility and practicability of our
approach and to evaluate system performance, we have built
up a working prototype of the proposed system. We modeled
both the main processor and the garbage collection coproces-
sor at the register transfer level in VHDL and synthesized
them for a single advanced programmable logic device
(Altera APEX 20K1000C). The garbage collector uses less
than 20% of the chip area. Furthermore, we have assembled
an experimental computer system based on the garbage-col-
lected processor. Standard SDRAM modules are used for
main memory. Peripherals implemented for the system
include standard serial and parallel interfaces, PS/2 interfaces
for keyboard and mouse, and a 100MBit Ethernet interface.
Processor, SDRAM and the peripherals are synchronously
operated at 25MHz.

On the software side, we have developed a static Java
compiler that translates standard Java bytecode to the proces-
sor’s native machine code. The compiler includes a code
scheduler that rearranges instructions in order to take advan-
tage of the processor’s parallel execution units and to hide
instruction latencies as far as possible. Moreover, we realized
a subset of the Java class libraries supporting text-based
applications in order to facilitate the execution of representa-
tive programs. As part of the class library, we implemented
an NFS client to provide for access to a file system.

For performance evaluation, we have run a number of
real programs on the prototype. Because of some constraints
of our current software environment (static compilation, text-
based applications only, so far no thread support in the runt-
ime system), our present collection of benchmark programs
does not include all programs typically found in benchmark
suites.

7

To measure the impact of the garbage collector, we deter-
mined the runtime overhead in dependence of the semispace
size. To do so, we first provide each application with virtually
infinite memory and turn off the garbage collector in order to
find the minimum execution time tmin. Next, we turn on the
garbage collector and reduce the semispace size step by step
in order to find the smallest possible semispace size sssmin.
Please note that this size is of theoretical interest only since
an application will never be run close to this minimum. Then,
we run each application with more realistic semispace sizes
that are 150%, 200% and 250% of the required minimum.
The results are shown in Table 1. Values printed in bold indi-
cate real-time behavior (no mutator starvation).

The results show that mutator starvation can be avoided
by relative semispace sizes of 150% to 200% in most cases.
Furthermore, the results demonstrate that the runtime over-
head caused by the garbage collector is typically as little as a
few percent or less under relevant operating conditions.

The different behavior of the applications we examined is
caused by the fact that the cost of copying garbage collection
depends on both the amount of live memory and the alloca-
tion rate. Traditional applications like compress require large
amounts of live memory, but they allocate very little. In con-
trast, jlisp (LISP interpreter) and jflex (scanner generator)

show very high allocation rates, but get by with little amounts
of live memory since most objects die relatively young. The
parser generators cup and javacc constitute the worst case.
They build up huge and long-lived data structures that are tra-
versed while new objects are allocated at a very high rate.

In the second experiment, we measured the pause times
caused by all synchronization mechanisms (read barrier,
explicit processor stops, locks). We have chosen jflex as a
best-case, javac as an average-case, and javacc as a worst-
case application. The results are illustrated in Figure 7.

Analyzing the results, the number of pauses caused by
the read barrier by far dominates the number of pauses stem-
ming from locks and explicit processor stops, and the fre-
quency of read barrier pauses decreases with their duration.
The longest pauses are caused by explicit stops. Regarding
their distribution, three discrete areas can be identified:
Pauses below 50 clock cycles are caused by the stop that pro-
tects the comparison of static pointers with the processor’s
stack pointer before stack processing, pauses around 270
clock cycles come from cleaning up the processor’s caches,
and pauses above 300 clock cycles originate from root set
scanning. Pauses caused by locks can be effectively ignored.

Most importantly, the measurements confirm that the
duration of any pause does not exceed 500 clock cycles. Even
with largely different semispace sizes and threshold values,
neither the maximum duration nor the shape of the distribu-
tions change significantly. Only the absolute frequencies vary
in orders of magnitude.

7. Discussion
The system we presented in this paper solves the problems of
incremental garbage collection stated in the introduction.
Synchronization is efficiently realized in hardware and nei-
ther increases code size nor depends on any compiler sup-
port. Fine-grained incremental object scanning and incre-
mental compaction is realized by the cache line locking

Table 1. Garbage collection runtime overhead

application sssmin tmin
relative semispace size

150% 200% 250%

compress 7,317K 46.2s +0.1% +0.0% +0.0%

database 10,343K 252.8s +5.4% +2.3% +2.1%

javac 5,642K 34.5s +4.5% +3.0% +1.5%

jlisp 129K 61.0s +1,3% +0.9% +0.7%

jflex 2,041K 25.6s +0.9% +0.2% +0.1%

cup 8,707K 52.6s +15.9% +2.0% +1.7%

javacc 1,931K 20.4s +23.2% +6.8% +1.5%

Figure 7. Frequency distribution of synchronization pauses (number vs. duration in clock cycles)

jflex
semispace size: 4,081K (200%)

javac
semispace size: 11,284K (200%)

javacc
semispace size: 3,863K (200%)

0

500

1,000

1,500

2,000

0

10

20

30

40

0 100 200 300 400 500
0

10

20

30

40

0

10,000

20,000

30,000

0

10

20

30

40

0 100 200 300 400 500
0

10

20

30

40

0

2,500

5,000

7,500

10,000

0

20

40

60

80

0 100 200 300 400 500
0

20

40

60

80

read barrierread barrierread barrier

explicit stopsexplicit stopsexplicit stops

lockslocks locks

8

mechanism, the backlink entries, and the assistance of the
AGU. This way, there is no need to ever lock an entire object,
and no atomic action depends on the size of objects. Finally,
the problem of root set scanning is solved by restricting the
root set to the pointer registers and by treating stacks as static
objects that are incrementally processed. All these mecha-
nisms guarantee by design that the duration of all pauses
caused by garbage collection never exceeds a small constant.

While bounding synchronization pauses is a required
precondition for hard real-time behavior, it is not necessarily
sufficient. If these pauses are heavily clustered, the mutator’s
progress may be affected in a way that impedes responses to
environmental changes within a specified amount of time. In
this respect, Baker’s algorithm usually shows a high read bar-
rier fault rate at the beginning of a garbage collection cycle.
In our system, a faulting read barrier merely reserves space
for an object in the worst case, which typically takes between
50–100 clock cycles only. The actual work of processing the
corresponding object is incrementally performed by the col-
lector. Nevertheless, we are currently trying to reduce the
cost of faulting barriers to further address this issue.

Mutator starvation constitutes another threat to real-time
capabilities. In our system, we directly determine adequate
semispace sizes and threshold values by measurement. As an
alternative approach, some researchers [2, 8] measure (or
assume) the maximum amount of live data and derive param-
eters for the configuration of their collectors therefrom. In
any case, the real-time guarantees depend on values that are
empirically determined, and consequently, no system known
so far is able to actually prove its hard real-time capabilities
in the strict sense.

Concerning the required memory overhead for real-time
behavior, we typically need an overall factor of 3–5 which is
very common for real-time garbage collectors. As with every
copying collector, performance can be increased by simply
providing more memory. Currently, we are trying to reduce
the memory space overhead by investigating some more elab-
orate garbage collection algorithms.

All benefits with respect to hardware-supported garbage
collection and low-cost synchronization are substantially
enabled by the processor architecture that forms the basis of
our system. Compared to a standard RISC, the implementa-
tion of this architecture entails some additional costs that
have to be taken into account. First, there is a two-word over-
head per object for the object’s attributes. This cost, however,
is attenuated by the fact that the length of arrays may be eas-
ily determined without explicit length fields and that no addi-
tional fields are required for garbage collection. Second, the
additional attribute stage comes at some cost and results in a
two-cycle latency of the load pointer instruction if the loaded
pointer is subsequently dereferenced. Yet the scheduler in our
compiler rearranges instructions in order to minimize related
pipeline stalls as far as possible.

In addition to the obvious advantages for the implemen-
tation of a garbage collector, the architecture of the main pro-
cessor significantly increases the robustness at the machine
code level as it provides object-based memory protection.
This feature is of particular interest for embedded systems
that usually cannot rely on virtual memory. In contrast to vir-

tual memory, object-based memory protection considerably
eases information sharing between different processes or
between applications and the operating system since pointers
are globally valid. As a further benefit of object protection,
runtime checks required by many languages (e.g. array
bounds checks in Java) are implicitly performed without any
code-size or runtime overhead.

8. Conclusions
In this paper, we have presented the design and implementa-
tion of a processor with an on-chip hardware garbage collec-
tor. The processor guarantees pointer integrity in hardware
and introduces the robustness stemming from garbage collec-
tion at the machine-code level. Synchronization of processor
and garbage collector is efficiently realized in hardware. For
almost all applications that we have examined, real-time
behavior can be achieved by semispace sizes that are a factor
of 1.5 to 2.5 larger than the required minimum. Furthermore,
the overall runtime overhead of garbage collection is as little
as a few percent or less in typical configurations. To our best
knowledge, the prototype that we have realized is the first
garbage-collected system that guarantees an upper bound on
the duration of all garbage collection related pauses in the
order of 500 clock cycles. Because of its potential for real-
time and safety-critical applications, the proposed architec-
ture is of particular interest for embedded systems.

References
[1] Baker, H. G.: List processing in real time on a serial com-
puter, Comm. ACM, vol. 21(4), Apr. 1978, pp. 280–294.

[2] Bacon, D. F.; Cheng, P.; Rajan, V. T.: A real-time garbage
collector with low overhead and consistent utilization, 13th
ACM Symposium on Principles of Programming Languages,
Jan. 2003, pp. 285–298.

[3] Dijkstra, E. W., et al.: On-the-fly garbage collection: an
exercise in cooperation, Comm. ACM, vol. 21(11), Nov. 1978,
pp. 966–975.

[4] Jones, R., Lins, R.: Garbage Collection: Algorithms for
Automatic Dynamic Memory Management, Wiley, 1996.

[5] Meyer, M.: A novel processor architecture with exact tag-
free pointers, IEEE Micro, vol. 24(3), May 2004, pp. 46–55.

[6] Moon, D. A.: Garbage collection in a large LISP system,
ACM Symp. on LISP and Functional Programming, Aug.
1984, pp. 235–246.

[7] Schmidt, W. J., Nilsen, K. D.: Performance of a hardware-
assisted real-time garbage collector, 6th Int. Conf. on Archi-
tectural Support for Programming Languages and Operating
Systems, Oct. 1994, pp. 76–85.

[8] Siebert, F.: Hard Realtime Garbage Collection in Modern
Object Oriented Programming Languages, Dissertation, Uni-
versity of Karlsruhe, Germany, 2002.

[9] Williams I., Wolczko, M.: An object-based memory archi-
tecture, 4th Int. Workshop on Persistent Object Systems, Sept.
1990, pp. 114–130.

[10] Zorn, B.: Barrier Methods for Garbage Collection, Tech.
Report CU-CS-494-90, University of Colorado, Nov. 1990.

