
 

 

 

 

 

 

Managing Load Balancing, Energy Efficiency and 

Performance of Cloud Data Centers with          

Service Level Agreement Guarantees 

 
Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der 

Universität Stuttgart zur Erlangung der Würde 

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung 

 

 

 
vorgelegt von 

Maggie Mashaly 

geb. in Kairo 

 

 

 
         Hauptberichter: Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Paul J. Kühn 

1. Mitberichter:                    Prof. Dr.-Ing. Hermann de Meer 

2. Mitberichter:                    Prof. Dr.-Ing. Andreas Kirstädter 

Tag der Einreichung: 10.  Mai 2017  

Tag der mündlichen Prüfung: 26. Oktober 2017 

 

 
Institut für Kommunikationsnetze und  Rechnersysteme der 

Universität Stuttgart 

2017 

 
 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

i 
 

Abstract 

 

This thesis proposes novel approaches for enhancing the operation and performance 

of cloud data centers by introducing an algorithm for automatic server consolidation for an 

energy efficient operation as well as two algorithms for load balancing between several data 

centers with priority to maintaining users’ Service Level Agreements ‘SLAs’. For better 

understanding of the proposed algorithms and fore-sighting  their effect on data center’s 

performance a modeling approach for data centers as queuing systems is first introduced 

where a data center is modeled by a Markov Chain and its performance can be analyzed 

exactly by solving the two-dimensional Markov Chain representing all data center’s states 

under Markovian assumptions.  

This thesis’ first contribution is the automatic server consolidation algorithm which is 

able to adapt the number of active servers in the data center to its current load dynamically by 

adopting the hysteresis behavior. This is performed by setting defined queuing thresholds 

which trigger server activations only when they are reached and if the SLA is guaranteed, 

which reduces the frequency of servers’ activations and deactivations and consolidates the 

work load on the lowest possible number of servers such that idle servers can be turned-off or 

put into sleep for reducing power consumption. This algorithm is novel in its ability to model 

all realistic aspects of a data center such as the activation time required by servers to re-boot 

from an off state or wake-up from a sleeping state as well as modeling different sleep states 

(C-states) and reduced frequency states specified by servers’ various P-states, respectively. 

Besides providing mathematical analysis for the algorithm and data center model, a 

simulation model is also provided to support the findings of the analysis and to test several 

cases that cannot be solved by analytical solution due to its restrictive -yet valid- 

assumptions. 

Second main contribution of this thesis is the two load balancing algorithms 

introduced for optimizing data centers’ performance and preventing over-load situations 

while maintaining service level agreements of users. The two algorithms can be adopted by 

data centers at different scenarios depending on the type of services offered by the data 

center, requirements of its users and the geographical distribution of data centers between 

which load balancing is implemented. The first proposed algorithm (Local Server System 

First - LSSF) tends to suppress migrations only for arriving requests that could not be served 

at their local data centers and migrates them to another data centers where their service level 

agreements can be met. The second proposed algorithm (Shortest Response Time First – 

SRTF) aims at providing arriving requests with the least possible response time by routing 

them to the DC providing immediate service or least waiting time. Both algorithms are 

modeled by Markov Chains and solved analytically for predicting the effect of each 

algorithm on data centers’ performance. For further analysis of both algorithms simulation 

models are implemented as well as test-bed experimentation on a small data center in order to 

test the algorithms under various test-cases and conditions.  
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Results obtained from different platforms analyzing the proposed algorithms in this 

thesis have proven their efficiency at reducing the power consumption of data centers at low 

to intermediate load conditions as well as balancing the load among several data centers to 

meet defined criteria by data center operators or users up to high load conditions. Analysis of 

the proposed hystereses algorithm for energy efficiency has shown a significant reduction of 

servers’ activation rates resulting in a reduction in power consumption with bounded average 

delays for delayed arrivals with a negligible increase in the delay at load regions between 5-

95%. Efficiency of the load balancing algorithms is also shown by a reduction in loss 

probabilities of arriving requests by migrating them to foreign DCs as well as a reduction in 

average delays of delayed requests in case of SRTF algorithm. Thus, data centers’ 

administrators can choose to implement one or more of the proposed algorithms depending 

on their defined goals for the data center’s operation where its behavior can be exactly 

predicted using analytical and simulation tools introduced in this thesis. 
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Kurzfassung 

 

In dieser Arbeit werden neue Ansätze zu einer effektiveren Betriebsorganisation von Cloud-

Rechenzentren vorgeschlagen basierend auf Algorithmen zur automatischen Server-

Aktivierung ("Konsolidierung") für einen energieeffizienten Betrieb sowie zwei neue 

Algorithmen zum Lastausgleich zwischen Server-Gruppen unter gleichzeitiger 

Berücksichtigung vorgegebener und einzuhaltender Dienstleistungsparameter (sog. "Service 

Level Agreements", SLA). Zum besseren Verständnis der vorgeschlagenen Algorithmen und 

ihren zu erwartenden Auswirkungen auf die Leistungsfähigkeit von Rechenzentren werden 

diese mit Hilfe der Warteschlangentheorie  modelliert und mittels der Methodik von 

zweidimensionalen Markoff-Ketten  exakt untersucht. 

 

      Im ersten Beitrag dieser Arbeit wird ein Algorithmus zur automatischen Server-

Konsolidierung untersucht, bei dem die Anzahl aktivierter Server an die momentane Last 

dynamisch mittels eines zustandsabhängigen Hysteresemechanismus angepaßt wird. Dabei 

werden die Schwellwerte zur Server-Aktivierung so eingestellt, daß eintreffende Server-

Anforderungen gepuffert werden unter Einhaltung der vorgegebenen SLA-Einschränkungen, 

wobei erst nach Erreichen des Schwellwertzustands eine neue Server-Aktivierung erfolgt. 

Dieses Verfahren reduziert die Häufigkeit von Server-Aktivierungen ("Bootings") bzw. 

Deaktivierungen zum Übergang in einen Ruhezustand ("Sleeping") und trägt auf diese Weise 

zu einem optimierten Energiebedarf bei. Dieser neuartige Algorithmus erlaubt ferner die 

Einbeziehung realistischer Aspekte eines Rechenzentrums-Managements hinsichtlich des 

Energiebedarfs mittels gedrosselter Werte von Versorgungsspannungen und Taktfrequenzen 

der elektronischen Bauelemente ("Dynamic Voltage and Frequency Scaling", DVFS; P-

Zustände) bzw. Schlafzustände (C-Zustände). Außer der mathematischen Analyse dieses 

Algorithmus für das Rechenzentrum wird ein Modell zur Computer-Simulation entwickelt, 

mit Hilfe dessen auch Anwendungsfälle untersucht werden können, die der exakten 

mathematischen Analyse nicht zugänglich sind. 

 

      Im zweiten Beitrag dieser Arbeit werden zwei Algorithmen zum Lastausgleich zwischen 

Server-Gruppen eingeführt zur Untersuchung des Echtzeitverhaltens sowie des Schutzes 

gegen Überlastsituationen, welche ebenfalls unter Einhaltung der SLA-Einschränkungen der 

Nutzer operieren. Derartige Algorithmen können für Rechenzentren (bzw. Server-Gruppen) 

in unterschiedlichen Anwendungs-Szenarien hinsichtlich von Benutzeranforderungen oder 

hinsichtlich des Lastausgleichs unterschiedlicher geographischer Lagen dieser Rechenzentren 

eingesetzt werden. Beim ersten Algorithmus LSSF ("Local Server System First") werden 

Prozeß-Verlagerungen ("Migrations") zu einem zweiten Rechenzentrum bzw. einer zweiten 

Server-Gruppe nur in dem Falle durchgeführt, wenn die Anforderungen nicht im lokalen 

Rechenzentrum ausgeführt werden können solange jedoch die SLA-Einschränkungen 

weiterhin eingehalten werden. Der zweite Algorithmus SRTF ("Shortest Response Time 

First") zielt darauf ab, in jedem Falle die kürzeste Fertigstellungszeit (Antwortzeit) zu 
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garantieren, indem eintreffende Anforderungen demjenigen Rechenzentrum bzw. derjenigen 

Server-Gruppe zugeordnet werden, welche entweder eine sofortige Bearbeitung erlauben 

oder die kürzeste Antwortzeit benötigen. Die Modelle der beiden Verfahren werden 

mathematisch exakt mittels zweidimensionaler Markoff-Ketten beschrieben und hinsichtlich 

der Vorhersage ihrer Leistungsfähigkeit analysiert. Zur allgemeineren Analyse beider 

Algorithmen wurden jeweils Simulationsmodelle implementiert sowie in einem 

experimentellen Server-Testbed einer Multiprozessor-Konfiguration konfiguriert, um die 

vorgeschlagenen Algorithmen testen zu können. 
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Chapter 1      Introduction  

 

The ICT industry has always been a field with huge potential for technological 

developments aiming at providing individuals as well as industry with services for raising 

their welfare and surging their business development. Cloud Computing is one of those 

developments that have been widely adopted by millions of users and companies world-wide 

as it provided a leap at how different types services are offered for users. Based upon the 

concept of virtualization, Cloud Computing offered different types of services for its users 

ranging from Infrastructure-as-a-Service allowing them to rent whole data center 

infrastructures, to Platform-as-a-Service where users are allowed access to any desired 

platform they require and finally to Software-as-a-Service which provides numerous services 

provided by applications hosted at cloud data centers and accessed remotely by users 

anywhere in the globe. Many reasons have caused all cloud users to embrace this new 

technology; among these reasons is its reduced cost resulting from eliminating the need for 

upfront investments and its attractive pay-on-the-go model where users are only charged for 

their usage of the services rather than being charged with costs of idle operation. Another 

reason is cloud’s elasticity and flexibility at leasing or abandoning services and resources on-

the-go according to current needs. Cloud Computing did not appeal only to users, but also to 

owners of data centers as they could rent their infrastructure or host services upon them at 

times when their equipment is not utilized.  

However the rise of Cloud Computing technology has led to several challenges faced 

by its users and providers. For users the dilemma of data security whether it is hosted at a 

public, private or hybrid cloud has been and still is an open question. As for data center 

owners the challenges faced by how data centers are operated are critical. Since data centers 

are typically composed of huge numbers of server blades hosting hundreds of servers upon 

which cloud services are hosted, the amount of power required for operating and cooling 

these devices is tremendous. This greedy consumption of power by data centers is alarming 

as it increases the carbon footprint by consuming non-renewable energy resources and most 

importantly, increases the cost of operating data centers which will result in an increase in the 

cost of cloud service thus depriving cloud computing of one of its most important advantages, 

and most importantly as it is forecasted to increase rapidly over the coming years.  

Numerous approaches have been adopted for attempting to reduce the power bill of 

cloud computing data centers, such as placing data centers at Polar Regions where extremely 

low temperatures allow reducing or eliminating the energy required for infrastructure cooling. 

However reducing the cooling costs is not the optimum solution as it only contributes to a 

small fraction of the total power consumption which is dominated by operational power of 

servers. To reduce the power consumed by data centers’ servers several solutions have been 

proposed such as server consolidation, sleep modes and Dynamic Voltage and Frequency 

Scaling. The first approach of server consolidation tends to consolidate the work load of the 

data center into a fewer number of active servers in order to reduce the number of operational 
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servers and accordingly power consumption. The second approach of sleep modes suggests 

putting idle servers into sleep modes where they consume much lower power compared to 

idle consumption and can wake up from sleep states faster than re-booting. Various sleep 

states depend on which components of servers are put to sleep, where deeper sleep states 

consume lower power by putting more server components into sleep. The third approach of 

Dynamic Voltage and Frequency Scaling specifies several P-states for servers where a server 

can reduce its operation frequency by a certain factor specified by each P-state which is 

directly proportional to a reduction in power consumption. All these approaches are briefly 

discussed and tested within later chapters in this thesis. 

Another challenge faced by cloud data centers’ operators is to find efficient load 

balancing approaches that accommodates the nature of cloud computing services, fulfill the 

requirements of cloud users and satisfy their specified service level agreements while 

enhancing data centers’ performance via load balancing. Despite the existence of several load 

balancing approaches in literature that are applied to various systems successfully, most of 

them could not offer efficient load balancing solutions for cloud computing for being static, 

having single points of failure, requiring long transmission delays or long processing delays 

due to complexity. Cloud Computing however require algorithms that are dynamic with 

automatic resource provisioning for fast adaptation to any updates in the data center’s state, 

proactive to over-load situations by preventing them from occurring, distributed without 

centralized points of failure to avoid relying the data center’s operation on a single node, and 

finally and most importantly perform load balancing decisions without any compromise to 

users’ specified Service Level Agreements (SLA). 

 

1.1 Problem Overview 

Since it was first introduced in 2007 [148], Cloud Computing has taken over the IT 

industry worldwide with a continuous evolution as the demand for its services is highly 

increasing. Numerous startup companies as well as well-established ones nowadays are 

starting to migrate their infrastructures and services into the cloud. This is a result of the 

numerous benefits that cloud computing provides; few of them are reduced costs, ease of 

management, and a cost-effective on-demand policy that allows for dynamic provisioning of 

resources with minimal upfront investments for customers. However such attractive 

advantages of the rising technology come with a price tag. Cloud service providers establish 

and maintain huge data centers for providing cloud services, and these data centers are 

considered major consumptions of energy in the ICT field. According to studies and 

measurements reported in [34] and [81] the amount of energy consumed for operating and 

cooling data centers is estimated to be between 1.1 and 1.5% of the total energy consumption 

world-wide. An increase in this percentage will cause the energy costs to increase and 

accordingly the cost of cloud services, thus depriving cloud services of one of their critical 

advantages. Another challenge faced by cloud operators is a side effect for the main 

technology behind cloud computing; i.e. Server Virtualization. Although virtualizing servers 

allows for sharing hardware resources among several customers and thus an economic 
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operation of data centers, a dynamic allocation strategy is of high importance to avoid 

overloading machines with workload that can affect their performance or result in server 

hotspots that cannot be handled effectively by cooling systems and could result in server 

downtime [160]. Accordingly the need for energy efficient operations in cloud data centers is 

crucial for maintaining and evolving Cloud Computing technology. 

Besides the energy efficiency problem in cloud data centers, balancing the load 

among several data centers is one of the major factors affecting their performance. As cloud 

providers offer their services to clients typically via several DCs located at various 

geographical locations for satisfying clients’ prescribed Service Level Agreements (SLAs), 

decisions on where to route each incoming request has a significant impact on the DC’s 

performance as it could lead to overload at some DCs or under-utilization and energy wastage 

at others. Selecting the best load balancing criterion among cloud DCs is of high importance 

due to the fact that it not only affects DCs’ performance, but also affects prescribed users` 

SLAs. Both of these factors need to be taken into consideration while making load balancing 

decisions so that none of them is compromised. 

 

1.2 Thesis Contributions 

In order to enhance the performance of cloud data centers for achieving energy 

efficient operation and taking optimized load balancing decisions, data centers’ behavior has 

to be studied first. This thesis introduces an approach for modeling a data center as a queuing 

system used to understand system behavior and predict its performance under different load 

conditions. This model represents all states at which a DC can be modeled using Markov 

Chains where these system states can be solved exactly under Markovian assumptions in 

order to gain insight into how DCs operate and which parameters impact their performance. 

The main contributions of this thesis are two approaches for solving energy efficiency 

and load balancing predicaments in cloud data centers. The first contribution for achieving 

energy efficiency introduces a model for data centers that allows for a load dependent 

operation of servers so that the number of active servers in the DC at any given time is only 

sufficient to serve its current load, where un-utilized servers can be switched-off or put into 

sleep mode to save the energy consumed while being switched-on and idle. The proposed 

algorithm uses the hysteresis behavior to reduce the frequency of servers’ 

activations/deactivations by limiting activations of servers only in case of significant load 

surges and deactivations only when servers becomes idle to guarantee minimal delays for 

users and thus optimal SLAs. It also takes into consideration activation times of servers as 

well as reduced service rates for implementing sleep states of servers adopted from Dynamic 

Voltage and Frequency Scaling ‘DVFS’ approach. The algorithm is modeled using a two-

dimensional Markov Chain and solved exactly by a novel iterative recursive algorithm under 

Markovian assumptions. Proposed algorithm is tested also using OMNeT++ simulations and 

implemented on a VMware operated test bed for verification and to test the algorithm under 

general assumptions other than Markovian. Through results the algorithm shows its 
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efficiency at maintaining a load-adaptive data center with minimal effects on user’s delay 

times without affecting their SLAs while achieving energy saving up to 50% of total DC 

consumed power depending on hystereses parameters and how much servers’ frequencies are 

scaled during sleep states. 

The second main contribution in this thesis is presented through two dynamic load 

balancing approaches between cloud DCs. These two novel approaches avoid all drawbacks 

of load balancing algorithms in literature by being decentralized with no single points of 

failure,  performing proactive decisions for enhanced automatic resource provisioning, 

adapting to  rapid load variations by operating in a dynamic manner, and maintaining 

optimized SLAs for cloud customers. The first algorithm namely Local Server System First 

‘LSSF’ maintains un-balanced load situations between servers as long as a request can have 

its SLAs satisfied at its local DC,  otherwise it is migrated to a foreign data center as long as 

it’s migration will not affect performance of the foreign DC or its ability to maintain SLAs of 

its requests. The second algorithm Shortest Response Time First ‘SRTF’ is an upgrade for the 

known Join Shortest Queue ‘JSQ’ load balancing algorithm [76]. Instead of routing a request 

to the DC which has the shortest queue size, SRTF accounts for more realistic cases of 

heterogeneous servers with various number of servers and diverse service rates by calculating 

the expected mean waiting time of the request at its own DC and all foreign DC then routes it 

to the one offering the least time. Both algorithms are modeled using a basic example of two 

homogenous DCs to construct a two-dimensional Markov Chain representing all combined 

states for the two DCs. Models are solved exactly under Markovian assumptions upon which 

mathematical analyses are based to provide performance metrics essential for evaluating and 

optimizing system’s performance. Analytical results are verified with OMNeT++ simulations 

and test bed experimentations which are used for testing more cases of the algorithm that 

cannot be handled with more than two DCs under non-Markovian assumptions. The two 

algorithms show their efficiency at balancing the load among several heterogeneous cloud 

DC while maintaining an efficient operation and most importantly users’ SLAs. 

 

1.3 Thesis Outline 

 This thesis provides an overview on cloud computing technology with a state-of-the 

art literature study on its architecture and challenges. Essential cloud computing technologies 

such as virtualization and migration are explained followed by a highlight on the major 

challenges addressed in this work: Energy efficiency and Load balancing. The work is 

organized as follows: Chapter 2 gives an overview on cloud computing technology, its 

various types and models and why it evolved to be one of the most widely spread 

technologies nowadays. The structure of cloud data centers are explained with attention to 

most important challenges faced by cloud providers for managing their data centers 

efficiently. Separate sections are dedicated for both server virtualization as well as virtual 

machine migration as they are two of the most important technologies upon which cloud 

computing is deployed. The concept of server virtualization which enables servers to host and 

serve more than different customers with different service needs at the same time is explained 
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followed by examples for several hypervisors used currently for performing this task. As 

fulfilling users’ requests typically requires creation of virtual machines of different types and 

service models, these virtual machines often need to be migrated between servers for 

maintenance, energy efficiency or load balancing purposes. Different techniques for VM 

migration are also addressed in this chapters with different use cases for each technique. 

Finally the chapter concludes with an overview on various factors that contribute to the high 

cost of running a cloud data centers that are crucial to consider for maintaining the desired 

cost-efficiency of cloud computing technology. 

 Chapter 3 in this thesis focuses on the two main cloud data centers’ challenges 

addressed in this work. Section 1 of this chapters addresses the energy efficiency of cloud 

data centers and explains how its current operation leads to an enormous consumption of 

energy leading to an increase in its energy bill as well as performance deficiencies. Several 

approaches used for solving this problem and adopted in the algorithms proposed in this 

thesis are addressed and explained with detailed reviews on existing implementations for 

these technologies in literature. The first of these approaches is server consolidation, where 

the load of a data center is consolidated on a smaller number of servers in order to reduce the 

number of active servers in the data center. For in-active servers, sleep modes are one of the 

explained approaches that suggests putting servers into sleep modes while being un-utilized 

so that they can be brought into service when load surges with lower activation time than if 

they were switched-off, thus saving energy consumed by idle servers with compromise to 

performance. Another approach for an energy efficient operation is to reduce the frequency at 

which servers operate through low load durations, thus increasing the service duration of 

requests by reducing servers’ service rates instead of complete shut-down or sleep. This 

Dynamic Voltage and Frequency Scaling approach ‘DVFS’ has been studied extensively in 

literature as being one of the most flexible solutions for dynamic provisioning of data centers’ 

energy consumption in accordance to their current loads. Section 2 of this chapter addresses 

the load balancing dilemma across several data centers, with the main challenges facing load 

balancing algorithms currently. Several examples of load balancing algorithms in literature 

are introduced and compared, each with its main advantages and drawbacks that motivated 

for the two algorithms presented in this thesis; where most of the existing algorithms have 

problems of being centralized, re-active to over-load conditions instead of reactively 

predicting and solving them, being highly complex thus causing relatively long delays for 

taking load balancing decisions or being static algorithms that do not adapt dynamically to 

the current data centers’ loads. All these aspects have been avoided in the algorithm 

introduced later in Chapter 6. 

In Chapter 4 the methodology adopted for carrying out the required analysis, 

simulations and implementation of the proposed algorithms is explained. In this thesis data 

centers are modeled and analyzed as queuing systems, where the basic queuing models and 

their analysis methods are explained the first section of Chapter 4. Queuing systems under 

Markovian assumption are also explained as these assumptions are the key for exactly 

solving the proposed models. Section 2 follows with an introduction to OMNeT++ which is 

one of the simulation software mostly used for network simulations for having built-in 

modules for all network types and for its powerful simulation analysis. Simulations are of 
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high importance for verification of analytical solutions as well as for testing the algorithms 

under various conditions that the analytical solution cannot accommodate. Another important 

verification of the proposed algorithms is by deploying them on existing data centers, thus a 

test-bed for a small data center is explained in Section 3 upon which all algorithms have been 

tested for gaining insights on how they perform. 

The main contributions of this thesis are introduced within Chapters 5 and 6. Chapter 

5 starts with explaining the Multiple Hystereses Model with activation overheads that 

performs dynamic server consolidation within the data center for adapting the number of 

active servers within the data center to its current load. After the model is explained with all 

its notations and assumptions in Section 1, Section 2 explains different analysis methods for 

studying how a DC performs under this algorithm. The first method is using detailed 

mathematical analysis for solving steady-state probabilities of all system states, followed by 

the simulation model as well as the test-bed configuration and an outline for used scripts. The 

model has two add-ons for more realistic modeling which include accounting for activation 

overhead delays spent by switched-off or sleeping servers to start servicing a request as well 

as allowing for reduced service rates by servers that is the main idea behind DVFS approach. 

Finally, results for the algorithm’s performance using analysis are introduced in Section 3 and 

verified with results from simulation and test-bed. The same analysis and verification 

approaches are adopted in two sections within Chapter 6 for the two proposed load balancing 

algorithms LSSF and SRTF. In each section an algorithm is explained, modeled and analyzed 

mathematically followed by a comparison of results from analytical solution, simulation and 

experimentation. Algorithms are tested under several load situations and using various sets of 

parameters such as different values of migration overhead and different migration conditions. 

In the third section of Chapter 6 the two algorithms are compared against each other for better 

understanding of which situations are best for deploying each of them. Finally the work 

concludes in Chapter 7 with an outlook for future research. 
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Chapter 2 Cloud Data Centers 

  

As a huge part of the IT infrastructure is starting to rely more on cloud computing, 

cloud data centers are becoming a major focus in research for being the source of cloud 

services. Data centers continue to grow in size, complexity and importance; which triggers 

the need to study and understand operational aspects of cloud data centers in order to be able 

to enhance their performance. In this chapter the fundamentals behind cloud data centers are 

addressed, starting with a definition of cloud computing, its offered services and how its data 

centers are structured. Then a brief discussion on virtualization and virtual machine migration 

strategies is introduced as they are the main technologies behind the cloud. Finally, the 

chapter concludes with a report on the costs encountered by operating a cloud data center. 

 

2.1 Cloud Services 

 Cloud Computing has been forecasted by Leonard Kleinrock, one of the founders and 

chief scientists  of ARPANET (Advanced Research Projects Agency Network)  in 1969, 

which later was developed into the internet as we know it nowadays. In Kleinrock’s words: 

“As of now, computer networks are still in their infancy, but as they grow up and become 

sophisticated, I will probably see the spread of “computer utilities” which, like present 

electric and telephone utilities, will service individual homes and offices across the country” 

[105]. Years later after the huge development in cloud computing, NIST issued a formal 

definition of cloud computing: “Cloud Computing is a model for enabling ubiquitous, 

convenient, on-demand network access to a shared pool of configurable computing resources 

(e.g.: networks, servers, storage, applications and services) that can be rapidly provisioned 

and released with minimal management effort or service provider interaction” [136]. 

 Cloud computing has emerged as a new attractive solution for offering large scale 

distributed computing for all types of services. Based upon several existing technologies such 

as virtualization and utility computing, cloud computing is not a new approach; but rather a 

unique operations model making use of existing technologies to run business in a different 

way [144]. It aims at providing end-users with a service that is reliable, customizable and 

guaranteed in terms of QoS [109]. It has moved computing from local DCs and limited 

customer equipment to large and heavily equipped DCs hosted by cloud providers that can 

offer numerous services for their users by making use of already existing networks as the 

Internet. Services offered by cloud computing can be described as an off-site access to a pool 

of shared resources in an on-demand fashion, and are characterized by the following key 

factors [136]: 
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i. On-demand self-service 

Automatic provisioning offered by cloud computing for its users allows them to 

add/remove required resources as needed without service providers being involved. 

Cloud users can increase required storage/processing/memory/bandwidth resources or 

release them only by filing a request which is automatically fulfilled by the provider. 

This eliminates the need for planning for provisioning far ahead to accommodate any 

load surges [111].  

ii. Broad network access 

Users can easily connect to service providers making use of all their offered services 

as long as they have access to the network through commonly used standard 

mechanisms. 

iii. Resource pooling 

Cloud providers’ resources are pooled, i.e. shared by all cloud users to provide 

multiple on-demand access, which allows for a multi-tenant cloud model. Being a 

distributed system; the cloud provides location transparency in terms of hiding the 

location details of resources while being accessed, so that a user making use of a 

service mostly cannot tell the physical location of the resource hosting this service.  

iv. Rapid elasticity 

Ease of automatic add/release of resources according to the amount of user workload 

is an essential characteristic of the cloud. Elasticity in provisioning of resources 

allows for an increase of service efficiency, and leaves users with the impression that 

resources are unlimited and can be easily adapted as needed. 

v. Measured service 

Cloud providers use a pay-per-use model for commissioning their users according to 

their actual usage of resources. Resource usage is easily monitored by both users and 

providers, which provides mutual transparency and eases metering of resource usage. 

Cloud computing is based on two basic concepts: Abstraction and Virtualization [63]. 

Abstraction refers to hiding all system details from customers and only providing them with 

the required services. Details of the physical systems hosting applications are unknown to the 

user, as well as locations where data is stored. Requests arrive at the cloud provider and get 

processed according to its SLA terms without any information about protocols used, 

computation or storage complexity. These details are taken care of by the network and back-

end servers which are responsible for providing the best performance required by requests’ 

SLAs [150]. Virtualization refers to the idea of creating multiple virtual servers hosted on a 

single physical server, where each user is only aware of the virtual server it is currently being 

served at. Virtualization is the basis concept behind cloud computing, as it provides 

simultaneous execution of various tasks belonging to different users on the same physical 

platform. A more detailed discussion on virtualization will follow in Section 2.3. 

Cloud providers nowadays provide numerous solutions for individuals and business 

platforms; these services can be characterized into three service models, briefly explained and 

compared in the following Table 2-1 [33]: 
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Table 2-1: Types of Cloud Services 

 Software as a Service 

(SaaS) 

 

Platform as a Service 

(PaaS) 

 

Infrastructure as a 

Service (IaaS) 

 

Type of offered 

service 

Provides access to 

applications hosted at 

the cloud provider’s 

infrastructure, where 

applications can be 

accessed via thin or 

thick clients. Users can 

only make use of the 

application without any 

knowledge or control 

over the infrastructure, 

network or operating 

systems underlying it. 

Provides access to 

computing platform 

hosting numerous 

applications, with full 

access to all platform 

capabilities and denied 

access to the underlying 

infrastructure of servers, 

storage or operating 

systems. 

 

 

Provides access to 

processing, storage, 

networking and all 

fundamental 

infrastructure of a 

data center. Users 

acquiring IaaS type 

of service can install 

and use any desired 

operating systems 

and applications 

using the existing 

infrastructure. 

Characteristics - Central management of 

the software at 

provider’s 

infrastructure, where 

providers handle all 

software upgrades and 

maintenance. 

- ‘One-to-many’ service 

delivery model. 

- Provides a platform for 

developing and testing 

applications  

- Integration with 

existing databases and 

web applications 

- Multi-tenant model, 

where multiple users 

can be hosted on the 

same physical 

equipment 

- Possible dynamic 

scaling of acquired 

resources 

Appropriate 

usage scenarios 

- Essential business 

solutions that have 

fundamental needs, e.g.: 

E-mail 

- Software with short-

term need or frequent 

usage spikes. 

- Application 

development with 

multiple developers, 

where ‘Multi-tenant’ 

architecture allows for 

multiple access for 

developing and testing 

applications 

- Businesses with 

limited capital to 

invest in establishing 

own data centers 

-Growing businesses 

where adding more 

equipment is 

problematic, or when 

spikes of work load 

exist. 

Examples Mail servers  

Database Storage 

Application-Specific 

Software “APPs” 

Google App Engine [70] 

Microsoft Azure 

Services [69] 

 

Outsourced Data 

Centers 
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In their definition of Cloud Computing [136], NIST defined 4 models by which cloud 

computing can be deployed, differences between them depend on whether resources are 

shared among different users or provisioned exclusively for some of them. The four 

deployment models are: 

i. Private Cloud 

Refers to clouds that are provisioned for use by a single organization and users only 

with the organization where access by the general public is forbidden. It can be hosted 

by the owning organization or by a third party provider, and the physical 

infrastructure can also exist inside or outside organization’s premises. 

ii. Community Cloud 

Providing less privacy than private clouds, community clouds have the same 

characteristics as private clouds but are provisioned for use by selected community of 

organizations with common and shared interests. 

iii. Public Cloud 

Public clouds are available for use by the general public. Hosted at cloud providers; 

any user or any organization can acquire access to services offered by the public 

cloud. 

iv. Hybrid Cloud 

Combining two or more of the above mentioned cloud models, hybrid clouds offer 

more flexibility to achieve defined goals of data security, resource sharing and service 

expansion. 

The huge success behind Cloud Computing is not a result of the high technology it was 

built upon, but rather due to economic reasons for clients where it is more convenient for 

them in terms of cost, feasibility and maintenance to outsource their systems. This computing 

paradigm has been attractive for many users and companies that start migrating their services 

to the cloud for the following main reasons: 

i. Reduced Costs 

Since the cloud is characterized by an on-demand service, users can easily rent, 

provision and pay-per-use any required resources from the provider without requiring 

any upfront investments, which saves users the huge cost of establishing own data 

centers with all expensive hardware and software requirements, maintenance and 

upgrading costs. From an opposite perspective, cloud computing is also an attractive 

service to offer by organizations who tend to have over-equipped infrastructure, 

where equipment is only needed to satisfy short peaks of workload but mostly not 

fully utilized. By adopting the cloud computing service model, these organizations 

make better use of their investment by allowing access of their resources to outside 

users across public platforms as the internet.   

ii. Scalability of resources 

Cloud Computing provides its users with the illusion of availability of access to 

infinite resources, where users can easily scale the amount of provisioned resources 

according to their needs instead of adding more equipment or purchasing software 

systems. This important property of cloud computing eliminates the risks of over-
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provisioning or under-provisioning of resources by users, where users may provision 

the amount of required resources based on durations of high load or low load, so 

resources end-up being under-utilized or over-utilized, respectively. 

 

2.2 Data Center Architecture 

Cloud data centers are the backbone of all services offered by Cloud Computing, they 

host all the physical equipment that are virtualized to provide tailored services for cloud 

clients. Structures of data centers consist of rows of racks where each rack carries the 

functional servers, switches and storage units that are connected together via extremely fast 

communication links. Other additional components in the racks include -but are not limited 

to- rack power distribution, built-in keyboard-video-mouse (KVM) and rack-level air or 

liquid cooling [95]. Typically, data centers contain thousands of servers connected together 

and to storage elements via switches, routers or other network fabrics [144]. To connect all 

these data center components together efficient networking architectures are essential, as they 

will strongly affect the system throughput and applications’ performance. Also as cloud 

services and data centers continue to grow in size, scalability and extensibility of data centers 

in terms of physical equipment and their functional protocols need to be carefully considered. 

Layered network architecture is one of the most deployed in today’s data centers, an example 

is the Three-Tier architecture (3TA) where the data center is divided into three layers as 

shown in Figure 2-1. 

i. Access Layer 

It is the layer at which servers and storage elements organized in racks connect to the 

network, where each rack connects to an access layer switch via a 1 Gbps link. 

Switches at the access layer relay traffic from/to servers in racks to/from aggregation 

layer switches. For redundancy purposes, each access layer switch must connect to 

more than one switch at the aggregation layer, typically using 10 Gbps links. 

ii. Aggregation Layer 

Contains all aggregation layer switches which connect to access and core layer 

switches through redundant links. It hosts important functionalities such as location 

and domain services as well as firewalls and content switching [91]. 

iii. Core Layer 

Acting as the gateway of data center to the outside network, core layer routers carry 

traffic in/out of the data center. It hosts more than one router with redundant links to 

avoid traffic bottlenecks and single points of failure or for the purpose of load 

balancing. 
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Figure 2-1: Layered Architecture of a Cloud Data Center [144] 

 

Cloud data centers require different types of physical networks to accommodate 

different types of access to/within elements of the data center [95], architectures of these 

networks can follow one of the following types: 

i. Client-Server Network: connects clients of the service provider to their data 

hosted on the servers. This network must use a technology widely used by end-

users, such as Ethernet or wireless LAN. 

ii. Server-to-Server Network: provides the required high-speed connections between 

servers of the same data center. Network type could be Ethernet, Infiniband, or 

any suitable high-speed technology. 

iii. Storage Access: to provide access for stored data, Fiber Channel could be used for 

this type of network to provide fast and efficient data delivery.  

iv. Management Network: for managing all data centers’ devices, the management 

network may use Ethernet, separate cabling, or exist as a sideband on the 

mainstream network. 

Many methods are available to provide storage solutions for data centers. If storage 

components are not directly integrated with the servers in racks, separate storage bricks could 

be added. These storage bricks could be simple ones mounted on the rack slots or high 

performance storage units hosted separately in special storage towers and connected to racks 

via network links. For providing efficient access to any of these storage types it is important 
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that the data center implements high performance file systems. In general; storage within data 

centers follows one or more of the following implementations: 

i. Direct Attached Storage (DAS) 

Where servers have their own built-in storage, for example in the form of hard 

disks attached through Small Computer System Interface (SCSI). DAS has 

limitations in terms of size and sharing flexibility, but also has its benefits of low 

delay and high performance due to being locally connected to the server. 

ii. Network Attached Storage (NAS) 

Storage is provided via storage devices connected to the Local Area Network of 

servers via Ethernet. As data storage in NAS is file-based, it is easy to deploy with 

different types of file-sharing protocols. It provides higher storage capacity than 

DAS, as well as simple configuration and administration.  

iii. Storage Area Network (SAN) 

All storage devices are grouped together in a high-speed network that connects to 

servers in the DC providing block based storage. Communication between servers 

within the SAN is usually carried over Fiber Channel (FC) or Internet Small 

Computer System Interface (iSCSI) to provide data communication at high 

speeds. SAN Technology improve storage utilization by consolidating all storage 

in a network that can be accessed by any device in the DC. It also allows for cost 

reduction by eliminating any extra costs of unnecessary storage. 

Finally, for management purposes of data center equipment, a management 

infrastructure is implemented by connecting all Baseband Management Controllers (BMC) 

found at each server in the data center. This infrastructure is responsible for controlling 

switching-on/off of servers, managing hardware and software alerts, maintaining 

configuration data of devices in case of breakdown and providing remote management 

capabilities [95]. 

 

2.3 Server Virtualization 

 Virtualization of data centers can be envisioned as an evolution of dedicated physical 

owned resources to outsourced, shared and geographically distributed infrastructures that are 

able to provide the same level of control and isolation as owned physical resources [95]. 

Despite its numerous challenges, virtualization is considered the core idea behind cloud data 

centers for achieving optimized flexible resource utilization by execution of various tasks 

simultaneously over a shared hardware platform [103]. It provides a proficient approach for 

managing cloud data centers to achieve efficient resource utilization through dynamic 

provisioning and monitoring of resources [88]. Virtualization as a concept has been around 

for long, Virtual Memory in multi-programmed paged computer systems with dynamic 

address translation at execution time, Virtual Local Area Networks (VLANs), Virtual 

Routing and Forwarding (VRF) and Logical Unit Numbers (LUNs) are examples of long-

existing virtualization technologies. However, server virtualization began to be widely 

adopted among commodity servers in 1998 when VMware [190] implemented the Virtual 
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Machine (VM) concept on x86 hardware servers by effectively partitioning clock cycles 

among different processor tasks [56]. As hardware technologies continue to develop more 

powerful servers with increased processing power and storage capacities, VM consolidation 

ratios tend to increase and thus arising the need for sever virtualization. 

 When properly implemented, virtualization brings numerous advantages to cloud data 

centers, including and not limited to: 

i. Reduced Costs 

The fact that multiple virtual servers can be hosted on single physical server 

results in requiring less physical servers at the data center, thus reducing capital 

expenditure (Capex) by reducing the cost of infrastructure, cooling, and reducing 

the size of data centers. 

ii. Higher Utilization 

As servers in data centers typically experience very low utilization levels (as low 

as 10% [89]), virtualization allows servers to host more virtual machines thus 

increasing their work load and utilization, making more use of existing equipment 

that is already running and having their temperature controlled. 

iii. Availability 

Unlike physical servers’ failures which are harder to resolve, virtual servers are 

much easier to handle at failure situations by migrating them from failed servers 

to another running server. As will be explained in the next section, VM migration 

can be done in a fast way without any interruption to the work flow on the 

migrated server, thus providing fast and reliable failover scenarios that can be 

resolved automatically by the hypervisor. 

In addition to its advantages, virtualization subjects cloud data center to a major vulnerability 

in terms of security. As data centers host more virtual machines and thus grow in size and 

importance, they become more vulnerable to attacks. Strict security measures must be taken 

in order to prevent an attack targeting one of the hosted VMs at a server from affecting other 

co-hosted VMs. 

The concept of virtualization is to add a software layer between operating systems and 

hardware -instead of direct installation- to be responsible for installing several VMs with 

various operating systems on a single physical server, where this layer is called the 

Hypervisor layer or Virtual Machine Monitor (VMM).  Virtualization is simply implemented 

at cloud data centers by installing a Hypervisor on “bare metal”, i.e. on any server without 

requiring a supporting operating system to be installed. A hypervisor can easily create, 

provision, manage and shutdown virtual machines on the physical server as per user’s 

requests, where each VM is assigned a set of virtual hardware resources upon which it can 

install its operating system and host its services. Although physical resources are shared 

among all users, this information is not visible to any of them. Figure 2-2 illustrates the 

process of server virtualization, where each VM is assigned portion of the virtualized servers’ 

CPU, I/O, RAM and Disk capacity resources. Usually, service providers tend to perform 

overprovisioning of resources assigned to each VM hosted at virtualized servers, where the 
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total resources assigned are greater than existing ones [10]. This approach is efficient because 

rarely all VMs will have peak loads at the same time, so different peak loads at different 

times will eventually lead to steady utilization at virtualized servers.  

 

 

Figure 2-2: Layers and Components of a Virtualized Server [89] 

 

Being responsible for all virtualization tasks in data centers, hypervisor 

implementations face several challenges for achieving concise server virtualization, such as 

[132]: 

i. VM Isolation 

Virtual machines hosted on the same physical server must be isolated in terms of 

execution, so that execution of one VM cannot affect execution of others. Co-

located virtual machines can only communicate together through the hypervisor, 

and each has access only to its data and allocated resources. This is most 

important for preventing denial of service (DoS) attacks, where one VM’s 

improper execution can cause failure to the physical server and thus denial of 

service at all other concurrently hosted VMs. This multi-tenancy problem imposes 

a huge overhead especially at public clouds, where authors of [20] have reported 

experiencing unpredictable and unstable performance while testing 

computationally intensive tasks hosted at commercial cloud facilities. 

ii. OS Support 

Hypervisors need to support multiple types of operating systems to be installed by 

VMs such as Windows, Linux, etc… in order to accommodate different 

technology requirements.  

iii. Minimal Performance Overhead 

Overhead resulting from creating and managing of multiple VMs on the same 

physical server is required to be minimal for sparing physical resources to VMs. 

Also operational expenditure (Opex) needs to be minimized for virtualization to 

have an edge over non-virtualized environments where each server is individually 

managed. 
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Current implementations of hypervisors provide effective server virtualization as well 

as numerous advantages to cloud computing industry. For example, Xen hypervisor [132] 

which is implemented by multiplexing of physical resources at a granularity level of an entire 

operating system aims at simultaneous hosting of up to 100 VM on a single modern server 

while sustaining performance isolation among them. It enables attractive applications such as 

dynamic instantiation of VMs and their operating systems, server consolidation and VM 

mobility. Kernel Virtual Machine (KVM) is another hypervisor solution for Linux 

environments which maintains standard Linux services such as scheduler and memory 

management to allow developers to focus on virtualization instead of replacing the core 

kernel [72]. Another example is VMware ESXi hypervisor [190] which performs VM 

provisioning with intelligent load balancing for enhanced system performance while 

maintaining both system-level constraints and service level agreements for users [19]. 

VMware’s memory mechanism used by the ESXi server is shown in [36], namely the 

ballooning technique, which allows de-allocation of memory pages that was previously 

assigned to a VM (balloon deflation) to be assigned to another virtual machine (balloon 

inflation) without shutting down any of them. This is implemented by loading a balloon 

module onto the guest operating system which communicates with the server to perform 

balloon inflation when memory needs to be reclaimed and deflation when memory is to be 

released [182]. VMware implements other efficient mechanisms such as VMware’s Dynamic 

Resource Scheduler (DRS) which acts as the hypervisor and is responsible for the allocation 

of virtual machines on physical servers. Its operation is enhanced by Dynamic Power 

management (DPM), which performs server consolidation to group virtual machines on less 

number of hosts so that lightly utilized servers can be evacuated and either powered-off or 

put to a low-power mode. DPM’s approach of operating servers is partly adopted and 

modeled among energy efficiency models in this thesis, as will be shown in Chapter 5.  

 

2.4 VM Migration 

Migration of virtual machines between different servers at the same data center or 

across data centers is one of the most significant advantages provided by virtualization. Being 

considered an evolution of process migration techniques [161], migration of virtual machines 

provides an efficient solution as elaborated by Clark et al in [39], where they clarified that 

migrating a virtual machine including its operating system and applications is more efficient 

and avoids many of the difficulties faced by process migration techniques. Basically, a virtual 

machine can be migrated to another host within the same Local Area Network (LAN) or to 

another LAN across Wide Area Network (WAN) links [9]. Migration within the same LAN 

[177] is easier as only the VM is migrated with no need to migrate its storage as well since 

NAS storage solutions can still be accessed among the same LAN. While for inter-LAN 

migration across WAN links a VM need to be migrated along with its storage, where the size 

of CPU and devices’ states are in order of several KBs which is relatively small compared to 

the size of memory pages which typically ranges in GBs [24].  This leads to longer migration 

times for migrating both entities added to it the overhead for IP addressing and possible 

delays to network congestion or limited available bandwidth [137].  
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VM Migration brings several benefits to cloud data centers by achieving efficient 

resource management goals without any effect to hosted VMs. The capability of 

redistributing the load across servers via VM migrations enables highly responsive resource 

provisioning to compensate for any sudden peak loads resulting in hotspots [144]. Among 

goals achieved by VM migrations are [145]: 

i. Power Management 

Performed by server consolidation, where virtual machines from under-utilized 

servers can be migrated to other functional servers that are not overloaded in order 

to either switch-off under-utilized servers or put them in a low power mode by 

reducing their CPU clock rates using Dynamic Voltage and Frequency Scaling 

(DVFS) method. Although power efficiency at the data center is achieved at a cost 

of performance degradation, careful consideration by power management 

algorithms is important to guarantee that customers’ SLAs are not violated. 

ii. Load Balancing 

VM migration allows for eliminating hotspots in the data center by migrating 

workload from overloaded servers to under loaded ones to prevent performance 

degradation [155], as well as achieving any defined load balancing strategy 

defined by DC administrator among DC resources.  

iii. Resource Sharing 

VM migration allows for resource-hungry applications to be migrated from an 

overloaded server and assigned to another resource-rich server, thus providing 

better performance for applications and servers [183].  

iv. System Maintenance 

As dynamic and periodic system maintenance is of high importance to the 

system’s performance and extends its life span [152], VM migration allows for 

easier maintenance by shifting VMs from a server during its maintenance duration 

without affecting VM’s workload, and shifting them back after maintenance is 

complete. 

v. Fault Tolerance 

A data center that is fault tolerant detects faults and migrates VMs from faulty 

servers until they are available again [6], or preferably migration occurs even 

before a fault occurs, thus improving system’s reliability. 

vi. Mobile Computing 

As cloud users are becoming more mobile and increasingly on the move, a user 

can require his running application on a desktop to be available on a mobile 

device or vice versa [122]. VM migration enhances users’ mobility by migrating 

their currently running applications across any desired platform. Another 

application is Migrating users among Baseband units ‘BBUs’ within the uprising 

technology of Cloud Radio Access Networks CRAN [12]. 
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There exist two types of VM migration: live and non-live. Live migration migrates the 

VM without any interruption to the workload, thus providing seamless connectivity and 

maintaining service level agreements of users. Non-live migration stops the workload, 

migrates the VM and continues service again at the destination server. Downtime during non-

live migration time is usually predictable so that the migration decision can be taken based on 

whether downtime will comply with or exceed defined SLAs. Each of the before mentioned 

types can be classified into different approaches such as pre-copy -which is the default live 

migration method for many hypervisors as Xen, KVM and VMware [110]-, post-copy and 

hybrid methods for live migration and internet suspend resume and process domain for non-

live migration. All different live and non-live approaches are explained and compared in 

Table 2-2. 

Table 2-2: VM Migration Approaches 

Approach Live VM Migration Non-live VM Migration 

Definition 

Virtual machine and its hosted applications are 

kept running during migration process, where 

iterative copies of the VM state are continuously 

being copied from source to destination server 

finalized by a stop-and-copy approach [98]. The 

number of iterations determine the live migration 

time. 

Virtual machine along with 

all its running application 

are suspended and 

completely transferred to 

destination server where it 

resumes its workload.  

Advantages 

- Provides applications with uninterrupted 

workflow during migration, thus enhancing their 

performance  

- Minimal downtime during migration  

- Downtime is predictable 

- Single transmission of 

memory pages as they 

don’t encounter 

modifications during 

migration process, unlike 

live migration. 

Disadvantages 

Extensive consumption of network and DC 

resources during copy iterations especially for 

memory-intensive applications, thus degrading 

DC’s performance if resource consumption is not 

carefully optimized [145][110]. 

Applications’ QoS suffers 

degradation due to 

downtime during migration 

process. 

Schemes Pre-Copy Post-Copy Hybrid  

Internet 

Suspend 

Resume 

[117] 

Process 

Domain 

[162] 
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Definition 

- VM’s memory 

is transferred 

first to the 

destination 

server in 

rounds, then 

VM is resumed 

at destination. 

- Each round 

transfers dirty 

memory pages 

which have 

been modified 

at source after 

migration [24]. 

- Minimum 

VM state is 

transferred 

and resumed 

at destination 

server first, 

followed by 

memory 

pages pushed 

from source 

server and 

requested 

memory 

pages by the 

VM [121]. 

- Combination 

of pre and 

post-copy for 

enhanced 

performance. 

- Starts with 

bounded pre-

copy phase, 

followed by 

post-copy 

migration of 

minimal VM 

state to the 

destination 

server. 

After the 

VM is 

suspended, 

it is 

transported 

to the 

destination 

server via a 

distributed 

file system. 

Zap system 

is 

introduced 

for 

transparent 

process 

migration of 

unmodified 

applications 

by 

transferring 

a process 

domain to 

destination 

server 

Advantages 

Uninterrupted 

workload for 

VMs and 

applications 

- Reduced 

VM 

migration 

time and 

downtime 

- Enhanced 

performance 

for write-

intensive 

applications 

[176] 

Additional pre-

copy phase 

reduced page 

faults as a 

large 

percentage of 

memory pages 

are already 

transferred 

during pre-

copy phase 

Trivial 

process as 

migration 

becomes a 

transparent 

process 

[145]. 

Low 

overhead 

general 

process 

migration 

method 

Disadvantages 

-Longer total 

migration time 

- High 

occupation of 

system 

resources by 

migration 

daemon and 

hosted 

applications, 

which increases 

SLA violation 

probability of 

applications 

[145]. 

- In-efficient for 

write-intensive 

Possible 

service 

degradation 

due to page 

faults as a 

virtual 

machine 

might 

request 

memory 

pages that 

are not yet 

transferred to 

the 

destination 

server 

Although 

hybrid method 

perform much 

better than 

post-copy in 

terms of page 

faults, 

applications’ 

performance is 

still affected if 

memory 

dirtying rate is 

higher than 

memory 

transfer rate.  

Lack of 

locality 

heuristics 

and secure 

channels for 

efficient 

data transfer 

[145]. 

- Prone to 

security 

threats 

- Lack of 

definite 

decisions on 

which 

process 

domains are 

to be 

migrated 

and when.  
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applications as 

number of 

rounds for dirty 

data transfer 

increase rapidly 

[176] 

 

 Throughout load balancing algorithms proposed in this thesis at later chapters, the 

type of VM migrations across servers or data centers is not strictly specified. In our work 

virtual machines are migrated before starting their service at the source server, so the problem 

is more of a scheduling problem for virtual machine requests where challenges of life 

migration are not applicable and accordingly not considered. The only consideration in the 

proposed algorithms is the migration time for a virtual machine request, which is the main 

element to consider while making migration decisions.  

 

2.5 Costs of operating Cloud Data Centers 

 The cost of operating a system 24/7 with acceptable latency is crucial, and being 

aware of these costs is the main step towards reducing them. According to [84], 53% of the 

total expenditure of operating a data center is consumed by powering and cooling of data 

center equipment. Virtualization has been of much benefit to running system costs, as using 

single physical server for running multiple systems deployed as VMs have reduced the cost 

of equipment, cooling and data center space, thus reducing overall Capex. Opex also 

contribute to the overall running system costs, where compared to non-virtualized data 

centers, managing VMs deployed at a physical server by a hypervisor requires more attention 

due to sharing and contention, unlike individually deployed systems. According to authors in 

[19] a considerably large amount of Opex in a virtualized data center is consumed for 

determining optimum VM-to-host- mappings, and updating these mappings for consolidation 

or load balancing purposes. As for the cooling costs, cooling infrastructure of a Data Center 

could be quite expensive due to its numerous components which include large chiller plants, 

fans and air-circulation systems. Despite the heavy equipment, the cooling infrastructure 

might not always be able to handle the offered thermal load, which leads to difficulty at 

loading the racks to their capacity [95]. 

 Another contributor to the cost of operating a data center is its architecture. 

Nowadays, the most dominant architecture for cloud data centers is in the form of large data 

centers that are managed in a centralized fashion. Despite its efficiency due to the effect of 

economy of scale [144], this architecture has high expenses for equipping data centers and 

cooling infrastructure. A counter initiative has been advocated by authors of [93] and [184], 

where they suggested switching to a distributed architecture by having smaller sized data 

centers. This approach replaces large data centers hosting in order of tens of thousands of 

servers consuming tens of Mega Watt power by smaller distributed data centers hosting only 
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thousands of servers that draw an amount of power in order of hundreds of Kilo Watts [18]. 

Arguments supporting this approach are that smaller data centers are cheaper to build, require 

less cooling infrastructure, and they can be geographically distributed. These arguments 

result in relatively lower energy consumption than centralized approach, as well as lower 

response times for users especially for time-sensitive applications, since distributed data 

centers are physically closer to users than a central entity and are appropriate for 

‘embarrassingly distributed applications’ as e-mail by acting as nodes for content distribution 

networks [93]. As reported in [149], reducing the latency of users’ requests increases 

performance and directly increases business revenue. Google and Amazon had reported a 

drop by 20% and 1 % in their revenues and sales when their requests' latency increased by as 

low as 500 and 100 milliseconds, respectively [1]. This clarifies the need for careful 

consideration of a data center’s performance in order to increase its revenue and maintain 

users’ service level agreements. Important considerations for selecting data center locations 

are places that are cheap to rent, provided by cheap electricity resources as well as water 

supplies for cooling, and cheap manpower wages. 

Authors of [93] reported that data centers are usually managed in-efficiently with a 

minor utilization rate as low as 10%, thus resulting in wasted operating costs. Reasons behind 

this include: 

i. Equipment provisioning for long durations 

As equipment purchases is not a task done within short durations, data center 

administrators usually purchase components in bulk in order to last longer times 

and increase time between purchases. This usually leaves a remarkable amount of 

the equipment unutilized. 

ii. Inexact fit of applications to servers 

As applications make use of servers’ memory, CPU, network and storage 

elements, it is not necessarily the case that hosted applications fully utilize all 

these components, thus leaving behind unutilized resources. 

iii. Resource Overprovisioning 

Administrators usually tend to perform overprovisioning by assigning more 

resources to an application than it regularly uses by planning for peak loads, 

which results in unutilized resources during normal load operation times. 

iv. System level resilience 

Administrators usually design data centers while taking the important factor of 

redundancy into consideration by planning for redundant equipment so that a data 

center never fails. As redundancy level increases infrastructure cost also rises 

along with the administrative effort to manage all redundant infrastructure to 

handle all failure scenarios. Authors of [18] proposed an approach to reduce such 

costs by allowing data centers to fail while arranging for other data centers to 

handle their workloads, thus removing several redundancy layers from the data 

center. 

All these factors leading to in-efficient use of data center resources result in increased 

running cost, and can be resolved by dynamic assignment of resources to applications on-
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demand according to current system load, as will be introduced by proposed energy 

efficiency model in Chapter 5. 
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Chapter 3    Challenges of Virtualized Cloud Data Centers 

 

 This chapter introduces two of the main challenges that face cloud data centers’ 

implementation nowadays. First the problem of energy efficiency is considered as the huge 

amount of energy consumption is one of the most critical downsides of cloud computing data 

centers. Numerous solutions have been proposed for reducing the consumed energy and 

achieving energy efficiency, such as server consolidation, sleep modes and Dynamic Voltage 

and Frequency Scaling. Within the following subsections each approach will be explained 

and discussed briefly, along with implementation examples from literature. Second is the load 

balancing paradigm; although it has always existed in different types of networking systems, 

special considerations must be taken while introducing existing algorithms to the cloud due to 

its unique operational model. In the second subsection a review on most of the existing load 

balancing approaches is introduced where different approaches are explained and compared 

to give a complete view on the state-of-the-art in this area.  

 

3.1 Energy Efficiency of Cloud DCs 

As cloud computing becomes more popular and more companies start migrating their 

business into the cloud, cloud providers increase the sizes of their data centers to 

accommodate the increasing demand. This growth in data center components and capabilities 

is accompanied by a corresponding increase at equipment size as well as power consumption. 

Since 2008 the ICT industry has been considered among the top energy consumers by the EU 

advisory group [76] for manufacturing equipment, using and disposing them. As reported in 

[34] and [81], between 1.1% - 1.5% of the total world-wide generated energy was consumed 

by operating and cooling of data centers, and this percentage was foreseen to grow annually 

by 18%. In order to evaluate data centers’ energy efficiency authors of [178] defined the 

metric Power Usage Efficiency (PUE), which is a ratio between the total amount of energy 

consumed by the data center and the amount of energy consumed by servers. Typically, an 

inefficiently managed data center will have a PUE value in the range of 2.0 - 3.0, a top tier 

data center will have a PUE of 1.2, and a well-managed facility could have a PUE of 1.7, but 

this number lies much below the average for the data centers among the world [18][124]. As 

explained in other words by authors of [18], a PUE of 1.7 reflects that  for every energy Watt 

delivered to the data center only 59% of it is used by processing server, while 33% is used by 

cooling infrastructure and 8% is estimated to be lost due to power distribution. 

For example, a typical data center of size 500 m
2 

consumes daily an estimate of 

27,048 kWh [4], which is the amount of power required for supplying around 2500 houses in 

the European Union [31]. Being one of the market leaders in the field of cloud computing, 

Google estimated the amount of energy consumed by its data centers in 2013 [87] to be 260 

million energy Watts, equivalent to 0.01% of the total energy of the globe that is sufficient to 

power almost 200,000 homes. Huge as this amount of energy consumption is, it is foreseen to 
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increase. In a survey by [3] among several data center managers, 38 % of the sample had 

solid plans for building new data centers and 47% planned for expansions or renovations for 

their existing ones, which raises concerns towards the expected rapid growth in data centers’ 

sizes and energy consumption rates. Recently, huge DCs have been installed in Polar Regions 

where the gain by energy reduction over-compensates additional transmission costs. 

Accordingly, approaches to reduce the amount of power consumed by data centers are 

topics that have been and still are of huge interest in current research and literature. ‘Green 

Computing’ is the name given to approaches for reducing energy consumption in computing 

centers. Green computing defines a set of procedures according to which computing is done 

efficiently, while guaranteeing minimal energy consumption by resources. Before briefly 

explaining three among the most common procedures in the following sub-sections, reasons 

for in-efficient consumption of energy are to be considered first. Authors in [172] identified 

two reasons of energy in-efficiency where consumed energy is either lost or wasted. Lost 

energy refers to energy that was not consumed by the data center for its main task, i.e. 

computing. This includes energy lost during transportation, conversion, or consumed by 

secondary supporting systems as cooling which consumes around 0.5-1 Watt of energy for 

each Watt consumed by computing servers [40]. Wasted energy refers to energy that was 

used by servers of the data centers without producing an output, i.e. energy consumed by 

idle/sleeping servers, where an idle server can consume more than 50% of the amount it 

consumes while running at full power [74]. Energy waste is typically encountered by data 

centers where servers run idle or at a low utilization level between 10-50 % [100]. According 

to [4] a data center that operates at 20% of its operational capacity approximately consumes 

80% of consumed power when it runs at full capacity. IBM reported similar results in its 

report [77] where it estimated an amount of 85% of data center computing equipment to be 

idle. 

While reducing lost energy is not related to the operation of servers in a DC, it can be 

done by introducing new technologies for minimizing the energy required for DC supporting 

systems, and will not focused upon in the context of this thesis. The main focus will be on 

approaches for reducing the energy wasted by servers running unnecessarily, as there is a 

huge space for development in this area due to fluctuating load levels in data centers during 

users’ idle times at which saving computing and cooling power could be achieved [51].  This 

was also reported by Intel [2] where they estimated that the amount of power consumed by a 

data center can be reduced by as much as 20% without any impact on its performance by 

reducing wasted energy. Approaches include switching-off or putting un-/under-utilized 

resources to sleep as implemented in VMware’s Dynamic Power Management (DPM) [19] or 

keeping them switched-on at low voltage and frequency levels using DVFS (Dynamic 

voltage and Frequency Scaling) [167]. These methods will be implemented, modeled and 

discussed thoroughly within Chapter 5 with the aid of Queuing theory and simulation tool.  

  However few research work have considered methods for energy reduction that are 

aware of the system performance and maintain service level agreement of users, which is the 

main consideration for this work. Reducing energy consumption usually means reducing 

system utilization and thus affecting system’s performance in terms of quality of service and 
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experience for users. Designing algorithms that takes both requirements into consideration 

has only been addressed few times in literature. Authors of [154] illustrated this conflict by 

an experiment using a 13-node test bed where a power manager and a virtualization manager 

were deployed separately to monitor the unique effect of each of them. The experiment 

concluded that mostly violations in service level agreements and power consumption 

threshold occur at the same time and that they are strongly correlated as they cause one 

another. In other words, when the level of power consumption increases the power manager 

reacts by reducing the frequency of CPU cycles to reduce it, which causes violations of SLA. 

SLA violations on the other hand cause virtualization manager to increase frequency of CPU 

cycles to maintain SLA levels resulting in power threshold violation, and so forth. Thus, 

algorithms that consider aspects of power efficiency as well as users’ SLAs are of much 

importance to maintain a balanced and efficient system performance. In the following 

subsections we discuss different approaches for implementing energy efficiency, along with 

references to state-of-the-art implementations from literature. 

 

3.1.1 Server Consolidation 

 Server consolidation refers to the method of consolidating work load of the data 

center on fewer number of servers so that lightly loaded servers can be shut down or put on 

low-power mode. It is an effective approach for minimizing the number of active servers and 

thus the amount of energy consumed by the data center for achieving better utilization of 

system resources. In cloud data centers virtualization has made it possible via migration of 

VMs from low-loaded servers to under-utilized servers, allowing the earlier to be shut down 

and the latter to be efficiently utilized. The process of server consolidation includes several 

decisions that need to be performed by a consolidation framework, where different 

framework implementations differ in their handling of these decisions which are explained 

below as stated in [151]: 

i. Resource Assignment Policy 

It describes how system resources are assigned to VMs, where resource mapping 

could be done in a static or dynamic fashion. Frameworks assigning resources 

statically grant a VM the maximum amount of resources it could need upon 

deploying it to a server. On the other hand dynamic assignment allocates 

resources on-demand based on VM’s current work load. Most consolidation 

frameworks use the more energy efficient dynamic allocations such as in [197] 

and [52], as algorithms following static allocation criteria e.g.: [169] suffer from 

inefficient VM placements compared to dynamic assignment since not much VMs 

can be packed on one server if each VM occupies its maximum capacity [68] . 

ii. Architecture 

Represents the architecture of the consolidation framework where it can be 

centralized or decentralized. Decentralized approaches as implemented in [7] 

show better efficiency and reliability as they scale well with increasing system 

size and eliminate single point of failure risk experienced with centralized 

approaches, such as centralized approach implemented by authors of [171]. 
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iii. Co-location Criteria 

It is the criteria upon which decision of which VMs to be placed together is made. 

Co-hosting particular VMs together can be done for communication purposes 

where the communication cost needs to be reduced e.g.: [9] [52] , for increasing 

availability of shared resources e.g.: [123] [174] or energy efficiency purposes as 

will be addressed shortly in details. 

iv. Migration Trigger 

Decides when a particular VM is to be migrated. This trigger could be computed 

using several approaches such as scheduled migration where a schedule is defined 

so that an evaluation of the system is done to decide whether trigger needs to be 

activated, e.g. [123]. Triggered migration could also be based on historical data to 

predict future load behavior, e.g.: [52] [67] or it could be based on heuristic-based 

trigger as done in [34] [169] [8]. 

v. Migration Model 

Decides how the VM will be migrated depending on the nature of its hosted 

applications. As previously discussed in Section 2.4, migration techniques include 

pre-copy, post-copy or hybrid approach. 

Another important property of server consolidation mechanisms is presented by 

authors of [144], where they highlighted the necessity of automated service provisioning in 

cloud data centers in order to have close-to-instant response to rapid load fluctuations. They 

have specified steps for reaching automated provisioning through constructing application 

performance models for predicting demands and adjusting allocated resources and 

performing consolidation automatically. Although using proactive algorithms for predicting 

application demands ahead and allocating required resources accordingly seems more 

favorable than the reactive method, they require high system processing capabilities for 

constructing traffic models and continuously calculating predicted load and required 

resources to accommodate this load. An efficient solution is to use reactive algorithms with 

fast responses to variations in load, such as the method proposed in this thesis where the 

number of servers required for serving arrivals to a data center is automatically provisioned 

every time a request arrives to the system, thus providing a fast responsive consolidation 

framework with minimal overhead.  

Server consolidation for energy efficiency has been explored heavily in research 

where several approaches have been proposed for this problem. In [34] EnaCloud approach is 

proposed which implements dynamic live placement of virtual machines in a cloud data 

center upon the minimum number of servers for maintaining energy efficiency using heuristic 

algorithm. It models the VM placement problem as a bin packing problem, where servers are 

loaded with VM requests until reaching their maximum capacity while accounting for 

variable amounts of resource a VM can request. Another approach is adopted by authors of 

DT-PALB algorithm (Double Threshold Energy Aware Load Balancing) [78] by considering 

servers’ utilization percentages where VMs hosted at a server with utilization level below a 

threshold level of 25% are migrated to another server to shut off the current one. Higher 

threshold level is determined at 75% CPU utilization, where a new VM arriving when all 

servers are at or exceeding this level will be hosted at an idle server brought into operation. A 

multi objective optimization problem for VM placement is introduced in [193] where authors 
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propose an ant colony multi-objective algorithm for minimal energy consumption with 

simultaneous efficient usage of resources. Similarly, authors of [47] divide the allocation 

problem into three single objective problems for optimizing energy consumption under 

constraints of VM performance and vice versa, followed by a third optimization for a 

combination of both. 

A few significant approaches in literature have considered both energy efficiency of 

data centers as well as users’ SLAs while proposing implementations for server 

consolidation. As the goal of server consolidation is to co-host several VMs upon shared 

resources of smaller number of servers, it directly impacts the amount of resources assigned 

to each VM and thus could affect performance of its hosted applications as well as service 

level agreements of its users. Although infrastructure as DeSVi introduced in [179] was 

solely developed for the detection of SLA violation, it is important that consolidation 

infrastructures take it into consideration in order to prevent violations instead of reacting to 

them. Authors of [7] propose a method based on determining upper and lower adaptive 

thresholds for server utilization to perform dynamic consolidation while attaining users’ 

service level agreements, where these thresholds could be adapted automatically depending 

on system’s requirements of increased energy savings or enhanced SLAs. In another paper by 

the same authors [9] they show simulation results for VM dynamic allocation heuristics based 

on performance of servers’ CPUs. In their approach a VMM keeps track of all nodes and 

their utilization levels to decide if VMs need to be migrated in cases of overload, where a 

local manager decides upon which VMs will be migrated and where. Authors show that 

compared to a data center that is not power aware, data centers implementing energy 

efficiency heuristics show an 83% reduction of energy consumption and an improvement of 

66% when compared to others implementing only DVFS solutions.  

In [197] authors propose an algorithm for SLA violation decisions and migrates these 

VMs to another server where minimum power could be achieved while utilization is 

maximized. Algorithm runs in two steps where the first step is to detect overloaded servers 

and VMs exposed to SLA violations, followed by the second step of migrating VMs in a 

decreasing order of their resource consumption intensity to be migrated to underutilized 

servers until they are utilized maximally. Another aggressive consolidation technique with 

consideration to SLAs of users is described in [104] where authors describe current 

consolidation frameworks to be ‘rigid’ as they consider requested resources by VMs to be 

fixed. However in their approach this assumption is replaced by a more flexible one as they 

suggest adjusting/reducing the amount of assigned resources to the VM as long as its SLA is 

not affected. This treatment of VMs as ‘moldable’ allows for reducing assigned resources per 

VM thus allowing more VMs to be co-hosted by the same server, where the modified 

resources per VM and VM to server mappings are decided by a Genetic algorithm. In their 

paper authors also investigate how to minimize the transition time between initial system 

state and the modified state using Genetic algorithms.  

Table 3-1 provides a summarized comparison among all previously discussed server 

consolidation approaches. As all these algorithms tend to perform consolidation for energy 

efficiency, a few pitfalls of this process that are only accounted for by few algorithms and 

must be considered in future research while attempting to reduce consumed energy include 

[151]: 
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i. Overlooking Migration overhead 

As some algorithm perform migration decisions without consideration to the 

overhead latency caused by migration that highly affects SLAs of virtual 

machines. 

ii. Aggressive consolidation with excessive VM Migrations  

Some consolidation frameworks tend to perform server consolidation aggressively 

by hosting VMs onto servers till the latter reach their maximum CPU utilization, 

without paying attention to other shared system resources such as memory, cache 

and networking elements which could cause system instability [52]. Authors of 

[97] highlighted this problem when the usage of one resource at a server could be 

blocked due to insufficiency of another resource, and proposes heuristics for 

efficient VM allocation and efficient use of resources. 

iii. Co-Location criteria 

Although considered by some algorithms, many of them overlook relations 

between VMs that must be considered for optimal placement. For example VMs 

that communicate regularly should not be placed into two distant servers, but 

should be hosted at two servers on the same LAN to reduce communication 

latency. 

iv. Utilization Prediction Accuracy 

As predicting servers’ utilization is the main triggering point for most 

consolidation algorithms upon which consolidation decisions are made, it must be 

performed dynamically using efficient heuristics such as those used by [9], [7] and 

[174]. Another important prediction issue is estimating the amount of resources 

required by an application from its hosted server, which could be performed 

application profiling as used by [156]. 

v. Security  

Although energy efficiency is a major issue, security of users’ data must not be 

compromised while consolidating servers’ loads. In some scenarios where 

consolidation might violate security policies as placing data from competing 

consumers at the same platform, it should not be performed.  

vi. Residual Resource Fragmentation 

An important aspect referred to by authors of [97] is the waste of residual system 

resources after fragmentation among VMs. As VMs always experience variable 

loads, the amount of resources assigned to VMs hosted at a physical server varies 

according to the load leaving few resources that could not be enough for hosting 

another VM. But while examining the whole data center, the sum of all residual 

resources at each server can accommodate one or more VM. Authors propose an 

algorithm for rearranging VMs intelligently to concentrate residual resources on 

small number of physical machines in order to be able to host more VMs. 
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 Table 3-1: Comparison between Server Consolidation Frameworks 

Algorithm Type Description 
VM Placement 

Criteria 

Conside

-ration 

for SLA 

EnaCloud [34] Dynamic Proposes a heuristic that is 

energy aware for solving a 

bin-packing problem of 

optimal VM Placement 

with overprovisioning of 

resources 

Fully load each server 

with VMs before 

placing VMs 

elsewhere 

No 

DT-PALB [78] Static Defines a lower threshold 

for deactivating 

underutilized servers and 

an upper threshold after 

which new servers are 

allowed to be activated 

VMs are placed at 

servers one by one 

until a server reaches a 

75% utilization, after 

which a new server 

accepts VMs 

No 

Multi-objective 

Ant Colony 

[193] 

Static Describes a multi-objective 

optimization problem for 

energy reduction and 

optimal resource utilization 

simultaneously 

Fully load each server 

with VMs before 

placing VMs 

elsewhere 

No 

Beloglazov et.al. 

[7] 

Dynamic Adaptive thresholds for 

server utilization upon 

which decisions of which 

VMs to migrate and onto 

which servers are made 

VMs are placed at 

servers where they 

will cause least power 

consumption  

Yes 

Beloglazov et.al. 

[9] 

Dynamic Energy efficiency 

heuristics for detecting 

overload situations and 

migrating VMs from to 

less loaded servers with 

attention to their QoS  

Allocate VMs to 

servers where their 

SLA will not be 

violated  

Yes 

He et al. [104] Dynamic Adjusts amount of assigned 

resources per VM in order 

to increase number of VMs 

hosted per server as long as 

VMs’ QoS is not affected 

Fully load each server 

with VMs while SLAs 

are not compromised. 

Yes 

Cao et.al. [197] Dynamic Detects servers which are 

overloaded and runs an 

algorithm for detecting 

which VMs are at risk of 

SLA violation and are 

candidates for migration to 

a less loaded server 

VMs are migrated and 

placed to servers in a 

descending order of 

the amount of 

resources they require.   

Yes 

Borgetto et al. 

[47] 

Dynamic Optimizes both system 

performance and power 

consumption through three 

single objective 

optimization problems. 

Efficient loading of 

servers by fully 

loading each server 

before switching-on 

idle server 

Yes 
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Rao et al. [97] Dynamic Reduces residual resource 

fragmentation by 

redistributing VMs among 

servers to concentrate 

residual resources on less 

number of servers to make 

use of them. 

VMs are placed to 

servers such that 

residual resources are 

minimized 

Yes 

 

3.1.2 Sleep Modes 

Switching-off idle servers or putting them to sleep is the basic idea for reducing their 

energy consumption commonly referred to as Dynamic Power Management (DPM). Energy 

consumed by servers is defined as the amount of performed work during a time duration, 

whereas power is the rate at which work is performed. Power consumed by servers can be 

classified into two major elements, a static and a dynamic one [59]. Static element of power 

consumption refers to the amount of consumed power to power on the server regardless of its 

workload, while dynamic element is load dependent and is affected by variations in current 

load, CPU clock frequency, system current and capacity, etc. . Saving the dynamic portion of 

energy consumption can be achieved through reducing approaches as Dynamic Voltage and 

Frequency Scaling DVFS as will be discussed in the following subsection. Whereas in order 

to save power consumed during idle load periods reducing the static element of power 

consumption is the only solution, which is targeted by server sleep modes. The amount of 

power consumed by idle servers is not trivial; it contributes with 66% of the maximum power 

consumption as reported by authors of [146] who propose a model for prediction of idle 

power consumption by considering numerous server types characterized by various hardware 

structure and energy-consumption models by the different hardware components. The 

solution of reducing idle power consumption can be achieved according to predictions by the 

operating system on the expected idle interval and expected work load, where servers can 

enter any state among a group of defined C-states where high C-state number indicates 

deeper sleep states, lower energy consumption and longer latency for the CPU to become 

active again. CPU C-states and their related interfaces are defined by the Advanced 

Configuration and Power Interface (ACPI) for x86 systems [30]. 

Numerous architectures for implementing sleep modes for energy efficiency in 

virtualized environments have been proposed in literature, where virtualization imposes an 

added constraint before switching-off a server or putting it into sleep mode that all its hosted 

VMs are idle. An approach for energy conservation ‘PowerNap’ is introduced in [53] which 

reduces energy by putting idle servers into sleep modes with low energy consumption and 

minimizes transition times in and out of these states when load spikes occur. By analysis of 

real-life traffic scenarios in data centers authors of this paper demonstrate that data centers 

experience idle periods almost 60% of the time, with idle intervals averaging around 1second. 

Powernap provides the ability to transit the system between two states: active state where 

system runs operates at maximum speed and nap mode with minimal energy draw with 

bounded transition delay in the range of 1-10ms. It also introduces RAILS ‘Redundant Array 

for Inexpensive Load Sharing’ which is an algorithm for improving efficiency of power 

supply through sizing modules providing power to the DC for meeting PowerNap’s demands 

of power supply. Although PowerNap outperforms DVFS and similar approaches at durations 
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of low utilization [53], it is not the best approach to adopt during high utilization durations 

when transition delay could affect system’s performance. Authors of [23] introduce NapSAC 

algorithm which predicts the expected workload density using several heuristics in order to 

find out the number of servers required to be active for serving this predicted load under 

given SLAs. By predicting incoming load servers can be switched-on/off accordingly before 

load arrives so that transition times do not affect users’ SLAs. A similar approach for right-

sizing the number of active servers inside the data center to be load dependent is introduced 

in [118]. This approach introduces an offline algorithm for calculating the required number of 

servers through an optimization problem, followed by an online Lazy Capacity Provisioning 

algorithm that is proved by the authors to be performance- and cost-competitive in 

comparison to offline algorithm.  

Another sleep-advocating algorithm is introduced in [54] namely ‘DreamWeaver’ 

which facilitates entering deep sleep states at servers with multiple cores running different 

requests. DreamWeaver operates in two stages; first stage is done by Weave scheduling 

which coalesces idle and busy periods among all system’s cores to allow all of them to 

execute requests at their highest efficiency then go into sleeping state at the same time. 

Second stage is carried out by a Dream processor which monitors incoming workload while 

cores sleep and determines for how long can incoming requests be stalled to allow for more 

sleeping time of cores and thus more energy savings without affecting users SLAs. As being 

workload dependent is a main advantage of DreamWeaver, added delays for stalled requests 

arriving while system is in sleep state is a main downside. Similar to DreamWeaver the 

approach of delayed activation has been adopted by many algorithms in literature. An 

example is proposed by authors of [38] who introduce a vacation scheme concept where 

traffic is reshaped into bursts so that a server can wake up to serve the burst and return into 

sleep state again, thus maximizing sleep durations. In [37] authors suggest procrastinating 

waking up of servers as long as arrivals’ tail latency constraints will still be satisfied while 

considering variability among different arrival requests. Accordingly their decisions on when 

to wake servers up are dynamic and depend on the type of buffered arrivals. Authors of [115] 

provide an enhancement to these approaches by delaying both activation and deactivation of 

servers. Delayed activation allows a server to remain in sleep mode for a random time even 

after an arrival occurs. It offers extended sleep times and thus lower power consumption with 

a tradeoff of increased latency for users’ requests. On the other hand Delayed deactivation 

keeps the server running for a random time even if there are no arrivals to be served. It allows 

instantaneous service for arrivals occurring while the system is idle and running with null 

reduction in energy consumption. This work provides a Markov Model for studying the 

system, solves it under stationary conditions to study the effects of delayed activations and 

deactivations, and come to the interesting conclusion via analysis and simulation that when 

both delay durations are fine-tuned they can reduce energy consumption as well as users’ 

latency.  

Stochastic modeling of data centers as queuing systems for studying the effects of 

DPM models has been approached by many other authors in literature. In their work 

introduced in [192] authors also introduce a Markov modeling approach for studying the 

effects of Greedy sleeping policy, Prediction, and Accumulate and Fire policies on both 

energy consumption and delay. Another model for servers working under adaptive DPM 

policies as a Markov-modulated process is introduced in [198] where an offline calculation of 
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optimal DPM policies is performed using Markov decision processes, then chosen policies 

are switched upon online to optimize performance. In [55] authors propose a different 

approach for energy reduction via sleep modes by formulating the problem of deciding states 

of servers either active or sleeping as a constrained Markov decision process which is then 

solved to find the optimum power management solution in the data center. Following 

decisions upon server states a task broker takes over by distributing incoming requests among 

active servers so that their SLAs are maintained. Similar work is done in [180] using 

continuous time Markov Chains to find optimal on/off policies for single server systems, 

which is extended to a server of general service distribution in [113] and further more into 

multi-server systems in [73]. Extensive studies have also been performed on sever farms with 

set-up costs for energy efficiency by Gandhi et al. in their publications [14], [16], [17] and 

[13]. Although many of these references are very similar to the modeling work presented in 

this thesis, the work presented here provides many additions such as investigating both sleep 

states and DVFS methods under Markovian and non-Markovian assumptions. Our analytical 

results are also packed with results from simulation as well as experimentation on real 

systems. 

All the above mentioned approaches for implementing sleep modes for energy 

efficiency are concerned with putting only servers into sleep modes. The reason behind that is 

that servers and CPUs consume the largest portion of energy among other components in the 

data center for running out computational tasks. Other approaches propose implementing 

sleep modes at other components in the data center such as network infrastructure as it 

consumes approximately 30% of the data center’s energy [48]. Suggested elements to put into 

sleep include whole network components such as routers and switches, line cards and 

network interface cards or network bundles and links as proposed in [159], [32], [135] and 

[189]. Rate adaptation for network links is also another approach that has been explored in 

[159], [46] and [125].These approaches will not be addressed nor discussed in the context of 

this thesis as the main focus is on saving energy consumed by servers. 

In their experimentations on existing data centers’ servers with real traffic traces for 

testing sleep modes efficiency, authors of  [14] show that sleep modes could achieve up to 

50% energy savings if the power used during sleep states is less than half the power 

consumed during idle states. But as attractive as sleep modes can be for achieving energy 

efficiency, they are not suitable for all load situations. As transitioning among different 

system C-states requires a period of transition time that is even higher when the transition is 

performed between off/on states, sleep modes incur delays which could affect quality of 

service of applications and users’ SLAs as well as an energy penalty due to power spike at 

disk spin-up [99]. According to [100] sleep modes are only beneficial when idle periods are 

relatively long, which is not usually the case in data center environments where servers are 

usually lightly utilized with small tasks. Also for situations when load arriving to the data 

center is highly bursty sleep modes will degrade system performance due to the relatively 

long transition durations [181]. This raises the need for dynamic algorithms for servers to 

self-scale their CPU frequency according to offered load, as will be explained in the 

following subsection. 
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3.1.3 Dynamic Voltage and Frequency Scaling 

 Dynamic Voltage and Frequency scaling is an approach for reducing the frequency of 

CPU cycles of servers when idle or experiencing low workloads in order to reduce their 

operational voltage and accordingly their energy consumption. The amount of power 

consumed by a server can be estimated using equation 3.1: 

     𝑃 = 𝐶𝑓𝑢2 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐            (3-1) 

where C is the sum of capacitances across the circuit,  f is the frequency at which servers’ 

operate, u is the voltage supplied and 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 is the static power consumed due to leakage 

mechanisms [58]. As the equation shows, the amount of consumed power is directly 

proportional to the operational frequency and square the operational voltage which is 

frequency dependent, thus reducing frequency will reduce voltage and cubically reduce the 

consumed power.  

 To perform this operation, DVFS reduces the amount of instructions that a processor 

issues with a period of time, thus reducing its performance by introducing more delays but 

with an advantage of reducing its energy consumption[181], making it an approach that is 

only suitable during average to low loads. Accordingly when implemented in a virtualized 

environment as cloud data centers, a server can only apply DVFS schemes if all its hosted 

VMs and applications can still maintain their SLAs. As energy depends on both the amount 

of power consumed as well as its time duration, reducing consumption must be done through 

reducing consumed power during non-idle periods without highly extending those durations 

[181]. Depending on the current system’s workload, the operating system can choose to enter 

a state among several P-states (Performance states) which define combinations of voltage and 

frequency values. CPU P-states and their related interfaces are also defined by the ACPI [30], 

where a high P-state number indicates a state of low frequency and low power consumption. 

For example, state P0 indicates a state of highest frequency, P1 has lower frequency, P2’s 

frequency is even lower, etc... Examples of P-states supported by an Intel Pentium M 1.6 

GHz processor are shown in Table 3-2 [5] [65]. 

 Table 3-2: P-states of an Intel Pentium M 1.6 GHz Processor 

P-State Frequency  Voltage  Power (Watts) 

P0 1.6 GHz 1.484 V 25 W 

P1 1.4 GHz 1.420 V 17 W 

P2 1.2 GHz 1.276 V 13 W 

P3 1 GHz 1.164 V 10 W 

P4 800 MHz 1.038 V 8 W 

P5 600 MHz 0.956 V 6 W 

 

This method works best when idle periods are frequent and long, otherwise it can result in an 

energy consumption overhead [172]. Another trade-off for DVFS is that energy should be 

enough reduced to compensate for the longer time it will take the server to process requests 

under lower frequency [57]. Nevertheless, DVFS method is considered an efficient method 

for achieving energy efficiency due to the following reasons [95]: 
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i. Power consumption is directly proportional to the frequency and to square of the 

voltage, thus an attempt to reduce both can result in reducing consumed power 

cubically. 

ii.  Voltage is directly proportional to leakage current, thus reducing CPU’s voltage 

reduces power lost due to leakage current. 

 DVFS has been extensively studied in literature for efficiently reducing data centers’ 

power consumption. In [85] authors use DVFS for reducing the sudden power rise 

encountered at a server during the process of VM migration. As migration of virtual 

machines is usually performed for reducing consumed energy, this rise in energy contradicts 

the goal of power capping and thus DVFS prevents this rise by reducing the CPU frequency. 

In [15] Gandhi et al. consider the problem of allocating minimal power to servers with 

minimal delays using Dynamic Frequency Scaling DFS, DVFS, and combination of both for 

optimized energy reduction at different load scenarios. Authors model server farms as 

queuing systems where they can derive exactly the average delays for requests then find the 

optimum operating frequencies for maintaining them. Their experiments on an IBM 

Bladecenter concluded that dynamic DVFS can improve energy efficiency up to 5 times; and 

that depending on the load type, running more servers at lower frequencies could save more 

energy than running fewer servers at a higher frequency. 

 In the scheduling scheme proposed by [64] the scheduler performs regular checks on 

the processing demands of applications hosted by servers in order to adjust their energy 

consumption dynamically via DVFS. Another scheduling algorithm proposed in [199] also 

uses DVFS for reducing energy consumption by monitoring the system during intervals and 

setting the CPU frequency of servers during the next interval based on the energy consumed 

during the previous interval. Another scheduling algorithm with DVFS add-on is introduced 

in [45] where VMs are given weights based on their priorities and SLAs of its users then 

distributed among servers in the DC while DVFS algorithm regulates each server’s frequency 

accordingly. Through simulations authors show that they can increase system’s utilization 

and prevent wasted resources as well as wasted energy during idle periods. Authors of [94] 

propose another data center provisioning algorithm for scheduling VM in data centers with 

real time requirements while applying DVFS schemes. Authors propose and test Adaptive-

DVFS and δ-Advanced-DVFS that work under soft and hard real time requirements and are 

able to minimize energy consumption, maintain users SLAs and reduce running costs of data 

centers. In [143] authors address the problem of conflict between memory system and CPU 

DVFS when controlled by separate entities. Their proposed algorithm ‘CoScale’ provides 

coordination between these two tasks for each of the server’s cores while maintaining defined 

performance levels. 

 More often in literature DVFS algorithms are implemented along with DPM for 

optimum power reduction, where DVFS can be used at durations of low utilization and DPM 

at idle durations. Virtual Batching approach [195] is one example; it batches groups of 

arrivals together so that a server can execute the batch then puts the server in a deep sleep 

mode until another batch is followed again. The frequency of the server while serving batches 

of requests is adjusted according to batch size and arrival rates using DVFS. Another 

example is introduced by Dhiman et al. in [62] where they define a group of experts each has 

a set of DPM and DVFS policies and is suitable for certain load condition. Authors introduce 
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an online algorithm that learns the current system load and brings the most suitable expert 

into action with consideration to energy, performance, and users’ SLAs. A similar approach 

is introduced in [116] where instead of the online algorithm a machine-learning algorithm is 

used that selects the most suitable expert while providing a theoretical guarantee on the 

overall system performance. A different approach is introduced by authors of [101] where 

they model the problem of selecting which servers to be switched-off and others that will be 

switched-on as well as their operational frequencies as a mixed Integer Programming 

problem which is solved under energy efficiency and quality of users’ experience constraints.   

 Despite the advantages it provides, DVFS technology faces a few challenge that face 

system administrators during real life implementations, as explained in [11]: 

i. Earlier CPU models were relatively much simpler compared to today’s complex 

CPU architectures which provide advanced features as multi-level caching, 

pipelining, etc., which makes predicting the level of frequency at which CPU 

should operate at non-trivial. 

ii. The quadratic relation between power and voltage implied by Equation 3-1 is not 

always the case for modern processors. In [185] authors explain that some 

processors have different supply voltages for different processor elements, thus 

reducing one element of these will not have a significant effect on reducing the 

overall power consumption. 

iii. As explained earlier that applying DVFS results in extended execution times, the 

relation between these two factors is not always linear and could cause execution 

time non-literalities’ [61] as well as alterations in order of task-execution [185]. 

iv. Modern processor architectures tend to minimize the dynamic power range, which 

reduces the effectiveness of DVFS approach [57]. 

Thus DVFS technology needs to be implemented with caution while taking all above 

arguments into consideration. Following Table 3-3 provides a summary and comparison for 

the main algorithms introduced in this chapter that target power efficiency in data centers 

through DPM and DVFS approaches, or both combined. 

  

Table 3-3: Summary of DPM and DVFS Algorithms 

Algorithm Type Description Pros Cons 

PowerNap 

Meisner et al. [53] 
DPM 

Processes requests at 

highest performance to 

switch-off servers as 

soon as possible, and 

wakes them up as soon 

as a request arrives 

Race-to-halt 

approach 

quickly puts 

system in sleep 

mode  

Relatively long 

delays due to 

transition times 

between 

sleep/active 

states 
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DreamWeaver 

Meisner at al. [54] 
DPM 

Schedules tasks such 

that all processors have 

idle and busy periods at 

the same time so that 

system-wide sleep state 

is possible 

-Allows for 

longer sleep 

durations by 

stalling arrivals 

without SLA 

violations 

-Workload 

dependent 

Additional 

delays caused 

by extended 

sleep durations 

NapSAC 

Krioukov et al. [23] 
DPM 

Uses Heuristics for 

predicting upcoming 

load to activate servers 

only as much as load 

needs and put others in 

sleep state 

-Load dependent 

-Pre-emptive 

algorithm thus 

transition delay 

does not affect 

users’ SLAs 

High 

processing for 

high accuracy 

prediction 

heuristics 

Lin et al. [118] DPM 

Provides an online 

algorithm for right-

sizing the number of 

active servers in a data 

center where online 

algorithm is motivated 

by optimal offline 

algorithm 

-Energy savings 

due to right 

sizing 

-Algorithm   has 

low 

computational 

complexity 

 

Model 

experimentation 

proved to be 

efficient only 

for general 

workload and 

delay situations. 

Niyato et al. [55] DPM 

Formulates a 

constrained Markov 

decision process for 

deciding the state of 

each server then 

distributes incoming 

requests among active 

ones 

Algorithm 

decisions 

minimizes  

energy 

consumption as 

well as network 

costs 

Complexity of 

the algorithm 

increases with 

increasing 

number and 

size of data 

centers 

Herlich at al. [115] DPM 

Introduced random 

delays before waking up 

servers from sleep state 

or putting them to sleep 

again 

Fine tuning of 

parameters can 

lead to reduced 

energy 

consumption 

and latency 

Only average 

values for delay 

durations were 

studied, no 

upper or lower 

boundaries 

provided 

Jeong et al. [85] DVFS 

Reduces CPU frequency 

during VM migration 

process in order to 

reduce the encountered 

energy spike  

Maintains power 

capping goals by 

preventing 

power spike 

Can only be 

applied to 

processors 

supporting 

DVFS 
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Wu et al. [45] DVFS 

Introduces a priority 

scheduling algorithm by 

giving weights to VMs 

according to SLAs of its 

users, then adjusts 

servers’ CPU frequency 

using DVFS 

Performs server 

consolidation 

thus prevents 

wastage of 

power at idle 

times 

Provisions the 

data center for 

minimum VM 

requirements, 

and will not be 

efficient at peak 

load durations 

Gandhi et al. [15] DVFS 

Models server farms as 

a queuing system whose 

solution allows for 

calculating mean 

delays, then finds 

adequate operating 

frequencies for 

maintaining these 

delays 

- Solution is 

dynamic to any 

workload 

-Precise delay 

bounds from 

exact analytical 

solution 

Doesn’t allow 

sleep states 

when servers 

are idle, thus 

power is wasted 

when server has 

null load. 

Kim et al. [94] DVFS 

Proposes algorithms for 

provisioning data 

centers with soft and 

hard real-time 

requirements with 

DVFS requirements  

Achieves energy 

efficiency in the 

data center 

while reducing 

its running costs 

Does not 

consider current 

system 

workload  

Virtual Batching 

Wang et al. [195] 

DPM 

& 

DVFS 

Groups arrivals into 

batches and puts server 

into sleep after a batch 

is processed, where 

frequency of processing 

is varied dynamically 

by DVFS 

Ability to save 

energy at idle 

and busy 

durations with 

dynamic 

adaptation to 

work load  

Does not 

operate/scale  

well under 

bursty load 

conditions 

Dhiman et al. [62] 

DPM 

& 

DVFS 

Defines a group of 

experts with different 

DPM and DVFS polices 

to match all system’s 

conditions 

Solution is 

dynamic and is 

able to optimize 

system’s 

performance 

under all load 

situations 

Algorithm is 

targeted for 

physical servers 

and was not 

proven 

effective in 

virtualized 

environments 

Bertini et al. [101] 

DPM 

& 

DVFS 

Uses mixed integer 

programming for 

determining which 

servers will be on/off as 

well as operational 

frequencies while 

maintaining users SLAs 

and reducing energy 

Algorithm is 

tested and 

compared 

against several 

others proving 

its efficiency in 

de/centralized 

approaches 

Capability for  

providing the 

same energy 

efficiency for 

virtualized 

environments 

has not been 

investigated 
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3.2 Load Balancing between Cloud DCs 

 As demand on cloud computing services increases, cloud providers tend to increase 

the number of DCs they own and increase their capacity of servers and DC equipment to 

accommodate the increased demand and avoid bottleneck situations. Typically a cloud 

provider has more than one DC at which customer’s requests are received and processed, and 

the load among these DCs is usually variable. Requests arrive to each DC depending on the 

type of requests, geographical proximity, or according to a selection criteria imposed by the 

cloud provider. However, these decisions could leave some DCs highly overloaded causing 

performance degradation while other DCs are lightly loaded causing poor resource 

utilization. Accordingly, load balancing is required to take place between DCs to avoid 

situations of DCs overloading and low utilization. Load balancing involves decisions on how 

to distribute requests among different DCs or servers, as well as migrating of requests from 

one DC to another in case of an overload. 

 

3.2.1 Overview on Load Balancing 

 Load balancing between cloud DCs aims at optimizing resource utilization of the DCs 

in order to enhance overall system performance. Load balancing aims to achieve all or most 

of the following goals:  

i. Avoiding overload: Since at overload situations the overall system performance tends 

to degrade, load balancing strategies aim at reducing/preventing overload situations 

by shifting additional loads to other lightly loaded DCs.  This process helps in 

improving the overall system performance as well as providing better resource 

utilization. 

ii. Enhancing offered service: As a request arriving to a heavy loaded DC could receive a 

better response time if it was migrated to another lightly loaded DC, decisions of 

keeping or migrating a request for receiving better quality of experience are taken by 

load balancing algorithms according to request’s SLAs. Enhancing the response time 

for each request will lead to enhancing the makespan of the whole system, which is 

defined as the maximum finishing time among all received requests in the system per 

time [75]. 

iii. Overcoming fail-over situations: These are situations when one or more DCs fail 

during processing jobs, or a job fails to process on a certain DC. Load balancing 

algorithms should be able to take the decisions of how to resolve the faulty situation 

or where to migrate the jobs that were under processing so that their response times 

are minimally affected. Fault-tolerant load balancing algorithms should be able to 

detect when the DCs that have been under fail-over are able to receive requests again 

in order to assign requests for these DCs again.  

Fault tolerant algorithms can be implemented in one of two ways, as explained in 

[63]: 
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a. Proactive Algorithms 

These algorithms tend to predict failures before they happen and take 

corrective actions to prevent them. Methods for implementing this approach 

include periodic reboots, requests replication on various VM, and pre-emptive 

migration. 

b. Reactive Algorithms 

These algorithms correct fail-over situations after they occur. This could be 

done by one of the following approaches: system restart from check points, 

resubmission of the job to the same DC or migrating it to another running DC. 

3.2.1.1 Types of Load Balancing Algorithms 

 Authors of [21] and [28] classify load balancing algorithms into two major categories: 

i. According to system load 

Depending on the how requests are distributed among DCs, algorithms in this 

category follow 3 different approaches: 

a. Centralized Approach 

Where a single central node receives all the requests and is responsible for 

distributing them among all other system nodes. This approach is fast and 

more efficient as distribution decisions are taken by one node only, however 

it carries the risk of single point of failure or bottlenecks in case this node is 

down or congested. This issue could be resolved at an additional cost by 

adding redundant nodes to the central node to replace it whenever required. 

b. Distributed Approach 

In this approach nodes communicate their loads to each other so that each 

node can form its own load vector. Upon receiving a job request, each node 

decides locally whether to keep or migrate this request based on its load 

vector. Although it requires more communications and data transfer between 

nodes, distributed approach works best with widely distributed systems. In 

huge systems with large and diverse number of nodes it is more efficient than 

centralized approach which imposes a huge overhead on the central node.  

c. Hybrid Approach 

Taking advantage of both approaches’ benefits, a hybrid approach deploys 

both strategies of having a centralized node and a load vector at each 

distributed node.  

ii. According to the system topology 

Algorithms that distribute load according to system topology and nodes’ information 

status follow 3 approaches: 

a. Static Approach 

Following static defined rules, static approach distributes the load in the same 

way according to a set of predefined rules based on the nodes’ processing 

capabilities, memory and storage capacity. These rules do not take the current 

system load into account, which makes this approach appropriate only for 

stable systems with low load variation, unlike distributed cloud systems. 
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Although it has the advantage of minimal processing for load distribution, 

less resource utilization and more predictability, static approach may overload 

a node with requests leaving other nodes lightly loaded, as its decisions are 

static and unaffected by the state of nodes [164]. Another disadvantage of 

static approaches is that they cannot resolve situations of DC failure, since no 

updates are taken into consideration during algorithm run-time, which makes 

them less reliable. 

b. Dynamic Approach 

Unlike static approach, decisions taken by dynamic approach are different 

each time a job arrives, as it depends on the variable current system state. 

Dynamic approach is more suitable for distributed systems as cloud 

computing, since decisions of job allocations must take the current system 

state into consideration to avoid overload. Although they have higher 

complexity and utilize more resources than static algorithms, dynamic load 

balancing algorithms are more adaptive, efficient, reliable and provide better 

load balancing decisions [164]. 

c. Adaptive Approach 

According to system status, adaptive approach decides whether to use static 

algorithms, dynamic algorithms, or combination of both for load distribution. 

 Among all before-mentioned classifications the most suitable type for a cloud 

environment are distributed dynamic load balancing algorithms. This is due to their 

adaptability, reliability and suitability for a diverse and constantly changing cloud networks. 

According to [191], these distributed dynamic algorithms can be further classified into two 

categories: 

i. Cooperative Algorithms 

All nodes running cooperative algorithms in the distributed system work 

together at taking load balancing decisions while considering each other’s 

states and resources. Decisions taken by cooperative nodes help increase 

over-all system performance. 

ii. Non-Cooperative Algorithms 

Non-cooperative nodes make their own decisions regarding workloads 

without any consideration to other nodes or over-all system goals; the only 

factor taken into consideration is the node’s own resources. Although non-

cooperative algorithms might enhance node’s own performance, it might not 

make the best decisions for the overall system. 

3.2.1.2 Challenges of Load Balancing between Cloud DCs  

 To achieve the before-mentioned targets of the load balancing process, algorithms in 

literature consider the following aspects listed by surveys in [21] and [90] for deploying 

optimal solutions for the load balancing problem: 

 

i. Nodes’ Spatial distribution and Scalability 
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As cloud DCs are usually spatially diverse, load balancing algorithms need to 

account for some side effects such as the distance between nodes and the speed of 

transmission links between them, which will affect the migration time of requests 

between the DCs and accordingly affect load balancing decisions. Algorithms should 

also be scalable to balance the load between any finite numbers of nodes.   

ii. Data Storage and Replication 

Requests arriving to a node require information stored locally at this node to be 

processed. In case the load balancing algorithm decides to migrate this job, it has to 

make sure that either this data is also available at the other DC or that the time to 

transfer the request along with its data would not violate the delay limit of the 

request. For enhanced performance, load balancing algorithms perform full/partial 

data replications at the nodes ahead of time to prevent delays resulting from this task 

at the time of request arrival. Full replication has a higher cost as it requires more 

storage since all nodes will carry the same data sets. On the other hand, partial 

replication makes a better solution by only replicating a part of the data at each node 

based on its processing capabilities and storage capacity.  Although this approach 

provides better utilization, it makes the algorithm more complex as the algorithm 

needs to be aware of all the data sets at each node. 

iii. Algorithm Complexity 

Complexity of load balancing algorithms is required to be as low as possible to avoid 

delays resulting from processing of complex algorithms. Delays also result from 

algorithms that require gathering lots of information or requiring long 

communications. As these delays increase, efficiency decreases along with overall 

system performance, which is the main reason why algorithms’ complexity must be 

minimized. 

iv. Point of Failure 

Centralized load balancing algorithms are designed such that a central node takes all 

load balancing decisions. These central nodes are considered as single points of 

failure which takes down the whole system if this node is down. Although centralized 

algorithms are faster and more efficient at the decision making process, the single 

point of failure issue must be resolved. One approach is to have redundant nodes to 

replace the central node in case of its failure, but redundancy requires that these 

nodes always have the same information replicated all over them to be able to replace 

the central node at any point in-time. Another efficient solution for widely distributed 

systems are distributed algorithms, which eliminate the risk of single points of failure 

by allowing individual nodes to take their own load balancing decisions, as will be 

explained later in this section.  

v. VM Migration 

As load balancing decisions frequently request that a job is migrated from one DC to 

another, this process needs to be done without any or minimal interruption to the 

current running VM. As specified by the virtualization layer, a virtual machine 

mainly consists of a set of files that could be transferred easily to any DC. However, 

this transfer process could be done in two ways: Cold transfer or Hot Transfer. Cold 

Transfer specifies that the VM is paused, transferred, and then continue processing at 
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its new destination; while Hot Transfer specifies that the VM is transferred without 

any interruption to the VM. Load balancing algorithms need to adopt either one of 

the two migration approaches to guarantee minimal disruption for the migrated VM. 

vi. Automatic resources provisioning 

One of the steps taken by load balancing algorithms is allocation and release of 

resources on demand based on migration decisions. This task of automatic resource 

provisioning should be very well handled by load balancing algorithms, quickly and 

efficiently. 

vii. Energy consumption 

While taking load balancing decision between DCs, energy consumption of DC 

resources must be taken into consideration. As will be later proposed by the 

algorithms in this thesis, the same performance level of the DC as well as service 

level agreements of requests must be guaranteed while reducing/maintaining the 

amount of consumed energy. 

viii. Data Security 

Security of data stored in the cloud remains one of the most important research topics 

in cloud computing. As user’s data often have defined credentials in terms of where 

to be stored or processed, these credentials must be taken into account before 

migrating this data to other DCs. 

 

3.2.2 Examples of Load Balancing Algorithms 

 This section will showcase some of the most commonly known load balancing 

algorithms between cloud data centers. Each algorithm is briefly explained and discussed, 

followed by a summary and comparison between all algorithms in Table 3-4. 

 Round Robin Algorithm 

Requests arriving at the controller will get assigned to candidate DCs in a rotating 

order. Once a job is assigned to one DC, the other DCs take their turn in accepting 

requests so that a new request is not assigned again to the first DC until all other DCs 

have at least one request. Since requests do not necessarily have the same processing 

times, Round Robin algorithm doesn’t maintain a fair distribution among servers/DCs 

[28]. The same criteria is followed when a DC needs to migrate a request, it chooses 

where to migrate the request by following a list of DCs in a circular manner. Figure 3-

1 shows how requests represented as Rx are distributed among DCs represented as 

DCx according to the Round Robin Algorithm. 
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Figure 3-1: Process of Round Robin Algorithm [75]  

 

 Weighted Round Robin Algorithm 

A modified version of round robin algorithm; where DCs are assigned weights 

according to their computational power and resources. DCs with higher processing 

capabilities are assigned more requests according to their weights as they are able to 

process requests quickly and efficiently. This assignment also occurs according to a 

list in a circular manner. Although weights are an enhancement to the algorithm, it 

still has the disadvantage of not taking requests’ processing times into consideration. 

For example; a DC with weight 2 might be assigned two relatively small requests, 

while another DC with weight 1 is assigned one relatively large request that should 

have better been assigned to a DC with higher weight for providing better service. 

 Dynamic Round Robin Algorithm [112] 

Another modified version of round robin algorithm with an extension for power 

saving. This algorithm has two additional rules which enhance power management 

capabilities of cloud DCs: 

1. If some requests being served on a DC have finished and some are still being 

processed, this DC switches to a ‘retiring state’. This state means that it accepts no 

further requests, and that it will shut down as soon as it is done with the requests 

currently being processed. 

2. If a DC stays in a retiring state for a long time exceeding a defined ‘retirement 

threshold’, requests being processed at this DC are migrated to another DC so that 

this DC can be shutdown. 

 Randomized Algorithm [75] 

This algorithm assigns VMs to DCs in a random order, without any defined order or 

knowledge about the status of the DCs. Although random decisions require low 

processing overhead and thus low response times, this algorithm might result in 

overload situations if jobs are assigned to overloaded DCs. Figure 3-2 shows an 
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example of an overload situation; where DC2 is overloaded with requests due to 

random assignments, while DC1 and DC3 are under-loaded. 

 

 

Figure 3-2: Process of Randomized Algorithm [75] 

 

 Minimum Completion Time Algorithm  

This algorithm decides where to distribute requests according to the request 

completion time each DC can offer. It scans all available DCs checking the 

completion time of the request at each one, and chooses the DC that offers the least 

completion time. Figure 3-3 illustrates how the process of DC selection is done, 

taking into consideration that the main selection criteria for minimum execution time 

is the processing speed of the DC along with its current load [75].  Although this 

approach guarantees minimum execution time for the request, it will overload DCs 

with high processing capabilities, while others with low processing capabilities will 

receive much fewer requests [49]. According to experimental studies done by 

simulation in [75], Minimum Completion Time algorithm achieves almost 100% 

throughput at low number of requests, where throughput is defined as the number of 

requests processed during time specified by their SLAs. It also achieves low 

makespan values since this is the main algorithm criteria. As the number of requests 

increase, the throughput drops and makespan duration increase due to DC overload.  
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Figure 3-3: Process of Minimum Completion Time Algorithm [75] 

  

 Opportunistic Load Balancing Algorithm 

OLB algorithm assigns requests to the first DC expected to become available. It 

checks all available DCs for their remaining times to become available for serving the 

new request, then routes the request to the one with minimum waiting time, as 

illustrated by Figure 3-4. In the figure each DCx load represents the time a job has to 

wait before being served by this DC, so the shortest waiting time determines the DC 

to be selected. As OLB algorithm tends to keep all DCs busy, it has a shortcoming of 

not considering the execution time of the request on the selected DC. So despite that a 

request might not wait a long time before starting to execute, it might take long 

execution time causing other requests to wait longer, increasing the makespan of 

requests [168]. 

 

 

Figure 3-4: Process of Opportunistic Load Balancing Algorithm 
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 Min-Min Algorithm [168][42] 

This algorithm is based on Minimum Completion Time algorithm, but instead of 

scheduling one request at a time, it considers a set of unmapped requests. The 

algorithm starts by finding the minimum completion time for all requests that need 

scheduling, where all DCs are available to serve any of them. Once the list is sorted 

out, the request with minimum completion time is assigned to the corresponding DC 

that will provide this minimum completion time. The list then is updated again while 

excluding the scheduled request and adding its execution time to the execution time of 

all other requests at the DC busy serving it. As a result of this selection, if the number 

of small requests is bigger than large requests the makespan will be expanded by large 

requests [163]. 

Authors in [42] enhance the performance of Min-Min algorithm by introducing 

LBIMM (Load Balancing Improved Min-Min) algorithm which reduces the execution 

time of each resource and improves imbalance resulting from consuming resources 

with high computational power in serving small requests, while large requests remain 

with DCs with lower resources. Another enhancement introduced in [42] is by 

accounting for user priorities, where users are classified into two groups, one for high 

priority requests and another for low priority ones. PA-LBIMM (User-Priority Aware 

Load Balancing Improved Min-Min) algorithm performs Min-Min algorithm on the 

group of high priority requests first, followed by the second group; which guarantees 

better offered service for high priority requests. 

 2-Phase Load Balancing Algorithm 

This algorithm was proposed by authors of [166] based on two already known load 

balancing algorithms: Load Balancing Min-Min (LBMM) and Opportunistic Load 

Balancing (OLB). In the first phase OLB is used to distribute requests among DCs 

keeping all DCs in working state. In the second phase LBMM is executed at each DC 

to make sure the execution time of the request is minimized. Benefits of the 2-phase 

algorithm include better overall execution times for requests as well as more efficient 

load balancing [167]. 

 Max-Min Algorithm 

It operates in the same manner as Min-Min algorithm, but Max-Min schedules larger 

requests with maximum execution time first to the DC that will guarantee their 

minimum completion time. This criterion aims at reducing penalties occurring from 

processing of requests with long execution time [168]. As large requests are processed 

first, it allows smaller requests to be processed meanwhile simultaneously on other 

DCs [49]. Max-Min algorithm out-performs Min-Min algorithms when short requests 

are much more than long requests. When this is not satisfied, the large number of 

large requests executed earlier will increase the system’s makespan [163]. 

 Resource Aware Scheduling Algorithm (Duplex) 

Duplex algorithm deploys both Min-Min and Max-Min algorithms alternatively, 

making use of the benefits of both algorithms [163]. Since Min-Min algorithm is more 

efficient when the number of small requests is less than larger ones, and Max-Min 

algorithm performs better when small requests outnumber larger ones, Duplex 
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algorithm deploys either one of these algorithms to enhance the system’s 

performance. As a result of alternative execution of the two algorithms, neither small 

requests nor large ones wait for long times, thus achieving smaller makespans at 

various load situations and different scales of distributed systems [163]. 

 Join Idle Queue Algorithm 

This algorithm starts by distributing requests among idle DCs first until all of them 

are occupied, then requests are assigned to DCs with the least number of jobs so that 

average queue size at each DC is minimized [194], as illustrated in Figure 3-5. Since 

these decisions of finding the least occupied DC can be made ahead of a request’s 

arrival, this algorithm significantly reduces the communication overhead during 

request’s processing time. However, it only considers the number of queued jobs for 

its decisions and not their sizes, which might mislead the decision for a shorter queue 

having x large requests and taking more processing time than another longer queue 

with smaller requests. This issue is considered by the algorithm proposed in this thesis 

later in Chapter 5.  

 

 

Figure 3-5: Process of Join Idle Queue Algorithm 

  

 Power Aware Load Balancing Algorithm (PALB) 

Aiming to provide an algorithm that minimizes the amount of wasted power by 

unutilized algorithms, authors of [82] introduce the PALB algorithm. Their approach 

is to keep track of utilization percentages of all compute nodes, and accordingly 

decide how many DCs are actually needed for the current load. Un-needed DCs could 

migrate their jobs and switch-off, which according to tests done by the authors; can 

save up to 79% of the amount of consumed energy if compared to other non-power-

aware scheduling mechanisms. 

 Double Threshold Energy Aware Load Balancing Algorithm (DT-PALB) 
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This algorithm was proposed by authors of [78] as a means of balancing the load 

among DCs in a way that conserves consumed energy. The algorithm has three phases 

[167]: 

1. Load balancing phase: The choice of where to place or migrate a request is 

done based on how much DCs are utilized. If nodes have a utilization 

percentage between 25-75%, then the least utilized DC will be chosen. 

2. Upscale phase: At peak periods when all current DCs are utilized above 75%, 

the algorithm powers on additional DCs to serve the additional requests. 

3. Downscale phase: when any of the DCs’ utilization falls below 25% the 

algorithm migrates all the VMs on this DC to be able to switch it off. 

Although this algorithm proposes an efficient method for load balancing at high and 

average load situations, it can cause performance degradation at low loads. Since 

DCs’ utilization is likely to drop below 25% at low load situations, the number of 

migration processes will significantly increase which reduces performance and 

increase costs. [167] 

 Enhanced Equally Distributed Load Balancing Algorithm 

This algorithm proposed in [157] aims at distributing requests equally among 

available resources. It allocates resources to the least loaded DC aiming to achieve 

fastest response time for the request. Each DC is assigned a counter variable 

representing the number of requests currently being handled by the DC. This counter 

is checked by the algorithm every time a request needs to be migrated/assigned, and 

the chosen DC is the one with the smallest counter. Whenever a new request arrives to 

the DC the counter is incremented by 1, and whenever a request finishes its service 

the counter is decremented by 1. Although this algorithm balances the load equally 

among DCs providing low response times and high resource utilization, it doesn’t 

consider requests’ weights [112] (all requests affect the counter by 1 step up or 

down). This could lead to load imbalance when one DC carries 10 small requests 

while another is serving 10 larger requests. 

 

 

Figure 3-6: Process of Enhanced Equally Distributed Load Balancing Algorithm 



49 
 

   

  

 Decentralized Content aware Load Balancing Algorithm 

Based on workload and client aware policy (WCAP), this decentralized algorithm 

proposed in [66] distributes requests based on their content to the most suitable DC to 

process them. Each request is defined by its UPS (Unique and Special Property), 

which is used to select the target DC for the request. According to this criterion, the 

selected DC is the one that is able to provide best processing capabilities in lowest 

time for the requests, because it receives request according to its capability and 

specialization. Content information is used to search for the most suitable DC, which 

improves and speeds up the search process, improving overall system performance 

[126]. 

 Enhanced MapReduce Algorithm [106] 

MapReduce [170] is a distributed data processing architecture which follows two 

main steps in assigning requests to DCs: request mapping and reducing results. The 

algorithm implements 3 methods [90]: ‘part’ which initiates partitioning and mapping 

of tasks into smaller parts, ‘comp’ which compares the different parts, and ‘group’ 

which reduces tasks by grouping similar parts together. This method is enhanced by 

authors of [106] who propose to add a load balancing layer between the Map and 

Reduce tasks to prevent partitioning of small tasks and only divide large ones [90]. 

More algorithms for task-scheduling and load balancing could be found in literature 

but are not studied here for their complexity and for not being the best solutions for the 

situation targeted in this thesis: Balancing user requests between cloud DCs. A few of these 

algorithms are listed below shortly where they are also known from optimization theory: 

 Genetic Algorithm : mainly used for large solution spaces [168], this algorithm 

subdivides a task into subtasks generating a population, then performs four main steps 

(Selection, crossover, mutation and evaluation) until the best solution could be found 

[108]. 

 Simulated Annealing: A recursive algorithm that also divides tasks into smaller 

subtasks, but considers all possible solutions for a subtask, even the poor ones. This 

algorithm is based on ‘System Temperature’ which cools down after each iteration 

eliminating more and more poor solutions. Algorithm stops and an ideal solution is 

found after the system temperature drops near zero or after 150 iterations. [168] 

 Tabu Search: An algorithm based on solution space search that keeps track of already 

visited solution regions so that they are not repeated again. It initializes with a random 

mapping generated by uniform distribution, and then performs ‘short hops’ into 

unvisited solution regions trying to find better solutions [71]. 

 Optimal Scheduling Algorithm A*: is an algorithm based on binary tree search 

technique [168]. It starts with a root node that represents a void solution, and starts 

producing child leaves representing possible solutions. At each level of the tree the 

best possible solution is chosen to become parent node, produce child nodes, become 

inactive, and continue searching down the tree [92].  

 Honeybee Foraging Algorithm 
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Inspired by nature for self-organization, this algorithm was introduced by authors in 

[158]. It resembles the behavior of honeybees when foraging bees are sent looking for 

food sources, then return to the hive foraging the distance to the source and its quality. 

Performance of this algorithm is enhanced by system’s diversity, but not with the 

increased system size [126].  

Table 3-4: Comparison and Summary of Load Balancing Algorithms 

Algorithm Type Description Pros Cons 

Round Robin 
Decentralized 

[50], Static 

Requests are 

assigned to DCs in 

a circular manner. 

Even distribution 

of requests 

among DCs 

[167]. 

Doesn’t 

consider tasks’ 

processing 

times. 

Weighted 

Round Robin 

Decentralized, 

Static 

DCs are assigned 

weights according 

to their processing 

capabilities. High 

weights means 

more received jobs. 

Jobs are assigned 

according to 

DCs’ capabilities. 

Better resource 

utilization [49].  

Requests’ 

processing times 

are not 

considered. 

Dynamic 

Round Robin 

Decentralized, 

Dynamic 

Defines two rules 

for reducing DC’s 

power consumption 

based on retiring 

state and retirement 

threshold 

Allows for better 

power 

management in 

DCs 

Not scalable for 

large number of 

DCs [112] 

Randomized 
Decentralized, 

Static 

Assigns tasks in a 

random order 

Low complexity, 

short response 

time 

Status of DCs is 

not considered, 

could result in 

overload 

Minimum 

Completion 

Time 

Decentralized, 

Dynamic 

Assigns tasks to 

DC offering 

minimum task 

execution time 

High utilization, 

minimum 

execution time 

for requests 

Overloads DCs 

with high 

processing 

power 

Opportunistic 

Load 

Balancing 

Decentralized, 

Dynamic 

Assigns requests to 

the first DC 

expected to become 

idle 

Simplicity [168] 

Doesn’t 

consider request 

execution time, 

Longer 

makespan 
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Min-Min 

Algorithm 

Decentralized, 

Static 

Assigns requests 

according to 

minimum 

completion time at 

corresponding DC 

Fast [49], 

Schedules best 

case first  

Doesn’t 

consider current 

DCs’ load, Load 

imbalance [42] 

2-Phase 

Algorithm 

Decentralized, 

Static 

Based on LBMM 

and OLB 

algorithms 

Better execution 

time, Enhanced 

load balancing 

[167] 

Works only in  a 

static 

environment 

[167] 

Max-Min 

Algorithm 

Decentralized, 

Static 

Schedules large 

jobs first to the 

DCs guaranteeing 

minimum 

completion time 

Better load 

balance, Larger 

requests get 

served at more 

powerful DCs  

Small jobs wait 

longest 

Duplex 

Algorithm 

Decentralized, 

Static 

Combines best of 

Min-Min and Max-

Min Algorithm 

Minimal 

overhead, High 

performance [49] 

Static Algorithm 

Join Idle 

Queue 

Decentralized, 

Dynamic 

Assigns requests to 

DCs with minimal 

number of requests 

Low response 

time, no overhead 

at job arrival 

[112]  

Requests’ sizes 

are not 

accounted for 

Power Aware 

Load Balancer 

Decentralized, 

Dynamic 

Distributes DCs in 

order to maintain 

lowest power 

consumption by 

DCs 

High availability 

of compute 

nodes, reduced 

power 

consumption [82] 

Algorithm could 

result in 

unnecessary 

migrations at 

low loads  

Double 

Threshold 

Energy-Aware 

Load Balancer 

Decentralized, 

Dynamic 

Balances load and 

saves energy in 3 

phases: Load 

balancing, Upscale 

and downscale 

Efficient Load 

Balancing 

Unnecessary 

migrations at 

low loads 

degrade  

performance 

[167] 

Enhanced 

Equally 

Distributed 

Load 

Balancing 

Decentralized, 

Dynamic 

Requests are 

assigned to the DC 

with lowest current 

load.  

Low response 

time, increased 

utilization 

Weights of 

requests are not 

considered. 
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Decentralized 

Content Aware 

Algorithm 

Decentralized, 

Static 

Distributes requests 

based on their 

content to DCs that 

serve them best 

Improved search 

for DCs, 

Increased system 

performance 

Static Algorithm 

Enhanced 

MapReduce 

Algorithm 

Decentralized, 

Static 

Based on mapping 

tasks and reducing 

task results 

Load balancing 

layer reduces 

overhead for 

reduce tasks   

High processing 

time 

 

 According to tests and simulations done by [75], it can be concluded that no single 

algorithm would work best for all cloud environments. Although some algorithms are 

superior to others in many aspects; there would always be a compromise in terms of cost or 

performance. For example: algorithms such as round-robin, weighted round-robin and similar 

tactics all have the same approach of distributing load according to how much requests 

servers have received so far, but they all ignore the fact that the current number of received 

requests is no indication for the system state while a solid indication for system state is the 

remaining idle resources of the servers [150]. This applies to all other static load balancing 

algorithms, which ignore the current system state in their decisions. Dynamic algorithms 

provide better options in this issue, however there are very few available examples in 

literature, and according to [35] none of them considers the future state of the system or the 

effect of migrating requests to it, and only a few algorithms consider the energy efficiency of 

data centers.  

 In Chapter 6 of this thesis two novel load balancing algorithm will be introduced that 

avoid most of the mentioned drawbacks. Both are dynamic algorithms which distribute load 

based on current system state and consider the future state of the system after this request 

arrives. Unlike most approaches in literature that define load balancing as an approach to 

balance the load equally among all DCs, in this thesis a strategy of ‘load un-balancing’ is 

adopted. These algorithms tend to perform request consolidation on a fewer number of DCs 

without violating SLAs of requests in order to minimize the number of active DCs and 

switch-off idle ones for energy efficiency considerations. The same ‘load un-balancing’ 

strategy has been studied by a different approach by authors of [44] supporting the hypothesis 

of un-even load distribution among DCs for satisfying users’ SLAs or for enhancing DC 

performance. Algorithms are analyzed by studying system of two DCs operating by the 

respective algorithm and modeled using Markov Chains, where algorithms for solving 

system’s stead-state probabilities are explained. Similar work has been introduced by authors 

of [175] following similar analysis method for dynamic routing networks using three multi-

server DCs with special mutual overflow among them. 
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Chapter 4  Methodology 

 

Having explained the main concepts of cloud computing, related technologies as 

virtualization, migration and server consolidation as well as challenges faced by cloud 

developers as energy efficiency and load balancing, the second part of this thesis proposes 

novel models for solving these challenges. In the context of this chapter the methodology by 

which cloud DCs are studied and analyzed are introduced and explained. Section one 

explains mathematical models used to represent cloud DCs as queuing systems and perform 

steady state queuing analysis to study the system and predict its performance under different 

workload situations. Notations used within all DC queuing models will be addressed, 

followed by the assumptions that were made to allow for modeling data centers as queuing 

systems using Markov Chains. Section two introduces a simulation platform used to test and 

verify the modeled DCs as queuing systems using OMNeT++ simulator. Simulation defines 

entities that comprise a basic queuing system, such as source, queue and servers with 

different configurations according to each implemented model, where these entities and their 

interconnections are defined and explained. Contrary to the mathematical models solved by 

stochastic queuing theory, simulations are experimental methods for performance evaluation 

executed by artificially generated events and measurements by a computer program. The last 

Section three of this chapter a real test-bed of a minor data center set-up using two servers is 

illustrated, where proposed algorithms can be benchmarked to verify results of analytical 

models and simulations. 

 

4.1 Mathematical Models 

 In this context a data center is described as a queuing system with multiple servers to 

serve different requests simultaneously, where all servers have a common queue at which 

arrivals are inserted first before a controller decided if the arrival will be served at this DC 

and at which sever, will be queued, or will be migrated as proposed by load balancing 

algorithms. This approach is accurate for modeling data centers as they have several servers 

hosted in racks, and requests arriving to the DC requesting SaaS, PaaS or IaaS services are 

hosted at any server with sufficient processing capacity by creating a virtual machine to serve 

this request. For illustration of the explained model components refer to Figure 4-1. The 

models proposed by this thesis are based on previous work by the main supervisor of this 

work and its author and published in [119], [134], [138], [127], [140], [120] and [141] where 

previous work constitutes the building blocks for the complete and more general models in 

this context. Models introduced within this thesis describe the DC at any time instant by a 

state (𝑥, 𝑧), where x is the number of active servers in the data center and z is the number of 

queued arrivals waiting to be served. The control of the queuing system follows from a Finite 

State Machine (FSM) for states (𝑥, 𝑧). System is initially at state (0,0) where no servers are 

active and no arrivals are waiting for service. The state of the data center changes whenever 

an arrival/departure/activation event happens, as will be explained later per each model. 

When an arrival occurs, the DC Control decides whether this arrival will either be 
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immediately served or queued according to the current state of the system. Buffered frames 

are organized in the queue in the order of their arrival, and are served strictly according to a 

service strategy, e.g.: First-In, First-Out (FIFO) strategy.  The queuing system reaches its 

maximum capacity at state (𝑛, 𝑠), where 𝑛 is the number of available servers in the data 

center, and 𝑠 is the maximum buffer capacity. Arrivals occurring when the system is full are 

assumed to be lost; or as some models require, migrated to another DC for load balancing 

purposes. As soon as a server becomes idle, it will either be re-occupied by the frame at the 

head of the queue, or it will be deactivated in case of an empty queue. All these decisions are 

derived from the FSM of the controller and communicated to the scheduler which updates the 

state of the queue and servers accordingly. 

   

 

Figure 4-1: Generic Model for a Data Center with Dynamic Activation/Deactivation of 

Servers 

 

At any state (𝑥, 𝑧), if an arrival happens that will cause a server to be activated, 

system state changes to (𝑥 + 1, 𝑧); but when a new arrival occurs and is scheduled to be 

buffered, system state changes to (𝑥, 𝑧 + 1). When an arrival finishes its service time, the 

server it had occupied will be either reoccupied by another packet from the head of the queue, 

changing the system state to (𝑥, 𝑧 − 1) as the queue size is reduced by one, or if the queue 

was empty the server will be deactivated and the system state will change to (𝑥 − 1,0). 

Arrivals to the DC are assumed to occur according to a general distribution function with 

arrival rate 𝜆, where interarrival times have an average value of 1
𝜆⁄ . Service times of each 

server in the DC are also assumed to follow a general distribution function having an average 
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of  1 𝜇⁄ , where 𝜇 is the service rate of one server. All servers within the DC are assumed to be 

homogeneous, so for 𝑥 activated servers the overall service rate of the DC is 𝑥𝜇. 

 For the analytical solutions of the models in this thesis, Markovian assumptions are 

made in order to be able to solve for the probabilities of steady system states. Arrivals are 

assumed to occur according to a Poisson distribution, where interarrival times follow a 

negative exponential distribution function with mean value of 1 𝜆⁄ . Service times are also 

assumed to follow a negative exponential distribution function with mean  1 𝜇⁄  , so that the 

basic model of a DC could be assumed as a Markovian 𝑀/𝑀/𝑛/𝑛 + 𝑠 queuing system. All 

proposed models of data centers as continuous-time Markov Chains are solved using 

Kolmogorov Equations through a novel iterative-recursive algorithm to obtain the steady 

state probability for each of the system states. Solutions are followed by calculations of the 

most significant performance metrics that describe system’s behavior as average number of 

requests in the data center, average delays, loss probability, etc.  

 The use of queuing systems for modeling data centers and understanding their 

behavior has been studied by several authors in literature. Similar models of data centers as a 

two- dimensional Markov chain have been introduced in [115], [192], [113], [16], [17], and 

[13]. However the novelty of the algorithms proposed in this context compared to all 

previously mentioned algorithms is that our algorithms provide much simpler and exact 

solutions for solving steady state probabilities of the model via iterative recursive algorithms 

with consideration to all aspects describing system’s behavior. 

 

4.2 Simulation Technique 

 In order to verify the models solved using approximate assumptions or when 

mathematical solutions are too complex, a simulation tool is necessary. In this thesis all 

proposed models are verified by implementation of simulation models using OMNeT++ IDE 

tool (Objective Modular Network Integrated Development Environment) [131] and tested as 

well under different conditions that cannot be analyzed by theoretical analysis. For example, 

solving steady state probabilities of a queuing system requires Markovian assumptions to be 

made, which restricts interarrival and service time distributions to only one type. However as 

interarrival and service times are not always negative exponentially distributed, a simulation 

is required in order to check the model’s performance under different non-Markovian realistic 

assumptions.  

 OMNeT++ is a discrete event open source simulator that has been used in a rising 

number of publications since its public release in 1997.  It is based on C++ programming 

language and offers a simulation framework for several domains such as queuing networks, 

distributed systems, wired and wireless communication networks, sensor networks, storage 

area networks, etc... It provides a simple graphical user interface as well as built-in modules 

for constructing any desired network to be simulated rather than building a simulation model 

from scratch, which allows modules to be reusable and facilitates building large scale 

simulations for various areas. OMNeT modules are either simple modules which are dynamic 

modules written in C++ or a group of simple modules grouped together forming one 
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compound module with various functionalities. Modules constructing a model communicate 

with each other via passing of messages through gates, where messages are forwarded to their 

destination module through output gates and received via input gates. Gates are 

interconnected according to the model’s architecture via links that can be unidirectional or 

bidirectional. Modules also have parameters which provide configuration data such as 

random numbers following a defined probability distribution for defining module parameters, 

e.g.: server’s service time. A typical OMNeT++ model is composed of the following files: 

1. NED File 

Network Description File describes the structure of the implemented model to be 

simulated. It contains simple modules declarations as well as their gates, parameters 

and configurations, compound modules declarations which describe its gates and 

parameters and which simple modules that constitute it, and finally network 

definitions and interconnections between modules’ gates. NED files come with a 

graphical editor, where users can either edit the NED file in source mode or perform 

modifications within the graphical user interface. 

2. C++ Files 

Where each simple module needs a C++ class that dictates its functions and how it 

performs. Although every single module within the simulated model has its own C++ 

file, compound modules don’t require any. 

3. Initialization File 

Initialization File (.INI) contains all configurations and parameters required by the 

model simulation to execute. It specifies values and distributions for different 

variables of all modules in the model, such as distribution of interarrival times and 

their mean value, servers’ service/activation times and their mean values as well as 

simulation duration or stopping condition. 

Among the main advantages provided by OMNeT [25] are the ease of customization 

of all available modules to match the desired simulated network, as well as the ability to 

embed the simulation into bigger applications with data applications for accepting inputs and 

extracting outputs in files of common types. The modules that it already embeds also allow 

for simpler implementations as a user can easily build upon them and modify them as 

required. This ease of use and advantages have motivated the use of OMNeT in several 

research areas and publications. Authors of [22], [128] and [200] used OMNeT for simulating 

wireless and mobile networks, others used it for sensor networks [83] [102], optical networks 

[196][96] and related ones in the area of high performance computing [147] [43] and cloud 

computing simulations [114][26][27].  

 

 To simulate the basic data center explained in the previous section and illustrated in 

Figure 4-1, a few built in components from the queuing library of OMNeT++ are used. As 

shown in Figure 4-2 the cloud DC can be modeled as a source module that generates requests 

and forwards them into a FIFO queue, then these requests are served by any of the available 

servers which send a served arrival into a sink module to be destroyed. Briefly, the simple 

modules used perform the following functions: 
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1. Source Module 

The Source module generates messages to be forwarded into the passive queue 

according to a distribution defined in the initialization file. 

2. Passive Queue 

A Passive Queue acts as the buffer for the data center which stores arrivals in a FIFO 

order, where in this simulation the queue is defined to have a specific finite capacity 

such that any arrival after this capacity is reached will be dropped. It has multiple 

output gates for forwarding of arrivals to servers at which they will be served. The 

passive queue acts as the controller deciding where arrivals should be forwarded, 

which could be decided according to several strategies such as priority selection or 

round robin. In this simulation round robin is used where any random empty server is 

selected to start serving an arrival when the queue controller decides upon its start 

service time.  

3. Server 

The Server module performs the function of a server in the cloud data center that 

receives an arrival, starts processing it by creating the requested VM and running any 

necessary applications. When an arriving request finishes service it releases its 

resources for use by other queued arrivals. Service time of the simple server module is 

defined in the initialization file according to any desired distribution and mean value, 

also for some simulations, as will be later explained, servers are configured to have a 

random activation time for more realistic assumptions. 

4. Merge 

A Merge module was added to the simulation model of load balancing algorithms in 

order to collect all arrivals of each DC and forward them to the sink module. It is 

necessary as it dramatically reduces the number of input gates at the sink module to 

only one per each DC instead of having one input gate per server per DC. 

5. Sink 

Sink module is the final destination for all serviced arrivals, and it represents the 

departure of a request from the data center. 

For each model among those presented in later chapters a compound module is 

implemented with the respective functionalities, specifications and variables. Several 

experiments are performed for each model in order to predict its performance and explore the 

effect of each parameter on its behavior. For accuracy of results, all measurements are 

repeated several times with the same parameters and different seeds used for generating 

random numbers in order to obtain multiple readings and deliver an average result with a 

defined 95% confidence interval. 
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Figure 4-2: Basic DC Simulation Model 
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4.3 Experiment Setup and Measurements 

 For further proofing of the obtained results from analytical solutions and simulations 

of the proposed models, a test-bed is implemented for a sample data center consisting of two 

servers in order to test and run algorithms using VMware tools [190] to identify how they 

perform in real-life scenarios. This verification is of high importance as despite assuming 

realistic assumptions for most system aspects through simulations, not all effects encountered 

by a real-life running system can be accounted for. Effects such as how system scales with 

increasing its size, types of cabling or connections among its entities and the protocols they 

run, efficiency and response times of a centralized controller, etc. are all aspects that are best 

to draw conclusions based upon real-life experimentation. 

 The test bed used is constructed using three ESXi servers with one data store 

connected within one LAN via ISCSI, as illustrated in Figure 4-3. One of the three servers is 

configured with vCenter [186] to act as a centralized controller for the data center providing 

proactive management over the other servers and their hosted virtual machines. The data 

store holds all virtual machine files and was supplied with operating system images to be 

deployed upon them. Test bed setup was performed by the aid of previous research work 

done by authors of [153], [130] as well as several virtualization software listed below: 

1. ESXi Hypervisor [60] 

ESXi is a bare-metal hypervisor that installs directly on the server and performs the 

function of virtualizing the server for hosting several logical virtual machines.  

2. VMware vCenter [186] 

vCenter acts as a platform for managing all ESXi servers, data stores and virtual 

machines within the data center. It was installed on one of the servers in order to 

remotely manage other servers for performing functionalities such as deploying, 

shutting down or migrating a virtual machine or monitoring the performance of 

servers and each of their hosted virtual machines.  

3. VMware vSphere [188] 

vSphere is the software package through which ESXi is deployed on servers and 

vCenter is installed for centralized management of the data center. It acts as a user 

interface to ease the configuration process by the end user via connecting it to 

vCenter, where this can be performed through installing vSphere client on any 

windows machine. An important add-on of vSphere is vMotion which is used for 

testing the proposed load balancing algorithm for migration of virtual machines 

between the two servers. 

After the test bed was installed the proposed algorithms and their test cases were deployed 

using scripts that are automatically run by ESXi servers using PowerCLI software [187].  
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Figure 4-3: Test Bed Architecture 
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Chapter 5  Energy-Efficient Cloud Data Centers 

 

 This chapter introduces the proposed Multiple Parallel Hystereses model which 

allows for achieving an energy efficient operation of cloud data centers while maintaining 

users’ service level agreements. The algorithm is based upon the idea of server consolidation 

where the number of active servers in the data center is adapted to its current load, so that 

under-utilized servers can be turned-off or put into sleep mode to save energy consumed 

while running idle. The novelty of this model is illustrated in its ability to model the data 

center with consideration to realistic aspects such as server activation overhead and reduced 

service rates during sleep modes, performing automatic sever consolidation and accurately 

predicting the performance of the data center with upper bounds for users’ delay using an 

iterative-recursive algorithm for solving system state probabilities at any given load situation.  

Although the idea of modeling DCs using queuing systems with hystereses thresholds 

for servers’ activation/deactivation have been previously introduced in literature, the 

proposed algorithm introduced in this chapter for solving queuing systems with hystereses is 

the simplest among all previous work as it is the first to discover the recursive nature of 

steady state equations used for solving state probabilities. Keilson et al. [129] were the first to 

introduce the idea of setting activation and deactivation hystereses thresholds for servers 

based on the number of requests in the system. Authors provided exact analysis for the multi-

server threshold queues with hysteresis using Greens methods developed by the same author 

in [86]. Due to complexity of the analysis method, authors were not able to extend their 

solutions beyond systems with 2 heterogeneous servers. The same queuing model was 

analyzed by authors of [79] for instantaneous server activations and further extended in [41] 

to include server activation overhead and bulk arrivals; where their analysis was based on the 

method of stochastic complementation for solving steady state probabilities using a closed-

form solution. Complexity of stochastic complementation method has also limited their 

analysis to systems with limited number of heterogeneous servers and limited bulk size. 

Explicit mathematical analysis by methods of Green Function [129] or by Stochastic 

Complement analysis [79] lead to rather complex equations which are difficult to evaluate 

and have been applied to very small systems. Novelty of the recursive algorithm proposed in 

this thesis is shown in its ability to easily compute steady-state probabilities of arbitrarily 

large heterogeneous systems without any stability problems. 

This chapter starts with an explanation for the parallel hysteresis model and how 

hysteresis allows for implementing server consolidation and adaptation to the DC’s current 

load. The second section explains the recursive algorithm used for solving the model along 

with mathematical analysis for its most important performance metrics. Section two also 

introduces the OMNeT++ simulation model for a data center operating under the parallel 

hysteresis algorithm as well as the architecture and implementation of the model on the cloud 

DC test-bed. Results obtained from the recursive algorithm are presented in Section 3 and 
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verified in comparison to those obtained by OMNeT++ simulator model and testing the 

model on a data center test bed using VMware. 

 

5.1 Model Explanation 

The Multiple Parallel Hystereses Model uses the hysteresis behavior previously 

introduced by the thesis’ author and main supervisor in [119] and [133] to provide the DC 

with load-dependent behavior. It throttles activation/deactivation of servers by defining upper 

and lower thresholds for activation and deactivation of each server; respectively, to avoid 

frequent oscillations between on/off states in servers, and thus automatically adapting the 

number of active servers in the DC to its current load. Upper and lower thresholds constitute 

a hysteresis where the upper threshold for server activation is defined by the number of 

buffered arrivals 𝑤(𝑥) for each number of active servers x, so that when the system is running 

with x active servers it is required to hold  𝑤(𝑥) arrivals in its buffer to make sure that load 

has increased to the limit that a new server is required to be activated for 𝑥 = 1,2, … , 𝑛. These 

hystereses thresholds force the DC to activate only the amount of servers required to serve 

the current load, while keeping the rest of the servers inactive or in sleeping mode, thus 

automatically consolidating requests into minimal acceptable number of servers. Multiple 

thresholds are specified – one per server - to avoid frequent oscillations between activations 

and deactivations of servers, where hystereses thresholds allow server activations to be 

throttled upon short load bursts by buffering arrivals until reaching a certain buffering 

threshold indicating that the current load has increased to a limit that a new server activation 

is required. When a new arrival occurs at this threshold level, one new server activation is 

triggered. Values for hysteresis thresholds are set with consideration to maximum delays that 

could be tolerated by the arriving request, which could be derived from arrival’s Service 

Level Agreement (SLA). Another characteristic of the model to guarantee minimal delays is 

that deactivation of servers do not occur except when a server has no more queued arrivals to 

serve, which ensures that arrivals are served at the maximum service rate of activated servers.  

 The model considers two different server activation delays which model the durations 

required by a switched-off server to change its state into switched-on or by a server in sleep 

mode to change its state into active. It also models DVFS strategies where servers work at a 

reduced service rate by reducing their operational frequencies for efficient energy 

consumption. These two aspects will be explored separately by case studies at the end of this 

chapter. The state transition diagram explaining the system behavior is shown in Figure 5-1, 

where the two types of states (shaded/Un-shaded) represent the system states with/without 

activation overheads, respectively. Un-shaded states represent a model with instantaneous 

activations of servers, where a new arriving request occurs at the border 

states (0,0), (𝑥, 𝑤(𝑥)), … for 𝑥 = 1,2, … , 𝑛 − 1, where 𝑤0 = 𝑤(0) = 0, 𝑤(1) = 𝑤1 + 𝑤0, etc. 

would lead to an immediate server activation by a horizontal transition arrow into 

state(1,0), (𝑥 + 1, 𝑤(𝑥)), … for 𝑥 = 1,2, … , 𝑛 − 1, respectively. These horizontal transitions 

are not shown in the model, but rather the shaded states are introduced to indicate that the 

activations of a server is not an instantaneous process, but takes a period of time that is 

assumed in this model to be negative exponentially distributed with an average of 1/α. 
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As shown in Figure 5-1, the system starts at the bottom left idle state, represented 

as (0,0)  where the system has null active servers and buffered arrivals. At this idle state 

when an arrival occurs at rate λ it triggers a server to be activated, but since activation times 

are not negligible, the arrival will be buffered until the triggered server is activated with an 

average activation time of 1 𝛼⁄ , thus the state of the system changes to (0,1). At this instant 

two events may occur: either another new arrival happens before the server gets activated, or 

the server activates. If a new arrival occurs first it gets buffered until the server gets activated 

and the system’s state changes to (0,2) where further arrivals will be buffered until a 

hysteresis threshold is reached to trigger activation of another server, or in case the triggered 

server becomes active then the 𝑥 component of the state increases by one indicating an active 

server and the 𝑧 component reduces by one as one arrival starts its service time. If the server 

activates first, then it will start servicing the arrival in the buffer leaving the buffer empty, 

and the state of the system changes to (1,0). Another two events are possible at this state: 

either a new arrival occurs and the system changes to state (1,1) by buffering this arrival until 

the server is finished with the arrival it is currently serving, or if the server finishes first then 

the system turns into an idle state (0,0), and so on….  

In Figure 5-1 the events of triggering a server to be activated are marked as ‘A’ with 

bold arrows. Servers are only triggered for activation when an arrival occurs at defined 

system states: (0,0), (1, 𝑤(1)), (2, 𝑤(2)), (𝑥, 𝑤(𝑥)), … for 𝑥 = 0,1,2, … , 𝑛 − 1 and 𝑤(𝑥) =

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑥where 𝑤(𝑥) indicate the queue thresholds for triggering activation of a 

new server 𝑥, while 𝑤𝑥 indicates the increase in threshold for new arrivals to be buffered 

before activating a new server 𝑥 relative to threshold of server 𝑥 + 1, respectively. Boundary 

values for 𝑤𝑥 are 𝑤0 = 0 and 𝑤𝑛 = 𝑠. Server deactivations are indicated in the figure also by 

bold arrows and marked as ‘D’, where deactivation of a server is only allowed when a server 

becomes idle, and there are no more arrivals to be served in the queue. Server deactivations 

are only triggered when an arrival finishes services at any of these system 

states: (1,0), (2,0), … , (𝑛, 0).  

Generally, when the system is at any general state (𝑥, 𝑧), expected events are either an 

arrival event, departure event, or server activation event. The system state changes according 

to each of these events as follows: 

1. If an arrival event occurs: 

The current system state has to be checked: 

 If the arrival occurs at any of the defined border states at which the arrival 

exceeds a defined queuing threshold and a new server must be activated, i.e. 

states (0,0), (1, 𝑤(1)), … , (𝑛 − 1, 𝑤(𝑛−1)), then a server activation is triggered.  

 If the arrival occurs at any state where the buffer is full, i.e. 

(0, 𝑠), (1, 𝑠), … . (𝑛, 𝑠), the arrival will be lost since the queue is fully occupied. 

 If the arrival occurs at any other state other than the states mentioned in the above 

two conditions, the arrival will be queued.  



64 
 

 

Figure 5-1: State Transition Diagram of Multiple Parallel Hystereses Model with Activation Overhead 

  

2. If a departure event occurs: 

Departure event occurs after an arrival has completed its service time at one of the 

systems’ servers, and the system state has to be checked: 

 If the departure occurs and the buffer is still occupied with arrivals, the server 

will be re-occupied with the arrival at the head of the queue according to FIFO 

policy. 
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 Otherwise if the departure event occurs and the queue is empty, then the server 

at which departure occurred will be deactivated. 

3. If a server is activated: 

If a server had been triggered for activation and its activation time has ended, then this 

server will accept the arrival at the head of the queue, thus reducing the queue size by 

one and increasing the number of active servers by one. 

 

 In Figure 5-1, service rates at each state are indicated as 𝜇𝑥,𝑧 to represent the service 

rate at the respective state (𝑥, 𝑧). In case of homogeneous service rates, 𝜇𝑥,𝑧 is equivalent to 

𝑥𝜇, which is the assumption in the analytical solution. However, the model is adaptive to 

different service rates at each server, and also to different service rates of the same server at 

different stages, i.e. active, sleeping, switched-off, etc... Activation rates also may exceed α 

(activation rate of one server) in case a new activation is triggered before the previously 

triggered server is activated. This adds more 𝛼 to the activation rate, and it is allowed to 

increase only up to 𝑛𝛼 when all the servers in the system are triggered for activation, but 

none is active yet. 

 Hystereses threshold values for the model are derived such that an arrival’s SLA is 

not violated in terms of average response time. For each number 𝑥 of active servers 

where 𝑥 = 1,2, … 𝑛, a threshold 𝑤(𝑥) is specified such that the worst case mean delay with the 

current service load would still be tolerated under the specified SLA. This worst case mean 

delay could be explained as follows: for an arrival that meets the system at state (𝑥, 𝑤(𝑥) −

1), this arrival will change system state to  (𝑥, 𝑤(𝑥)) and will experience the longest mean 

delay. Compared to arrivals before and after this arrival, the ones arriving before it 

experienced a shorter queue and thus a shorter mean delay, and the arrival after it will exceed 

the threshold value and trigger a new server activation which will increase the service rate so 

it will also experience a shorter mean delay. Worst case mean delay of this arrival can be 

calculated knowing that there are 𝑤(𝑥) − 1 customers ahead of it in the queue, added to them 

one already being serviced in the server at which the arrival will be serviced. These 

𝑤(𝑥) arrivals are being serviced at a rate of 𝑥𝜇 (in case of homogeneous servers), so the worst 

mean delay time could be calculated by the following equation: 

 

𝑡𝑤𝑜 =
𝑤(𝑥)

𝑥𝜇
 

(5-1) 

Accordingly, since the worst case mean delay two must be smaller than or equal to the delay 

bound specified by the SLA, by setting two to the SLA threshold value the hysteresis threshold 

could be obtained using Equation 5-2 and rounding down to the nearest integer value. 

 

                                                                𝑤(𝑥) ≤  𝑡𝑤𝑜 ∗ 𝑥𝜇          

(5-2) 

Another approach for setting hysteresis thresholds according to SLA is by not violating 

percentiles of the response time distribution function. Percentiles defined by SLAs require 

that for a defined percentage of time, the delay should not exceed a certain maximum delay. 
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In this case a different calculation approach should be adopted, which is not considered in the 

scope of this thesis. The model of Figure 5-1 describes all cases where arriving jobs are 

served without any I/O interruption (as in case of paged computer systems). The model can 

also be applied to paged computer systems; in that case the arrival rate λ includes all returns 

after a page fault interruption. 

 

5.2 Model Analysis 

Analysis for the multiple parallel hystereses model explained above is performed 

using two methods as will be explained in this section. First the model is analyzed 

mathematically by solving the Markov chain shown in Figure 5-1 using a novel iterative 

recursive algorithm for solving state probabilities of the system by which performance 

metrics could be calculated to evaluate the model under Markovian assumptions. In the 

second subsection a simulation model is constructed for a DC operating under multiple 

hystereses model in order to verify analytical results as well as testing the model’s 

performance under non-Markovian assumptions to verify its validity under general 

conditions. 

 

5.2.1 Mathematical Analysis 

Analysis and calculation of state probabilities for the Markov chain of the Multiple 

Hystereses model with activation overhead is performed using standard Kolmogorov Forward 

Equations in a recursive manner. A recursive solution is adapted here to avoid numerical 

instabilities that occur when using explicit formulas and numerical solutions. The model is 

solved under the Markovian assumptions that all inter-arrivals and service times follow a 

negative exponential distribution, as well as servers’ activation times. At any state (𝑥, 𝑧)  in 

the Markov Chain; the rate of arrivals is 𝜆, total service rate of the system is  𝜇𝑥,𝑧 =  ∑ 𝜇𝑖
𝑥
𝑖=1  , 

and activation rate is 𝛼𝑥,𝑧 which is the summation of activation rates for all servers triggered 

for activation at the respective state. 

 The algorithm for calculating state probabilities 𝑝(𝑥, 𝑧) for 𝑥 = 0,1, … 𝑛 and 𝑧 =

0,1, … 𝑠 follows the following steps: 

 Assume 𝑝(0,0) = 1 

 At all states (0, 𝑗), where 𝑗 = 1,2, … 𝑠 − 1, Kolmogorov forward equation follows 

from  Equation 5-3 

(𝜆 + 𝛼0,𝑗) 𝑝(0, 𝑗) =  𝜆 𝑝(0, 𝑗 − 1)                                                         

(5-3) 

 Using equation 5-3, states (0, 𝑗) where 𝑗 = 1,2, … 𝑠 − 1 can be calculated relative to 

𝑝(0,0)  

using Equation 5-4 

 

𝑝(0, 𝑗) =  
𝜆

𝜆+𝛼0,𝑗
 𝑝(0, 𝑗 − 1)                                                        

 (5-4) 
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 Probability of state (0, 𝑠) can be calculated according to Equation 5-5 

            

𝑝(0, 𝑠) =  
𝜆

𝛼0,𝑠
 𝑝(0, 𝑠 − 1) 

(5-5) 

 Using the balance equation at state (0,0) expressed in Equation 5-6, 𝑝(1,0) can be 

calculated exactly relative to the assumed 𝑝(0,0)  

 

       𝑝(1,0) =  
𝜆

𝜇1,0
 𝑝(0,0)                                                                  

 (5-6) 

 Assume 𝑝(1, 𝑠)  =  𝑦 

 Using balance equation at state (1, 𝑠), probability of state (1, 𝑠 − 1) can be calculated 

according to Equation 5-7 

 

    𝑝(1, 𝑠 − 1) =  
𝜇1,𝑠+𝛼1,𝑠

𝜆
 𝑝(1, 𝑠)                                                     

(5-7) 

 Probabilities of states (1, 𝑗) for 𝑗 = 𝑠 − 2, 𝑠 − 3, … 1 can be calculated recursively 

using Equation 5-8 

 

𝑝(1, 𝑗) =
1

𝜆
[(𝜆 + 𝜇1,𝑗+1 + 𝛼1,𝑗+1)𝑝(1, 𝑗 + 1) − (𝜇1,𝑗+2)𝑝(1, 𝑗 + 2) − (𝛼0,𝑗−2)𝑝(0, 𝑗 −

2)]                                                                

         (5-8) 

 As Equation 5-8 can be used to solve state (1,0) in terms of variable 𝑦, it can be 

equated to the numerical value of state (1,0) obtained by Equation 5-6 to solve for 𝑦 

 Substitute the obtained value of 𝑦 in states 𝑝(1, 𝑗) for 𝑗 = 𝑠 − 2, 𝑠 − 3, … 1 

 Remaining system states can be solved in the same manner recursively according to 

the following general equations for each 𝑖, where 𝑖 = 2,3, … 𝑛 

i. Assume 𝑝(𝑖, 𝑠) = 𝑦                 (5-9) 

ii. 𝑝(𝑖, 𝑠 − 1) =  
𝜇𝑖,𝑠+𝛼𝑖,𝑠

𝜆
 𝑝(𝑖, 𝑠)              (5-10) 

iii. For all states (𝑖, 𝑗) where 𝑗 = 𝑠 − 2, 𝑠 − 3, … 0 

 

𝑝(𝑖, 𝑗) =
1

𝜆
[(𝜆 + 𝜇𝑖,𝑗+1 + 𝛼𝑖,𝑗+1)𝑝(𝑖, 𝑗 + 1) − (𝜇𝑖,𝑗+2)𝑝(𝑖, 𝑗 + 2) − (𝛼𝑖−1,𝑗−2)𝑝(𝑖 − 1, 𝑗

− 2)] 

                   (5-11) 

iv. Probability of state (𝑖, 0) can be found numerically using balance equation at state     

(𝑖 − 1,0), equate numerical value to the value obtained from Equation 5-11 to 

evaluate 𝑦 

v. Substitute the value of 𝑦 into states 𝑝(𝑖, 𝑗) for 𝑗 = 𝑠 − 2, 𝑠 − 3, … 1 
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 After obtaining all probabilities of state, calculate normalization factor 

  

                   Normalization Factor=1 ∑ ∑ 𝑝(𝑖, 𝑗)𝑎𝑙𝑙 𝑗𝑎𝑙𝑙 𝑖⁄                     

(5-12) 

 Multiply all probabilities of state by the normalization factor 

 

Having obtained all steady state probabilities of the DC model under Multiple Parallel 

Hystereses algorithm, performance metrics are necessary to evaluate and study the system 

performance. Most significant performance metrics of the DC are derived using equations 

below: 

 State distribution of busy servers 

 

                                         𝑃(𝑥) = ∑ 𝑝(𝑥, 𝑧)𝑠
𝑧=0                                   

(5-13) 

 

where the probability of x active servers can be obtained by adding up all probabilities 

of states where x servers are active. 

 

 Average number of busy servers, also indicating the amount of carried traffic 

 

                                        𝑌𝑠 = ∑ 𝑥𝑃(𝑥)𝑛
𝑥=1                                               

(5-14) 

 

carried traffic by the average number of servers is calculated by summing the 

multiplication of the probability of each states by the number of active servers in this 

state. 

 

  State distribution of buffered arrivals 

 

                                         𝑄(𝑧) = ∑ 𝑝(𝑥, 𝑧)𝑛
𝑥=0                                     

(5-15) 

  

 Mean queue length, i.e. average number of buffered arrivals 

 

                                         𝐿 = ∑ 𝑧𝑄(𝑧)𝑠
𝑧=0                                               

(5-16) 

 

 Probability of an arrival to be lost (Blocking Probability) 

 

                                         𝐵 = ∑ 𝑝(𝑥, 𝑠)𝑛
𝑥=0                                               

(5-17) 
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since arrivals are lost when the system’s buffer reaches its capacity, loss probability of 

the DC follows from the summation of all states where 𝑧 = 𝑠. 

  

 Probability of an arrival to be delayed upon arrival 

 

                                            𝑊 = 1 − 𝐵                                   

   (5-18) 

Due to activation delay of servers, all arrivals to the system experience delays except 

those who are lost. 

 

 Mean waiting time with respect to all arriving requests following from Little’s law 

[80] 

 

                                        𝐸[𝑇𝑤] = 𝐿/𝜆                                              

(5-19) 

 

 Mean waiting time with respect to buffered requests (excluding those arrivals that are 

lost) 

                                        𝐸[𝑇𝑤|𝑇𝑤 > 0] = 𝐿/𝜆𝑊                                       

(5-20) 

 Activation rate of idle servers 

𝑅𝐴 = 𝜆 ∗ ∑ ∑ 𝑝(𝑥, 𝑤(𝑖) + 𝑖 − 𝑥)

𝑛−1

𝑖=𝑥

𝑛−1

𝑥=0

 

                                                           (5-21) 

where Equation 5-21 sums up all states at which a new server activation is triggered 

due to exceeding buffering threshold by a new arrival request, and multiplies them by 

λ as triggering a new server activation occurs as a result of an arrival event. 

 

 Deactivation rate of active servers 

𝑅𝐷 = ∑ 𝑝(𝑥, 0) ∗ 𝜇𝑥,0

𝑛

𝑥=1

 

                                          (5-22) 

since deactivation of a server occurs only when a server turns idle, i.e., after an arrival 

is served and the queue is empty, Equation 5-22 adds up all states where the queue 

size is null, and each state is multiplied by its respective service rate. 

 

 Average number of servers in activation phase 

𝑌𝐴 = ∑ ∑
𝛼𝑥,𝑧

𝛼

𝑠

𝑧=0

𝑛−1

𝑥=0

∗ 𝑝(𝑥, 𝑧) 

 (5-23) 
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 where Equation 5-23 calculates the average number of servers in activation phase by 

 multiplying the probability of each state in the system by the number of servers 

triggered for activation at this state represented as 𝛼𝑥,𝑧 = 𝑖𝛼, where 𝑖 = 0,1, … 𝑛. Another 

more general calculation is shown in Equation 5-24: 

𝑌𝐴 = ∑ ∑ ∑ (𝑖 − 𝑥 + 1) ∗ 𝑝(𝑥, 𝑤(𝑖) + 𝑖 − 𝑥 + 𝑗)

𝑤(𝑖+1)+𝑖−𝑥+1

𝑗=1

𝑛−1

𝑖=𝑥

𝑛−1

𝑥=0

 

      (5-24) 

 Power consumption of servers inside the DC 

 

                                  𝑃𝑠 =  𝑌𝑠𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + 𝑌𝐴𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔          

(5-25) 

 

In the simplest form of this model servers that are not yet triggered for activation 

remain switched-off, thus eliminating the power consumed by running idle and 

limiting the power consumption to servers running at their full speed or being 

activated. Power consumed by running servers can be computed by multiplying the 

average number of active servers by the power consumed by a running 

server 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔, which is estimated to be equal to 25W as reported in [5] for an Intel 

Pentium M 1.6 GHz Processor. Power consumed by servers in the activation phase 

can be calculated by multiplying the average number of servers in activation phase 

times the power spike caused by activation, which is assumed to be equivalent to that 

consumed by a server running at full speed. 

 

 Power-Saving Efficiency  

 

   𝜂 = (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 − 𝑃𝑠) (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔)⁄        

(5-26) 

in this context power saving efficiency is measured as the amount of power saved by 

applying the hystereses algorithm to data centers instead of operating them by the 

always-on strategy. This definition implies that the highest efficiency can be achieved 

at low load situations where power consumed by idle servers can be saved, whereas at 

high load situations when the DC is fully utilized the space for power saving 

efficiency is minimal.  

5.2.2 Simulation Model 

For testing the Multiple Hystereses Model for achieving energy efficiency introduced 

in this chapter, a compound OMNeT++ module is implemented as shown in figure 5.2. As 

earlier explained in Section 4.2 the source module generates arrivals with a random 

interarrival time following a negative-exponential distribution function, where the average 

time between arrivals depends on the load experienced by the DC. Arrivals are forwarded 

from the source to the passiveQueue module which decides whether the arrival should be 
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immediately served thus triggering the activation of a new server for serving it, or will be 

queued until the next activation threshold is reached. In case an activation threshold is 

reached which is determined by the number of buffered arrivals, the criterion of choosing 

which server to be activated is done using a round-robin approach, and the time required by a 

server to be activated is randomly selected according to a negative-exponential distribution. 

When a server is activated a message is passed from the server to the queue requesting to 

send the arrival buffered at the head of the queue, where service times of arrivals at servers 

are negative-exponentially distributed with an average of one unit time for each server in the 

DC. When the service time of an arrival ends, it is forwarded to the sink module where it will 

be discarded from the DC, and the server at which it had been served at will pass a message 

to the queue asking for the arrival at the head of the queue to start its service time. In case of 

an empty buffer the server will be deactivated or put into a sleep mode.  

The algorithm is tested under several parameters specified in the initialization file of 

the model (.ini), where the mean value of interarrival, service and activation times are 

specified for generating exponential random numbers with respective mean values. The 

duration of the simulation is also specified, where it is set to end after the millionth arrival 

leaves the DC. To test the performance of a DC operating under the proposed algorithm and 

under diverse load conditions, the simulation runs under load value per server ranging from 

0.1 to 1, where a load of 0.1 per each server indicates long interarrival times in comparison to 

service times, and a load of 1 indicates high load at servers as arrival rate is equal to the 

service rate. Throughout this simulation the average service time for each server in the DC is 

assumed to be 1, so for simulating the DC under different loads the interarrival times are 

varied according to equation 5-27: 

𝜌 =
𝐴

𝑛
=

𝜆

𝑛𝜇
=

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒

𝑛∗𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒
  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒

𝑛𝜌
     

(5-27) 

Figure 5-2 illustrates the (.ned) file for the simulation, which shows all simple modules and 

their interconnections. The procedure followed by the simulation is explained through flow 

charts in Figure 5-3 which explain the span of arrivals and servers inside the data center, 

respectively.  

Most important performance metrics for evaluating DC’s performance under Multiple 

Hystereses Model are calculated using the following equations: 

 State distribution of busy servers 

 

                       𝑃(𝑥) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠  𝑤ℎ𝑒𝑟𝑒 𝑥 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑤𝑒𝑟𝑒 𝑎𝑐𝑡𝑖𝑣𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠
               

(5-28) 

 

Where at the instance of each arrival the number of active server is recorded, so that 

the probability of x active servers can be measured by counting the times x servers 

were on at arrival instants divided by the total number of arrivals. 
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 Mean delay of delayed arrivals 

 

𝐸[𝑇𝑤|𝑇𝑤 > 0] =
∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠
       

(5-29) 

The number of delayed arrivals is determined by a counter that is incremented every 

time a job enters the queue, which represents all arrivals that are accepted in the DC 

and not lost. All accepted arrivals are considered to be delayed due to activation delay 

of servers. Delay of each delayed arrival is measured as the difference between its 

arrival time and the time it started service. 

 Power saving efficiency 

                      𝜂 =
Φ−∑ 𝐴𝑐𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟∗𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒𝑎𝑙𝑙 𝑠𝑒𝑟𝑣𝑒𝑟𝑠

Φ
                   

 Φ = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∗ 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 

(5-30) 

where the activity period of each server in the DC is measured and multiplied by the 

amount of power consumption per unit time, then added together to calculate the total 

power consumption of the DC. Subtracting the amount of consumed power using 

hystereses model from the amount of consumed power by servers operating under the 

always on strategy and dividing by it results in the power saving efficiency factor. 

 

 

Figure 5-2: Basic DC Simulation Model 
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Figure 5-3: Flow Charts explaining Life Cycle of Arrivals and Servers inside the DC 

 

5.3 Results 

5.3.1 Performance Evaluation 

This section introduces the results obtained by testing the performance of a data 

center under the proposed Multiple Hystereses Model. Results in this section are obtained by 

solving the recursive solution introduced in Section 5.2.1 using MATLAB tool, from the 

implemented simulation using OMNeT++ software as well as from PowerShell scripts 

running on the DC test bed. The model is tested under various loads to see how its 

performance changes under light/heavy load conditions. All figures are shown for load value 

𝜌 =
𝐴

𝑛
=

𝜆

𝑛𝜇
= 0, … ,1 with variable arrival rate 𝜆 =  0, … ,100 arrivals per unit time and 

constant service rate per server μ fixed to 1 request per unit time for each of the 100 servers. 

Parameters such as hystereses width and activation rate are also varied to see how they affect 
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system performance. An identical queuing system without the algorithm is also presented for 

comparison and to clarify the improvements achieved by implementing the Multiple 

Hystereses model on the DC’s performance. For all results introduced in this section the 

activation delay of sleeping servers is assumed to be of a minimal value in order to study the 

effects of varying other parameters, where the effect of varying activation times will be 

separately studied in Section 5.3.2. 

5.3.1.1 Probability of State P(x) 

 The main target for introducing the hysteresis behavior in this model is to adapt the 

number of servers in the DC to its current load, thus reducing the frequency of 

activations/deactivations of servers and being able to consolidate the load onto the lowest 

number of active servers to switch-off idle servers or put them into sleep mode. This is 

illustrated in Figure 5-4 which shows probability of state 𝑃(𝑥) for 𝑥 = 0, 50 and 100 active 

servers for a date center with 𝑛 = 100 servers, 𝑠 = 300 buffer places and hysteresis width 

𝑤 = 3. A hysteresis width of 3 implies the following: after the first server is triggered for 

activation when the first request arrives, the second server is triggered for activation when an 

arrival occurs to a queue size of 3; the third server is triggered for activation when an arrival 

occurs to a queue size of 6, etc. The figure shows that 𝑃(0), i.e. probability of having zero 

active servers is highest when the load approaches zero, and decreases rapidly to zero as load 

increases and more servers are turned on to accommodate the increased load. An exact 

opposite behavior occurs at 𝑥 = 100, where the probability of having 100 active servers is 

zero for all small and intermediate load values, then increases to 1 as the system load 

approaches 𝜌 = 100 when arrival rate and service rates have equivalent values. For 

intermediate load values as 𝑥 = 50, 50 active servers are only needed when the system is 

half loaded, which is shown in the figure by a probability peak around 𝜌 = 50 and zero 

probability at other smaller or higher loads.  Figure 5.4 also compares the model results to 

the results of standard  

M/M/n/n+s queue with the same parameters without server consolidation whose results are 

shown in dashed lines. Proposed model shows that it enhances the automatic adaptability of 

the number of active servers in the data center to the load value by concentrating the 

probability of 𝑃(𝑥) around respective load value 𝜌 = 𝑥, for 𝑥 = 0,1,2, … . 𝑛. 

5.3.1.2 Server Activation Rates RA 

Another effect of increasing hystereses widths and increasing number of buffered 

arrivals before activating a new server is reducing server activation/deactivation rates. This 

effect is one of the main effects of the hystereses model by which automatic server 

consolidation is achieved. Figure 5-6 compares server activation rates of an 𝑀/𝑀/𝑛/𝑛 +

𝑠 queue vs. one with hystereses having identical parameters 𝑛 = 100 and 𝑠 = 300. The 

figure shows that servers’ activation rates decreases rapidly as hysteresis width increases, 

which reduces the oscillation between on/off states in servers thus avoiding delays and power 

spikes experienced by activating switched-off/sleeping servers. This occurs because as more 

arrivals are buffered, new server activation will be delayed more until load increases to a 

defined level by hysteresis thresholds. Varying hysteresis thresholds results in a 



75 
 

   

corresponding variation of the servers’ activation rates as increasing the number of buffered 

arrivals delays the activation of servers and thus reduces the activation rate, as shown in 

Figure 5-7. 

 
 

Figure 5-4: Probabilities of State P(x) of the Server Group inside Cloud Data Center 

        

Figure 5-5: Probabilities of State P(x) of the Server Group for variable Hysteresis Widths 
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Figure 5-6: Server Activation Rate RA for variable Hystereses widths 

 

Figure 5-7 Server Activation Rate RA for Hystereses Model vs. an equivalent 𝑴/𝑴/𝒏/𝒏 + 𝒔 
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5.3.1.3 Power Consumed by Servers PS 

For evaluating the model’s efficiency at reducing power consumption, Figure 5-8 

shows the amount of consumed power for a DC operating under hystereses model with 

𝑛 = 100 and 𝑤 = 2,3,4 and 5 versus an 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue operating under always-on 

strategy. Power consumed at different server states is adopted from [5], where a server 

operating at full capacity consumes 25W as well as those being activated, and servers that are 

in-active are assumed to be switched-off with zero power consumption in the hystereses 

model, where in the always-on strategy they are idle with power consumption of 6W per unit 

time. Figure 5-8 shows a huge reduction in consumed power achieved by the hystereses 

model at low loads and decreasing as the load on the DC increases. At a load value 

approaching zero, the hystereses model keeps all servers switched-off thus consuming zero 

power compared to the 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue without hystereses which keeps all servers on 

and idle consuming 600W without any useful output. As the load increases, hystereses model 

tends to have lower server activation rate thus achieving lower power consumption. At 

significantly high loads, e.g. 𝜌 = 1, all servers at the DC tend to be switched-on to serve the 

increased load of incoming requests, thus diminishing the effect of any power saving 

algorithm. The figure also shows that the hystereses width has almost no effect on the amount 

of consumed power, which limits the variation in power consumption to the status of idle 

servers being on and idle or switched-off. Results for a hysteresis width of 1 were not 

included in the figure due to the lack of a significant effect on the power consumption. 

 

 

Figure 5-8: Power Consumption of Servers inside the DC for various Hystereses Widths vs. 

𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue 
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5.3.1.4 Power Saving Efficiency 𝜼𝒔 

Another measure of model’s power saving capability is shown in Figure 5-9, which 

shows the power-saving efficiency of a DC with 100 servers operating under the hystereses 

model and how efficiency varies with varying the hystereses thresholds. The figure also 

shows power saving efficiency of an equivalent 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue without hystereses for 

comparison. As elaborated earlier in equation 5-26 the figure shows the amount of power 

saved by applying hystereses model compared to always-on strategy, where the highest 

efficiency value would be 1 when all servers are switched-off and the least value approaches 

zero when the DC is fully operative. As the figure shows; highest efficiency is achieved only 

when the DC is under low load where the hystereses model saves energy consumed by idle 

equipment. Power saving efficiency diminishes as the load increases and the DC tends to 

have all its equipment under high load. Figure 5-9 also shows that efficiency is not affected 

by hystereses widths. 

 

Figure 5-9: Power Saving Efficiency for Hystereses Model with various Widths vs.  𝑴/𝑴/
𝒏/𝒏 + 𝒔 Queue 
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increase according to the increase in the hysteresis width, as shown in Figure 5-10. Results 
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this delay increase is the main criteria to be taken into account while designing the system 

parameters in order not to violate customers’ SLAs. In this context the mean delay is 

calculated for only those arrivals that experience delay in the DC’s queue, not with respect to 

all DC’s arriving requests. This is intended as the second calculation method would lower the 

average delay value and provide a misleading average value for delay, whereas calculating 

the average while considering only those who wait provides a more realistic measure and 

could be used as a Quality of Experience ‘QoE’ metric while the mean delay of all arriving 

requests 𝐸[𝑇𝑊] is used as a Quality of Service ‘QoS’ metric. Despite the increased delay, 

applying hystereses model to a DC achieves an interesting effect of almost constant delays 

for a huge load range, i.e. average delay is almost constant for all requests while load on the 

data center is 5-95% loaded. This ‘plateau’ of delays is highly beneficial for administrators 

for provisioning required configuration parameters and required hardware for their DC. As 

the proposed hystereses model and its analytical solution can provide an exact estimate for 

the average delay of delayed requests, administrators can tune their configuration parameters 

for hystereses widths as well as buffer sizes to match the delay value required such that users’ 

SLAs are not violated while the load to the DC varies from 5% to 95%. 

 

 

Figure 5-10: Mean Waiting Time of Buffered Requests  
𝑬[𝑻𝑾 | 𝑻𝑾  > 𝟎] for variable Hystereses Widths vs. 𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue 

Results obtained by the analytical solution shown in Figure 5-10 are supported by 
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measured by the simulation model with a 95% confidence interval compared to the average 

delay calculated by mathematical analyses for delayed arrivals. The figure shows that the 
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the simulation is slightly lower
1
. Simulation tends to provide lower delays due to the nature 

of the hystereses model; as a new arrival to the queue could increase its length to reach a 

threshold value at which a new activation is triggered, thus increasing the service rate of the 

system and reducing delay of buffered arrival. This effect could not be accounted for in the 

calculated mean delay using Little’s Law [80] in equation 5-20. 

  

Figure 5-11: Mean Waiting Time of Buffered Requests 𝑬[𝑻𝑾 | 𝑻𝑾  > 𝟎] for variable 

Hystereses Widths (Analytical Solution vs. Simulation) 

 

5.3.1.5 Model Validation  
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efficiency in enhancing DC’s performance by achieving server consolidation and reduced 
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1
 The differences between analytic and simulation results originate from the calculation of the mean number 

of delayed arrivals used in Equations 6.16 and 6.19 as they include cases where servers are in an activation 
phase but may be deactivated when no new server activation is required, c.f. state transitions indicated by “D” 
in Figure 5-1. 
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5.3.1.5.1 Various Inter-arrival Time Distributions 

 Figure 5-12 shows mean delay of delayed frames for a DC operating under hystereses 

model while using different distributions for generating random inter-arrival times while 

simulating the model using OMNeT++. Different mean values for inter-arrival times are used 

to reflect load variation experienced by the DC, e.g.: for a load value 𝜌 = 𝑥 per server, the 

average time between two requests generated at the source module of the simulation would 

be equal to 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = 1 𝑛𝑥⁄  as per equation 5-27. Figure shows results while using the 

following distributions with respective configurations for generating inter-arrival times: 

 Exponential distribution with mean 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

 Constant interarrival times = 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

 Uniform distribution with limits [0 , 2 ∗ 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙] 

For observing effects of variable inter-arrival time distributions, service times’ and activation 

times’ distributions were both generated using a negative-exponential distribution function 

with means 10s and 0.1 seconds, respectively. As the figure shows; measured mean delay is 

not affected by varying the distribution used for generating inter-arrival times between 

requests, which proves the validity of the model and its applicability to different distributions 

of interarrival times rather than Markovian.  

 

Figure 5-12: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Inter-Arrival Time 

Distributions 

 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e 
o

f 
D

el
ay

ed
 R

eq
u

es
ts

E
[T

W
 |
 T

W
 >

0
]

 

 

Exponential

Constant

Uniform



82 
 

5.3.1.5.2 Various Service Time Distributions 

 For testing the effect of altering the distribution of service times experienced by 

requests at servers inside the DC, OMNeT++ simulations were conducted using the following 

distributions for generating service times for each arrival upon entering the server at which it 

will be served: 

 Exponential distribution with mean 10 

 Constant interarrival times = 10 

 Uniform distribution with limits [0,20] 

Figure 5-13 shows that the mean delay experienced by users while generating exponential 

service times is not much affected while using different distributions, which proves 

applicability of the model for any service time distributions and validity of the Markovian 

assumption used by the analytical solution. Results in the figure were obtained while keeping 

the generating negative exponentially distributed inter-arrival times with respective means to 

the required load value as well as negative exponentially distributed server activation times 

with mean value of 1 which raises the mean delay value to 1s at load values approaching 

zero. The small dependence of the mean waiting time on the service time distribution is (at 

first sight) counter-intuitive, but can be explained by making use of the results of Figure 5-7: 

with increasing values of the hysteresis width the server activation rates decrease rapidly and 

thus the mean waiting time of delayed frames is less affected by the service time distribution. 

 

Figure 5-13: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Service Time 

Distributions 
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5.3.1.5.3 Various Activation Time Distributions 

Similar to the previous two test-cases Figure 5-14 shows the validity of the 

assumption of negative-exponentially distributed servers’ activation times and the 

applicability of the hystereses algorithm to model any type of DC with any distribution for 

servers’ activation times. Results in the figure were obtained while generating service times 

according to a negative-exponential distribution with mean value of 10s and inter-arrival 

times according to the same distribution but with mean values retrieved from Equation 5-27 

to reflect the DC’s load while distributions for generating servers’ activation times varied as 

follows with 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 0.1: 

 Exponential distribution with mean 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 

 Constant interarrival times = 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 

 Uniform distribution with limits [0,2 ∗ 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛] 

 

Figure 5-14: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Server Activation 

Times Distributions 
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finishes its service and the DC’s queue is empty: Cold Stand-by (CSB) and Hot Stand-by 

(HSB). CSB is the basic approach where a server is completely deactivated when it becomes 

idle, and has to be booted when a server activation is triggered. HSB avoids this booting 

delay and instead puts servers in a sleep mode where they are in-active, consuming less 

energy and can be activated again faster than CSB mode. HSB mode provides several sleep 

states depending on which components of the server are put to sleep, where deep sleep states 

with more inactive components require longer activation times than light sleep states. This 

can be represented in the proposed hystereses model by varying the activation rate of servers 

and thus their average booting/wakeup times. As CSB requires long activation times to boot 

servers, servers in CSB mode require a smaller α.; whereas servers in HSB mode have large α 

as they require shorter wake-up times. 

In addition to the variation in activation times between turned off/sleep states, a 

variation in power consumption must also be considered. Totally switched-off servers in CSB 

mode consume no power; however sleep states specified by HSB mode still consume power 

as not all components of the server are put to sleep. For evaluating the efficiency of sleep 

modes integrated into the proposed hystereses model, power consumed by DC with/without 

adopting sleep states are compared as well as the average delay experienced by delayed 

arrivals. The power consumed by servers in CSB or HSB mode is calculated according to the 

following equations: 

 

   𝑃𝑆,𝐶𝑆𝐵 = 𝑌𝑠 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + 𝑌𝐴 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔     

(5-31) 

𝑃𝑆,𝐻𝑆𝐵 = (𝑌𝑠 + 𝑌𝐴) ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + (𝑛 − 𝑌𝑠 − 𝑌𝐴) ∗ 𝑃𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔    

(5-32) 

𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 follows from [5] to be equal to 25W as the energy consumed by a server operating at 

full capacity, while 𝑃𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 is assumed to have an average value of 1.56W according to [53] 

where sleeping states consume an average of 26% of idle power consumption. This value is 

assumed for all sleep states since the difference in power consumption between different 

sleep states is minor as components that are already idle have low power consumption. 

Following from Equations 5-31 and 5-32 power-saving efficiency for CSB and HSB modes 

by which the amount of power saved by these power saving modes compared to always-on 

strategy can be calculated as follows:  

            𝜂𝐶𝑆𝐵 = (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 − 𝑃𝑆,𝐶𝑆𝐵) 𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔⁄      

(5-33) 

               𝜂𝐻𝑆𝐵 = (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 − 𝑃𝑆,𝐻𝑆𝐵) 𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔⁄     

 (5-34) 

Figure 5-15 shows plots for power saving efficiency obtained using Equations 5-33 

and 5-34 for a DC with parameters 𝑛 = 100, 𝑠 = 200 and 𝑤 = 2 by varying the value of 
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activation rate α as follows: Since CSB mode shuts down any idle server and boots it again 

when a server activation is triggered, it requires long mean activation times and thus smaller 

activation rates shown in Figure 5-15 as 𝛼 = 0.25. For HSB mode idle servers are put to 

sleep at deep/light sleep modes, thus require shorter wake-up times and larger activation rates 

varying between 0.5,1,4 and ∞ where deeper sleep states have smaller α and lighter sleep 

states have higher 𝛼. As the figure shows power saving efficiency of CSB mode is higher at 

low loads when the system is lightly loaded and not fully utilized, so it saves power 

consumed by idle servers by turning them off. As load increases; HSB mode outperforms 

CSB mode as DC utilization increases and the average number of idle servers as well as their 

idle durations are highly reduced which eliminates the power saving effect by CSB mode. At 

these load ranges and according to Figure 5-7 servers are likely to have high activation rates 

where power-saving efficiency of HSB dominates since it eliminates the power spikes 

associated with reactivation of sleeping servers. As α increases and time required to wake up 

a sleeping server is reduced, power saving efficiency of HSB mode at relatively high loads 

also increases. For validating power saving capabilities of the hystereses model using either 

CSB or HSB modes, an equivalent 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue operating at always-on strategy is 

shown in Figure 5-15 to have much lower power-saving efficiency especially at low load 

regions when all servers are kept on without being utilized. 

 

Figure 5-15: Power Saving Efficiency for CSB Mode vs. HSB Mode with various Sleep 

States 

Having explored the efficiency of the proposed sleeping modes within the hystereses 

model in saving power consumed by the DC, their effect on the mean delay of requests at the 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load Factor A/n

P
o

w
er

 E
ff

ic
ie

n
cy

 

 

 

CSB Mode 

HSB Mode =0.5

HSB Mode =1

HSB Mode =4

HSB Mode =

M/M/n/n+s



86 
 

DC is shown in Figure 5-16. Figure 5-16 shows mean delays for variable server activation 

rates, where the average time taken by a server to be activated could be obtained as 1/𝛼. CSB 

mode shows the highest average activation time; i.e. 4 seconds corresponding to an average 

activation rate of 0.25 per server which is visible at load values approaching zero where the 

only delay experienced by an arriving request is that while a server is being activated. As 

load increases and more severs are activated the mean delay value drops and stabilizes until 

the DC is almost 95% loaded. HSB mode have shorter wake-up times depending on which C 

state the server entered after being idle, where deep sleep states require longer wake-up times 

which is represented in the figure by an average activation rate of 0.5,1 and 4 for deeper and 

lighter sleep states, respectively. As the figure shows, small activation rates result in longer 

activation times, which increase the average delay of buffered requests. This effect is also 

mostly obvious at small loads, when almost all requests arrive at the DC require a server to be 

activated. When compared to an equivalent 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue with parameters, it can be 

noticed that the proposed hystereses model and its sleep modes highly increase the mean 

delay value, which is the main drawback for power-saving efficiency. However, as the model 

and its recursive solution can accurately predict the average delay of delayed requests 

according to system parameters, they can be easily tuned to match the required delay value 

according to users’ SLAs’ 

 

Figure 5-16: Mean Waiting Time of Buffered Requests 𝑬[𝑻𝑾 | 𝑻𝑾  > 𝟎]for variable 

Activation Rates vs. 𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue 
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5.3.3 Case Study 2: Reduced Service Rates by DVFS 

As explained briefly in sub-Section 3.1.3, DVFS is an approach that reduces the 

frequency by which a server operates by specifying various P-states each with a defined 

operating frequency and voltage. Various P-states correspond to different power consumption 

modes, where the reduction in operational frequency results in a corresponding reduction in 

consumed power. P-states have a main difference to C-states as illustrated in the previous 

section: a server enters a P-state when it is busy serving a request, but reduces its service rate 

for energy efficiency purposes, whereas C-states are only entered by servers when they are 

completely idle.  

In the STD of the hystereses model shown in Figure 5.1 the service rate of any state 

(𝑥, 𝑧) is represented as 𝜇𝑥,𝑧, which follows from Equation 5-27 in the basic cases without 

DVFS as the total service rate of a homogeneous server system is the summation of service 

rates of all servers. 

𝜇𝑥,𝑧 = 𝑥𝜇            (5-35) 

To reflect a DC implementing DVFS technology, 𝜇𝑥,𝑧 can be varied for each state of the DC 

to represent different service rates for different P-states servers can operate at. Typically, 

reduced service rates are adopted when the DC is experiencing low loads to avoid severe 

performance degradation. A relatively low load situation can be represented in the hystereses 

model by a defined low queue threshold 𝑧∗; such that when the queue size is lower than the 

buffering threshold servers operate at a reduced service rate of 𝜇∗ per server; according to 

Equation 5-36: 

𝜇𝑥,𝑧 = 𝑥𝜇     𝑓𝑜𝑟 𝑧 > 𝑧∗ 

          𝜇𝑥,𝑧 = 𝑥𝜇∗     𝑓𝑜𝑟 𝑧 ≤ 𝑧∗                        (5-36) 

 For calculating the consumed power by servers operating under DVFS strategy, the 

following equation is used: 

𝑃𝑆 = 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ∗ ∑ ∑ 𝑥 ∗ 𝑝(𝑥, 𝑧)

𝑠

𝑧=𝑧∗+1

𝑛

𝑥=1

+ 𝑃𝐷𝑉𝐹𝑆 ∗ ∑ ∑ 𝑥 ∗ 𝑝(𝑥, 𝑧)

𝑧∗

𝑧=0

𝑛

𝑥=1

 

 (5-37) 

The first part of the equation calculates the power consumed by servers operating at full 

speed when buffer size is above the threshold by multiplying the average number of servers 

operating at full power by the power consumption of a server operating at full speed 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔. 

The second part of Equation 5-37 calculates the reduced power consumed by servers with 

reduced service rates when buffer capacity is less than or equal to the defined buffering 

threshold for DVFS, where 𝑃𝐷𝑉𝐹𝑆 varies depending on the P-state at which a server operates 

and 𝜇∗ varies accordingly: 

     𝜇∗ = 𝑃𝐷𝑉𝐹𝑆 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔⁄             (5-38)
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 Figures 5-16, 5-17and 5-18 shows the performance of a DC operating under 

hystereses model while implementing various P-states a server can enter by reducing its 

operational frequency to reduce its power consumption. P-states used in these test cases are 

adopted from [5] where P1 is the state with highest frequency and performance and P5 is the 

state with lowest frequency and lowest performance. Figure 5-17 shows mean delays of 

buffered arrivals for a DC operating in CSB mode with parameters 𝑛 = 100, 𝑠 = 200, 𝑤 =

2, 𝛼 = 1 and 𝑧∗ = 5 where servers are only allowed to reduce their operational frequency 

when the queue size is lower than or equal to 5 buffered arrivals. As this buffering threshold 

is only reached at low load values, it results in a delay spike as shown in Figure 5-17 which 

increases as frequency decreases. This increase in delay is caused by the reduction in the 

operational frequency of the server which elongates the time it requires to finish servicing an 

arrival, thus increasing service time and mean waiting time of arrivals. Reduced service rates 

result also in an increased buffer size which triggers more servers to be activated while 

hystereses thresholds are reached. The increased activation rate of servers around load 

regions where queue size is equal to z* illustrated by Figure 5-18 causes more servers to be 

brought into service than the number required to serve the current load value. As the load 

value increases with a corresponding increase in buffer size, the increased number of 

activated servers exit P states and increase their service rates to accommodate the increasing 

load, which is reflected in Figure 5-17 by a rapid decrease in the mean delay of delayed 

arrivals as the service rate of the DC rapidly increases. Figure 5-17 also shows that the more 

frequency is reduced, the more average delay increases when servers operate at P states 

causing system buffer to be filled faster thus triggering more servers for activation and 

increasing server activation rate.  

 

Figure 5-17: Mean Waiting Time of Delayed Frames for Hystereses Model under different P-

States 
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Figure 5-18: Server Activation Rate for Hystereses Model with DVFS under different P-

States 

            

 

Figure 5-19: Power Saving Efficiency of Hystereses Model under different P-States 
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 Despite the increase in mean delay noted in Figure 5-17, the corresponding power 

saving efficiency due to dynamic frequency scaling is minimal. Figure 5-19 shows the 

efficiency of hystereses algorithm with DVFS at saving power for different P-states, where 

graph lines overlap on the figure due to the minimal differences in efficiency. This is 

explained as follows: despite the expectation that the amount of power consumption should 

be reduced by reducing the operational frequency of servers, this reduction is power 

consumption by active servers is compensated by more servers triggered for activation and 

becoming active due to the increased service time, mean delay and accordingly buffer size 

which triggers more servers to be activated thus consuming more power. This hypothesis is 

supported by the shifted peak of server activation rates in Figure 5-18 compared to a 

hystereses system without DVFS in Figure 5-7.  

 Another parameter of interest is when to put servers in the DC into P-states. Figures 

5-20 and 5-21 showcase results of a DC whose servers operate at P3 state when 𝑧∗ reach 

different queuing thresholds 𝑧∗ = 5, 50, 100, 150. Despite power saving efficiency is not 

increased due to the increase in number of activated servers compensating the energy saving 

by reduced operational frequency as Figure 5-20 shows, the mean delay of delayed requests 

is highly affected by increasing 𝑧∗. Figure 5-20 illustrates that as 𝑧∗ increases delay rapidly 

increases due to the reduction in service rates over longer load values which elongates 

durations spent by arrivals in the DC’s buffer.  This increased mean delay value is maintained 

over longer load ranges as servers keep operating in P-states for longer times until buffering 

threshold 𝑧∗ is reached.  

 
Figure 5-20: Mean Waiting Time of Buffered Frames for Hystereses Model under DVFS 

with different values for Parameter z* 
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Figure 5-21: Power Saving Efficiency of Hystereses Model under DVFS with different values 

for Parameter z* 
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Chapter 6  Load Balancing Algorithms between Cloud 

Data Centers 

 

 This chapter introduces two algorithms for the purpose of balancing the load 

dynamically among data centers in the cloud to maintain an efficient performance during 

peak-load periods. As previously explained in Chapter 3, load balancing between cloud DCs 

is required in order to avoid in-efficient load distribution where some DCs suffer an overload 

that can result in performance degradation and violation of its customers’ SLAs while other 

DCs are under-utilized. Dynamic Load balancing also helps in providing better utilization of 

resources as well as maintaining prescribed SLAs for customers. 

 The novelty of the algorithms proposed in this thesis results from the fact that they are 

using decentralized, dynamic algorithms that perform load balancing decisions at the instant 

of each request’s arrival. As concluded from the discussion provided in Chapter 3 for existing 

load balancing techniques in literature most algorithms had drawbacks of being static, 

centralized, having long processing times or result in reduced resources’ utilization and long 

average response times for requests. The two proposed algorithms avoid mostly all of these 

issues by having the following properties: 

 Algorithms operate separately at each DC avoiding the need for any centralized nodes 

that may cause bottlenecks or single points of failure.  

 All load balancing decisions are taken considering the current state of the local DC as 

well as foreign DCs to which requests could be migrated to. Future states of the DCs 

after requests arrive to them are also considered to make sure that requests are 

balanced optimally between DCs without causing overload at any of them. 

 Unlike the common convention of load balancing algorithms to balance the load 

evenly between DCs, the proposed algorithms do not encourage migrations between 

DCs unless needed for providing better service for users. The two algorithms compare 

between the approach of balancing the load only at overload situations and thus, 

keeping the un-balanced load situation as long as performance is not degraded, and 

balancing the load at low and high load regions for achieving lowest average waiting 

time possible. 

 Maintaining service level agreements of requests in terms of average response times is 

the main criteria for the load balancing process. If at the instance of each arrival a 

request cannot be served at its own DC according to prescribed SLAs, it will be 

migrated to another DC offering better response time. 

 Algorithms account for overheads resulting from migrating requests between DCs, 

such as transmission delays due to geographical distances between DCs which must 

be taken into account to determine whether migration would be beneficial or not, as 

well as for the overhead required for communicating the actual load situations at 

different DCs. 
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 This chapter models the load balancing process between two DCs by two different 

algorithms: Local Server System First (LSSF) and Shortest Response Time First (SRTF), 

each defining a preference for where to schedule a request at its arrival instant. For each 

algorithm, the first section models the system using a two-dimensional Markov Chain 

representing the states of the two DCs, and illustrating all the possible scenarios that could 

occur to a DC, from accepting a request, migrating a request, or declining to serve it. 

Theoretical analysis for solving the Markov Chain represented by the state transition diagram 

of the model using a simple recursive solution is explained along with computations of 

significant performance metrics for evaluating the system. Section two in each algorithm 

explains a simulation model of the algorithm using OMNeT++, where the algorithm is 

simulated for two DCs to verify analytical solution under Markovian assumptions, and is then 

extended to more than two DCs and general interarrival and service distributions. In the third 

section each algorithm is implemented on the test bed described in Chapter 4 for actual 

testing of the algorithm using real traffic requests. 

 

6.1 Algorithm 1: Local Server System First (LSSF) 

Local Server System First algorithm is based on the idea of maintaining unbalanced 

load among cloud DCs as long as required to meet SLAs. The algorithm balances the load by 

migrating arriving requests from highly loaded DCs to lightly loaded ones in case of overload 

situations only if the user SLAs’ cannot be maintained at the arriving request’s local DC. At 

low and average load situations, an arriving request would always be directed to its local 

server system first, only until the local server system is totally occupied at which case the 

algorithm is triggered. If an arrival doesn’t find a place to occupy at its local DC, foreign DCs 

are checked if they can accommodate this arrival; if a match is found while considering 

migration overhead to this DC then the arrival will be migrated and served, otherwise the 

arrival will be lost. 

 

6.1.1 Model Definition 

  For modeling the Local Server System First (LSSF) load balancing algorithm DCs 

are abstracted as multi-server queuing models, as explained previously in Chapter 5. The 

most basic case of the algorithm is illustrated in Figure 6-1 in the form of two DCs with 

mutual overflow of requests between them. Each DC is assumed to be aware of its own 

current state along with current state of the foreign DC. This could be implemented by having 

the two DCs exchange their current states via periodic update messages, or through a central 

controller to which current states are sent then it broadcasts them back to all nodes. For ease 

of analysis, the DCs studied in the basic case illustrated in this section are assumed to be 

homogeneous where each DC has the same number of homogeneous servers having equal 

service rates, and queues of all DCs operate according to FIFO queuing discipline. 

Parameters for the model in the Figure 6-1 are explained in the following Table 6-1 for 

𝐷𝐶𝑖, 𝑖 = 1,2. 
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Figure 6-1: System Model for two Data Centers under LSSF Algorithm 

 

Table 6-1: Definition of Model Parameters 

𝑛𝑖 Number of homogeneous servers in each 𝐷𝐶𝑖 

𝜇𝑖 Service rate of each one of the homogeneous servers in 𝐷𝐶𝑖 

𝑠𝑖 Buffer size at each 𝐷𝐶𝑖 where buffer sizes are dimensioned such that 

arrivals’ SLA is maintained even for the last arrival in the buffer in terms of 

average response time. In this model with Markovian service times and for 

defined delay threshold 𝑡𝑊,𝑇 the mean response time for requests 𝑡𝑤𝑖  should 

never exceed the delay threshold, as explained by Equation 6-1. 

Accordingly, 𝑠𝑖 is dimensioned by the following Equation 6-2: 

𝑡𝑤𝑖 =  
𝑠𝑖

𝑛𝑖𝜇𝑖
 ≤  𝑡𝑊,𝑇    i=1,2                             (6-1) 

𝑠𝑖 ≤  𝑡𝑊,𝑇 ∗ 𝑛𝑖𝜇𝑖                                              (6-2) 

Equation 6-1 is derived from the following reasoning: the average waiting 

time for any arrival before it could start being serviced can be derived by 

dividing the number of arrivals ahead of it in the queue by the service rate by 

which these arrivals are served. When the last arrival occurs to the queue at 

position 𝑠𝑖, this arrival will have 𝑠𝑖 − 1 customers ahead of it in the queue, 

plus one customer in the server at which this arrival will be served. The 

average service rate of the system at the instance of an arrival catching the 

last place in the queue is 𝑛𝑖𝜇𝑖 as all servers are active and each is serving 
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requests at a rate of 𝜇𝑖. By dividing the number of arrivals ahead of the 

arrival occupying the last place in the queue by the DC’s total service rate its 

average waiting time can be obtained. 

𝜆𝑖 Arrival rate of requests to 𝐷𝐶𝑖 

M Refers to Markovian interarrival and service times which are negative- 

exponentially distributed                                      

𝑥𝑖 Number of customers at each 𝐷𝐶𝑖, either being served or in the queue 

𝑥𝑖
∗ Threshold for accepting any arrivals migrated from an outside DC. If the 

current system state (i.e. number of customers in the system) is less than or 

equal to 𝑥𝑖
∗ then 𝐷𝐶𝑖 will accept a migrated arrival, otherwise only local 

arrivals are accepted until reaching buffer capacity. 𝑥𝑖
∗ is dimensioned such 

that the average response time of a migrated arrival to 𝐷𝐶𝑖  added by the 

migration time 𝑡𝑀 from its overloaded 𝐷𝐶𝑗 to 𝐷𝐶𝑖 could still meet the 

average response time defined by SLA: 𝑡𝑊,𝑇, as illustrated by equation 6-3. 

𝑡𝑀 +
𝑥𝑖

∗−𝑛𝑖+1

𝑛𝑖𝜇𝑖
 ≤  𝑡𝑊,𝑇                               (6-3) 

Equation 6-3 follows the following reasoning: an arrival to 𝐷𝐶𝑖 when it is 

occupied by 𝑥𝑖
∗ customers will find  𝑥𝑖

∗ − 𝑛𝑖 customers ahead of it in the 

queue, so the arrival has to wait for these customers to become scheduled for 

service plus the residual time until the first service termination occurs.  By 

dividing the number of customers in the foreign DC by the service rate 

𝑛𝑖𝜇𝑖 at which the migrated arrival will be served, the average response time 

of the migrated arrival could be calculated. As the average response time met 

by a new arrival is constituted by cumulating service times of arrivals ahead 

of it in the system, it is determined to follow an Erlangian distribution of 

order 𝑥𝑖
∗ − 𝑛𝑖 + 1. The migration time is assumed in this context for 

simplicity to have a constant duration, which results in a shifted Erlangian 

distribution for the total average response time by 𝑡𝑀. Average response time 

added to the migration time from the overloaded 𝐷𝐶𝑗 to 𝐷𝐶𝑖 should be less 

than the average response time specified by SLA. Accordingly, 𝑥𝑖
∗ could be 

calculated using Equation 6-4: 

𝑥𝑖
∗ ≤ (𝑡𝑊,𝑇 − 𝑡𝑀) ∗ 𝑛𝑖𝜇𝑖

+  𝑛𝑖 − 1                (6-4) 

𝐶𝑖0 Logical condition for rejection of an arrival at 𝐷𝐶𝑖 

𝐶𝑖𝑗 Logical condition for migrating an arrival from 𝐷𝐶𝑖 to 𝐷𝐶𝑗 
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 The load balancing model operates according to the following strategy: At the 

instance of an arrival occurring at any 𝐷𝐶𝑖 i from its own customers, one of the following 

cases will occur according to the system state: 

 If at least one server is idle then the arrival will be immediately served at its local DC 

 If all servers are occupied and 𝑥𝑖 < 𝑠𝑖, the arrival will be buffered at its local DC 

 If the local DC of the arrival is completely occupied, then the arrival could be 

migrated to another DC where its SLA could be maintained. Thus, the local server 

system is always preferred by an arrival unless the system is totally occupied. Job 

migration between DCs has an overhead represented by migration time from one DC 

to another, indicated as 𝑡𝑀. If no available DC is suitable for the job to migrate to 

then the arrival will be dropped. 

If an arrival didn’t find a place at its own server system, then a foreign DC will decide 

whether to accept or reject the arrival based on the following conditions illustrated in Figure 

6-1 for the basic case of only two data centers:  

 𝐶12: (𝑥1 = 𝑛1 + 𝑠1) AND (𝑥2 ≤ 𝑥2
∗) 

 An arrival will be migrated from 𝐷𝐶1 to 𝐷𝐶2 iff 𝐷𝐶1  is fully occupied, and the 

number of  requests in 𝐷𝐶2 is less than or equal to the defined threshold 𝑥2
∗. 

 𝐶10: (𝑥1 = 𝑛1 + 𝑠1) AND (𝑥2 > 𝑥2
∗) 

 An arrival will be dropped from 𝐷𝐶1  iff 𝐷𝐶1  is fully occupied, and the number of 

 requests in 𝐷𝐶2 is greater than the defined threshold 𝑥2
∗. 

 𝐶21: (𝑥2 = 𝑛2 + 𝑠2) AND (𝑥1 ≤ 𝑥1
∗) 

An arrival will be migrated from 𝐷𝐶2 to 𝐷𝐶1 iff 𝐷𝐶2 is fully occupied, and the 

number of requests in 𝐷𝐶1 is less than or equal to the defined threshold 𝑥1
∗. 

 𝐶20: (𝑥2 = 𝑛2 + 𝑠2) AND (𝑥1 > 𝑥1
∗) 

An arrival will be dropped from 𝐷𝐶2 iff DC2 is fully occupied, and the number of 

requests in 𝐷𝐶1 is greater than the defined threshold 𝑥1
∗. 

 After the handling of arrivals is decided upon (admitted to the 

queue/migrated/rejected), accepted requests are served in a First-In First-Out (FIFO) order. 

By implementing this algorithm SLAs of requests are guaranteed to be maintained in terms of 

average response times; losses are reduced since arrivals that arrive at a fully occupied DC 

have an opportunity to be migrated and served elsewhere, and finally, DCs are protected from 

reaching overload states by rejecting migrating requests upon a defined threshold so that local 

arrivals have priority to be served at their local DCs.  

6.1.2  Model Analysis 

 In order to analyze the proposed LSSF algorithm and understanding its behavior, the 

basic case of balancing the load among two DCs is first studied analytically using Markov 

Chains. A state transition diagram representing system’s states is introduced and explained 

followed by an algorithm for solving the steady state probability for each system state which 

are then used to calculate significant performance metrics to evaluate the algorithm such as 

loss, delay and migration probabilities as well as mean waiting times. Following sub-sections 
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introduce a simulation model for the algorithm to verify the analytical model and extend it 

beyond Markovian assumptions for interarrival and service times, as well as testing the 

algorithm between two servers in a DC using the test bed explained earlier in Chapter 4. 

6.1.2.1 Mathematical Analysis 

 For evaluating the model’s performance, this section shows a representation of the 

model using two-dimensional Markov Chains. Figure 6-2 shows the state transition diagram 

for two data centers while applying the previously explained LSSF load balancing algorithm 

between them. Each state in the state transition diagram is represented by (𝑥1 , 𝑥2), where 𝑥1 

represents the number of requests in DC1, and 𝑥2 represents the number of requests in DC2, 

either being served or queued while waiting for service. Transitions between states are 

indicated by directed arrows from one state to another labeled by the transition rate that 

caused this transition. Migration thresholds Xj* and Xi* for migration from 𝐷𝐶𝑖 to 𝐷𝐶𝑗 and 

vice versa, respectively are indicated in the diagram by dashed lines. 

Generally, when the system is at any general state (𝑥1 , 𝑥2), expected events are either an 

arrival event or a departure event at either one of the DCs. The system state changes 

according to each of these events as explained below for DC1 and the same applies at DC2: 

1. In case of an arrival event of a local customer occurring at DC1 at rate 𝜆1: 

If 𝑥1  <  𝑛1 then the arrival will be served immediately by one of the available servers 

at the DC. If 𝑛1 ≤ 𝑥1  <  𝑛1 + 𝑠1 the arrival will be accepted and queued as all 

servers are busy and the queue is not yet fully occupied. In both before-mentioned 

cases the state of the system will change to (𝑥1 + 1, 𝑥2). If 𝑥1 =  𝑛1 + 𝑠1 then the 

arrival cannot be accepted at its local DC, so other DCs are checked for availability to 

accommodate this arrival so that it is not lost. Availability is determined by migration 

thresholds of foreign DCs, so if the number of customers at one of the DCs is lower 

than its defined migration threshold, the arrival is migrated to it and the system state 

changes to (𝑥1 , 𝑥2+1). If no suitable DC could be found, the arrival would be lost 

without a change in the system change. 

2. In case a server completes serving an arrival at DC1 : 

If 𝑥1  ≤  𝑛1 then the arrival served at a rate of 𝑥1𝜇1 will leave the system and the 

server would be switched-off as the queue size is zero. If 𝑛1 < 𝑥1 ≤  𝑛1 + 𝑠1 the 

served arrival at a rate of 𝑛1𝜇1  will leave the system and the server would be 

occupied by a request from the head of the queue. In both cases the system state to 

change to (𝑥1 − 1, 𝑥2). 
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Figure 6-2: State Transition Diagram for two DCs operating under LSSF Algorithm 

 

 For solving the steady state probabilities of the Markovian queuing model explained 

above a system of linear balance equations has to be solved according to the method of 

Markov Chain analysis (see solution for the service strategy SRTF). In this section an 

approximate solution based on product-form state distribution for non-border states of the 

state transition diagram is presented following a step-wise algorithm, as explained below: 

 Assume the probability of state (0,0) 

𝑝(0,0) = 1                                                          (6-5) 
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Figure 6-3: Solution Sub-Spaces for LSSF Algorithm 

 Consider sub-space 1 shown in Figure 6-3: 

Sub-space 1 includes all states where 𝑥1 < 𝑛1 and 𝑥2 < 𝑛2. For these specific states, 

no overflow occurs between the two DCs as not all servers are fully occupied, so any 

new local arrival to any of the two DCs will be immediately served by its own DC 

without any need to be migrated to the foreign DC. Accordingly, each state in this 

sub-space 1 can be solved using the product-form solution in equation 6-6. 

 

𝑝(𝑥1, 𝑥2) = 𝑝(0,0) ∗
𝜆1

𝑥1

𝜇1
𝑥1 ∗ 𝑥1!

∗
𝜆2

𝑥2

𝜇2
𝑥2 ∗ 𝑥2!

 

for 𝑥1 < 𝑛1 and 𝑥2 < 𝑛2                                      

(6-6) 
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 Consider sub-space 2 shown in Figure 6.3: 

States in sub-space 2 are the states where an arrival to a DC is queued at its own DC. 

No mutual overflows occur at these states because local DCs are not completely 

occupied yet, so the two DCs could be treated as independent. These states could be 

solved also using product form solution illustrated in equation 6-7. 

 

𝑝(𝑥1, 𝑥2) = 𝑝(0,0) ∗
𝜆1

𝑛1

𝜇1
𝑛1 ∗ 𝑛1!

∗
𝜆2

𝑛2

𝜇2
𝑛2 ∗ 𝑛2!

∗ (
𝜆1

𝜇1𝑛1
)

𝑥1−𝑛1

∗ (
𝜆2

𝜇2𝑛2
)

𝑥2−𝑛2

 

 

for 𝑛1 ≤ 𝑥1 < 𝑛1 + 𝑠1 − 1 and 𝑛2 ≤ 𝑥2 < 𝑛2 + 𝑠2 − 1                              

(6-7) 

 

Subspaces 1 and 2 both rely on product-form solution based on independence of DCs, 

which is a valid approximation at small load values where the mass of probability lies 

in these two subspaces. Whereas for heavy load situations and large values of 𝜆1 

and 𝜆2, the mass of the probability will be shifted to the border states, since DCs tend 

to be completely occupied and mutual overflows occur between them which makes 

the product-form solution invalid.  

 

 Consider sub-space 3 shown in Figure 6-3 indicating all border states: 

As product form solution cannot be applied to solve these states due to mutual 

overflows between DCs, each state has to be solved separately using local balance 

equation between each state and its neighbor states. At this point in the algorithm, all 

inner states from sub-spaces 1 and 2 have been calculated relative to state (0,0) using 

the previously explained product-form solution. Following local balance equilibrium 

rules, each of the border states is in statistical equilibrium with its lower neighbor 

states, so all border states can be calculated relative to inner states according to the 

following equations: 

 

For lower border states (0, 𝑛2 + 𝑠2), (1, 𝑛2 + 𝑠2), (2, 𝑛2 + 𝑠2),…. (𝑛1 + 𝑠1 − 1,𝑛2 +

       𝑠2): 

 

 State (0, 𝑛2 + 𝑠2) can be calculated according to Equation 6-8: 

 

   𝑝(0, 𝑛2 + 𝑠2) =
𝜆2

𝑛2𝜇2
𝑝(0, 𝑛2 + 𝑠2 − 1)                

(6-8) 

 States (1, 𝑛2 + 𝑠2), (2, 𝑛2 + 𝑠2),… (𝑛1 − 1, 𝑛2 + 𝑠2) are calculated using 

Equation 6-9: 

 

𝑝(𝑥1, 𝑛2 + 𝑠2) =
1

𝑥1𝜇1 + 𝑛2𝜇2
((𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑥1, 𝑛2 + 𝑠2 − 1)) 

(6-9) 
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 States (𝑛1, 𝑛2 + 𝑠2), (𝑛1 + 1, 𝑛2 + 𝑠2),… (𝑥1
∗, 𝑛2 + 𝑠2) can be calculated 

using Equation 6-10: 

 

𝑝(𝑥1, 𝑛2 + 𝑠2)

=
1

𝑛1𝜇1 + 𝑛2𝜇2
((𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑥1, 𝑛2 + 𝑠2 − 1)) 

(6-10) 

 

 States (𝑥1
∗ + 1, 𝑛2 + 𝑠2), (𝑥1

∗ + 2, 𝑛2 + 𝑠2),… (𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2) can be 

calculated using Equation 6-11: 

 

𝑝(𝑥1, 𝑛2 + 𝑠2) =
1

𝑛1𝜇1 + 𝑛2𝜇2
(𝜆1𝑝(𝑥1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑥1, 𝑛2 + 𝑠2 − 1)) 

(6-11) 

 

For right border states (𝑛1 + 𝑠1, 0), (𝑛1 + 𝑠1, 1), (𝑛1 + 𝑠1, 2)… (𝑛1 + 𝑠1, 𝑛2 + 𝑠2 −

1): 

 State (𝑛1 + 𝑠1, 0) can be obtained using Equation 6-12: 

 

   𝑝(𝑛1 + 𝑠1, 0) =
𝜆1

𝑛1𝜇1
𝑝(𝑛1 + 𝑠1 − 1,0)               

(6-12) 

 States (𝑛1 + 𝑠1, 1), (𝑛1 + 𝑠1, 2), … (𝑛1 + 𝑠1, 𝑛2 − 1) can be calculated using 

Equation 6-13: 

 

𝑝(𝑛1 + 𝑠1, 𝑥2)

=  
1

𝑛1𝜇1 + 𝑥2𝜇2

(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) + (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2

− 1)) 

(6-13) 

 

 

 States (𝑛1 + 𝑠1, 𝑛2), (𝑛1 + 𝑠1, 𝑛2 + 1) … (𝑛1 + 𝑠1, 𝑥2
∗) can be calculated using 

Equation 6-14: 

 

𝑝(𝑛1 + 𝑠1, 𝑥2)

=  
1

𝑛1𝜇1 + 𝑛2𝜇2

(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) + (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2

− 1)) 

(6-14) 
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 States (𝑛1 + 𝑠1, 𝑥2
∗ + 1), (𝑛1 + 𝑠1, 𝑥2

∗ + 2) … (𝑛1 + 𝑠1, 𝑛2 + 𝑠2 − 1) can be 

calculated using Equation 6-15: 

 

𝑝(𝑛1 + 𝑠1, 𝑥2) =  
1

𝑛1𝜇1 + 𝑛2𝜇2

(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) + 𝜆2𝑝(𝑛1 + 𝑠1, 𝑥2 − 1)) 

(6-15) 

 

 After calculating lower and right border states; bottom right corner state 

(𝑛1 + 𝑠1, 𝑛2 + 𝑠2) can be calculated using Equation 6-16: 

 

𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2)

=
1

𝑛1𝜇1 + 𝑛2𝜇2
(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2

− 1)) 

          (6-16) 

 

 After all state probabilities have been calculated relative to the assumption made by 

Equation 6-5, the assumed state probability 𝑝(0,0) can be calculated by obtaining the 

normalization factor from Equation 6-17: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑝(0,0) = 
1

∑ ∑ 𝑝(𝑥1,𝑥2)
𝑛2+𝑠2
𝑥2=0

𝑛1+𝑠1
𝑥1=0

     (6-17) 

Using Equation 6-17, exact values of remaining state probabilities are calculated by 

multiplying obtained values by normalization factor. 

 Having all state probabilities of a system of two DCs with mutual overflow 

calculated, the most significant performance metrics that allow studying the behavior of 𝐷𝐶𝑖, 

𝑖 = 1,2 are derived from the following equations: 

 Carried traffic by each 𝐷𝐶𝑖 𝑌𝑖 indicating the average server occupancy at each 𝐷𝐶𝑖 

 

𝑌1 = ∑ ∑ 𝑥1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

+ ∑ ∑ 𝑛1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1

  

          (6-18) 

𝑌2 = ∑ ∑ 𝑥2𝑝(𝑥1, 𝑥2)

𝑛2−1

𝑥2=0

𝑛1+𝑠1

𝑥1=0

+ ∑ ∑ 𝑛2𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2

𝑛1+𝑠1

𝑥1=0

  

          (6-19) 

where the average number of active servers is calculated by adding up the 

multiplication of the probability of each state by the number of active servers during 

this state. 
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 Probability of a request being lost due to overload 𝐵𝑖 

 

𝐵1 = ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑥2
∗+1

 

        (6-20) 

where an arrival to 𝐷𝐶1 is lost iff 𝐷𝐶1 is completely occupied, and the number of 

customers at 𝐷𝐶2 exceed the migration threshold. Thus any new arrival at these states 

cannot be accepted by both DCs and will be lost. Probability of loss at 𝐷𝐶2 follows 

the same reasoning as shown in equation 6-21. States at which losses occur at either 

DCs are shown in Figure 6-4. 

𝐵2 = ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑛1+𝑠1

𝑥1=𝑥1
∗+1

 

        (6-21) 

 Probability of a request being migrated from 𝐷𝐶𝑖 to a less loaded DC 𝑀𝑖 

 

𝑀1 = ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑥2
∗

𝑥2=0

 

        (6-22) 

𝑀2 = ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑥1
∗

𝑥1=0

 

        (6-23) 

where an arrival to a fully occupied DC can be migrated to another DC if the number of 

requests at the foreign DC doesn’t exceed its defined migration threshold. States at which 

migration between DCs occur are indicated in Figure 6-4. 

 

 Mean number of buffered arrivals 𝐿𝑖 

 

𝐿1 = ∑ ∑ (𝑥1 − 𝑛1)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1+1

 

(6-24) 

𝐿2 = ∑ ∑ (𝑥2 − 𝑛2)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2+1

𝑛1+𝑠1

𝑥1=0

 

(6-25) 

where an arrival to a DC will be buffered if all servers were busy at its arrival 

instance. 
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Figure 6-4: Sub-space indicating Loss and Migration Probabilities for DC1 and DC2 

 

 Probability that a request is immediately served upon arrival to its own DC 𝐼𝑖 

 

𝐼1 =  ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

 

(6-24) 

𝐼2 =  ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

 

(6-25) 

where immediate service only happens if a request arrives to a DC with idle severs. 

Probabilities of immediate service for DC1 and DC2 are illustrated in Figure 6-5. 
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Figure 6-5: Sub-space indicating Probability of Immediate Service for DC1 and DC2 

 

 Probability of a request being delayed upon arrival to its own DC 𝑊𝑖 

𝑊1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) − 𝐵1

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1

− ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑛2−1

𝑥2=0

 

(6-26) 

𝑊2 = ∑ ∑ 𝑝(𝑥1, 𝑥2) − 𝐵2

𝑛2+𝑠2

𝑥2=𝑛2

𝑛1+𝑠1

𝑥1=0

− ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑛1−1

𝑥1=0

 

(6-27) 

Equations 6-26 and 6-27 follow from the fact that an arrival to a DC will be buffered 

if at the instant of its arrival all servers in this DC are busy, and it either finds a place 

in the queue to be buffered, or migrated to a remote DC where it might also be 

buffered there if all servers in the remote DC are occupied. 
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 Mean waiting time of a request 𝑤𝑖 

 

𝑤1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗ (𝑥1 − 𝑛1 + 1) ∗
ℎ1

𝑛1

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1−1

𝑥1=𝑛1

 

+ ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2) ∗ [𝑡𝑀 + (𝑥2 − 𝑛2 + 1) ∗ ℎ2/𝑛2]

𝑥2
∗

𝑥2=𝑛2

 

      (6-28) 

The mean waiting time of arrivals depends whether an arrival is served at its local DC 

or migrated to a foreign one. The first part of Equation 6-28 calculates the delay an 

arrival would experience if it was served at its own DC according to Little’s Theorem 

[80], which is the service time of all arrivals ahead of it in the queue, in addition to 

one arrival in the server at which it will be served. The second part of Equation 6-28 

describes the delay of migrated arrivals, calculated as the summation of service times 

of all arrivals in the foreign queue, plus service time of one arrival at the server at 

which it will be served added to them the migration time from local to foreign DC. 

 Mean waiting time of a delayed request 𝑡𝑤𝑖 

 

𝑡𝑤𝑖 = 𝑤1 𝑊1⁄                                                                    

(6-29) 

where the mean waiting time of delayed arrivals is calculated by dividing the mean 

waiting time of all arrivals by the waiting probability. 

Results for all above explained performance metrics will be shown in the following Section 

6.1.3 and verified against results from simulations and test bed experimentation. 

6.1.2.2  Simulation Model 

Besides the analytical solution explained in the previous sub-section for 

mathematically analyzing the LSSF load balancing algorithm a simulation model has also 

been implemented using OMNeT++. Figure 6-6 shows the NED file for the simulation model 

which shows two DCs with mutual overflow of requests between them operating under the 

LSSF strategy. Each DC is composed of simple and compound modules: source, passive 

queue, servers and a merger for collecting served requests before being disposed at the 

combined sink module. Each DC has a separate source module for generating arrival requests 

according to each DC’s type of requests, load value and interarrival time distribution. When 

an arriving request is generated at a source module it has to decide whether the request will 

be served at its own DC thus exiting via the gate connecting to its own passive queue; or if 

the local passive queue is full then the request could be migrated to the foreign DC and exits 

the source module via the output gate connected to foreign passive queue if its size is below 

the defined migration threshold level. If the local passive queue was full and the foreign 
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passive queue length exceeds the defined threshold then the arrival is considered to be lost 

and discarded at the source module. Requests are generated at the two source modules at 

arrival instances following a Poisson distribution by generating negative-exponentially 

distributed inter-arrival times between requests.  

 

Figure 6-6: Simulation Model for testing LSSF Algorithm between two DCs 

The passive queue module forwards arriving requests to idle servers in a FIFO order 

where idle servers are selected in a round-robin strategy. When a request is forwarded to the 

passive queue it has to check whether any of the DC’s servers are idle so that the request can 

immediately forwarded to the idle server to start being serviced; or if all servers are busy then 

the arriving request will be queued. At each server requests’ service times are generated 

according to a negative-exponential distribution; where after service times are elapsed 

requests are forwarded to the merge module to exit the DC by forwarding them to the sink 

module. Figure 6-7 shows a flow chart explaining the operation of the LSSF simulation 

program. 
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Figure 6-7 Flow Chart for OMNeT ++ Simulation Model for LSSF Load Balancing 

Algorithm 

  

 Significant performance metrics of DCs operating under LSSF strategy such as loss, 

migration and delay probabilities as well as mean delay of delayed requests are calculated 

according to the equations below for each DC: 

 Loss Probability 𝐵 

 

𝐵 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑠𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 

    (6-30) 

 Migration Probability 𝑀 

 

𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 

(6-31) 
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 Delay Probability 𝑊 

 

𝑊 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 

(6-32) 
where  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

=  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑙 𝐷𝐶

+ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑞𝑢𝑒𝑢𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 

 

 Mean Delay of Delayed Frames 𝐸[𝑇𝑊 | 𝑇𝑊 > 0] 

𝐸[𝑇𝑊 | 𝑇𝑊 > 0] =  
∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 

(6-33) 

where  

∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

=  ∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑙 𝐷𝐶     

+ ∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠  𝑖𝑛 𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝐷𝐶 

  

Due to the increased flexibility of the simulation at testing different parameters of the 

algorithm that cannot be altered in the analytical solution, various distributions for inter-

arrival, service and activation time have been tested to eliminate the dependability of the 

algorithm on Markovian assumptions. All simulation results presented in the upcoming 

results section are based upon data gathered from 20 simulation runs and presented with a 

95% confidence interval. 

6.1.2.3  Experimental Setup 

  

For testing its effectiveness in real-time environments, LSSF algorithm was tested 

using the cloud DC test-bed explained previously in sub-Section 4.3. Each of the physical 

servers running ESXi hypervisor emulates a DC with 10 servers in the proposed algorithm, 

where each one of the physical servers can host and serve up to 10 VMs simultaneously. 

Configuration scripts specifying the algorithm steps were written and tested first using 

Windows’ PowerShell to troubleshoot any errors during script execution; afterwards scripts 

were imported to PowerCLI for automatic deployment on servers. Scripts were configured to 

run for the duration required to create and serve 100,000 requests; attempts for producing 

results for higher number of requests required more memory space and time than possible and 

resulted in running errors. Scripts were supplied with data arrays for interarrival and service 

times for each arriving request, which were generated by Matlab according to specified 
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random number distributions. During scripts’ execution data is gathered in order to evaluate 

model’s performance, such as number of delayed requests and delay time of each, number of 

migrated arriving requests and number of lost arriving requests in order to calculate the 

performance metrics in the same manner as specified in the previous simulation section. As 

the placement of the VM whether to be hosted at its local DC or migrated to a foreign DC is 

performed upon its arrival, vSphere and vMotion allow for deploying the virtual machine on 

its local server system or migrate it to the other server, respectively. Scripts are set to create 

and deploy 100,000 VM requests where throughout the experiments statistics are collected 

such as number of delayed/ migrated VMs and average delay of a VM request. 

   

6.1.3 Results 

 This section shows numerical results for the most significant performance metrics by 

which the system performance can be depicted and service level agreements of users are 

determined; such as average delays, loss, migration and delay probabilities. The algorithm is 

tested between two data centers under different load values to indicate how the algorithm 

performs at low, average and high load situations. Figures below show the results for each of 

the defined performance metrics calculated at a DC implementing the LSSF algorithm vs. DC 

without load balancing to report the enhancement done by algorithm. Results are also shown 

for cases with/without migration overhead where queue thresholds are adjusted accordingly 

to maintain users’ SLAs. For the test cases shown below both DCs are allocated the same 

parameters in terms of number of homogeneous servers, queue size and load value per server, 

thus the values for performance metrics calculated at any of them and presented below will 

be equivalent. 

Test cases in this section show results for two identical DCs each having 𝑛 = 10 

homogeneous servers where each server has an average service rate 𝜇 = 1 arrival /second, 

and all servers in the DC have a common buffer place of size 𝑠 = 30. System’s load value is 

varied between 0 till 1.2 per server to show how the algorithm will affect the system 

performance at low-load / overload situations. Delay limit defined by the users’ SLAs is set 

to 𝑡𝑊𝑇 = 3, which indicates that a user served at its own DC will always experience a delay 

that is at most equal to that defined by SLA even if it occupied the last available buffer space 

upon its arrival. In case the arrival had to migrate to a foreign DC, delay limit also defines 

that the waiting time at the foreign DC along with the migration overhead to it should not 

exceed the defined SLA value. The two test cases illustrated in this section show cases for 

different values of migration time. First is 𝑡𝑀 =  0 indicating cases where migration time is 

small or negligible, typically in cases of migration between server groups within the same DC 

or between nearby DCs. Second case with  𝑡𝑀 =  2 indicating relatively long migration times 

where transmission time between DCs require more time relative to the average service time 

of requests.  

Case 1: Two identical DCs with 𝑛𝑖 = 10, 𝑠𝑖 = 30, 𝑡𝑀 =  0 and defined threshold migration 

𝑥𝑖
∗=39.  

Case 2: Two identical DCs with 𝑛𝑖 = 10, 𝑠𝑖 = 30, 𝑡𝑀 =  2 and defined threshold migration 

𝑥𝑖
∗=19. 
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Figure 6-8 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF 

Algorithm 

 Test case 1 of the LSSF algorithm sets the migration threshold at each DC to 𝑥𝑖
∗=39, 

which allows the DC to accept foreign arrivals until only one buffer place is empty, this 

remaining place can only be occupied by a local arrival so any foreign arrivals will be lost. 

Whereas case 2 sets the migration threshold to 𝑥𝑖
∗=19, allowing less buffer places at the DC 

to be occupied by foreign arrivals to compensate the delay due to migration overhead. The 

selection of parameters for the test cases is reasoned by the SLAs delay limit. For case 1, the 

threshold is high to allow for more migrations since there is no migration overhead, and the 

only delay an arrival experiences is due to buffering at the foreign DC. While for case 2, the 

threshold is reduced so that the delay of a foreign arrival buffered at the DC along with the 

migration overhead will still fulfill the defined SLA. Figure 6-8 shows loss, migration and 

waiting probabilities for any of the DCs versus system load, where the results for both DCs 

are identical as they have identical system parameters. Results are shown for the two cases 

with/without migration overhead and for a DC without the load balancing algorithm.  

As shown in Figure 6-8 the waiting probability of an arrival is not affected for a DC 

with/without LSSF algorithm, neither affected by the migration overhead, as the waiting 

probability is related to the system capacity which is not affected by the algorithm. However, 

the algorithm reduces the loss probability B due to the fact that an arrival that doesn’t find a 

place at its local DC can migrate to another DC if load balancing is implemented, whereas 

without load balancing it would have been lost. Loss probability is lower for the case of 
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negligible migration overhead as the threshold is higher and more arrivals can be accepted. 

For the case of non-negligible migration overhead, the algorithm will still perform better for 

the cases of high load (A/n=0.9), but as the load increases to overload situations and buffers 

get filled up, threshold is easily reached thus loss probability increases to be similar to a DC 

without load balancing algorithm. Finally, Figure 6-8 shows that the migration probability for 

both test cases has the same value at average load situations as long as migration threshold is 

not reached. Once the DC experiences an overload situation and threshold is reached, case 2 

with lower threshold will have higher number of dropped arrivals and thus migration 

probability drops.  

Figure 6-9 shows the average delay calculated for delayed arrivals only. Average 

delays are kept bounded below the defined SLA by choice of system parameters. The figure 

shows that the application of LSSF load balancing algorithm does not affect the delay of 

those arrivals who wait. Slight variations only occurs at overload situations because for test 

case 2 of the algorithm, less migrations occur and thus more arrivals are lost, which 

accordingly reduces the average response time. Compared to a DC without load balancing the 

mean delay value depends on migration overhead; where for zero overhead the delay is 

slightly larger at overload situations than without load balancing as more arrivals are 

migrated and delayed at foreign DCs. As migration overhead increases mean delay value is 

reduced to match that of a system without load balancing. 

 

Figure 6-9 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm 
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 Besides performance metrics obtained from analytical solution provided for the LSSF 

algorithm, the model was also implemented using an OMNeT++ simulation model between 

two DCs and on a the real DC test-bed for proving its effectiveness. Figures 6-10 and 6-11 

show results for significant performance metrics obtained from the simulation and test-bed 

compared to those from analytical results. Figure 6-10 shows loss, delay and migration 

probabilities for two DCs operating by LSSF algorithm with the following parameters at all 

platforms: 𝑛 = 10, 𝑠 = 30 and 𝑡𝑚 = 0 with 95% confidence intervals for simulation and test-

bed results. In figure 6-10 results from different platforms have only minor differences as 

shown in the figure, where analytical solution always provides an upper bound for 

probabilities. Minor differences in calculated metrics result from factors in simulation and 

test-bed that cannot be accounted-for in the analytical solution; such as when an arrival is 

migrated to a foreign data center where the status of the foreign data center is very likely to 

change during the migration time. For example, a migrated arrival that is supposed to migrate 

to a foreign DC with a small queue size could find the queue empty during the elapsed 

migration time and thus gets immediately served. Another difference between analytical 

solution and other platforms is its accuracy in calculating very small numbers at all load 

values. This effect is shown in Figure 6-11 where mean delay of delayed frames has a zero 

value at low delays values despite having a non-zero value reported by the analytical 

solution. This effect occurs due to the fact that the simulation and test-bed experiments run 

for a defined number of users, and for obtaining minor effects such as delays a very low loads 

the number of observed arrivals need to be extremely high for the results to match those 

reported analytically. These factors beside the different random number generators used for 

generating inter-arrival and service times tend to cause a variation between results obtained 

from different platforms.  

Another test-case obtained through test-bed experimentation is by testing the LSSF 

algorithm on four DCs instead of only two to prove its scalability across any number of DCs. 

Parameters for the test case included 4 servers each can handle 10 VMs simultaneously to 

match a DC with 10 servers, 30 buffer places and migration threshold of 29 queued arrivals 

without overhead. Figures 6-12 and 6-13 show the calculated performance probabilities and 

average delays where results show minor differences between the case of only two DCs. 

These minor differences in probabilities show lower loss probability and higher migration 

probability for the case with 4 DCs. This is explained by the economy of scale effect; as the 

number of DCs increase the probability of an arrival that would have been lost at its local DC 

to be accepted at another foreign DC increases, thus decreasing number of lost arriving 

requests and increasing number of migrated ones. All previously reported results shows that 

LSSF algorithm is effective at reducing loss probabilities of arrivals while maintaining SLAs 

by cooperation between DCs to server arrivals that cannot be served at their own DCs, and is 

scalable to any number of DCs 
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Figure 6-10 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF 

Algorithm without overhead implemented on various Platforms 

 

Figure 6-11 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm 

without overhead implemented on various Platforms 
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Figure 6-12 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF 

Algorithm without overhead implemented on DC Test-bed 

 

Figure 6-13 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm 

without overhead implemented on DC Test-bed 
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6.2 Algorithm 2: Shortest Response Time First (SRTF) 

 Shortest Response Time First algorithm ‘SRTF’ is a generalized upgrade of one of the 

already existing algorithms in literature explained in Chapter 3, the Join Shortest Queue 

algorithm. Upon a request’s arrival, Join Shortest Queue ‘JSQ’ algorithm decides which DC 

the arrival will be routed based on the queue size of each DC. Arrivals are routed to the 

shortest queue assuming that this selection criterion will guarantee a shorter waiting time for 

the arrival request than if it was served at its local DC. However, this criterion does not 

account for the service rates of servers at each DC, for example; joining a longer queue at a 

DC with high service rates might guarantee shorter waiting time than joining a shorter queue 

at a DC with low service rates. Thus, JSQ algorithm will only achieve minimal delays for 

requests only in case of homogeneous DCs with servers having homogeneous service rates. 

Shortest Response Time algorithm ‘SRTF’ generalizes this special case and allows for 

maintaining SLAs of users in terms of delay by proposing a criterion for managing the load 

between heterogeneous DCs with heterogeneous service rates. SRTF estimates the average 

delay time that an arriving request will experience at each of the available DCs, then routes it 

to the DC offering the least average waiting time. This approach allows for more accurate 

load balancing decisions and guarantees lowest average waiting time for users as it accounts 

for users’ SLAs while considering the current state of each DC. As the number of DCs and 

their servers increase along with their buffering capacity, economy-of-scale effect results in 

better performance for SRTF algorithm in terms of shorter average delays and lower loss 

probabilities. 

6.2.1 Model Definition 

 This section explains the SRTF algorithm by applying it on two DCs modeled as two 

queuing systems with mutual overflow of requests between them. Similar to the previously 

explained LSSF algorithm in Section 6.1.1, the basic model consists of two identical DCs, 

each having 𝑛𝑖 homogeneous servers and equal buffer space of length 𝑠𝑖. Each server is 

assumed to have a service rate of 𝜇𝑖, and arrivals to each DC occur with an average rate of 𝜆𝑖. 

The basic model is illustrated in Figure 6-10 using the same notations explained previously in 

Section 6.1.1 and will not be explained again to avoid repetition. As the figure shows, arrivals 

to any of the DC arrive to a gateway node first before being routed to the DC where they will 

be served as chosen by the algorithm. Assignment strategy at this gateway node is done 

according to the following rules: 

 If an arrival finds an empty server at its local DC, it will be routed to it for being 

served immediately 

 If no idle servers are available at the local DC, the arrival will be routed to the foreign 

DC if it has any idle servers where it will also be immediately served. 

 If all servers at both DCs are busy, then the average waiting time that the arrival 

would experience if it was routed to each of the DCs is calculated using the following 

equation, for 𝑖 = 1,2, given that the queue at any of the DCs is not full : 
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𝑡𝑤𝑖 =
𝑥𝑖 − 𝑛𝑖 + 1

𝑛𝑖𝜇𝑖
 

     (6-30) 

where the expected waiting time of an arrival is the summation of service times of all 

arrivals ahead of it in the FIFO queue, plus one arrival being served at the queue at 

which it will be served at in the future. 

1. After calculating the expected waiting times at both DCs, the arrival will be routed to 

the DC offering minimal expected average waiting time according to the following 

condition in equation 6-31: 

min {𝑡𝑤1 =
𝑥1 − 𝑛1 + 1

𝑛1𝜇1
, 𝑡𝑤2 =

𝑥2 − 𝑛2 + 1

𝑛2𝜇2
} 

(6-31) 

2. If queues at both DCs are full, then the arrival will be lost. 

 

According to the strategy explained above, SRTF algorithm provides the minimal delay an 

arrival could experience as it explores the current status of all available DCs to which the 

arrival can be migrated. However, this comes with an overhead due to the decision that has to 

be taken at the instant of arrival of each request before it is routed to the most suitable DC. 

 

 

Figure 6-14  System Model for two Data Centers under SRTF Algorithm 

6.2.2 Model Analysis 

 This section provides analysis for the proposed SRTF algorithm using different 

approaches. First the state transition diagram of the Markov Chain for two DCs operating 

under the algorithm is introduced and explained followed by an approach for solving steady 

state probabilities of the system numerically using Gauss-Seidel Method for the linear 
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equations in equilibrium states. Mathematical analysis of the algorithm under Markovian 

assumption is verified in following sub-sections by OMNeT++ simulations as well as test-

bed experimentation that test the model under more general traffic conditions and extended 

system parameters. 

6.2.2.1 Mathematical Analysis 

 For evaluation of model’s performance this section shows the model of two DCs 

operating under SRTF strategy represented by a two-dimensional Markov Chain. Figure 6-15 

shows the state transition diagram indicating the states of both DCs and transitions between 

states at the instances of a request’s arrival or end of a request’s service time. Figure below 

shows the special case of two homogeneous DCs with identical number of servers 𝑛1 = 𝑛2, 

equal buffer places  𝑠1 = 𝑠2 and identical service rates for all servers 𝜇. This selection of 

parameters makes the system similar to a single DC with 2𝑛 servers and 2𝑠 buffer places in a 

FIFO queue for an approximate solution. This economy of scale advantage provided by the 

SRTF algorithm allows an arrival to experience the lowest possible average waiting time, as 

it has the advantage of twice the number of available servers and twice the buffer space. 

 In this two-dimensional Markov chain shown below events are either arrival events to 

either one of the two DCs or a departure event from one of the servers at the two DCs. 

Changes to the current general state (𝑥1, 𝑥2) occur according to the following conditions:  

1. In case of an arrival event occurs: 

1.1. If 0 ≤ 𝑥1 < 𝑛1 and 0 ≤ 𝑥2 < 𝑛2 then an arrival at a rate of 𝜆1 will be served at DC1 

changing system state into (𝑥1 + 1, 𝑥2) and an arrival at a rate of 𝜆2 will be served at 

DC2 changing system state into (𝑥1, 𝑥2 + 1). Both arrivals will be immediately 

served by idle servers at their local DC. 

1.2. If 0 ≤ 𝑥1 < 𝑛1 and 𝑥2 ≥ 𝑛2 then an arrival at a rate of 𝜆1 or 𝜆2will be routed to DC1 

where it will be served at one of the idle servers in DC1, thus system state changes to 

(𝑥1 + 1, 𝑥2) 

1.3. If 𝑥1 ≥ 𝑛1 and 0 ≤ 𝑥2 < 𝑛2 then an arrival at a rate of 𝜆1 or 𝜆2will be routed to DC2 

where it will be served at one of the idle servers in DC2, thus system state changes to 

(𝑥1, 𝑥2 + 1) 

1.4. If 𝑥1 ≥ 𝑛1 and 𝑥2 ≥ 𝑛2 then the assignment strategy for an arrival will depend on the 

current system state in terms of queue size and service rate. Figure 6-15 indicates 

transition rates to states where the arrival will be served at 𝐷𝐶1 or 𝐷𝐶2 by functions 

𝜆(𝑄1) and 𝜆(𝑄2) respectively. These functions are determined as follows: 

 

𝜆(𝑄1) = {

𝜆1 + 𝜆2      𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1  <  ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2   ⁄

𝜆1               𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1  =  ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2   ⁄  

0                 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1  >  ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2   ⁄
 

(6-32) 

𝜆(𝑄2) = {

𝜆1 + 𝜆2      𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1  >  ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2   ⁄

𝜆2               𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1  =  ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2   ⁄  

0                 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1  <  ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2   ⁄
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(6-33) 

where decisions calculated by equations 6-32 and 6-33 guarantee routing of arriving 

requests to the DC whose queue offers shortest average waiting time. If both queues 

offer equal waiting times, then an arrival would be served at its local DC to avoid 

further delays resulting from migration overhead. 

1.5. Finally, if 𝑥1 = 𝑛1 + 𝑠1 and 𝑥2 = 𝑛2 + 𝑠2, then all arrivals will be lost without a 

change to system state 

2. In case of a departure event; current state (𝑥1, 𝑥2) will change as follows: 

2.1. If departure occurs at a DC where 𝑥𝑖 ≤ 𝑛𝑖, the server will be switched-off as there 

are no more arrivals to serve. System state changes by reducing 𝑥𝑖 element by 1. 

2.2. If departure occurs at a DC where 𝑥𝑖 > 𝑛𝑖, then system state changes also by 

reducing 𝑥𝑖 element by 1, where a request from the head of the queue will replace the 

departed arrival at the server. 

For solving the state probabilities of the Markovian model explained above no closed-

form solution exists nor could a recursive one be deduced similar to LSSF algorithm. To 

overcome this problem, Forward Kolmogorov balance equations were obtained for each state 

in the system, then the formed system of linear equations is solved numerically using Gauss-

Seidel method with successive over-relaxation. Gauss-Seidel method starts by assuming an 

initial solution for the value of state probabilities, and through successive iterations the error 

between the assumed value and the correct value ‘defect’ is corrected stepwise with each 

iteration cycle. The algorithm is applied through the following steps illustrated by Figure 6-

16: 

1. All states are assumed to have an initial state probability, e.g., probabilities equal to the 

reciprocal of the number of states. 

2. The following steps are performed at each state: 

2.1. Knowing the balance equation, a defect value resulting from the assumption of equal 

probabilities for all states is calculated. 

2.2. Probability of the state is corrected by subtracting the term 
𝑑𝑖

𝑎𝑖
∗ 𝑅𝐸𝐿, where 𝑑𝑖 is the 

defect value, 𝑎𝑖 is the coefficient of the probability of state 𝑖 defined as the 

aggregated output rates from state 𝑖 and REL is the relaxation factor. 

2.3. Defect values calculated from all states are added into term SD 

3. Having calculated one round (iterative cycle) of all stages of step 2, cumulative defect 

value SD is checked against a defined threshold ε: 

3.1. If SD ≤ ε  

Algorithm is stopped and calculated steady state probabilities are normalized by 

dividing the value of each state by the summation of all state probabilities. 

3.2. If SD > ε  

Step 2 is repeated for as many rounds until the defect value decreases below the 

defined threshold, where the stopping condition is re-checked at the end of each 

round. 
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Figure 6-15 State Transition Diagram for two DCs operating under SRTF Algorithm 

Defect value is calculated at each state using balance equations obtained according to the 

following equations: 

 For first row states indicated by sub-space 1 in Figure 6-17: 

 For state (0,0) 

Balance equation is 

(𝜆1 + 𝜆2)𝑝(0,0) = 𝜇1𝑝(1,0) + 𝜇2𝑝(0,1) 

(6-34) 

so defect value can be calculated as 

  

𝑑 = (𝜆1 + 𝜆2)𝑝(0,0) − 𝜇1𝑝(1,0) − 𝜇2𝑝(0,1) 

(6-35) 

and the probability of state can be corrected as described in step 2.2 using 

equation 6-36: 

𝑝(0,0) = 𝑝(0,0) − 𝑑 ∗ 𝑅𝐸𝐿/(𝜆1 + 𝜆2)                                                            

(6-36) 
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Figure 6-16 Flow Chart for Gauss-Seidel Algorithm  

 For states (1,0) till (𝑛1 − 1,0) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1)𝑝(𝑥1, 0) − 𝜆1𝑝(𝑥1 − 1,0) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 +

1,0) − 𝜇2𝑝(𝑥1, 1)                                                                                                        

(6-37) 

 

 For state (𝑛1, 0) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1)𝑝(𝑛1, 0) − 𝜆1𝑝(𝑛1 − 1,0) − 𝑛1𝜇1𝑝(𝑛1 + 1,0) −

𝜇2𝑝(𝑛1, 1)                                                                       

(6-38) 

 For states (𝑛1 + 1,0) till (𝑛1 + 𝑠1 − 1,0) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1)𝑝(𝑥1, 0) − 𝑛1 ∗ 𝜇1𝑝(𝑥1 + 1,0) −  𝜇2𝑝(𝑥1, 1) 

(6-39) 

 For state (𝑛1 + 𝑠1, 0) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1)𝑝(𝑛1 + 𝑠1, 0) − 𝜇2𝑝(𝑛1 + 𝑠1, 1) 

(6-40) 
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Figure 6-17 Solution Sub Spaces for SRTF Algorithm 

 For first column states indicated by sub-space 2 in Figure 6-17: 

 For states (0,1) till (0, 𝑛2 − 1) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑥2𝜇2)𝑝(0, 𝑥2) − 𝜆2𝑝(0, 𝑥2 − 1) − 𝜇1𝑝(1, 𝑥2) − (𝑥2 + 1) ∗

𝜇2𝑝(0, 𝑥2 + 1)                                                        

 (6-41) 

 For state (0, 𝑛2) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛2𝜇2)𝑝(0, 𝑛2) − 𝜆2𝑝(0, 𝑛2 − 1) − 𝜇1𝑝(1, 𝑛2) −

𝑛2𝜇2𝑝(0, 𝑛2 + 1)                                 

(6-42) 
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 For states (0, 𝑛2 + 1) till (0, 𝑛2 + 𝑠2 − 1) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛2𝜇2)𝑝(0, 𝑥2) − 𝜇1𝑝(1, 𝑥2) − 𝑛2𝜇2𝑝(0, 𝑥2 + 1)                   

(6-43) 

 For state (0, 𝑛2 + 𝑠2) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛2𝜇2)𝑝(0, 𝑛2 + 𝑠2) − 𝜇1𝑝(1, 𝑛2 + 𝑠2)                       

(6-44) 

 For states included in rows from 1 to 𝑛2-1 and columns from 1 to 𝑛1+𝑠1-1 indicated 

by sub-space 3 in Figure 6-17: 

 For states where 𝑥1 = 1: 𝑛1 − 1 and 𝑥2 = 1: 𝑛2 − 1 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑥2𝜇2)𝑝(𝑥1, 𝑥2) − 𝜆1𝑝(𝑥1 − 1, 𝑥2) − 𝜆2𝑝(𝑥1, 𝑥2 −

1) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑥2) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑥1, 𝑥2 + 1)  

    

(6-45) 

 

 For states (𝑛1, 1) till (𝑛1, 𝑛2 − 1) 

 

𝑑 =

(𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑥2𝜇2)𝑝(𝑛1, 𝑥2) − 𝜆1𝑝(𝑛1 − 1, 𝑥2) − (𝜆1+𝜆2)𝑝(𝑛1, 𝑥2 −

             1) − 𝑛1 ∗ 𝜇1𝑝(𝑛1 + 1, 𝑥2) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑛1, 𝑥2 + 1)                 

(6-46) 

 For states where 𝑥1 = 𝑛1 + 1: 𝑛1 + 𝑠1 − 1 and 𝑥2 = 1: 𝑛2 − 1 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑥1, 𝑥2 − 1) −

𝑛1𝜇1𝑝(𝑥1 + 1, 𝑥2) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑥1, 𝑥2 + 1)                  

(6-47) 

 For states included in rows from 𝑛2 to 𝑛2 + 𝑠2 − 1 and columns from 1 to 𝑛1 − 1 

indicated by sub-space 4 in Figure 6-17: 

 For states (1, 𝑛2) till (𝑛1 − 1, 𝑛2) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑛2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2) −

𝜆2𝑝(𝑥1, 𝑛2 − 1) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑛2) − 𝑛2 ∗ 𝜇2𝑝(𝑥1, 𝑛2 + 1)          

(6-48) 

 For states where 𝑥1 = 1: 𝑛1 − 1 and 𝑥2 = 𝑛2 + 1: 𝑛2 + 𝑠2 − 1 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑥2) −

(𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑥2) − 𝑛2𝜇2𝑝(𝑥1, 𝑥2 + 1)                  

(6-49) 
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 For state (𝑛1, 𝑛2) 

 

𝑑 = [𝜆(𝑄1)(𝑛1, 𝑛2) + 𝜆(𝑄2)(𝑛1, 𝑛2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑛1, 𝑛2) − (𝜆1 + 𝜆2) ∗

𝑝(𝑛1, 𝑛2 − 1) − (𝜆1 + 𝜆2)𝑝(𝑛1 − 1, 𝑛2) − 𝑛1𝜇1𝑝(𝑛1 + 1, 𝑛2) − 𝑛2𝜇2𝑝(𝑛1, 𝑛2 + 1)

           

   (6-50) 

 For states (𝑛1 + 1, 𝑛2) till (𝑛1 + 𝑠1 − 1, 𝑛2) indicated by sub-space 5 in Figure 6-17: 

 

𝑑 = [𝜆(𝑄1)(𝑥1, 𝑛2) + 𝜆(𝑄2)(𝑥1, 𝑛2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑥1, 𝑛2) − (𝜆1 + 𝜆2)

∗ 𝑝(𝑥1, 𝑛2 − 1) − 𝜆(𝑄1)(𝑥1 − 1, 𝑛2)𝑝(𝑥1 − 1, 𝑛2)

− 𝑛1𝜇1𝑝(𝑥1 + 1, 𝑛2) − 𝑛2𝜇2𝑝(𝑥1, 𝑛2 + 1) 

             

(6-51) 

 For states (𝑛1, 𝑛2 + 1) till (𝑛1, 𝑛2 + 𝑠2 − 1) indicated by sub-space 6 in Figure 6-17: 

 

𝑑 = [𝜆(𝑄1)(𝑛1, 𝑥2) + 𝜆(𝑄2)(𝑛1, 𝑥2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑛1, 𝑥2) − (𝜆1 + 𝜆2)

∗ 𝑝(𝑛1 − 1, 𝑥2) − 𝜆(𝑄2)(𝑛1, 𝑥2 − 1)𝑝(𝑛1, 𝑥2 − 1)

− 𝑛1𝜇1𝑝(𝑛1 + 1, 𝑥2) − 𝑛2𝜇2𝑝(𝑛1, 𝑥2 + 1) 

             

(6-52) 

 For states included in rows from (𝑛1 + 1) till (𝑛1 + 𝑠1 − 1) and columns from 

(𝑛2 + 1) till (𝑛2 + 𝑠2 − 1) indicated by sub-space 7 in Figure 6-17: 

 

𝑑 = [𝜆(𝑄1)(𝑥1, 𝑥2) + 𝜆(𝑄2)(𝑥1, 𝑥2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑥1, 𝑥2) − 𝜆(𝑄1)(𝑥1 − 1, 𝑥2) ∗

𝑝(𝑥1 − 1, 𝑥2) − 𝜆(𝑄2)(𝑥1, 𝑥2 − 1)𝑝(𝑥1, 𝑥2 − 1) − 𝑛1𝜇1𝑝(𝑥1 + 1, 𝑥2) −

𝑛2𝜇2𝑝(𝑥1, 𝑥2 + 1)         

     

(6-53) 

 For last row states indicated by sub-space 8 in Figure 6-17: 

 For states (1, 𝑛2 + 𝑠2) till (𝑛1 − 1, 𝑛2 + 𝑠2) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑛2 + 𝑠2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 +

𝑠2) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑛2 + 𝑠2)                  

    

(6-54) 

 For states (𝑛1, 𝑛2 + 𝑠2) till (𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑛2 + 𝑠2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 +

𝑠2) − 𝜆(𝑄2)(𝑥1, 𝑛2 + 𝑠2 − 1)𝑝(𝑥1, 𝑥2 − 1)−𝑛1𝜇1𝑝(𝑥1 + 1, 𝑛2 + 𝑠2) 

    

(6-55) 
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 For last column states indicated by sub-space 9 in Figure 6-17: 

 For states (𝑛1 + 𝑠1, 1) till (𝑛1 + 𝑠1, 𝑛2 − 1) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑥2𝜇2)𝑝(𝑛1 + 𝑠1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2 −

1) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑛1 + 𝑠1, 𝑥2 + 1)                  

    

(6-56) 

 For states (𝑛1 + 𝑠1, 𝑛2) till (𝑛1 + 𝑠1, 𝑛2 + 𝑠2 − 1) 

 

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑛1 + 𝑠1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2 −

1) − 𝜆(𝑄1)(𝑛1 + 𝑠1 − 1, 𝑥2) ∗ 𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) − 𝑛2 ∗ 𝜇2𝑝(𝑛1 + 𝑠1, 𝑥2 +

1)    

(6-57) 

 Finally for state (𝑛1 + 𝑠1, 𝑛2 + 𝑠2) 

 

𝑑 = (𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2) − (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2) − (𝜆1 +

𝜆2)𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2 − 1)              

(6-58) 

 

 Having obtained all state probabilities of a system of two DCs using Iterations of 

Gauss- Seidel method with defined threshold of 𝜖 = 10−6, the most significant performance 

metrics for evaluating algorithm’s performance are calculated for the 𝐷𝐶𝑖, 𝑖 = 1,2, using the 

following equations below and illustrated by sup-spaces shown in Figure 6-18: 

 

 Carried traffic by each  𝐷𝐶𝑖 𝑌𝑖 indicating the average server occupancy at each  𝐷𝐶𝑖 

 

𝑌1 = ∑ ∑ 𝑥1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

+ ∑ ∑ 𝑛1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1

  

          (6-59) 

𝑌2 = ∑ ∑ 𝑥2𝑝(𝑥1, 𝑥2)

𝑛2−1

𝑥2=0

𝑛1+𝑠1

𝑥1=0

+ ∑ ∑ 𝑛2𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2

𝑛1+𝑠1

𝑥1=0

  

          (6-60) 

 Probability of a request being lost when both data centers are fully occupied 𝐵𝑖 

 

𝐵1 = 𝐵2 = 𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2) 

        (6-61) 
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 Probability of a request being migrated from 𝐷𝐶𝑖 to a less loaded DC 𝑀𝑖 

 

𝑀1 = ∑ ∑ 𝑝

𝑛2−1

𝑥2=0

(𝑥1, 𝑥2)

𝑛1+𝑠1

𝑥1=𝑛1

+ ∑ 𝑝

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑛1 + 𝑠1, 𝑥2) + ∑ ∑ 𝑝

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑥1, 𝑥2)

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄2)

𝜆(𝑄1) + 𝜆(𝑄2)
 

(6-62) 

𝑀2 = ∑ ∑ 𝑝

𝑛2+𝑠2

𝑥2=𝑛2

(𝑥1, 𝑥2)

𝑛1−1

𝑥1=0

+ ∑ 𝑝

𝑛1+𝑠1−1

𝑥1=𝑛1

(𝑥1, 𝑛2 + 𝑠2) + ∑ ∑ 𝑝

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑥1, 𝑥2)

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄1)

𝜆(𝑄1) + 𝜆(𝑄2)
 

        (6-63) 

where an arrival is migrated from  𝐷𝐶𝑖 if there exists an empty server in  𝐷𝐶𝑗 and none at 

 𝐷𝐶𝑖, or if all servers and buffer places in  𝐷𝐶𝑖 are occupied while  𝐷𝐶𝑗 has an empty 

buffer space, or finally if there are empty buffer spaces in both  𝐷𝐶𝑖 and  𝐷𝐶𝑗 but  𝐷𝐶𝑗 

offers a shorter response time. 

 Mean number of buffered arrivals 𝐿𝑖 

 

𝐿1 = ∑ ∑ (𝑥1 − 𝑛1)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1+1

 

(6-64) 

𝐿2 = ∑ ∑ (𝑥2 − 𝑛2)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2+1

𝑛1+𝑠1

𝑥1=0

 

(6-65) 

 Probability that a request is immediately served upon arrival to its own DC 𝐼𝑖 

𝐼1 =  ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

 

(6-66) 

𝐼2 =  ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2−1

𝑥2=0

𝑛1+𝑠1

𝑥1=0

 

(6-67) 

where a request is immediately served at its  𝐷𝐶1 if a server was idle at the instance of 

its arrival. 
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Figure 6-18 Sub Spaces for Performance Metrics of SRTF Algorithm 

 Probability of a request being delayed upon arrival to its own DC 𝑊𝑖 

 

𝑊1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗
𝜆(𝑄1)

𝜆(𝑄1) + 𝜆(𝑄2)

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

+ ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑛1+𝑠1−1

𝑥1=𝑛1

 

(6-68) 

 

𝑊2 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗
𝜆(𝑄2)

𝜆(𝑄1) + 𝜆(𝑄2)

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

+ ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑛2+𝑠2−1

𝑥2=𝑛2

 

(6-69) 

Equations 6-68 and 6-69 describe the cases at which an arriving request will be 

buffered at its own DC. Buffering occurs if all local servers are occupied and the 

remote DC is fully occupied so the arrival can only be buffered at its local buffer, or if 
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the waiting time that will be experienced in the local buffer is shorter than the waiting 

time at the remote buffer. 

 

 Mean waiting time of a request 𝑤𝑖 

 

𝑤1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗ (𝑥1 − 𝑛1 + 1) ∗
ℎ1

𝑛1

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄1)

𝜆(𝑄1) + 𝜆(𝑄2)
 

+ ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2) ∗

𝑛1+𝑠1−1

𝑥1=𝑛1

(𝑥1 − 𝑛1 + 1) ∗
ℎ1

𝑛1
 

      (6-70) 

𝑤2 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗ (𝑥2 − 𝑛2 + 1) ∗
ℎ2

𝑛2

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄2)

𝜆(𝑄1) + 𝜆(𝑄2)
 

+ ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2) ∗

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑥2 − 𝑛2 + 1) ∗
ℎ2

𝑛2
 

      (6-71) 

The mean waiting time of arrivals at the local DC is calculated using Little’s Theorem 

and delay probabilities explained by Equations 6-68 and 6-69. Each term in the two 

equations is multiplied by the average delay that would be experienced by the arrival 

at its own DC, which is equal to the number of customers ahead of the arrival in the 

queue upon its arrival instance divided by the service rate of the DC. 

 Mean waiting time of a delayed request 𝑡𝑤𝑖 

 

𝑡𝑤𝑖 = 𝑤𝑖 𝑊𝑖⁄                                                                    

(6-72) 

where the mean waiting time of delayed arrivals is calculated by dividing the mean 

waiting time of all arrivals by the waiting probability. 

Results for all above explained performance metrics will be shown in the following Section 

6.2.3 and verified against results from simulations as well as test bed experimentation. 

 

6.2.2.2  Simulation Model 

Similar to the simulation model for LSSF algorithm introduced in sub-Section 6.1.2.2 

the simulation model of SRTF algorithm has the same components and functions; except for 

decisions on placement of arriving requests which will only be explained here to avoid 

repetition. When an arriving request is generated at the source module of the DC, it checks 

the status of its own DC as well as all other DCs in order to forward the request to the DC at 
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which it can receive the lowest response time. Arrival requests exit the source module via the 

output gate connected to the local DC only when there is an idle local server available or if 

the local passive queue length is lower than length of all other foreign queues. When the 

arriving request has to be migrated, the source module forwards it to another DC with an idle 

server or if none exist then to the DC offering shortest response time. Calculations for loss, 

migration and delay probabilities as well as mean delay of delayed requests are calculated 

using equations 6-30, 6-31, 6-32 and 6-33 respectively. 

6.2.2.3 Experimental Setup 

The test-bed configuration used for implementing SRTF algorithm and evaluating its 

performance on real server equipment is the same as that explained in Section 6.1.2.3 and 

will not be explained again to avoid repetition. The only difference is in the PowerCLI scripts 

deployed on vSphere for implementing the algorithm and its allocation strategies for VM 

requests. 

 

6.2.3 Results 

This section evaluates the performance of SRTF algorithm and its effectiveness in 

balancing the load between DCs while maintaining the lowest possible mean delay for 

delayed arrivals. Besides solving the model analytically using Gauss-Seidel method, it is 

simulated on two DCs using OMNeT++ and implemented on a DC test-bed. Results for the 

three approaches are shown in Figure 6-19 for the waiting, loss and migration probabilities of 

arriving requests at the two DCs compared to waiting and loss probabilities of an equivalent 

DC without load balancing. Results from the simulation and test-bed are presented with 95% 

confidence intervals using a sample size of 20. The figure shows that when compared to a DC 

without load balancing both waiting and loss probabilities are reduced by the SRTF algorithm 

as load balancing allows arriving requests that would have been delayed or lost at their local 

DC to be migrated to another DC where it will experience lower response time. Considering 

different implementation approaches for the algorithm, all the three methods show almost the 

same results for probabilities with only minor differences due to the difference in how each 

platform operates. Most importantly is that the analytical solution always provides upper 

bound for the results, which allows for accurate prediction for the behavior of DCs. The same 

effect can be observed in Figure 6-20 showing mean delay for delayed arrivals obtained from 

different platforms compared to that of a DC without load balancing. As illustrated in the 

results, SRTF is able to maintain the low delay values until high load values where delay 

slightly increases due to the migrated arrivals that wait at foreign DCs.  

Zero delay values at low-loads resulting from simulation and test-bed platforms 

occurs due to the minor waiting probability approaching 10−6 which implies one in a million 

delayed arrivals. Such rare effects can hardly be captured in the simulation unless it runs for 

several millions of users and for the test-bed unless millions of VMs were created. However 

both scenarios would consume extremely long time durations (in order of days) that could not 

be conducted through this work and is of minimal importance as the main concern for delay 

values is to always be kept under defined SLA levels during high load regions 
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Figure 6-19 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for SRTF 

Algorithm implemented on various Platforms 

 

Figure 6-20 Mean Waiting Time of Delayed Requests versus Load (A/n) for SRTF Algorithm 

implemented on various Platforms 
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For further validation of the SRTF model and the assumptions made for solving it 

analytically using Markov Chains, the simulation model has been altered to test other inter-

arrival and service time distributions than the negative-exponential distribution assumed by 

Markovian models. Figures 6-21 and 6-22 show the mean delay of delayed requests while 

using various distributions with the same mean value for generating requests’ inter-arrival 

and service times, respectively. In Figure 6-21 the following distributions have been used for 

generating inter-arrival durations: 

 Exponential distribution with mean 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

 Constant interarrival times = 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

 Uniform distribution with limits [0,2 ∗ 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙] 

 

Figure 6-21 Mean Delay of Delayed Requests E [Tw |Tw>0] for SRTF Algorithm for 

different Inter-Arrival Time Distributions 

Mean delays in Figure 6-22 were obtained for service durations generated by the following 

distributions: 

 Exponential distribution with mean 1 

 Normal distribution with mean 1 and variance 12 

 Uniform distribution with limits [0,2] 

 Constant interarrival times = 1 

                                                           
2
 The mean and variance used for this case in the simulation tool refer to the range -∞<t<∞ of the stochastic 
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Both figures show that the difference in delay value resulting from inter-arrival and service 

times obtained from different distributions are minimal, which proves the applicability of the 

proposed models to any type of DCs and the validity of Markovian assumptions required for 

modeling and solving the algorithms using Markov Chains. 

 

 

Figure 6-22 Mean Delay of Delayed Requests E [Tw |Tw>0] for SRTF Algorithm for 

different Service Time Distributions 

 

 

6.3 Comparison and Evaluation 
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comparison between the two algorithms in cases of negligible (𝑡𝑚 = 0) or long (𝑡𝑚 = 2) 
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Considering delay as a main factor affecting users’ SLA and their Quality of 
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migration overhead and an equivalent DC without load balancing. Results show that SRTF 
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delay is its main criteria for load balancing. Increase in migration overhead only results in a 

minimal increase in the mean delay values at low and intermediate load regions since the 

algorithm will always assign the arriving requests to the DC with minimal response time and 

migration overhead. As load value increases all DCs tend to be overloaded, thus migrations 

decrease and losses increases resulting in a decrease in the mean delay value.  As for LSSF 

algorithm it maintains the same delay experience of users in DCs without load balancing for 

low and intermediate load values, whereas for high and overload regions when migrations 

occur the delay value differs according to the value of migration overhead. For negligible 

values of migration overhead the average delay tends to be higher as less arrivals are lost 

where they are migrated and delayed at foreign DCs. As migration overhead increases these 

migrations are reduced and accordingly the mean delay value. Disregarding migration 

overheads, SRTF algorithm is able to provide lower mean response times for delayed 

requests. 

These effects are also visible in Figure 6-24 which compares loss, delay and migration 

probabilities for the previously mentioned systems. Shortest mean delays of SRTF algorithm 

shown in Figure 6-23 is caused by lower loss and delay probabilities compared to a DC 

without load balancing, where the decrease in these probabilities is compensated by a high 

migration probability since arriving requests are always routed to the DC offering least 

response time. DCs operating under LSSF algorithm also achieve lower loss probabilities 

than those without load balancing as arrivals can be migrated to foreign DCs instead of being 

lost.  

Comparing the two algorithms together; both algorithms are able to reduce loss 

probabilities with slightly lower losses achieved by SRTF algorithm due to absence of 

migration thresholds that could prevent a foreign DC from accepting a migrated request. 

SRTF also shows lower waiting probabilities than LSSF for both values of migration 

overhead due to the fact that SRTF migrates an arrival to a foreign DC if it could receive 

instant service there other than waiting at its local queue. These effects are compensated by 

much higher migration probabilities for SRTF as LSSF algorithm prevents an arriving request 

to be migrated unless it finds its local DC at its full capacity which only occurs at 

high/overload situations; whereas SRTF allows migrations regardless of system load. 

Migration probabilities for both algorithms tend to drop at overload situations when the 

migration overhead is high, where at these situations the DCs tend to be overloaded with long 

expected delay durations for any arriving request where these long delays added to it long 

migration overheads would not meet the migration criteria of a request to have its delay limit 

specified by SLAs met at the foreign DC upon migration. 

Generally, each of the proposed load balancing algorithms presented in this chapter is 

superior under certain conditions. For cases when users’ requests are highly sensitive to delay 

and service level agreements SRTF would be the best choice for load balancing among DCs 

as it provides the lowest mean delay an arrival could experience. However for cases with high 

migration overheads and long transmission delays between geographically distant DCs, LSSF 

would perform better as it tends to suppress migrations to overload situations only. 

Determining migration thresholds of LSSF algorithm could be tuned according to migration 

delay values, where long delays require low thresholds and short migration overheads require 

higher thresholds.  
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Figure 6-23 Mean Delay of Delayed Frames for LSSF and SRTF Algorithms compared to 

𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue 

 

Figure 6-24 Loss (B), Delay (W) and Migration (M) Probabilities for LSSF and SRTF 

Algorithms compared to 𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue 
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Chapter 7  Conclusion and Outlook 

 

The rise of Cloud Computing technology and its huge development over the past 

years resulted in a rapid growth in the size of its data centers and accordingly its energy bill. 

Power consumed by data centers for operating and cooling of its equipment contributes to 

almost 1.5% of the world-wide energy consumption, and is forecasted to increase over the 

coming years. In attempt to reduce this increased consumption numerous approaches have 

been proposed such as server consolidation, sleep modes and reduced operational frequency 

by Dynamic Voltage and Frequency Scaling, all of which tend to achieve an energy efficient 

operation by cloud data centers. Besides the energy challenge, designing load balancing 

algorithms to balance the load among several data centers of cloud providers while meeting 

the requirements of cloud computing services is another challenge. Despite the existence of 

several load balancing approaches in literature most of them could not offer efficient load 

balancing solutions for cloud computing for being static, having single points of failure, 

requiring long transmission delays or long processing delays due to complexity. Cloud 

Computing however require algorithms that are dynamic with automatic resource 

provisioning for fast adaptation to any updates in the data center’s state, proactive to over-

load situations by preventing them from occurring, distributed without centralized points of 

failure to avoid relying the data center’s operation on a single node, and finally and most 

importantly perform load balancing decisions without any compromise to users’ specified 

Service Level Agreements (SLA). 

This thesis contributes to solving the energy efficiency and load balancing dilemmas 

in Cloud Computing environments by proposing an algorithm for energy efficiency based on 

the idea of server consolidation for an efficient operation of DCs; as well as two load 

balancing algorithms to distribute the load among several operator’s DCs with the goal of 

enhancing DCs’ performance while meeting users’ SLAs. For studying these algorithms and 

accurately predicting their effects on DCs’ performance a modeling approach for DCs as 

queuing systems has been introduced in Chapter 4. In the context of chapter 4 all modeling 

details and assumptions that accurately describe the DC’s operation using queuing system 

operations are illustrated by describing different system states and transition among these 

different states using Markov Chains. Besides explaining theoretical methodology followed 

for analyzing the proposed algorithms, Chapter 4 also introduced other platforms used for 

testing the algorithms. OMNeT++ simulation models are explained with their compound and 

simple modules required to implement a queuing system with different operational strategies 

in accordance to the implemented algorithm. A test-bed for emulating cloud DCs has also 

been set-up for better understanding of the algorithms’ behavior in realistic environments. 

Within the context of Chapter 5 in this thesis an algorithm for energy efficiency 

operation of Data centers has been proposed. The algorithm is based on the idea of server 

consolidation by consolidating the DC’s load on fewer number of servers so that other under-

utilized servers are turned idle and can be switched-off to save their idle power consumption. 

This is performed in the algorithm using hystereses behavior where defined queuing 

thresholds are set to determine a load surge that requires new server activation. The algorithm 
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is explained using Markov Chains and analyzed mathematically using a novel recursive 

algorithm which solves for the steady-state probabilities of the system under Markovian 

assumptions. Most significant performance metrics required for evaluating the algorithm are 

explained such as probabilities of system states, mean delays of delayed arriving requests, 

servers’ activation rates and power saving efficiency. The algorithm has shown its ability to 

dynamically adapt the number of active servers in the DC to its current load, so that the load 

of the DC is consolidated on the least number of active servers. This is proven by showing 

the probability of state peaks at each corresponding load value and the vast reduction in 

activation rates of servers. Besides its effective consolidation strategy the algorithm also 

shows a favorable effect of stabilizing the mean delay of delayed requests over a vast range 

of loads, where delays remain almost of a constant value while system is loaded between 5 to 

95%. The proposed hystereses algorithm has also proven its efficiency at meeting its original 

goal of reducing power consumption of DCs with an achieved power saving efficiency of 

20% at low load values due to the reduced number of active servers.  

In addition to its efficiency at reducing DC’s power consumption, the proposed 

hystereses algorithm accommodates several realistic properties of servers such as activation 

overheads, sleep modes and DVFS specified by C-states and P-states, respectively. Two case 

studies have been presented in this thesis to show case the effectiveness of sleep modes and 

reduced frequency states at increasing the energy efficiency of cloud data centers. The first 

case study was implemented by the model of the proposed hystereses algorithm by varying 

activation overheads as well as power consumption at different system states to model servers 

being in sleep states, where long activation overheads implied deeper sleep states and less 

energy consumption whereas short activation overheads implied light sleep states and 

relatively higher power consumption. Sleep states indicated by HSB modes were also 

compared against CSB mode where idle servers are completely switched-off. Analysis have 

shown that sleep modes are able to reduce the delay experienced while booting a server from 

an off state significantly at low load values, while switching-off servers is slightly more 

efficient at reducing energy consumption. Decisions on how to compromise between saving 

energy with minimal degradation in system performance should be carefully considered by 

DCs’ administrators for selecting appropriate operation modes for their systems. The second 

case study provided insights into the application of DVFS states on servers for reducing their 

frequency and accordingly power consumption. Model results have shown that as operational 

frequency decreases the service durations of arriving requests is increases as well as number 

of buffered arrivals thus triggering more servers to be activated. Thus the attempt to reduce 

energy consumption is accompanied by increased delay of requests causing performance 

degradation as well as more activated servers that compensate the power-saving effect. Thus 

DVFS should only be applied in cases when a DC is hosting requests that are not time-

sensitive in order to save energy consumption considerably. 

This thesis also introduced two algorithms for load balancing between cloud DCs 

within the context of Chapter 6, LSSF and SRTF. Both algorithms have been modeled using 

two-dimensional Markov Chains and solved analytically using an iterative algorithm for 

LSSF and Gauss-Seidel method for SRTF to obtain steady state probabilities of the DC 

operating by the model. The two algorithms are proposed for different use-cases; LSSF 

algorithm is proposed for scenarios when migration overhead between DCs is large compared 

to service and waiting times of requests as it suppresses migrations to cases when an arrival 
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could not be accepted by its local DC. This effect has been proven by results of the analytical 

solution where LSSF algorithm shows reduced loss probabilities for arrivals as it migrates 

arrivals instead of being lost as well as slightly higher mean delays but bounded to be lower 

than specified SLAs. Different cases of LSSF algorithm have been tested with various 

migration overheads to show their effect where higher thresholds increase migration 

probability and average delays. These configuration parameters of the algorithm should be set 

according to SLA requirements agreed upon between cloud providers and their users. 

The second proposed algorithm is an upgrade to the known JSQ algorithm which 

performs load balancing decisions in consideration to response times of servers in the DC 

rather than queue lengths. SRTF routes an incoming arrival to the DC where it would receive 

either an instant service or the shortest average delay time. Analysis of the algorithm showed 

that it is able to significantly reduce the average delays of requests compared to LSSF and 

DCs without load balancing, but at the expense of high migration probabilities. SRTF is 

foreseen to be most efficient at balancing the load among DC handling time-sensitive 

applications where migration overhead is not significant to the average delay values.  

In addition to analytical solutions provided for the proposed algorithms in this thesis 

that easily enable system administrators to tune their system parameters and accurately 

predict the performance of DCs operating by any of the proposed algorithms; models have 

also been tested by simulations as well as test-bed implementations for exploring different 

application cases that cannot be tested by theoretical analysis as they are based upon 

Markovian assumptions. OMNeT++ simulations carried out for the three proposed algorithms 

with various distributions for inter-arrival times, service times and activation times showed 

that Markovian assumptions are a valid assumptions as model’s performance was not affected 

by the change of any of the distributions. Test-bed experiments for load balancing algorithms 

on 4 DCs rather than the case of only two DCs implemented by the analytical solutions also 

showed its validity and applicability to balance the load among any number of DCs.  

In conclusion, proposed algorithms in this thesis have shown their effectiveness at 

achieving an energy efficient operation for cloud DCs as well as balancing the load among 

several DCs effectively. Analysis methods used for studying these algorithms have also 

shown to be of high accuracy at predicting behavior of DCs operating by these algorithms. 

Close observation of the presented results show that energy efficiency algorithm is most 

effective at low/average load situations where the gain by reducing or eliminating power 

consumption of idle servers is high, while at high loads when the system is fully operative the 

power saving efficiency tends to zero. Whereas for load balancing the proposed algorithms 

have shown to be of most importance at regions of high load / overload to prevent losses of 

requests by migrating them to foreign DCs. Different load balancing criterion were shown to 

have different effects on QoE of arriving requests in terms of average delay, thus selecting a 

strategy for load balancing among cloud DCs should always be done in reference to users 

SLAs to make sure they are not compromised. 

An outlook for the work done in this thesis is to compare the results obtained from 

testing proposed algorithms against other existing approaches in literature. For example; 

recursive algorithm proposed for solving the multiple hystereses model for energy-efficiency 

could be compared to other analysis methods for the same queuing model such as Green’s 

Method or Stochastic Complementation which provide exact numerical solutions for multi-
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server queuing systems with hystereses. However this was not performed due to the high 

complexity of the previously mentioned methods and their limitations to solving test-cases of 

small sizes. As for the load balancing algorithms, further studies are required for approaching 

an exact numerical solution for solving steady-state probabilities of a model composed of any 

number of DCs with mutual overflows. Algorithms for mathematical analysis proposed in 

this thesis are limited to cases of only two DCs with mutual overflow represented using two-

dimensional Markov Chains, where the addition of further DCs to the model corresponds to 

an increase in the dimension of the Markov Chain resulting in high dimensional models that 

cannot be solved exactly to the best of our knowledge but can be simulated by extending the 

proposed simulation models. 

Through the context of this thesis algorithms have been proposed and tested using 

various methods to predict their effect when deployed to real DCs. Although a test-bed was 

configured to emulate a DC using minimal hardware equipment and the same software used 

by cloud operators, experimentation on large-scale DCs would be more insightful for testing 

the algorithms on larger set of equipment serving real online user requests instead of traffic 

generated using simulators. This step was not feasible during the time frame of this thesis as 

it required granted access for carrying out experimental work at one of the cloud providers’ 

premises, which unfortunately was not achievable. Such experimentation could allow for 

testing the algorithms under more complicated scenarios beyond the capability of analytical 

solution such as balancing the load between more than two DCs or handling bulk arrivals; 

which are all cases that could be predicted using our simulation models  
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