

Managing Load Balancing, Energy Efficiency and

Performance of Cloud Data Centers with

Service Level Agreement Guarantees

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der

Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Maggie Mashaly

geb. in Kairo

 Hauptberichter: Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Paul J. Kühn

1. Mitberichter: Prof. Dr.-Ing. Hermann de Meer

2. Mitberichter: Prof. Dr.-Ing. Andreas Kirstädter

Tag der Einreichung: 10. Mai 2017

Tag der mündlichen Prüfung: 26. Oktober 2017

Institut für Kommunikationsnetze und Rechnersysteme der

Universität Stuttgart

2017

i

Abstract

This thesis proposes novel approaches for enhancing the operation and performance

of cloud data centers by introducing an algorithm for automatic server consolidation for an

energy efficient operation as well as two algorithms for load balancing between several data

centers with priority to maintaining users’ Service Level Agreements ‘SLAs’. For better

understanding of the proposed algorithms and fore-sighting their effect on data center’s

performance a modeling approach for data centers as queuing systems is first introduced

where a data center is modeled by a Markov Chain and its performance can be analyzed

exactly by solving the two-dimensional Markov Chain representing all data center’s states

under Markovian assumptions.

This thesis’ first contribution is the automatic server consolidation algorithm which is

able to adapt the number of active servers in the data center to its current load dynamically by

adopting the hysteresis behavior. This is performed by setting defined queuing thresholds

which trigger server activations only when they are reached and if the SLA is guaranteed,

which reduces the frequency of servers’ activations and deactivations and consolidates the

work load on the lowest possible number of servers such that idle servers can be turned-off or

put into sleep for reducing power consumption. This algorithm is novel in its ability to model

all realistic aspects of a data center such as the activation time required by servers to re-boot

from an off state or wake-up from a sleeping state as well as modeling different sleep states

(C-states) and reduced frequency states specified by servers’ various P-states, respectively.

Besides providing mathematical analysis for the algorithm and data center model, a

simulation model is also provided to support the findings of the analysis and to test several

cases that cannot be solved by analytical solution due to its restrictive -yet valid-

assumptions.

Second main contribution of this thesis is the two load balancing algorithms

introduced for optimizing data centers’ performance and preventing over-load situations

while maintaining service level agreements of users. The two algorithms can be adopted by

data centers at different scenarios depending on the type of services offered by the data

center, requirements of its users and the geographical distribution of data centers between

which load balancing is implemented. The first proposed algorithm (Local Server System

First - LSSF) tends to suppress migrations only for arriving requests that could not be served

at their local data centers and migrates them to another data centers where their service level

agreements can be met. The second proposed algorithm (Shortest Response Time First –

SRTF) aims at providing arriving requests with the least possible response time by routing

them to the DC providing immediate service or least waiting time. Both algorithms are

modeled by Markov Chains and solved analytically for predicting the effect of each

algorithm on data centers’ performance. For further analysis of both algorithms simulation

models are implemented as well as test-bed experimentation on a small data center in order to

test the algorithms under various test-cases and conditions.

ii

Results obtained from different platforms analyzing the proposed algorithms in this

thesis have proven their efficiency at reducing the power consumption of data centers at low

to intermediate load conditions as well as balancing the load among several data centers to

meet defined criteria by data center operators or users up to high load conditions. Analysis of

the proposed hystereses algorithm for energy efficiency has shown a significant reduction of

servers’ activation rates resulting in a reduction in power consumption with bounded average

delays for delayed arrivals with a negligible increase in the delay at load regions between 5-

95%. Efficiency of the load balancing algorithms is also shown by a reduction in loss

probabilities of arriving requests by migrating them to foreign DCs as well as a reduction in

average delays of delayed requests in case of SRTF algorithm. Thus, data centers’

administrators can choose to implement one or more of the proposed algorithms depending

on their defined goals for the data center’s operation where its behavior can be exactly

predicted using analytical and simulation tools introduced in this thesis.

iii

Kurzfassung

In dieser Arbeit werden neue Ansätze zu einer effektiveren Betriebsorganisation von Cloud-

Rechenzentren vorgeschlagen basierend auf Algorithmen zur automatischen Server-

Aktivierung ("Konsolidierung") für einen energieeffizienten Betrieb sowie zwei neue

Algorithmen zum Lastausgleich zwischen Server-Gruppen unter gleichzeitiger

Berücksichtigung vorgegebener und einzuhaltender Dienstleistungsparameter (sog. "Service

Level Agreements", SLA). Zum besseren Verständnis der vorgeschlagenen Algorithmen und

ihren zu erwartenden Auswirkungen auf die Leistungsfähigkeit von Rechenzentren werden

diese mit Hilfe der Warteschlangentheorie modelliert und mittels der Methodik von

zweidimensionalen Markoff-Ketten exakt untersucht.

 Im ersten Beitrag dieser Arbeit wird ein Algorithmus zur automatischen Server-

Konsolidierung untersucht, bei dem die Anzahl aktivierter Server an die momentane Last

dynamisch mittels eines zustandsabhängigen Hysteresemechanismus angepaßt wird. Dabei

werden die Schwellwerte zur Server-Aktivierung so eingestellt, daß eintreffende Server-

Anforderungen gepuffert werden unter Einhaltung der vorgegebenen SLA-Einschränkungen,

wobei erst nach Erreichen des Schwellwertzustands eine neue Server-Aktivierung erfolgt.

Dieses Verfahren reduziert die Häufigkeit von Server-Aktivierungen ("Bootings") bzw.

Deaktivierungen zum Übergang in einen Ruhezustand ("Sleeping") und trägt auf diese Weise

zu einem optimierten Energiebedarf bei. Dieser neuartige Algorithmus erlaubt ferner die

Einbeziehung realistischer Aspekte eines Rechenzentrums-Managements hinsichtlich des

Energiebedarfs mittels gedrosselter Werte von Versorgungsspannungen und Taktfrequenzen

der elektronischen Bauelemente ("Dynamic Voltage and Frequency Scaling", DVFS; P-

Zustände) bzw. Schlafzustände (C-Zustände). Außer der mathematischen Analyse dieses

Algorithmus für das Rechenzentrum wird ein Modell zur Computer-Simulation entwickelt,

mit Hilfe dessen auch Anwendungsfälle untersucht werden können, die der exakten

mathematischen Analyse nicht zugänglich sind.

 Im zweiten Beitrag dieser Arbeit werden zwei Algorithmen zum Lastausgleich zwischen

Server-Gruppen eingeführt zur Untersuchung des Echtzeitverhaltens sowie des Schutzes

gegen Überlastsituationen, welche ebenfalls unter Einhaltung der SLA-Einschränkungen der

Nutzer operieren. Derartige Algorithmen können für Rechenzentren (bzw. Server-Gruppen)

in unterschiedlichen Anwendungs-Szenarien hinsichtlich von Benutzeranforderungen oder

hinsichtlich des Lastausgleichs unterschiedlicher geographischer Lagen dieser Rechenzentren

eingesetzt werden. Beim ersten Algorithmus LSSF ("Local Server System First") werden

Prozeß-Verlagerungen ("Migrations") zu einem zweiten Rechenzentrum bzw. einer zweiten

Server-Gruppe nur in dem Falle durchgeführt, wenn die Anforderungen nicht im lokalen

Rechenzentrum ausgeführt werden können solange jedoch die SLA-Einschränkungen

weiterhin eingehalten werden. Der zweite Algorithmus SRTF ("Shortest Response Time

First") zielt darauf ab, in jedem Falle die kürzeste Fertigstellungszeit (Antwortzeit) zu

iv

garantieren, indem eintreffende Anforderungen demjenigen Rechenzentrum bzw. derjenigen

Server-Gruppe zugeordnet werden, welche entweder eine sofortige Bearbeitung erlauben

oder die kürzeste Antwortzeit benötigen. Die Modelle der beiden Verfahren werden

mathematisch exakt mittels zweidimensionaler Markoff-Ketten beschrieben und hinsichtlich

der Vorhersage ihrer Leistungsfähigkeit analysiert. Zur allgemeineren Analyse beider

Algorithmen wurden jeweils Simulationsmodelle implementiert sowie in einem

experimentellen Server-Testbed einer Multiprozessor-Konfiguration konfiguriert, um die

vorgeschlagenen Algorithmen testen zu können.

v

Contents

Abstract ... i

Kurzfassung ... iii

Contents ... v

List of Figures .. vii

List of Tables .. xi

Abbreviations and Symbols ... xiii

Chapter 1 Introduction ... 1

1.1 Problem Overview.. 2

1.2 Thesis Contributions .. 3

1.3 Thesis Outline .. 4

Chapter 2 Cloud Data Centers ... 7

2.1 Cloud Services... 7

2.2 Data Center Architecture ... 11

2.3 Server Virtualization ... 13

2.4 VM Migration ... 16

2.5 Costs of operating Cloud Data Centers ... 20

Chapter 3 Challenges of Virtualized Cloud Data Centers ... 23

3.1 Energy Efficiency of Cloud DCs ... 23

3.1.1 Server Consolidation .. 25

3.1.2 Sleep Modes ... 30

3.1.3 Dynamic Voltage and Frequency Scaling .. 33

3.2 Load Balancing between Cloud DCs ... 38

3.2.1 Overview on Load Balancing .. 38

3.2.2 Examples of Load Balancing Algorithms ... 42

Chapter 4 Methodology ... 53

4.1 Mathematical Models ... 53

4.2 Simulation Technique .. 55

4.3 Experiment Setup and Measurements .. 59

vi

Chapter 5 Energy-Efficient Cloud Data Centers ... 61

5.1 Model Explanation .. 62

5.2 Model Analysis ... 66

5.2.1 Mathematical Analysis... 66

5.2.2 Simulation Model... 70

5.3 Results ... 73

5.3.1 Performance Evaluation ... 73

5.3.2 Case Study 1: Sleep Modes and Effect of Server’s Activation Rates................ 83

5.3.3 Case Study 2: Reduced Service Rates by DVFS ... 87

Chapter 6 Load Balancing Algorithms between Cloud Data Centers 93

6.1 Algorithm 1: Local Server System First (LSSF) ... 94

6.1.1 Model Definition .. 94

6.1.2 Model Analysis .. 97

6.1.3 Results .. 111

6.2 Algorithm 2: Shortest Response Time First (SRTF) ... 117

6.2.1 Model Definition .. 117

6.2.2 Model Analysis .. 118

6.2.3 Results .. 130

6.3 Comparison and Evaluation .. 133

Chapter 7 Conclusion and Outlook .. 137

References .. 141

Acknowledgements .. 155

vii

List of Figures

Figure 2-1: Layered Architecture of a Cloud Data Center [144] ... 12

Figure 2-2: Layers and Components of a Virtualized Server [89] ... 15

Figure 3-1: Process of Round Robin Algorithm [75] .. 43

Figure 3-2: Process of Randomized Algorithm [75] .. 44

Figure 3-3: Process of Minimum Completion Time Algorithm [75] 45

Figure 3-4: Process of Opportunistic Load Balancing Algorithm ... 45

Figure 3-5: Process of Join Idle Queue Algorithm .. 47

Figure 3-6: Process of Enhanced Equally Distributed Load Balancing Algorithm 48

Figure 4-1: Generic Model for a Data Center with Dynamic Activation/Deactivation of

Servers.. 54

Figure 4-2: Basic DC Simulation Model ... 58

Figure 4-3: Test Bed Architecture ... 60

Figure 5-1: State Transition Diagram of Multiple Parallel Hystereses Model with Activation

Overhead .. 64

Figure 5-2: Basic DC Simulation Model ... 72

Figure 5-3: Flow Charts explaining Life Cycle of Arrivals and Servers inside the DC 73

Figure 5-4: Probabilities of State P(x) of the Server Group inside Cloud Data Center 75

Figure 5-5: Probabilities of State P(x) of the Server Group for variable Hysteresis Widths... 75

Figure 5-6: Server Activation Rate RA for variable Hystereses widths 76

Figure 5-7 Server Activation Rate RA for Hystereses Model vs. an equivalent 𝑀/𝑀/𝑛/𝑛 + 𝑠

Queue ... 76

Figure 5-8: Power Consumption of Servers inside the DC for various Hystereses Widths vs.

𝑀/𝑀/𝑛/𝑛 + 𝑠 Queue .. 77

Figure 5-9: Power Saving Efficiency for Hystereses Model with various Widths vs. 𝑀/𝑀/

𝑛/𝑛 + 𝑠 Queue ... 78

Figure 5-10: Mean Waiting Time of Buffered Requests 𝐸𝑇𝑊 𝑇𝑊 > 0] for variable

Hystereses Widths vs. 𝑀/𝑀/𝑛/𝑛 + 𝑠 Queue ... 79

Figure 5-11: Mean Waiting Time of Buffered Requests 𝐸𝑇𝑊 𝑇𝑊 > 0] for variable

Hystereses Widths (Analytical Solution vs. Simulation) ... 80

Figure 5-12: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Inter-Arrival Time

Distributions ... 81

Figure 5-13: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Service Time

Distributions ... 82

Figure 5-14: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Server Activation

Times Distributions .. 83

Figure 5-15: Power Saving Efficiency for CSB Mode vs. HSB Mode with various Sleep

States .. 85

Figure 5-16: Mean Waiting Time of Buffered Requests 𝐸𝑇𝑊 𝑇𝑊 > 0]for variable

Activation Rates vs. 𝑀/𝑀/𝑛/𝑛 + 𝑠 Queue .. 86

viii

Figure 5-17: Mean Waiting Time of Delayed Frames for Hystereses Model under different P-

States .. 88

Figure 5-18: Server Activation Rate for Hystereses Model with DVFS under different P-

States .. 89

Figure 5-19: Power Saving Efficiency of Hystereses Model under different P-States 89

Figure 5-20: Mean Waiting Time of Buffered Frames for Hystereses Model under DVFS

with different values for Parameter z* ... 90

Figure 5-21: Power Saving Efficiency of Hystereses Model under DVFS with different values

for Parameter z* ... 91

Figure 6-1: System Model for two Data Centers under LSSF Algorithm 95

Figure 6-2: State Transition Diagram for two DCs operating under LSSF Algorithm 99

Figure 6-3: Solution Sub-Spaces for LSSF Algorithm .. 100

Figure 6-4: Sub-space indicating Loss and Migration Probabilities for DC1 and DC2 105

Figure 6-5: Sub-space indicating Probability of Immediate Service for DC1 and DC2 106

Figure 6-6: Simulation Model for testing LSSF Algorithm between two DCs 108

Figure 6-7 Flow Chart for OMNeT ++ Simulation Model for LSSF Load Balancing

Algorithm ... 109

Figure 6-8 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF

Algorithm ... 112

Figure 6-9 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm

.. 113

Figure 6-10 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF

Algorithm without overhead implemented on various Platforms .. 115

Figure 6-11 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm

without overhead implemented on various Platforms ... 115

Figure 6-12 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF

Algorithm without overhead implemented on DC Test-bed.. 116

Figure 6-13 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm

without overhead implemented on DC Test-bed ... 116

Figure 6-14 System Model for two Data Centers under SRTF Algorithm 118

Figure 6-15 State Transition Diagram for two DCs operating under SRTF Algorithm 121

Figure 6-16 Flow Chart for Gauss-Seidel Algorithm .. 122

Figure 6-17 Solution Sub Spaces for SRTF Algorithm ... 123

Figure 6-18 Sub Spaces for Performance Metrics of SRTF Algorithm................................. 128

Figure 6-19 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for SRTF

Algorithm implemented on various Platforms ... 131

Figure 6-20 Mean Waiting Time of Delayed Requests versus Load (A/n) for SRTF Algorithm

implemented on various Platforms .. 131

Figure 6-21 Mean Delay of Delayed Requests E [Tw |Tw>0] for SRTF Algorithm for

different Inter-Arrival Time Distributions ... 132

Figure 6-22 Mean Delay of Delayed Requests E [Tw |Tw>0] for SRTF Algorithm for

different Service Time Distributions ... 133

Figure 6-23 Mean Delay of Delayed Frames for LSSF and SRTF Algorithms compared to

𝑀/𝑀/𝑛/𝑛 + 𝑠 Queue .. 135

ix

Figure 6-24 Loss (B), Delay (W) and Migration (M) Probabilities for LSSF and SRTF

Algorithms compared to 𝑀/𝑀/𝑛/𝑛 + 𝑠 Queue .. 135

x

xi

List of Tables

Table 2-1: Types of Cloud Services... 9

Table 2-2: VM Migration Approaches .. 18

Table 3-1: Comparison between Server Consolidation Frameworks 29

Table 3-2: P-states of an Intel Pentium M 1.6 GHz Processor .. 33

Table 3-3: Summary of DPM and DVFS Algorithms ... 35

Table 3-4: Comparison and Summary of Load Balancing Algorithms 50

Table 6-1: Definition of Model Parameters ... 95

xii

xiii

Abbreviations and Symbols

Abbreviations

APP Application Specific Software

BMC Baseband Management Controllers

CAPEX Capital Expenditure

CPU Central Processing Unit

CRAN Cloud Radio Access Networks

CSB Cold Stand-by Mode

DAS Directly Attached Storage

DC Data Center

DoS Denial of Service

DPM Dynamic Power Management

DRS Dynamic Resource Scheduler

DT-PALB Double Threshold Energy Aware Load Balancing

DVFS Dynamic Voltage and Frequency Scaling

FC Fiber Channel

FIFO First In First Out

FSM Finite State Machine

HSB Hot Stand-by Mode

IaaS Infrastructure as a Service

ICT Information and Communication Technology

INI Initialization File

I/O Input / Output

IT Information Technology

iSCSI Internet Small Computer System Interface

JSQ Join Shortest Queue

KVM Kernel Virtual Machine

LBMM Load Balancing Min-Min Algorithm

LBIMM Load Balancing Improved Min-Min Algorithm

LSSF Local Server System First

xiv

LUNs Logical Unit Numbers

NAS Network Attached Storage

NED Network Description File

OLB Opportunistic Load Balancing Algorithm

OPEX Operational Expenditure

OS Operating System

PA-LBIMM User-Priority Aware Load Balancing Improved Min-Min Algorithm

PALB Power Aware Load Balancing Algorithm

PaaS Platform as a Service

PUE Power Usage Efficiency

QoS Quality of Service

QoE Quality of Experience

RAM Random Access Memory

SAN Storage Area Network

SaaS Software as a Service

SCSI Small Computer System Interface

SLA Service Level Agreement

SRTF Shortest Response Time First

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Monitor

VRF Virtual Routing and Forwarding

WCAP Workload and Client Aware Policy

xv

Symbols

A Carried Traffic

B Loss Probability

C Sum of Capacitances in Server’s circuit

𝑪𝒊𝒋 Condition of migration of requests from 𝑫𝑪𝒊 to 𝑫𝑪𝒋

d Defect value

E[TW] Mean waiting time of arriving frames

E[TW|TW >0] Mean waiting time of delayed frames

f Server’s operational frequency

I Probability of immediate service of requests at a DC

L Mean queue length

M Migration probability

n Total number of servers

P Server’s Power Consumption

P(i) Probability of having i active servers

𝒑(𝒙, 𝒛) Probability of being in state (x,z)

𝑃𝐷𝑉𝐹𝑆 Power consumed by a server under DVFS strategy

 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 Power consumed by a running server

𝑃𝑠 Power consumption of servers inside the DC

𝑃𝑠,𝐶𝑆𝐵 Power consumption of servers in CSB mode

𝑃𝑠,𝐻𝑆𝐵 Power consumption of servers in HSB mode

 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 Power consumed due to leakage mechanisms

𝑃𝑥 Server’s P-state

Q(z) Probability of having z occupied buffers

RA Activation rate of servers

RD Deactivation rate of servers

REL Relaxation Factor for Gauss-Seidel method

s Total DC’s buffer capacity

𝒕𝑴 Migration time of a request to a foreign DC

𝒕𝒘,𝑻 Request’s delay threshold defined by SLA

𝒕𝒘𝟎 Worst-case mean delay of an arriving request

u Server’s operational voltage

xvi

W Delay Probability

𝒘(𝒙) Width of the hysteresis for activating server x

wi Width of the i
th

 hysteresis in the Multiple Serial/Parallel Model

x Number of occupied servers in a DC

𝒙𝒊
∗ Migration threshold of 𝑫𝑪𝒊 under LSSF algorithm

𝒀𝑨 Average number of servers in activation phase

z Number of occupied buffers in a DC

𝒛∗ Buffering threshold for application of DVFS strategy

α Server activation rate
λ Arrival rate of requests

𝝀(𝑸𝟏) Arrival Conditions for 𝑫𝑪𝟏 under SRTF strategy

𝝀(𝑸𝟐) Arrival Conditions for 𝑫𝑪𝟐 under SRTF strategy

µ Service rate of requests

µ∗ Reduced service rate of servers under DVFS strategy

ρ System load

η Power-saving efficiency

𝜼𝑪𝑺𝑩 Power-saving efficiency of CSB mode

𝜼𝑯𝑺𝑩 Power-saving efficiency of HSB mode

ε Threshold for Gauss-Seidel Method

1

Chapter 1 Introduction

The ICT industry has always been a field with huge potential for technological

developments aiming at providing individuals as well as industry with services for raising

their welfare and surging their business development. Cloud Computing is one of those

developments that have been widely adopted by millions of users and companies world-wide

as it provided a leap at how different types services are offered for users. Based upon the

concept of virtualization, Cloud Computing offered different types of services for its users

ranging from Infrastructure-as-a-Service allowing them to rent whole data center

infrastructures, to Platform-as-a-Service where users are allowed access to any desired

platform they require and finally to Software-as-a-Service which provides numerous services

provided by applications hosted at cloud data centers and accessed remotely by users

anywhere in the globe. Many reasons have caused all cloud users to embrace this new

technology; among these reasons is its reduced cost resulting from eliminating the need for

upfront investments and its attractive pay-on-the-go model where users are only charged for

their usage of the services rather than being charged with costs of idle operation. Another

reason is cloud’s elasticity and flexibility at leasing or abandoning services and resources on-

the-go according to current needs. Cloud Computing did not appeal only to users, but also to

owners of data centers as they could rent their infrastructure or host services upon them at

times when their equipment is not utilized.

However the rise of Cloud Computing technology has led to several challenges faced

by its users and providers. For users the dilemma of data security whether it is hosted at a

public, private or hybrid cloud has been and still is an open question. As for data center

owners the challenges faced by how data centers are operated are critical. Since data centers

are typically composed of huge numbers of server blades hosting hundreds of servers upon

which cloud services are hosted, the amount of power required for operating and cooling

these devices is tremendous. This greedy consumption of power by data centers is alarming

as it increases the carbon footprint by consuming non-renewable energy resources and most

importantly, increases the cost of operating data centers which will result in an increase in the

cost of cloud service thus depriving cloud computing of one of its most important advantages,

and most importantly as it is forecasted to increase rapidly over the coming years.

Numerous approaches have been adopted for attempting to reduce the power bill of

cloud computing data centers, such as placing data centers at Polar Regions where extremely

low temperatures allow reducing or eliminating the energy required for infrastructure cooling.

However reducing the cooling costs is not the optimum solution as it only contributes to a

small fraction of the total power consumption which is dominated by operational power of

servers. To reduce the power consumed by data centers’ servers several solutions have been

proposed such as server consolidation, sleep modes and Dynamic Voltage and Frequency

Scaling. The first approach of server consolidation tends to consolidate the work load of the

data center into a fewer number of active servers in order to reduce the number of operational

2

servers and accordingly power consumption. The second approach of sleep modes suggests

putting idle servers into sleep modes where they consume much lower power compared to

idle consumption and can wake up from sleep states faster than re-booting. Various sleep

states depend on which components of servers are put to sleep, where deeper sleep states

consume lower power by putting more server components into sleep. The third approach of

Dynamic Voltage and Frequency Scaling specifies several P-states for servers where a server

can reduce its operation frequency by a certain factor specified by each P-state which is

directly proportional to a reduction in power consumption. All these approaches are briefly

discussed and tested within later chapters in this thesis.

Another challenge faced by cloud data centers’ operators is to find efficient load

balancing approaches that accommodates the nature of cloud computing services, fulfill the

requirements of cloud users and satisfy their specified service level agreements while

enhancing data centers’ performance via load balancing. Despite the existence of several load

balancing approaches in literature that are applied to various systems successfully, most of

them could not offer efficient load balancing solutions for cloud computing for being static,

having single points of failure, requiring long transmission delays or long processing delays

due to complexity. Cloud Computing however require algorithms that are dynamic with

automatic resource provisioning for fast adaptation to any updates in the data center’s state,

proactive to over-load situations by preventing them from occurring, distributed without

centralized points of failure to avoid relying the data center’s operation on a single node, and

finally and most importantly perform load balancing decisions without any compromise to

users’ specified Service Level Agreements (SLA).

1.1 Problem Overview

Since it was first introduced in 2007 [148], Cloud Computing has taken over the IT

industry worldwide with a continuous evolution as the demand for its services is highly

increasing. Numerous startup companies as well as well-established ones nowadays are

starting to migrate their infrastructures and services into the cloud. This is a result of the

numerous benefits that cloud computing provides; few of them are reduced costs, ease of

management, and a cost-effective on-demand policy that allows for dynamic provisioning of

resources with minimal upfront investments for customers. However such attractive

advantages of the rising technology come with a price tag. Cloud service providers establish

and maintain huge data centers for providing cloud services, and these data centers are

considered major consumptions of energy in the ICT field. According to studies and

measurements reported in [34] and [81] the amount of energy consumed for operating and

cooling data centers is estimated to be between 1.1 and 1.5% of the total energy consumption

world-wide. An increase in this percentage will cause the energy costs to increase and

accordingly the cost of cloud services, thus depriving cloud services of one of their critical

advantages. Another challenge faced by cloud operators is a side effect for the main

technology behind cloud computing; i.e. Server Virtualization. Although virtualizing servers

allows for sharing hardware resources among several customers and thus an economic

3

operation of data centers, a dynamic allocation strategy is of high importance to avoid

overloading machines with workload that can affect their performance or result in server

hotspots that cannot be handled effectively by cooling systems and could result in server

downtime [160]. Accordingly the need for energy efficient operations in cloud data centers is

crucial for maintaining and evolving Cloud Computing technology.

Besides the energy efficiency problem in cloud data centers, balancing the load

among several data centers is one of the major factors affecting their performance. As cloud

providers offer their services to clients typically via several DCs located at various

geographical locations for satisfying clients’ prescribed Service Level Agreements (SLAs),

decisions on where to route each incoming request has a significant impact on the DC’s

performance as it could lead to overload at some DCs or under-utilization and energy wastage

at others. Selecting the best load balancing criterion among cloud DCs is of high importance

due to the fact that it not only affects DCs’ performance, but also affects prescribed users`

SLAs. Both of these factors need to be taken into consideration while making load balancing

decisions so that none of them is compromised.

1.2 Thesis Contributions

In order to enhance the performance of cloud data centers for achieving energy

efficient operation and taking optimized load balancing decisions, data centers’ behavior has

to be studied first. This thesis introduces an approach for modeling a data center as a queuing

system used to understand system behavior and predict its performance under different load

conditions. This model represents all states at which a DC can be modeled using Markov

Chains where these system states can be solved exactly under Markovian assumptions in

order to gain insight into how DCs operate and which parameters impact their performance.

The main contributions of this thesis are two approaches for solving energy efficiency

and load balancing predicaments in cloud data centers. The first contribution for achieving

energy efficiency introduces a model for data centers that allows for a load dependent

operation of servers so that the number of active servers in the DC at any given time is only

sufficient to serve its current load, where un-utilized servers can be switched-off or put into

sleep mode to save the energy consumed while being switched-on and idle. The proposed

algorithm uses the hysteresis behavior to reduce the frequency of servers’

activations/deactivations by limiting activations of servers only in case of significant load

surges and deactivations only when servers becomes idle to guarantee minimal delays for

users and thus optimal SLAs. It also takes into consideration activation times of servers as

well as reduced service rates for implementing sleep states of servers adopted from Dynamic

Voltage and Frequency Scaling ‘DVFS’ approach. The algorithm is modeled using a two-

dimensional Markov Chain and solved exactly by a novel iterative recursive algorithm under

Markovian assumptions. Proposed algorithm is tested also using OMNeT++ simulations and

implemented on a VMware operated test bed for verification and to test the algorithm under

general assumptions other than Markovian. Through results the algorithm shows its

4

efficiency at maintaining a load-adaptive data center with minimal effects on user’s delay

times without affecting their SLAs while achieving energy saving up to 50% of total DC

consumed power depending on hystereses parameters and how much servers’ frequencies are

scaled during sleep states.

The second main contribution in this thesis is presented through two dynamic load

balancing approaches between cloud DCs. These two novel approaches avoid all drawbacks

of load balancing algorithms in literature by being decentralized with no single points of

failure, performing proactive decisions for enhanced automatic resource provisioning,

adapting to rapid load variations by operating in a dynamic manner, and maintaining

optimized SLAs for cloud customers. The first algorithm namely Local Server System First

‘LSSF’ maintains un-balanced load situations between servers as long as a request can have

its SLAs satisfied at its local DC, otherwise it is migrated to a foreign data center as long as

it’s migration will not affect performance of the foreign DC or its ability to maintain SLAs of

its requests. The second algorithm Shortest Response Time First ‘SRTF’ is an upgrade for the

known Join Shortest Queue ‘JSQ’ load balancing algorithm [76]. Instead of routing a request

to the DC which has the shortest queue size, SRTF accounts for more realistic cases of

heterogeneous servers with various number of servers and diverse service rates by calculating

the expected mean waiting time of the request at its own DC and all foreign DC then routes it

to the one offering the least time. Both algorithms are modeled using a basic example of two

homogenous DCs to construct a two-dimensional Markov Chain representing all combined

states for the two DCs. Models are solved exactly under Markovian assumptions upon which

mathematical analyses are based to provide performance metrics essential for evaluating and

optimizing system’s performance. Analytical results are verified with OMNeT++ simulations

and test bed experimentations which are used for testing more cases of the algorithm that

cannot be handled with more than two DCs under non-Markovian assumptions. The two

algorithms show their efficiency at balancing the load among several heterogeneous cloud

DC while maintaining an efficient operation and most importantly users’ SLAs.

1.3 Thesis Outline

 This thesis provides an overview on cloud computing technology with a state-of-the

art literature study on its architecture and challenges. Essential cloud computing technologies

such as virtualization and migration are explained followed by a highlight on the major

challenges addressed in this work: Energy efficiency and Load balancing. The work is

organized as follows: Chapter 2 gives an overview on cloud computing technology, its

various types and models and why it evolved to be one of the most widely spread

technologies nowadays. The structure of cloud data centers are explained with attention to

most important challenges faced by cloud providers for managing their data centers

efficiently. Separate sections are dedicated for both server virtualization as well as virtual

machine migration as they are two of the most important technologies upon which cloud

computing is deployed. The concept of server virtualization which enables servers to host and

serve more than different customers with different service needs at the same time is explained

5

followed by examples for several hypervisors used currently for performing this task. As

fulfilling users’ requests typically requires creation of virtual machines of different types and

service models, these virtual machines often need to be migrated between servers for

maintenance, energy efficiency or load balancing purposes. Different techniques for VM

migration are also addressed in this chapters with different use cases for each technique.

Finally the chapter concludes with an overview on various factors that contribute to the high

cost of running a cloud data centers that are crucial to consider for maintaining the desired

cost-efficiency of cloud computing technology.

 Chapter 3 in this thesis focuses on the two main cloud data centers’ challenges

addressed in this work. Section 1 of this chapters addresses the energy efficiency of cloud

data centers and explains how its current operation leads to an enormous consumption of

energy leading to an increase in its energy bill as well as performance deficiencies. Several

approaches used for solving this problem and adopted in the algorithms proposed in this

thesis are addressed and explained with detailed reviews on existing implementations for

these technologies in literature. The first of these approaches is server consolidation, where

the load of a data center is consolidated on a smaller number of servers in order to reduce the

number of active servers in the data center. For in-active servers, sleep modes are one of the

explained approaches that suggests putting servers into sleep modes while being un-utilized

so that they can be brought into service when load surges with lower activation time than if

they were switched-off, thus saving energy consumed by idle servers with compromise to

performance. Another approach for an energy efficient operation is to reduce the frequency at

which servers operate through low load durations, thus increasing the service duration of

requests by reducing servers’ service rates instead of complete shut-down or sleep. This

Dynamic Voltage and Frequency Scaling approach ‘DVFS’ has been studied extensively in

literature as being one of the most flexible solutions for dynamic provisioning of data centers’

energy consumption in accordance to their current loads. Section 2 of this chapter addresses

the load balancing dilemma across several data centers, with the main challenges facing load

balancing algorithms currently. Several examples of load balancing algorithms in literature

are introduced and compared, each with its main advantages and drawbacks that motivated

for the two algorithms presented in this thesis; where most of the existing algorithms have

problems of being centralized, re-active to over-load conditions instead of reactively

predicting and solving them, being highly complex thus causing relatively long delays for

taking load balancing decisions or being static algorithms that do not adapt dynamically to

the current data centers’ loads. All these aspects have been avoided in the algorithm

introduced later in Chapter 6.

In Chapter 4 the methodology adopted for carrying out the required analysis,

simulations and implementation of the proposed algorithms is explained. In this thesis data

centers are modeled and analyzed as queuing systems, where the basic queuing models and

their analysis methods are explained the first section of Chapter 4. Queuing systems under

Markovian assumption are also explained as these assumptions are the key for exactly

solving the proposed models. Section 2 follows with an introduction to OMNeT++ which is

one of the simulation software mostly used for network simulations for having built-in

modules for all network types and for its powerful simulation analysis. Simulations are of

6

high importance for verification of analytical solutions as well as for testing the algorithms

under various conditions that the analytical solution cannot accommodate. Another important

verification of the proposed algorithms is by deploying them on existing data centers, thus a

test-bed for a small data center is explained in Section 3 upon which all algorithms have been

tested for gaining insights on how they perform.

The main contributions of this thesis are introduced within Chapters 5 and 6. Chapter

5 starts with explaining the Multiple Hystereses Model with activation overheads that

performs dynamic server consolidation within the data center for adapting the number of

active servers within the data center to its current load. After the model is explained with all

its notations and assumptions in Section 1, Section 2 explains different analysis methods for

studying how a DC performs under this algorithm. The first method is using detailed

mathematical analysis for solving steady-state probabilities of all system states, followed by

the simulation model as well as the test-bed configuration and an outline for used scripts. The

model has two add-ons for more realistic modeling which include accounting for activation

overhead delays spent by switched-off or sleeping servers to start servicing a request as well

as allowing for reduced service rates by servers that is the main idea behind DVFS approach.

Finally, results for the algorithm’s performance using analysis are introduced in Section 3 and

verified with results from simulation and test-bed. The same analysis and verification

approaches are adopted in two sections within Chapter 6 for the two proposed load balancing

algorithms LSSF and SRTF. In each section an algorithm is explained, modeled and analyzed

mathematically followed by a comparison of results from analytical solution, simulation and

experimentation. Algorithms are tested under several load situations and using various sets of

parameters such as different values of migration overhead and different migration conditions.

In the third section of Chapter 6 the two algorithms are compared against each other for better

understanding of which situations are best for deploying each of them. Finally the work

concludes in Chapter 7 with an outlook for future research.

7

Chapter 2 Cloud Data Centers

As a huge part of the IT infrastructure is starting to rely more on cloud computing,

cloud data centers are becoming a major focus in research for being the source of cloud

services. Data centers continue to grow in size, complexity and importance; which triggers

the need to study and understand operational aspects of cloud data centers in order to be able

to enhance their performance. In this chapter the fundamentals behind cloud data centers are

addressed, starting with a definition of cloud computing, its offered services and how its data

centers are structured. Then a brief discussion on virtualization and virtual machine migration

strategies is introduced as they are the main technologies behind the cloud. Finally, the

chapter concludes with a report on the costs encountered by operating a cloud data center.

2.1 Cloud Services

 Cloud Computing has been forecasted by Leonard Kleinrock, one of the founders and

chief scientists of ARPANET (Advanced Research Projects Agency Network) in 1969,

which later was developed into the internet as we know it nowadays. In Kleinrock’s words:

“As of now, computer networks are still in their infancy, but as they grow up and become

sophisticated, I will probably see the spread of “computer utilities” which, like present

electric and telephone utilities, will service individual homes and offices across the country”

[105]. Years later after the huge development in cloud computing, NIST issued a formal

definition of cloud computing: “Cloud Computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing resources

(e.g.: networks, servers, storage, applications and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction” [136].

 Cloud computing has emerged as a new attractive solution for offering large scale

distributed computing for all types of services. Based upon several existing technologies such

as virtualization and utility computing, cloud computing is not a new approach; but rather a

unique operations model making use of existing technologies to run business in a different

way [144]. It aims at providing end-users with a service that is reliable, customizable and

guaranteed in terms of QoS [109]. It has moved computing from local DCs and limited

customer equipment to large and heavily equipped DCs hosted by cloud providers that can

offer numerous services for their users by making use of already existing networks as the

Internet. Services offered by cloud computing can be described as an off-site access to a pool

of shared resources in an on-demand fashion, and are characterized by the following key

factors [136]:

8

i. On-demand self-service

Automatic provisioning offered by cloud computing for its users allows them to

add/remove required resources as needed without service providers being involved.

Cloud users can increase required storage/processing/memory/bandwidth resources or

release them only by filing a request which is automatically fulfilled by the provider.

This eliminates the need for planning for provisioning far ahead to accommodate any

load surges [111].

ii. Broad network access

Users can easily connect to service providers making use of all their offered services

as long as they have access to the network through commonly used standard

mechanisms.

iii. Resource pooling

Cloud providers’ resources are pooled, i.e. shared by all cloud users to provide

multiple on-demand access, which allows for a multi-tenant cloud model. Being a

distributed system; the cloud provides location transparency in terms of hiding the

location details of resources while being accessed, so that a user making use of a

service mostly cannot tell the physical location of the resource hosting this service.

iv. Rapid elasticity

Ease of automatic add/release of resources according to the amount of user workload

is an essential characteristic of the cloud. Elasticity in provisioning of resources

allows for an increase of service efficiency, and leaves users with the impression that

resources are unlimited and can be easily adapted as needed.

v. Measured service

Cloud providers use a pay-per-use model for commissioning their users according to

their actual usage of resources. Resource usage is easily monitored by both users and

providers, which provides mutual transparency and eases metering of resource usage.

Cloud computing is based on two basic concepts: Abstraction and Virtualization [63].

Abstraction refers to hiding all system details from customers and only providing them with

the required services. Details of the physical systems hosting applications are unknown to the

user, as well as locations where data is stored. Requests arrive at the cloud provider and get

processed according to its SLA terms without any information about protocols used,

computation or storage complexity. These details are taken care of by the network and back-

end servers which are responsible for providing the best performance required by requests’

SLAs [150]. Virtualization refers to the idea of creating multiple virtual servers hosted on a

single physical server, where each user is only aware of the virtual server it is currently being

served at. Virtualization is the basis concept behind cloud computing, as it provides

simultaneous execution of various tasks belonging to different users on the same physical

platform. A more detailed discussion on virtualization will follow in Section 2.3.

Cloud providers nowadays provide numerous solutions for individuals and business

platforms; these services can be characterized into three service models, briefly explained and

compared in the following Table 2-1 [33]:

9

Table 2-1: Types of Cloud Services

 Software as a Service

(SaaS)

Platform as a Service

(PaaS)

Infrastructure as a

Service (IaaS)

Type of offered

service

Provides access to

applications hosted at

the cloud provider’s

infrastructure, where

applications can be

accessed via thin or

thick clients. Users can

only make use of the

application without any

knowledge or control

over the infrastructure,

network or operating

systems underlying it.

Provides access to

computing platform

hosting numerous

applications, with full

access to all platform

capabilities and denied

access to the underlying

infrastructure of servers,

storage or operating

systems.

Provides access to

processing, storage,

networking and all

fundamental

infrastructure of a

data center. Users

acquiring IaaS type

of service can install

and use any desired

operating systems

and applications

using the existing

infrastructure.

Characteristics - Central management of

the software at

provider’s

infrastructure, where

providers handle all

software upgrades and

maintenance.

- ‘One-to-many’ service

delivery model.

- Provides a platform for

developing and testing

applications

- Integration with

existing databases and

web applications

- Multi-tenant model,

where multiple users

can be hosted on the

same physical

equipment

- Possible dynamic

scaling of acquired

resources

Appropriate

usage scenarios

- Essential business

solutions that have

fundamental needs, e.g.:

E-mail

- Software with short-

term need or frequent

usage spikes.

- Application

development with

multiple developers,

where ‘Multi-tenant’

architecture allows for

multiple access for

developing and testing

applications

- Businesses with

limited capital to

invest in establishing

own data centers

-Growing businesses

where adding more

equipment is

problematic, or when

spikes of work load

exist.

Examples Mail servers

Database Storage

Application-Specific

Software “APPs”

Google App Engine [70]

Microsoft Azure

Services [69]

Outsourced Data

Centers

10

In their definition of Cloud Computing [136], NIST defined 4 models by which cloud

computing can be deployed, differences between them depend on whether resources are

shared among different users or provisioned exclusively for some of them. The four

deployment models are:

i. Private Cloud

Refers to clouds that are provisioned for use by a single organization and users only

with the organization where access by the general public is forbidden. It can be hosted

by the owning organization or by a third party provider, and the physical

infrastructure can also exist inside or outside organization’s premises.

ii. Community Cloud

Providing less privacy than private clouds, community clouds have the same

characteristics as private clouds but are provisioned for use by selected community of

organizations with common and shared interests.

iii. Public Cloud

Public clouds are available for use by the general public. Hosted at cloud providers;

any user or any organization can acquire access to services offered by the public

cloud.

iv. Hybrid Cloud

Combining two or more of the above mentioned cloud models, hybrid clouds offer

more flexibility to achieve defined goals of data security, resource sharing and service

expansion.

The huge success behind Cloud Computing is not a result of the high technology it was

built upon, but rather due to economic reasons for clients where it is more convenient for

them in terms of cost, feasibility and maintenance to outsource their systems. This computing

paradigm has been attractive for many users and companies that start migrating their services

to the cloud for the following main reasons:

i. Reduced Costs

Since the cloud is characterized by an on-demand service, users can easily rent,

provision and pay-per-use any required resources from the provider without requiring

any upfront investments, which saves users the huge cost of establishing own data

centers with all expensive hardware and software requirements, maintenance and

upgrading costs. From an opposite perspective, cloud computing is also an attractive

service to offer by organizations who tend to have over-equipped infrastructure,

where equipment is only needed to satisfy short peaks of workload but mostly not

fully utilized. By adopting the cloud computing service model, these organizations

make better use of their investment by allowing access of their resources to outside

users across public platforms as the internet.

ii. Scalability of resources

Cloud Computing provides its users with the illusion of availability of access to

infinite resources, where users can easily scale the amount of provisioned resources

according to their needs instead of adding more equipment or purchasing software

systems. This important property of cloud computing eliminates the risks of over-

11

provisioning or under-provisioning of resources by users, where users may provision

the amount of required resources based on durations of high load or low load, so

resources end-up being under-utilized or over-utilized, respectively.

2.2 Data Center Architecture

Cloud data centers are the backbone of all services offered by Cloud Computing, they

host all the physical equipment that are virtualized to provide tailored services for cloud

clients. Structures of data centers consist of rows of racks where each rack carries the

functional servers, switches and storage units that are connected together via extremely fast

communication links. Other additional components in the racks include -but are not limited

to- rack power distribution, built-in keyboard-video-mouse (KVM) and rack-level air or

liquid cooling [95]. Typically, data centers contain thousands of servers connected together

and to storage elements via switches, routers or other network fabrics [144]. To connect all

these data center components together efficient networking architectures are essential, as they

will strongly affect the system throughput and applications’ performance. Also as cloud

services and data centers continue to grow in size, scalability and extensibility of data centers

in terms of physical equipment and their functional protocols need to be carefully considered.

Layered network architecture is one of the most deployed in today’s data centers, an example

is the Three-Tier architecture (3TA) where the data center is divided into three layers as

shown in Figure 2-1.

i. Access Layer

It is the layer at which servers and storage elements organized in racks connect to the

network, where each rack connects to an access layer switch via a 1 Gbps link.

Switches at the access layer relay traffic from/to servers in racks to/from aggregation

layer switches. For redundancy purposes, each access layer switch must connect to

more than one switch at the aggregation layer, typically using 10 Gbps links.

ii. Aggregation Layer

Contains all aggregation layer switches which connect to access and core layer

switches through redundant links. It hosts important functionalities such as location

and domain services as well as firewalls and content switching [91].

iii. Core Layer

Acting as the gateway of data center to the outside network, core layer routers carry

traffic in/out of the data center. It hosts more than one router with redundant links to

avoid traffic bottlenecks and single points of failure or for the purpose of load

balancing.

12

Figure 2-1: Layered Architecture of a Cloud Data Center [144]

Cloud data centers require different types of physical networks to accommodate

different types of access to/within elements of the data center [95], architectures of these

networks can follow one of the following types:

i. Client-Server Network: connects clients of the service provider to their data

hosted on the servers. This network must use a technology widely used by end-

users, such as Ethernet or wireless LAN.

ii. Server-to-Server Network: provides the required high-speed connections between

servers of the same data center. Network type could be Ethernet, Infiniband, or

any suitable high-speed technology.

iii. Storage Access: to provide access for stored data, Fiber Channel could be used for

this type of network to provide fast and efficient data delivery.

iv. Management Network: for managing all data centers’ devices, the management

network may use Ethernet, separate cabling, or exist as a sideband on the

mainstream network.

Many methods are available to provide storage solutions for data centers. If storage

components are not directly integrated with the servers in racks, separate storage bricks could

be added. These storage bricks could be simple ones mounted on the rack slots or high

performance storage units hosted separately in special storage towers and connected to racks

via network links. For providing efficient access to any of these storage types it is important

13

that the data center implements high performance file systems. In general; storage within data

centers follows one or more of the following implementations:

i. Direct Attached Storage (DAS)

Where servers have their own built-in storage, for example in the form of hard

disks attached through Small Computer System Interface (SCSI). DAS has

limitations in terms of size and sharing flexibility, but also has its benefits of low

delay and high performance due to being locally connected to the server.

ii. Network Attached Storage (NAS)

Storage is provided via storage devices connected to the Local Area Network of

servers via Ethernet. As data storage in NAS is file-based, it is easy to deploy with

different types of file-sharing protocols. It provides higher storage capacity than

DAS, as well as simple configuration and administration.

iii. Storage Area Network (SAN)

All storage devices are grouped together in a high-speed network that connects to

servers in the DC providing block based storage. Communication between servers

within the SAN is usually carried over Fiber Channel (FC) or Internet Small

Computer System Interface (iSCSI) to provide data communication at high

speeds. SAN Technology improve storage utilization by consolidating all storage

in a network that can be accessed by any device in the DC. It also allows for cost

reduction by eliminating any extra costs of unnecessary storage.

Finally, for management purposes of data center equipment, a management

infrastructure is implemented by connecting all Baseband Management Controllers (BMC)

found at each server in the data center. This infrastructure is responsible for controlling

switching-on/off of servers, managing hardware and software alerts, maintaining

configuration data of devices in case of breakdown and providing remote management

capabilities [95].

2.3 Server Virtualization

 Virtualization of data centers can be envisioned as an evolution of dedicated physical

owned resources to outsourced, shared and geographically distributed infrastructures that are

able to provide the same level of control and isolation as owned physical resources [95].

Despite its numerous challenges, virtualization is considered the core idea behind cloud data

centers for achieving optimized flexible resource utilization by execution of various tasks

simultaneously over a shared hardware platform [103]. It provides a proficient approach for

managing cloud data centers to achieve efficient resource utilization through dynamic

provisioning and monitoring of resources [88]. Virtualization as a concept has been around

for long, Virtual Memory in multi-programmed paged computer systems with dynamic

address translation at execution time, Virtual Local Area Networks (VLANs), Virtual

Routing and Forwarding (VRF) and Logical Unit Numbers (LUNs) are examples of long-

existing virtualization technologies. However, server virtualization began to be widely

adopted among commodity servers in 1998 when VMware [190] implemented the Virtual

14

Machine (VM) concept on x86 hardware servers by effectively partitioning clock cycles

among different processor tasks [56]. As hardware technologies continue to develop more

powerful servers with increased processing power and storage capacities, VM consolidation

ratios tend to increase and thus arising the need for sever virtualization.

 When properly implemented, virtualization brings numerous advantages to cloud data

centers, including and not limited to:

i. Reduced Costs

The fact that multiple virtual servers can be hosted on single physical server

results in requiring less physical servers at the data center, thus reducing capital

expenditure (Capex) by reducing the cost of infrastructure, cooling, and reducing

the size of data centers.

ii. Higher Utilization

As servers in data centers typically experience very low utilization levels (as low

as 10% [89]), virtualization allows servers to host more virtual machines thus

increasing their work load and utilization, making more use of existing equipment

that is already running and having their temperature controlled.

iii. Availability

Unlike physical servers’ failures which are harder to resolve, virtual servers are

much easier to handle at failure situations by migrating them from failed servers

to another running server. As will be explained in the next section, VM migration

can be done in a fast way without any interruption to the work flow on the

migrated server, thus providing fast and reliable failover scenarios that can be

resolved automatically by the hypervisor.

In addition to its advantages, virtualization subjects cloud data center to a major vulnerability

in terms of security. As data centers host more virtual machines and thus grow in size and

importance, they become more vulnerable to attacks. Strict security measures must be taken

in order to prevent an attack targeting one of the hosted VMs at a server from affecting other

co-hosted VMs.

The concept of virtualization is to add a software layer between operating systems and

hardware -instead of direct installation- to be responsible for installing several VMs with

various operating systems on a single physical server, where this layer is called the

Hypervisor layer or Virtual Machine Monitor (VMM). Virtualization is simply implemented

at cloud data centers by installing a Hypervisor on “bare metal”, i.e. on any server without

requiring a supporting operating system to be installed. A hypervisor can easily create,

provision, manage and shutdown virtual machines on the physical server as per user’s

requests, where each VM is assigned a set of virtual hardware resources upon which it can

install its operating system and host its services. Although physical resources are shared

among all users, this information is not visible to any of them. Figure 2-2 illustrates the

process of server virtualization, where each VM is assigned portion of the virtualized servers’

CPU, I/O, RAM and Disk capacity resources. Usually, service providers tend to perform

overprovisioning of resources assigned to each VM hosted at virtualized servers, where the

15

total resources assigned are greater than existing ones [10]. This approach is efficient because

rarely all VMs will have peak loads at the same time, so different peak loads at different

times will eventually lead to steady utilization at virtualized servers.

Figure 2-2: Layers and Components of a Virtualized Server [89]

Being responsible for all virtualization tasks in data centers, hypervisor

implementations face several challenges for achieving concise server virtualization, such as

[132]:

i. VM Isolation

Virtual machines hosted on the same physical server must be isolated in terms of

execution, so that execution of one VM cannot affect execution of others. Co-

located virtual machines can only communicate together through the hypervisor,

and each has access only to its data and allocated resources. This is most

important for preventing denial of service (DoS) attacks, where one VM’s

improper execution can cause failure to the physical server and thus denial of

service at all other concurrently hosted VMs. This multi-tenancy problem imposes

a huge overhead especially at public clouds, where authors of [20] have reported

experiencing unpredictable and unstable performance while testing

computationally intensive tasks hosted at commercial cloud facilities.

ii. OS Support

Hypervisors need to support multiple types of operating systems to be installed by

VMs such as Windows, Linux, etc… in order to accommodate different

technology requirements.

iii. Minimal Performance Overhead

Overhead resulting from creating and managing of multiple VMs on the same

physical server is required to be minimal for sparing physical resources to VMs.

Also operational expenditure (Opex) needs to be minimized for virtualization to

have an edge over non-virtualized environments where each server is individually

managed.

16

Current implementations of hypervisors provide effective server virtualization as well

as numerous advantages to cloud computing industry. For example, Xen hypervisor [132]

which is implemented by multiplexing of physical resources at a granularity level of an entire

operating system aims at simultaneous hosting of up to 100 VM on a single modern server

while sustaining performance isolation among them. It enables attractive applications such as

dynamic instantiation of VMs and their operating systems, server consolidation and VM

mobility. Kernel Virtual Machine (KVM) is another hypervisor solution for Linux

environments which maintains standard Linux services such as scheduler and memory

management to allow developers to focus on virtualization instead of replacing the core

kernel [72]. Another example is VMware ESXi hypervisor [190] which performs VM

provisioning with intelligent load balancing for enhanced system performance while

maintaining both system-level constraints and service level agreements for users [19].

VMware’s memory mechanism used by the ESXi server is shown in [36], namely the

ballooning technique, which allows de-allocation of memory pages that was previously

assigned to a VM (balloon deflation) to be assigned to another virtual machine (balloon

inflation) without shutting down any of them. This is implemented by loading a balloon

module onto the guest operating system which communicates with the server to perform

balloon inflation when memory needs to be reclaimed and deflation when memory is to be

released [182]. VMware implements other efficient mechanisms such as VMware’s Dynamic

Resource Scheduler (DRS) which acts as the hypervisor and is responsible for the allocation

of virtual machines on physical servers. Its operation is enhanced by Dynamic Power

management (DPM), which performs server consolidation to group virtual machines on less

number of hosts so that lightly utilized servers can be evacuated and either powered-off or

put to a low-power mode. DPM’s approach of operating servers is partly adopted and

modeled among energy efficiency models in this thesis, as will be shown in Chapter 5.

2.4 VM Migration

Migration of virtual machines between different servers at the same data center or

across data centers is one of the most significant advantages provided by virtualization. Being

considered an evolution of process migration techniques [161], migration of virtual machines

provides an efficient solution as elaborated by Clark et al in [39], where they clarified that

migrating a virtual machine including its operating system and applications is more efficient

and avoids many of the difficulties faced by process migration techniques. Basically, a virtual

machine can be migrated to another host within the same Local Area Network (LAN) or to

another LAN across Wide Area Network (WAN) links [9]. Migration within the same LAN

[177] is easier as only the VM is migrated with no need to migrate its storage as well since

NAS storage solutions can still be accessed among the same LAN. While for inter-LAN

migration across WAN links a VM need to be migrated along with its storage, where the size

of CPU and devices’ states are in order of several KBs which is relatively small compared to

the size of memory pages which typically ranges in GBs [24]. This leads to longer migration

times for migrating both entities added to it the overhead for IP addressing and possible

delays to network congestion or limited available bandwidth [137].

17

VM Migration brings several benefits to cloud data centers by achieving efficient

resource management goals without any effect to hosted VMs. The capability of

redistributing the load across servers via VM migrations enables highly responsive resource

provisioning to compensate for any sudden peak loads resulting in hotspots [144]. Among

goals achieved by VM migrations are [145]:

i. Power Management

Performed by server consolidation, where virtual machines from under-utilized

servers can be migrated to other functional servers that are not overloaded in order

to either switch-off under-utilized servers or put them in a low power mode by

reducing their CPU clock rates using Dynamic Voltage and Frequency Scaling

(DVFS) method. Although power efficiency at the data center is achieved at a cost

of performance degradation, careful consideration by power management

algorithms is important to guarantee that customers’ SLAs are not violated.

ii. Load Balancing

VM migration allows for eliminating hotspots in the data center by migrating

workload from overloaded servers to under loaded ones to prevent performance

degradation [155], as well as achieving any defined load balancing strategy

defined by DC administrator among DC resources.

iii. Resource Sharing

VM migration allows for resource-hungry applications to be migrated from an

overloaded server and assigned to another resource-rich server, thus providing

better performance for applications and servers [183].

iv. System Maintenance

As dynamic and periodic system maintenance is of high importance to the

system’s performance and extends its life span [152], VM migration allows for

easier maintenance by shifting VMs from a server during its maintenance duration

without affecting VM’s workload, and shifting them back after maintenance is

complete.

v. Fault Tolerance

A data center that is fault tolerant detects faults and migrates VMs from faulty

servers until they are available again [6], or preferably migration occurs even

before a fault occurs, thus improving system’s reliability.

vi. Mobile Computing

As cloud users are becoming more mobile and increasingly on the move, a user

can require his running application on a desktop to be available on a mobile

device or vice versa [122]. VM migration enhances users’ mobility by migrating

their currently running applications across any desired platform. Another

application is Migrating users among Baseband units ‘BBUs’ within the uprising

technology of Cloud Radio Access Networks CRAN [12].

18

There exist two types of VM migration: live and non-live. Live migration migrates the

VM without any interruption to the workload, thus providing seamless connectivity and

maintaining service level agreements of users. Non-live migration stops the workload,

migrates the VM and continues service again at the destination server. Downtime during non-

live migration time is usually predictable so that the migration decision can be taken based on

whether downtime will comply with or exceed defined SLAs. Each of the before mentioned

types can be classified into different approaches such as pre-copy -which is the default live

migration method for many hypervisors as Xen, KVM and VMware [110]-, post-copy and

hybrid methods for live migration and internet suspend resume and process domain for non-

live migration. All different live and non-live approaches are explained and compared in

Table 2-2.

Table 2-2: VM Migration Approaches

Approach Live VM Migration Non-live VM Migration

Definition

Virtual machine and its hosted applications are

kept running during migration process, where

iterative copies of the VM state are continuously

being copied from source to destination server

finalized by a stop-and-copy approach [98]. The

number of iterations determine the live migration

time.

Virtual machine along with

all its running application

are suspended and

completely transferred to

destination server where it

resumes its workload.

Advantages

- Provides applications with uninterrupted

workflow during migration, thus enhancing their

performance

- Minimal downtime during migration

- Downtime is predictable

- Single transmission of

memory pages as they

don’t encounter

modifications during

migration process, unlike

live migration.

Disadvantages

Extensive consumption of network and DC

resources during copy iterations especially for

memory-intensive applications, thus degrading

DC’s performance if resource consumption is not

carefully optimized [145][110].

Applications’ QoS suffers

degradation due to

downtime during migration

process.

Schemes Pre-Copy Post-Copy Hybrid

Internet

Suspend

Resume

[117]

Process

Domain

[162]

19

Definition

- VM’s memory

is transferred

first to the

destination

server in

rounds, then

VM is resumed

at destination.

- Each round

transfers dirty

memory pages

which have

been modified

at source after

migration [24].

- Minimum

VM state is

transferred

and resumed

at destination

server first,

followed by

memory

pages pushed

from source

server and

requested

memory

pages by the

VM [121].

- Combination

of pre and

post-copy for

enhanced

performance.

- Starts with

bounded pre-

copy phase,

followed by

post-copy

migration of

minimal VM

state to the

destination

server.

After the

VM is

suspended,

it is

transported

to the

destination

server via a

distributed

file system.

Zap system

is

introduced

for

transparent

process

migration of

unmodified

applications

by

transferring

a process

domain to

destination

server

Advantages

Uninterrupted

workload for

VMs and

applications

- Reduced

VM

migration

time and

downtime

- Enhanced

performance

for write-

intensive

applications

[176]

Additional pre-

copy phase

reduced page

faults as a

large

percentage of

memory pages

are already

transferred

during pre-

copy phase

Trivial

process as

migration

becomes a

transparent

process

[145].

Low

overhead

general

process

migration

method

Disadvantages

-Longer total

migration time

- High

occupation of

system

resources by

migration

daemon and

hosted

applications,

which increases

SLA violation

probability of

applications

[145].

- In-efficient for

write-intensive

Possible

service

degradation

due to page

faults as a

virtual

machine

might

request

memory

pages that

are not yet

transferred to

the

destination

server

Although

hybrid method

perform much

better than

post-copy in

terms of page

faults,

applications’

performance is

still affected if

memory

dirtying rate is

higher than

memory

transfer rate.

Lack of

locality

heuristics

and secure

channels for

efficient

data transfer

[145].

- Prone to

security

threats

- Lack of

definite

decisions on

which

process

domains are

to be

migrated

and when.

20

applications as

number of

rounds for dirty

data transfer

increase rapidly

[176]

 Throughout load balancing algorithms proposed in this thesis at later chapters, the

type of VM migrations across servers or data centers is not strictly specified. In our work

virtual machines are migrated before starting their service at the source server, so the problem

is more of a scheduling problem for virtual machine requests where challenges of life

migration are not applicable and accordingly not considered. The only consideration in the

proposed algorithms is the migration time for a virtual machine request, which is the main

element to consider while making migration decisions.

2.5 Costs of operating Cloud Data Centers

 The cost of operating a system 24/7 with acceptable latency is crucial, and being

aware of these costs is the main step towards reducing them. According to [84], 53% of the

total expenditure of operating a data center is consumed by powering and cooling of data

center equipment. Virtualization has been of much benefit to running system costs, as using

single physical server for running multiple systems deployed as VMs have reduced the cost

of equipment, cooling and data center space, thus reducing overall Capex. Opex also

contribute to the overall running system costs, where compared to non-virtualized data

centers, managing VMs deployed at a physical server by a hypervisor requires more attention

due to sharing and contention, unlike individually deployed systems. According to authors in

[19] a considerably large amount of Opex in a virtualized data center is consumed for

determining optimum VM-to-host- mappings, and updating these mappings for consolidation

or load balancing purposes. As for the cooling costs, cooling infrastructure of a Data Center

could be quite expensive due to its numerous components which include large chiller plants,

fans and air-circulation systems. Despite the heavy equipment, the cooling infrastructure

might not always be able to handle the offered thermal load, which leads to difficulty at

loading the racks to their capacity [95].

 Another contributor to the cost of operating a data center is its architecture.

Nowadays, the most dominant architecture for cloud data centers is in the form of large data

centers that are managed in a centralized fashion. Despite its efficiency due to the effect of

economy of scale [144], this architecture has high expenses for equipping data centers and

cooling infrastructure. A counter initiative has been advocated by authors of [93] and [184],

where they suggested switching to a distributed architecture by having smaller sized data

centers. This approach replaces large data centers hosting in order of tens of thousands of

servers consuming tens of Mega Watt power by smaller distributed data centers hosting only

21

thousands of servers that draw an amount of power in order of hundreds of Kilo Watts [18].

Arguments supporting this approach are that smaller data centers are cheaper to build, require

less cooling infrastructure, and they can be geographically distributed. These arguments

result in relatively lower energy consumption than centralized approach, as well as lower

response times for users especially for time-sensitive applications, since distributed data

centers are physically closer to users than a central entity and are appropriate for

‘embarrassingly distributed applications’ as e-mail by acting as nodes for content distribution

networks [93]. As reported in [149], reducing the latency of users’ requests increases

performance and directly increases business revenue. Google and Amazon had reported a

drop by 20% and 1 % in their revenues and sales when their requests' latency increased by as

low as 500 and 100 milliseconds, respectively [1]. This clarifies the need for careful

consideration of a data center’s performance in order to increase its revenue and maintain

users’ service level agreements. Important considerations for selecting data center locations

are places that are cheap to rent, provided by cheap electricity resources as well as water

supplies for cooling, and cheap manpower wages.

Authors of [93] reported that data centers are usually managed in-efficiently with a

minor utilization rate as low as 10%, thus resulting in wasted operating costs. Reasons behind

this include:

i. Equipment provisioning for long durations

As equipment purchases is not a task done within short durations, data center

administrators usually purchase components in bulk in order to last longer times

and increase time between purchases. This usually leaves a remarkable amount of

the equipment unutilized.

ii. Inexact fit of applications to servers

As applications make use of servers’ memory, CPU, network and storage

elements, it is not necessarily the case that hosted applications fully utilize all

these components, thus leaving behind unutilized resources.

iii. Resource Overprovisioning

Administrators usually tend to perform overprovisioning by assigning more

resources to an application than it regularly uses by planning for peak loads,

which results in unutilized resources during normal load operation times.

iv. System level resilience

Administrators usually design data centers while taking the important factor of

redundancy into consideration by planning for redundant equipment so that a data

center never fails. As redundancy level increases infrastructure cost also rises

along with the administrative effort to manage all redundant infrastructure to

handle all failure scenarios. Authors of [18] proposed an approach to reduce such

costs by allowing data centers to fail while arranging for other data centers to

handle their workloads, thus removing several redundancy layers from the data

center.

All these factors leading to in-efficient use of data center resources result in increased

running cost, and can be resolved by dynamic assignment of resources to applications on-

22

demand according to current system load, as will be introduced by proposed energy

efficiency model in Chapter 5.

23

Chapter 3 Challenges of Virtualized Cloud Data Centers

 This chapter introduces two of the main challenges that face cloud data centers’

implementation nowadays. First the problem of energy efficiency is considered as the huge

amount of energy consumption is one of the most critical downsides of cloud computing data

centers. Numerous solutions have been proposed for reducing the consumed energy and

achieving energy efficiency, such as server consolidation, sleep modes and Dynamic Voltage

and Frequency Scaling. Within the following subsections each approach will be explained

and discussed briefly, along with implementation examples from literature. Second is the load

balancing paradigm; although it has always existed in different types of networking systems,

special considerations must be taken while introducing existing algorithms to the cloud due to

its unique operational model. In the second subsection a review on most of the existing load

balancing approaches is introduced where different approaches are explained and compared

to give a complete view on the state-of-the-art in this area.

3.1 Energy Efficiency of Cloud DCs

As cloud computing becomes more popular and more companies start migrating their

business into the cloud, cloud providers increase the sizes of their data centers to

accommodate the increasing demand. This growth in data center components and capabilities

is accompanied by a corresponding increase at equipment size as well as power consumption.

Since 2008 the ICT industry has been considered among the top energy consumers by the EU

advisory group [76] for manufacturing equipment, using and disposing them. As reported in

[34] and [81], between 1.1% - 1.5% of the total world-wide generated energy was consumed

by operating and cooling of data centers, and this percentage was foreseen to grow annually

by 18%. In order to evaluate data centers’ energy efficiency authors of [178] defined the

metric Power Usage Efficiency (PUE), which is a ratio between the total amount of energy

consumed by the data center and the amount of energy consumed by servers. Typically, an

inefficiently managed data center will have a PUE value in the range of 2.0 - 3.0, a top tier

data center will have a PUE of 1.2, and a well-managed facility could have a PUE of 1.7, but

this number lies much below the average for the data centers among the world [18][124]. As

explained in other words by authors of [18], a PUE of 1.7 reflects that for every energy Watt

delivered to the data center only 59% of it is used by processing server, while 33% is used by

cooling infrastructure and 8% is estimated to be lost due to power distribution.

For example, a typical data center of size 500 m
2

consumes daily an estimate of

27,048 kWh [4], which is the amount of power required for supplying around 2500 houses in

the European Union [31]. Being one of the market leaders in the field of cloud computing,

Google estimated the amount of energy consumed by its data centers in 2013 [87] to be 260

million energy Watts, equivalent to 0.01% of the total energy of the globe that is sufficient to

power almost 200,000 homes. Huge as this amount of energy consumption is, it is foreseen to

24

increase. In a survey by [3] among several data center managers, 38 % of the sample had

solid plans for building new data centers and 47% planned for expansions or renovations for

their existing ones, which raises concerns towards the expected rapid growth in data centers’

sizes and energy consumption rates. Recently, huge DCs have been installed in Polar Regions

where the gain by energy reduction over-compensates additional transmission costs.

Accordingly, approaches to reduce the amount of power consumed by data centers are

topics that have been and still are of huge interest in current research and literature. ‘Green

Computing’ is the name given to approaches for reducing energy consumption in computing

centers. Green computing defines a set of procedures according to which computing is done

efficiently, while guaranteeing minimal energy consumption by resources. Before briefly

explaining three among the most common procedures in the following sub-sections, reasons

for in-efficient consumption of energy are to be considered first. Authors in [172] identified

two reasons of energy in-efficiency where consumed energy is either lost or wasted. Lost

energy refers to energy that was not consumed by the data center for its main task, i.e.

computing. This includes energy lost during transportation, conversion, or consumed by

secondary supporting systems as cooling which consumes around 0.5-1 Watt of energy for

each Watt consumed by computing servers [40]. Wasted energy refers to energy that was

used by servers of the data centers without producing an output, i.e. energy consumed by

idle/sleeping servers, where an idle server can consume more than 50% of the amount it

consumes while running at full power [74]. Energy waste is typically encountered by data

centers where servers run idle or at a low utilization level between 10-50 % [100]. According

to [4] a data center that operates at 20% of its operational capacity approximately consumes

80% of consumed power when it runs at full capacity. IBM reported similar results in its

report [77] where it estimated an amount of 85% of data center computing equipment to be

idle.

While reducing lost energy is not related to the operation of servers in a DC, it can be

done by introducing new technologies for minimizing the energy required for DC supporting

systems, and will not focused upon in the context of this thesis. The main focus will be on

approaches for reducing the energy wasted by servers running unnecessarily, as there is a

huge space for development in this area due to fluctuating load levels in data centers during

users’ idle times at which saving computing and cooling power could be achieved [51]. This

was also reported by Intel [2] where they estimated that the amount of power consumed by a

data center can be reduced by as much as 20% without any impact on its performance by

reducing wasted energy. Approaches include switching-off or putting un-/under-utilized

resources to sleep as implemented in VMware’s Dynamic Power Management (DPM) [19] or

keeping them switched-on at low voltage and frequency levels using DVFS (Dynamic

voltage and Frequency Scaling) [167]. These methods will be implemented, modeled and

discussed thoroughly within Chapter 5 with the aid of Queuing theory and simulation tool.

 However few research work have considered methods for energy reduction that are

aware of the system performance and maintain service level agreement of users, which is the

main consideration for this work. Reducing energy consumption usually means reducing

system utilization and thus affecting system’s performance in terms of quality of service and

25

experience for users. Designing algorithms that takes both requirements into consideration

has only been addressed few times in literature. Authors of [154] illustrated this conflict by

an experiment using a 13-node test bed where a power manager and a virtualization manager

were deployed separately to monitor the unique effect of each of them. The experiment

concluded that mostly violations in service level agreements and power consumption

threshold occur at the same time and that they are strongly correlated as they cause one

another. In other words, when the level of power consumption increases the power manager

reacts by reducing the frequency of CPU cycles to reduce it, which causes violations of SLA.

SLA violations on the other hand cause virtualization manager to increase frequency of CPU

cycles to maintain SLA levels resulting in power threshold violation, and so forth. Thus,

algorithms that consider aspects of power efficiency as well as users’ SLAs are of much

importance to maintain a balanced and efficient system performance. In the following

subsections we discuss different approaches for implementing energy efficiency, along with

references to state-of-the-art implementations from literature.

3.1.1 Server Consolidation

 Server consolidation refers to the method of consolidating work load of the data

center on fewer number of servers so that lightly loaded servers can be shut down or put on

low-power mode. It is an effective approach for minimizing the number of active servers and

thus the amount of energy consumed by the data center for achieving better utilization of

system resources. In cloud data centers virtualization has made it possible via migration of

VMs from low-loaded servers to under-utilized servers, allowing the earlier to be shut down

and the latter to be efficiently utilized. The process of server consolidation includes several

decisions that need to be performed by a consolidation framework, where different

framework implementations differ in their handling of these decisions which are explained

below as stated in [151]:

i. Resource Assignment Policy

It describes how system resources are assigned to VMs, where resource mapping

could be done in a static or dynamic fashion. Frameworks assigning resources

statically grant a VM the maximum amount of resources it could need upon

deploying it to a server. On the other hand dynamic assignment allocates

resources on-demand based on VM’s current work load. Most consolidation

frameworks use the more energy efficient dynamic allocations such as in [197]

and [52], as algorithms following static allocation criteria e.g.: [169] suffer from

inefficient VM placements compared to dynamic assignment since not much VMs

can be packed on one server if each VM occupies its maximum capacity [68] .

ii. Architecture

Represents the architecture of the consolidation framework where it can be

centralized or decentralized. Decentralized approaches as implemented in [7]

show better efficiency and reliability as they scale well with increasing system

size and eliminate single point of failure risk experienced with centralized

approaches, such as centralized approach implemented by authors of [171].

26

iii. Co-location Criteria

It is the criteria upon which decision of which VMs to be placed together is made.

Co-hosting particular VMs together can be done for communication purposes

where the communication cost needs to be reduced e.g.: [9] [52] , for increasing

availability of shared resources e.g.: [123] [174] or energy efficiency purposes as

will be addressed shortly in details.

iv. Migration Trigger

Decides when a particular VM is to be migrated. This trigger could be computed

using several approaches such as scheduled migration where a schedule is defined

so that an evaluation of the system is done to decide whether trigger needs to be

activated, e.g. [123]. Triggered migration could also be based on historical data to

predict future load behavior, e.g.: [52] [67] or it could be based on heuristic-based

trigger as done in [34] [169] [8].

v. Migration Model

Decides how the VM will be migrated depending on the nature of its hosted

applications. As previously discussed in Section 2.4, migration techniques include

pre-copy, post-copy or hybrid approach.

Another important property of server consolidation mechanisms is presented by

authors of [144], where they highlighted the necessity of automated service provisioning in

cloud data centers in order to have close-to-instant response to rapid load fluctuations. They

have specified steps for reaching automated provisioning through constructing application

performance models for predicting demands and adjusting allocated resources and

performing consolidation automatically. Although using proactive algorithms for predicting

application demands ahead and allocating required resources accordingly seems more

favorable than the reactive method, they require high system processing capabilities for

constructing traffic models and continuously calculating predicted load and required

resources to accommodate this load. An efficient solution is to use reactive algorithms with

fast responses to variations in load, such as the method proposed in this thesis where the

number of servers required for serving arrivals to a data center is automatically provisioned

every time a request arrives to the system, thus providing a fast responsive consolidation

framework with minimal overhead.

Server consolidation for energy efficiency has been explored heavily in research

where several approaches have been proposed for this problem. In [34] EnaCloud approach is

proposed which implements dynamic live placement of virtual machines in a cloud data

center upon the minimum number of servers for maintaining energy efficiency using heuristic

algorithm. It models the VM placement problem as a bin packing problem, where servers are

loaded with VM requests until reaching their maximum capacity while accounting for

variable amounts of resource a VM can request. Another approach is adopted by authors of

DT-PALB algorithm (Double Threshold Energy Aware Load Balancing) [78] by considering

servers’ utilization percentages where VMs hosted at a server with utilization level below a

threshold level of 25% are migrated to another server to shut off the current one. Higher

threshold level is determined at 75% CPU utilization, where a new VM arriving when all

servers are at or exceeding this level will be hosted at an idle server brought into operation. A

multi objective optimization problem for VM placement is introduced in [193] where authors

27

propose an ant colony multi-objective algorithm for minimal energy consumption with

simultaneous efficient usage of resources. Similarly, authors of [47] divide the allocation

problem into three single objective problems for optimizing energy consumption under

constraints of VM performance and vice versa, followed by a third optimization for a

combination of both.

A few significant approaches in literature have considered both energy efficiency of

data centers as well as users’ SLAs while proposing implementations for server

consolidation. As the goal of server consolidation is to co-host several VMs upon shared

resources of smaller number of servers, it directly impacts the amount of resources assigned

to each VM and thus could affect performance of its hosted applications as well as service

level agreements of its users. Although infrastructure as DeSVi introduced in [179] was

solely developed for the detection of SLA violation, it is important that consolidation

infrastructures take it into consideration in order to prevent violations instead of reacting to

them. Authors of [7] propose a method based on determining upper and lower adaptive

thresholds for server utilization to perform dynamic consolidation while attaining users’

service level agreements, where these thresholds could be adapted automatically depending

on system’s requirements of increased energy savings or enhanced SLAs. In another paper by

the same authors [9] they show simulation results for VM dynamic allocation heuristics based

on performance of servers’ CPUs. In their approach a VMM keeps track of all nodes and

their utilization levels to decide if VMs need to be migrated in cases of overload, where a

local manager decides upon which VMs will be migrated and where. Authors show that

compared to a data center that is not power aware, data centers implementing energy

efficiency heuristics show an 83% reduction of energy consumption and an improvement of

66% when compared to others implementing only DVFS solutions.

In [197] authors propose an algorithm for SLA violation decisions and migrates these

VMs to another server where minimum power could be achieved while utilization is

maximized. Algorithm runs in two steps where the first step is to detect overloaded servers

and VMs exposed to SLA violations, followed by the second step of migrating VMs in a

decreasing order of their resource consumption intensity to be migrated to underutilized

servers until they are utilized maximally. Another aggressive consolidation technique with

consideration to SLAs of users is described in [104] where authors describe current

consolidation frameworks to be ‘rigid’ as they consider requested resources by VMs to be

fixed. However in their approach this assumption is replaced by a more flexible one as they

suggest adjusting/reducing the amount of assigned resources to the VM as long as its SLA is

not affected. This treatment of VMs as ‘moldable’ allows for reducing assigned resources per

VM thus allowing more VMs to be co-hosted by the same server, where the modified

resources per VM and VM to server mappings are decided by a Genetic algorithm. In their

paper authors also investigate how to minimize the transition time between initial system

state and the modified state using Genetic algorithms.

Table 3-1 provides a summarized comparison among all previously discussed server

consolidation approaches. As all these algorithms tend to perform consolidation for energy

efficiency, a few pitfalls of this process that are only accounted for by few algorithms and

must be considered in future research while attempting to reduce consumed energy include

[151]:

28

i. Overlooking Migration overhead

As some algorithm perform migration decisions without consideration to the

overhead latency caused by migration that highly affects SLAs of virtual

machines.

ii. Aggressive consolidation with excessive VM Migrations

Some consolidation frameworks tend to perform server consolidation aggressively

by hosting VMs onto servers till the latter reach their maximum CPU utilization,

without paying attention to other shared system resources such as memory, cache

and networking elements which could cause system instability [52]. Authors of

[97] highlighted this problem when the usage of one resource at a server could be

blocked due to insufficiency of another resource, and proposes heuristics for

efficient VM allocation and efficient use of resources.

iii. Co-Location criteria

Although considered by some algorithms, many of them overlook relations

between VMs that must be considered for optimal placement. For example VMs

that communicate regularly should not be placed into two distant servers, but

should be hosted at two servers on the same LAN to reduce communication

latency.

iv. Utilization Prediction Accuracy

As predicting servers’ utilization is the main triggering point for most

consolidation algorithms upon which consolidation decisions are made, it must be

performed dynamically using efficient heuristics such as those used by [9], [7] and

[174]. Another important prediction issue is estimating the amount of resources

required by an application from its hosted server, which could be performed

application profiling as used by [156].

v. Security

Although energy efficiency is a major issue, security of users’ data must not be

compromised while consolidating servers’ loads. In some scenarios where

consolidation might violate security policies as placing data from competing

consumers at the same platform, it should not be performed.

vi. Residual Resource Fragmentation

An important aspect referred to by authors of [97] is the waste of residual system

resources after fragmentation among VMs. As VMs always experience variable

loads, the amount of resources assigned to VMs hosted at a physical server varies

according to the load leaving few resources that could not be enough for hosting

another VM. But while examining the whole data center, the sum of all residual

resources at each server can accommodate one or more VM. Authors propose an

algorithm for rearranging VMs intelligently to concentrate residual resources on

small number of physical machines in order to be able to host more VMs.

29

 Table 3-1: Comparison between Server Consolidation Frameworks

Algorithm Type Description
VM Placement

Criteria

Conside

-ration

for SLA

EnaCloud [34] Dynamic Proposes a heuristic that is

energy aware for solving a

bin-packing problem of

optimal VM Placement

with overprovisioning of

resources

Fully load each server

with VMs before

placing VMs

elsewhere

No

DT-PALB [78] Static Defines a lower threshold

for deactivating

underutilized servers and

an upper threshold after

which new servers are

allowed to be activated

VMs are placed at

servers one by one

until a server reaches a

75% utilization, after

which a new server

accepts VMs

No

Multi-objective

Ant Colony

[193]

Static Describes a multi-objective

optimization problem for

energy reduction and

optimal resource utilization

simultaneously

Fully load each server

with VMs before

placing VMs

elsewhere

No

Beloglazov et.al.

[7]

Dynamic Adaptive thresholds for

server utilization upon

which decisions of which

VMs to migrate and onto

which servers are made

VMs are placed at

servers where they

will cause least power

consumption

Yes

Beloglazov et.al.

[9]

Dynamic Energy efficiency

heuristics for detecting

overload situations and

migrating VMs from to

less loaded servers with

attention to their QoS

Allocate VMs to

servers where their

SLA will not be

violated

Yes

He et al. [104] Dynamic Adjusts amount of assigned

resources per VM in order

to increase number of VMs

hosted per server as long as

VMs’ QoS is not affected

Fully load each server

with VMs while SLAs

are not compromised.

Yes

Cao et.al. [197] Dynamic Detects servers which are

overloaded and runs an

algorithm for detecting

which VMs are at risk of

SLA violation and are

candidates for migration to

a less loaded server

VMs are migrated and

placed to servers in a

descending order of

the amount of

resources they require.

Yes

Borgetto et al.

[47]

Dynamic Optimizes both system

performance and power

consumption through three

single objective

optimization problems.

Efficient loading of

servers by fully

loading each server

before switching-on

idle server

Yes

30

Rao et al. [97] Dynamic Reduces residual resource

fragmentation by

redistributing VMs among

servers to concentrate

residual resources on less

number of servers to make

use of them.

VMs are placed to

servers such that

residual resources are

minimized

Yes

3.1.2 Sleep Modes

Switching-off idle servers or putting them to sleep is the basic idea for reducing their

energy consumption commonly referred to as Dynamic Power Management (DPM). Energy

consumed by servers is defined as the amount of performed work during a time duration,

whereas power is the rate at which work is performed. Power consumed by servers can be

classified into two major elements, a static and a dynamic one [59]. Static element of power

consumption refers to the amount of consumed power to power on the server regardless of its

workload, while dynamic element is load dependent and is affected by variations in current

load, CPU clock frequency, system current and capacity, etc. . Saving the dynamic portion of

energy consumption can be achieved through reducing approaches as Dynamic Voltage and

Frequency Scaling DVFS as will be discussed in the following subsection. Whereas in order

to save power consumed during idle load periods reducing the static element of power

consumption is the only solution, which is targeted by server sleep modes. The amount of

power consumed by idle servers is not trivial; it contributes with 66% of the maximum power

consumption as reported by authors of [146] who propose a model for prediction of idle

power consumption by considering numerous server types characterized by various hardware

structure and energy-consumption models by the different hardware components. The

solution of reducing idle power consumption can be achieved according to predictions by the

operating system on the expected idle interval and expected work load, where servers can

enter any state among a group of defined C-states where high C-state number indicates

deeper sleep states, lower energy consumption and longer latency for the CPU to become

active again. CPU C-states and their related interfaces are defined by the Advanced

Configuration and Power Interface (ACPI) for x86 systems [30].

Numerous architectures for implementing sleep modes for energy efficiency in

virtualized environments have been proposed in literature, where virtualization imposes an

added constraint before switching-off a server or putting it into sleep mode that all its hosted

VMs are idle. An approach for energy conservation ‘PowerNap’ is introduced in [53] which

reduces energy by putting idle servers into sleep modes with low energy consumption and

minimizes transition times in and out of these states when load spikes occur. By analysis of

real-life traffic scenarios in data centers authors of this paper demonstrate that data centers

experience idle periods almost 60% of the time, with idle intervals averaging around 1second.

Powernap provides the ability to transit the system between two states: active state where

system runs operates at maximum speed and nap mode with minimal energy draw with

bounded transition delay in the range of 1-10ms. It also introduces RAILS ‘Redundant Array

for Inexpensive Load Sharing’ which is an algorithm for improving efficiency of power

supply through sizing modules providing power to the DC for meeting PowerNap’s demands

of power supply. Although PowerNap outperforms DVFS and similar approaches at durations

31

of low utilization [53], it is not the best approach to adopt during high utilization durations

when transition delay could affect system’s performance. Authors of [23] introduce NapSAC

algorithm which predicts the expected workload density using several heuristics in order to

find out the number of servers required to be active for serving this predicted load under

given SLAs. By predicting incoming load servers can be switched-on/off accordingly before

load arrives so that transition times do not affect users’ SLAs. A similar approach for right-

sizing the number of active servers inside the data center to be load dependent is introduced

in [118]. This approach introduces an offline algorithm for calculating the required number of

servers through an optimization problem, followed by an online Lazy Capacity Provisioning

algorithm that is proved by the authors to be performance- and cost-competitive in

comparison to offline algorithm.

Another sleep-advocating algorithm is introduced in [54] namely ‘DreamWeaver’

which facilitates entering deep sleep states at servers with multiple cores running different

requests. DreamWeaver operates in two stages; first stage is done by Weave scheduling

which coalesces idle and busy periods among all system’s cores to allow all of them to

execute requests at their highest efficiency then go into sleeping state at the same time.

Second stage is carried out by a Dream processor which monitors incoming workload while

cores sleep and determines for how long can incoming requests be stalled to allow for more

sleeping time of cores and thus more energy savings without affecting users SLAs. As being

workload dependent is a main advantage of DreamWeaver, added delays for stalled requests

arriving while system is in sleep state is a main downside. Similar to DreamWeaver the

approach of delayed activation has been adopted by many algorithms in literature. An

example is proposed by authors of [38] who introduce a vacation scheme concept where

traffic is reshaped into bursts so that a server can wake up to serve the burst and return into

sleep state again, thus maximizing sleep durations. In [37] authors suggest procrastinating

waking up of servers as long as arrivals’ tail latency constraints will still be satisfied while

considering variability among different arrival requests. Accordingly their decisions on when

to wake servers up are dynamic and depend on the type of buffered arrivals. Authors of [115]

provide an enhancement to these approaches by delaying both activation and deactivation of

servers. Delayed activation allows a server to remain in sleep mode for a random time even

after an arrival occurs. It offers extended sleep times and thus lower power consumption with

a tradeoff of increased latency for users’ requests. On the other hand Delayed deactivation

keeps the server running for a random time even if there are no arrivals to be served. It allows

instantaneous service for arrivals occurring while the system is idle and running with null

reduction in energy consumption. This work provides a Markov Model for studying the

system, solves it under stationary conditions to study the effects of delayed activations and

deactivations, and come to the interesting conclusion via analysis and simulation that when

both delay durations are fine-tuned they can reduce energy consumption as well as users’

latency.

Stochastic modeling of data centers as queuing systems for studying the effects of

DPM models has been approached by many other authors in literature. In their work

introduced in [192] authors also introduce a Markov modeling approach for studying the

effects of Greedy sleeping policy, Prediction, and Accumulate and Fire policies on both

energy consumption and delay. Another model for servers working under adaptive DPM

policies as a Markov-modulated process is introduced in [198] where an offline calculation of

32

optimal DPM policies is performed using Markov decision processes, then chosen policies

are switched upon online to optimize performance. In [55] authors propose a different

approach for energy reduction via sleep modes by formulating the problem of deciding states

of servers either active or sleeping as a constrained Markov decision process which is then

solved to find the optimum power management solution in the data center. Following

decisions upon server states a task broker takes over by distributing incoming requests among

active servers so that their SLAs are maintained. Similar work is done in [180] using

continuous time Markov Chains to find optimal on/off policies for single server systems,

which is extended to a server of general service distribution in [113] and further more into

multi-server systems in [73]. Extensive studies have also been performed on sever farms with

set-up costs for energy efficiency by Gandhi et al. in their publications [14], [16], [17] and

[13]. Although many of these references are very similar to the modeling work presented in

this thesis, the work presented here provides many additions such as investigating both sleep

states and DVFS methods under Markovian and non-Markovian assumptions. Our analytical

results are also packed with results from simulation as well as experimentation on real

systems.

All the above mentioned approaches for implementing sleep modes for energy

efficiency are concerned with putting only servers into sleep modes. The reason behind that is

that servers and CPUs consume the largest portion of energy among other components in the

data center for running out computational tasks. Other approaches propose implementing

sleep modes at other components in the data center such as network infrastructure as it

consumes approximately 30% of the data center’s energy [48]. Suggested elements to put into

sleep include whole network components such as routers and switches, line cards and

network interface cards or network bundles and links as proposed in [159], [32], [135] and

[189]. Rate adaptation for network links is also another approach that has been explored in

[159], [46] and [125].These approaches will not be addressed nor discussed in the context of

this thesis as the main focus is on saving energy consumed by servers.

In their experimentations on existing data centers’ servers with real traffic traces for

testing sleep modes efficiency, authors of [14] show that sleep modes could achieve up to

50% energy savings if the power used during sleep states is less than half the power

consumed during idle states. But as attractive as sleep modes can be for achieving energy

efficiency, they are not suitable for all load situations. As transitioning among different

system C-states requires a period of transition time that is even higher when the transition is

performed between off/on states, sleep modes incur delays which could affect quality of

service of applications and users’ SLAs as well as an energy penalty due to power spike at

disk spin-up [99]. According to [100] sleep modes are only beneficial when idle periods are

relatively long, which is not usually the case in data center environments where servers are

usually lightly utilized with small tasks. Also for situations when load arriving to the data

center is highly bursty sleep modes will degrade system performance due to the relatively

long transition durations [181]. This raises the need for dynamic algorithms for servers to

self-scale their CPU frequency according to offered load, as will be explained in the

following subsection.

33

3.1.3 Dynamic Voltage and Frequency Scaling

 Dynamic Voltage and Frequency scaling is an approach for reducing the frequency of

CPU cycles of servers when idle or experiencing low workloads in order to reduce their

operational voltage and accordingly their energy consumption. The amount of power

consumed by a server can be estimated using equation 3.1:

 𝑃 = 𝐶𝑓𝑢2 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (3-1)

where C is the sum of capacitances across the circuit, f is the frequency at which servers’

operate, u is the voltage supplied and 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 is the static power consumed due to leakage

mechanisms [58]. As the equation shows, the amount of consumed power is directly

proportional to the operational frequency and square the operational voltage which is

frequency dependent, thus reducing frequency will reduce voltage and cubically reduce the

consumed power.

 To perform this operation, DVFS reduces the amount of instructions that a processor

issues with a period of time, thus reducing its performance by introducing more delays but

with an advantage of reducing its energy consumption[181], making it an approach that is

only suitable during average to low loads. Accordingly when implemented in a virtualized

environment as cloud data centers, a server can only apply DVFS schemes if all its hosted

VMs and applications can still maintain their SLAs. As energy depends on both the amount

of power consumed as well as its time duration, reducing consumption must be done through

reducing consumed power during non-idle periods without highly extending those durations

[181]. Depending on the current system’s workload, the operating system can choose to enter

a state among several P-states (Performance states) which define combinations of voltage and

frequency values. CPU P-states and their related interfaces are also defined by the ACPI [30],

where a high P-state number indicates a state of low frequency and low power consumption.

For example, state P0 indicates a state of highest frequency, P1 has lower frequency, P2’s

frequency is even lower, etc... Examples of P-states supported by an Intel Pentium M 1.6

GHz processor are shown in Table 3-2 [5] [65].

 Table 3-2: P-states of an Intel Pentium M 1.6 GHz Processor

P-State Frequency Voltage Power (Watts)

P0 1.6 GHz 1.484 V 25 W

P1 1.4 GHz 1.420 V 17 W

P2 1.2 GHz 1.276 V 13 W

P3 1 GHz 1.164 V 10 W

P4 800 MHz 1.038 V 8 W

P5 600 MHz 0.956 V 6 W

This method works best when idle periods are frequent and long, otherwise it can result in an

energy consumption overhead [172]. Another trade-off for DVFS is that energy should be

enough reduced to compensate for the longer time it will take the server to process requests

under lower frequency [57]. Nevertheless, DVFS method is considered an efficient method

for achieving energy efficiency due to the following reasons [95]:

34

i. Power consumption is directly proportional to the frequency and to square of the

voltage, thus an attempt to reduce both can result in reducing consumed power

cubically.

ii. Voltage is directly proportional to leakage current, thus reducing CPU’s voltage

reduces power lost due to leakage current.

 DVFS has been extensively studied in literature for efficiently reducing data centers’

power consumption. In [85] authors use DVFS for reducing the sudden power rise

encountered at a server during the process of VM migration. As migration of virtual

machines is usually performed for reducing consumed energy, this rise in energy contradicts

the goal of power capping and thus DVFS prevents this rise by reducing the CPU frequency.

In [15] Gandhi et al. consider the problem of allocating minimal power to servers with

minimal delays using Dynamic Frequency Scaling DFS, DVFS, and combination of both for

optimized energy reduction at different load scenarios. Authors model server farms as

queuing systems where they can derive exactly the average delays for requests then find the

optimum operating frequencies for maintaining them. Their experiments on an IBM

Bladecenter concluded that dynamic DVFS can improve energy efficiency up to 5 times; and

that depending on the load type, running more servers at lower frequencies could save more

energy than running fewer servers at a higher frequency.

 In the scheduling scheme proposed by [64] the scheduler performs regular checks on

the processing demands of applications hosted by servers in order to adjust their energy

consumption dynamically via DVFS. Another scheduling algorithm proposed in [199] also

uses DVFS for reducing energy consumption by monitoring the system during intervals and

setting the CPU frequency of servers during the next interval based on the energy consumed

during the previous interval. Another scheduling algorithm with DVFS add-on is introduced

in [45] where VMs are given weights based on their priorities and SLAs of its users then

distributed among servers in the DC while DVFS algorithm regulates each server’s frequency

accordingly. Through simulations authors show that they can increase system’s utilization

and prevent wasted resources as well as wasted energy during idle periods. Authors of [94]

propose another data center provisioning algorithm for scheduling VM in data centers with

real time requirements while applying DVFS schemes. Authors propose and test Adaptive-

DVFS and δ-Advanced-DVFS that work under soft and hard real time requirements and are

able to minimize energy consumption, maintain users SLAs and reduce running costs of data

centers. In [143] authors address the problem of conflict between memory system and CPU

DVFS when controlled by separate entities. Their proposed algorithm ‘CoScale’ provides

coordination between these two tasks for each of the server’s cores while maintaining defined

performance levels.

 More often in literature DVFS algorithms are implemented along with DPM for

optimum power reduction, where DVFS can be used at durations of low utilization and DPM

at idle durations. Virtual Batching approach [195] is one example; it batches groups of

arrivals together so that a server can execute the batch then puts the server in a deep sleep

mode until another batch is followed again. The frequency of the server while serving batches

of requests is adjusted according to batch size and arrival rates using DVFS. Another

example is introduced by Dhiman et al. in [62] where they define a group of experts each has

a set of DPM and DVFS policies and is suitable for certain load condition. Authors introduce

35

an online algorithm that learns the current system load and brings the most suitable expert

into action with consideration to energy, performance, and users’ SLAs. A similar approach

is introduced in [116] where instead of the online algorithm a machine-learning algorithm is

used that selects the most suitable expert while providing a theoretical guarantee on the

overall system performance. A different approach is introduced by authors of [101] where

they model the problem of selecting which servers to be switched-off and others that will be

switched-on as well as their operational frequencies as a mixed Integer Programming

problem which is solved under energy efficiency and quality of users’ experience constraints.

 Despite the advantages it provides, DVFS technology faces a few challenge that face

system administrators during real life implementations, as explained in [11]:

i. Earlier CPU models were relatively much simpler compared to today’s complex

CPU architectures which provide advanced features as multi-level caching,

pipelining, etc., which makes predicting the level of frequency at which CPU

should operate at non-trivial.

ii. The quadratic relation between power and voltage implied by Equation 3-1 is not

always the case for modern processors. In [185] authors explain that some

processors have different supply voltages for different processor elements, thus

reducing one element of these will not have a significant effect on reducing the

overall power consumption.

iii. As explained earlier that applying DVFS results in extended execution times, the

relation between these two factors is not always linear and could cause execution

time non-literalities’ [61] as well as alterations in order of task-execution [185].

iv. Modern processor architectures tend to minimize the dynamic power range, which

reduces the effectiveness of DVFS approach [57].

Thus DVFS technology needs to be implemented with caution while taking all above

arguments into consideration. Following Table 3-3 provides a summary and comparison for

the main algorithms introduced in this chapter that target power efficiency in data centers

through DPM and DVFS approaches, or both combined.

Table 3-3: Summary of DPM and DVFS Algorithms

Algorithm Type Description Pros Cons

PowerNap

Meisner et al. [53]
DPM

Processes requests at

highest performance to

switch-off servers as

soon as possible, and

wakes them up as soon

as a request arrives

Race-to-halt

approach

quickly puts

system in sleep

mode

Relatively long

delays due to

transition times

between

sleep/active

states

36

DreamWeaver

Meisner at al. [54]
DPM

Schedules tasks such

that all processors have

idle and busy periods at

the same time so that

system-wide sleep state

is possible

-Allows for

longer sleep

durations by

stalling arrivals

without SLA

violations

-Workload

dependent

Additional

delays caused

by extended

sleep durations

NapSAC

Krioukov et al. [23]
DPM

Uses Heuristics for

predicting upcoming

load to activate servers

only as much as load

needs and put others in

sleep state

-Load dependent

-Pre-emptive

algorithm thus

transition delay

does not affect

users’ SLAs

High

processing for

high accuracy

prediction

heuristics

Lin et al. [118] DPM

Provides an online

algorithm for right-

sizing the number of

active servers in a data

center where online

algorithm is motivated

by optimal offline

algorithm

-Energy savings

due to right

sizing

-Algorithm has

low

computational

complexity

Model

experimentation

proved to be

efficient only

for general

workload and

delay situations.

Niyato et al. [55] DPM

Formulates a

constrained Markov

decision process for

deciding the state of

each server then

distributes incoming

requests among active

ones

Algorithm

decisions

minimizes

energy

consumption as

well as network

costs

Complexity of

the algorithm

increases with

increasing

number and

size of data

centers

Herlich at al. [115] DPM

Introduced random

delays before waking up

servers from sleep state

or putting them to sleep

again

Fine tuning of

parameters can

lead to reduced

energy

consumption

and latency

Only average

values for delay

durations were

studied, no

upper or lower

boundaries

provided

Jeong et al. [85] DVFS

Reduces CPU frequency

during VM migration

process in order to

reduce the encountered

energy spike

Maintains power

capping goals by

preventing

power spike

Can only be

applied to

processors

supporting

DVFS

37

Wu et al. [45] DVFS

Introduces a priority

scheduling algorithm by

giving weights to VMs

according to SLAs of its

users, then adjusts

servers’ CPU frequency

using DVFS

Performs server

consolidation

thus prevents

wastage of

power at idle

times

Provisions the

data center for

minimum VM

requirements,

and will not be

efficient at peak

load durations

Gandhi et al. [15] DVFS

Models server farms as

a queuing system whose

solution allows for

calculating mean

delays, then finds

adequate operating

frequencies for

maintaining these

delays

- Solution is

dynamic to any

workload

-Precise delay

bounds from

exact analytical

solution

Doesn’t allow

sleep states

when servers

are idle, thus

power is wasted

when server has

null load.

Kim et al. [94] DVFS

Proposes algorithms for

provisioning data

centers with soft and

hard real-time

requirements with

DVFS requirements

Achieves energy

efficiency in the

data center

while reducing

its running costs

Does not

consider current

system

workload

Virtual Batching

Wang et al. [195]

DPM

&

DVFS

Groups arrivals into

batches and puts server

into sleep after a batch

is processed, where

frequency of processing

is varied dynamically

by DVFS

Ability to save

energy at idle

and busy

durations with

dynamic

adaptation to

work load

Does not

operate/scale

well under

bursty load

conditions

Dhiman et al. [62]

DPM

&

DVFS

Defines a group of

experts with different

DPM and DVFS polices

to match all system’s

conditions

Solution is

dynamic and is

able to optimize

system’s

performance

under all load

situations

Algorithm is

targeted for

physical servers

and was not

proven

effective in

virtualized

environments

Bertini et al. [101]

DPM

&

DVFS

Uses mixed integer

programming for

determining which

servers will be on/off as

well as operational

frequencies while

maintaining users SLAs

and reducing energy

Algorithm is

tested and

compared

against several

others proving

its efficiency in

de/centralized

approaches

Capability for

providing the

same energy

efficiency for

virtualized

environments

has not been

investigated

38

3.2 Load Balancing between Cloud DCs

 As demand on cloud computing services increases, cloud providers tend to increase

the number of DCs they own and increase their capacity of servers and DC equipment to

accommodate the increased demand and avoid bottleneck situations. Typically a cloud

provider has more than one DC at which customer’s requests are received and processed, and

the load among these DCs is usually variable. Requests arrive to each DC depending on the

type of requests, geographical proximity, or according to a selection criteria imposed by the

cloud provider. However, these decisions could leave some DCs highly overloaded causing

performance degradation while other DCs are lightly loaded causing poor resource

utilization. Accordingly, load balancing is required to take place between DCs to avoid

situations of DCs overloading and low utilization. Load balancing involves decisions on how

to distribute requests among different DCs or servers, as well as migrating of requests from

one DC to another in case of an overload.

3.2.1 Overview on Load Balancing

 Load balancing between cloud DCs aims at optimizing resource utilization of the DCs

in order to enhance overall system performance. Load balancing aims to achieve all or most

of the following goals:

i. Avoiding overload: Since at overload situations the overall system performance tends

to degrade, load balancing strategies aim at reducing/preventing overload situations

by shifting additional loads to other lightly loaded DCs. This process helps in

improving the overall system performance as well as providing better resource

utilization.

ii. Enhancing offered service: As a request arriving to a heavy loaded DC could receive a

better response time if it was migrated to another lightly loaded DC, decisions of

keeping or migrating a request for receiving better quality of experience are taken by

load balancing algorithms according to request’s SLAs. Enhancing the response time

for each request will lead to enhancing the makespan of the whole system, which is

defined as the maximum finishing time among all received requests in the system per

time [75].

iii. Overcoming fail-over situations: These are situations when one or more DCs fail

during processing jobs, or a job fails to process on a certain DC. Load balancing

algorithms should be able to take the decisions of how to resolve the faulty situation

or where to migrate the jobs that were under processing so that their response times

are minimally affected. Fault-tolerant load balancing algorithms should be able to

detect when the DCs that have been under fail-over are able to receive requests again

in order to assign requests for these DCs again.

Fault tolerant algorithms can be implemented in one of two ways, as explained in

[63]:

39

a. Proactive Algorithms

These algorithms tend to predict failures before they happen and take

corrective actions to prevent them. Methods for implementing this approach

include periodic reboots, requests replication on various VM, and pre-emptive

migration.

b. Reactive Algorithms

These algorithms correct fail-over situations after they occur. This could be

done by one of the following approaches: system restart from check points,

resubmission of the job to the same DC or migrating it to another running DC.

3.2.1.1 Types of Load Balancing Algorithms

 Authors of [21] and [28] classify load balancing algorithms into two major categories:

i. According to system load

Depending on the how requests are distributed among DCs, algorithms in this

category follow 3 different approaches:

a. Centralized Approach

Where a single central node receives all the requests and is responsible for

distributing them among all other system nodes. This approach is fast and

more efficient as distribution decisions are taken by one node only, however

it carries the risk of single point of failure or bottlenecks in case this node is

down or congested. This issue could be resolved at an additional cost by

adding redundant nodes to the central node to replace it whenever required.

b. Distributed Approach

In this approach nodes communicate their loads to each other so that each

node can form its own load vector. Upon receiving a job request, each node

decides locally whether to keep or migrate this request based on its load

vector. Although it requires more communications and data transfer between

nodes, distributed approach works best with widely distributed systems. In

huge systems with large and diverse number of nodes it is more efficient than

centralized approach which imposes a huge overhead on the central node.

c. Hybrid Approach

Taking advantage of both approaches’ benefits, a hybrid approach deploys

both strategies of having a centralized node and a load vector at each

distributed node.

ii. According to the system topology

Algorithms that distribute load according to system topology and nodes’ information

status follow 3 approaches:

a. Static Approach

Following static defined rules, static approach distributes the load in the same

way according to a set of predefined rules based on the nodes’ processing

capabilities, memory and storage capacity. These rules do not take the current

system load into account, which makes this approach appropriate only for

stable systems with low load variation, unlike distributed cloud systems.

40

Although it has the advantage of minimal processing for load distribution,

less resource utilization and more predictability, static approach may overload

a node with requests leaving other nodes lightly loaded, as its decisions are

static and unaffected by the state of nodes [164]. Another disadvantage of

static approaches is that they cannot resolve situations of DC failure, since no

updates are taken into consideration during algorithm run-time, which makes

them less reliable.

b. Dynamic Approach

Unlike static approach, decisions taken by dynamic approach are different

each time a job arrives, as it depends on the variable current system state.

Dynamic approach is more suitable for distributed systems as cloud

computing, since decisions of job allocations must take the current system

state into consideration to avoid overload. Although they have higher

complexity and utilize more resources than static algorithms, dynamic load

balancing algorithms are more adaptive, efficient, reliable and provide better

load balancing decisions [164].

c. Adaptive Approach

According to system status, adaptive approach decides whether to use static

algorithms, dynamic algorithms, or combination of both for load distribution.

 Among all before-mentioned classifications the most suitable type for a cloud

environment are distributed dynamic load balancing algorithms. This is due to their

adaptability, reliability and suitability for a diverse and constantly changing cloud networks.

According to [191], these distributed dynamic algorithms can be further classified into two

categories:

i. Cooperative Algorithms

All nodes running cooperative algorithms in the distributed system work

together at taking load balancing decisions while considering each other’s

states and resources. Decisions taken by cooperative nodes help increase

over-all system performance.

ii. Non-Cooperative Algorithms

Non-cooperative nodes make their own decisions regarding workloads

without any consideration to other nodes or over-all system goals; the only

factor taken into consideration is the node’s own resources. Although non-

cooperative algorithms might enhance node’s own performance, it might not

make the best decisions for the overall system.

3.2.1.2 Challenges of Load Balancing between Cloud DCs

 To achieve the before-mentioned targets of the load balancing process, algorithms in

literature consider the following aspects listed by surveys in [21] and [90] for deploying

optimal solutions for the load balancing problem:

i. Nodes’ Spatial distribution and Scalability

41

As cloud DCs are usually spatially diverse, load balancing algorithms need to

account for some side effects such as the distance between nodes and the speed of

transmission links between them, which will affect the migration time of requests

between the DCs and accordingly affect load balancing decisions. Algorithms should

also be scalable to balance the load between any finite numbers of nodes.

ii. Data Storage and Replication

Requests arriving to a node require information stored locally at this node to be

processed. In case the load balancing algorithm decides to migrate this job, it has to

make sure that either this data is also available at the other DC or that the time to

transfer the request along with its data would not violate the delay limit of the

request. For enhanced performance, load balancing algorithms perform full/partial

data replications at the nodes ahead of time to prevent delays resulting from this task

at the time of request arrival. Full replication has a higher cost as it requires more

storage since all nodes will carry the same data sets. On the other hand, partial

replication makes a better solution by only replicating a part of the data at each node

based on its processing capabilities and storage capacity. Although this approach

provides better utilization, it makes the algorithm more complex as the algorithm

needs to be aware of all the data sets at each node.

iii. Algorithm Complexity

Complexity of load balancing algorithms is required to be as low as possible to avoid

delays resulting from processing of complex algorithms. Delays also result from

algorithms that require gathering lots of information or requiring long

communications. As these delays increase, efficiency decreases along with overall

system performance, which is the main reason why algorithms’ complexity must be

minimized.

iv. Point of Failure

Centralized load balancing algorithms are designed such that a central node takes all

load balancing decisions. These central nodes are considered as single points of

failure which takes down the whole system if this node is down. Although centralized

algorithms are faster and more efficient at the decision making process, the single

point of failure issue must be resolved. One approach is to have redundant nodes to

replace the central node in case of its failure, but redundancy requires that these

nodes always have the same information replicated all over them to be able to replace

the central node at any point in-time. Another efficient solution for widely distributed

systems are distributed algorithms, which eliminate the risk of single points of failure

by allowing individual nodes to take their own load balancing decisions, as will be

explained later in this section.

v. VM Migration

As load balancing decisions frequently request that a job is migrated from one DC to

another, this process needs to be done without any or minimal interruption to the

current running VM. As specified by the virtualization layer, a virtual machine

mainly consists of a set of files that could be transferred easily to any DC. However,

this transfer process could be done in two ways: Cold transfer or Hot Transfer. Cold

Transfer specifies that the VM is paused, transferred, and then continue processing at

42

its new destination; while Hot Transfer specifies that the VM is transferred without

any interruption to the VM. Load balancing algorithms need to adopt either one of

the two migration approaches to guarantee minimal disruption for the migrated VM.

vi. Automatic resources provisioning

One of the steps taken by load balancing algorithms is allocation and release of

resources on demand based on migration decisions. This task of automatic resource

provisioning should be very well handled by load balancing algorithms, quickly and

efficiently.

vii. Energy consumption

While taking load balancing decision between DCs, energy consumption of DC

resources must be taken into consideration. As will be later proposed by the

algorithms in this thesis, the same performance level of the DC as well as service

level agreements of requests must be guaranteed while reducing/maintaining the

amount of consumed energy.

viii. Data Security

Security of data stored in the cloud remains one of the most important research topics

in cloud computing. As user’s data often have defined credentials in terms of where

to be stored or processed, these credentials must be taken into account before

migrating this data to other DCs.

3.2.2 Examples of Load Balancing Algorithms

 This section will showcase some of the most commonly known load balancing

algorithms between cloud data centers. Each algorithm is briefly explained and discussed,

followed by a summary and comparison between all algorithms in Table 3-4.

 Round Robin Algorithm

Requests arriving at the controller will get assigned to candidate DCs in a rotating

order. Once a job is assigned to one DC, the other DCs take their turn in accepting

requests so that a new request is not assigned again to the first DC until all other DCs

have at least one request. Since requests do not necessarily have the same processing

times, Round Robin algorithm doesn’t maintain a fair distribution among servers/DCs

[28]. The same criteria is followed when a DC needs to migrate a request, it chooses

where to migrate the request by following a list of DCs in a circular manner. Figure 3-

1 shows how requests represented as Rx are distributed among DCs represented as

DCx according to the Round Robin Algorithm.

43

Figure 3-1: Process of Round Robin Algorithm [75]

 Weighted Round Robin Algorithm

A modified version of round robin algorithm; where DCs are assigned weights

according to their computational power and resources. DCs with higher processing

capabilities are assigned more requests according to their weights as they are able to

process requests quickly and efficiently. This assignment also occurs according to a

list in a circular manner. Although weights are an enhancement to the algorithm, it

still has the disadvantage of not taking requests’ processing times into consideration.

For example; a DC with weight 2 might be assigned two relatively small requests,

while another DC with weight 1 is assigned one relatively large request that should

have better been assigned to a DC with higher weight for providing better service.

 Dynamic Round Robin Algorithm [112]

Another modified version of round robin algorithm with an extension for power

saving. This algorithm has two additional rules which enhance power management

capabilities of cloud DCs:

1. If some requests being served on a DC have finished and some are still being

processed, this DC switches to a ‘retiring state’. This state means that it accepts no

further requests, and that it will shut down as soon as it is done with the requests

currently being processed.

2. If a DC stays in a retiring state for a long time exceeding a defined ‘retirement

threshold’, requests being processed at this DC are migrated to another DC so that

this DC can be shutdown.

 Randomized Algorithm [75]

This algorithm assigns VMs to DCs in a random order, without any defined order or

knowledge about the status of the DCs. Although random decisions require low

processing overhead and thus low response times, this algorithm might result in

overload situations if jobs are assigned to overloaded DCs. Figure 3-2 shows an

44

example of an overload situation; where DC2 is overloaded with requests due to

random assignments, while DC1 and DC3 are under-loaded.

Figure 3-2: Process of Randomized Algorithm [75]

 Minimum Completion Time Algorithm

This algorithm decides where to distribute requests according to the request

completion time each DC can offer. It scans all available DCs checking the

completion time of the request at each one, and chooses the DC that offers the least

completion time. Figure 3-3 illustrates how the process of DC selection is done,

taking into consideration that the main selection criteria for minimum execution time

is the processing speed of the DC along with its current load [75]. Although this

approach guarantees minimum execution time for the request, it will overload DCs

with high processing capabilities, while others with low processing capabilities will

receive much fewer requests [49]. According to experimental studies done by

simulation in [75], Minimum Completion Time algorithm achieves almost 100%

throughput at low number of requests, where throughput is defined as the number of

requests processed during time specified by their SLAs. It also achieves low

makespan values since this is the main algorithm criteria. As the number of requests

increase, the throughput drops and makespan duration increase due to DC overload.

45

Figure 3-3: Process of Minimum Completion Time Algorithm [75]

 Opportunistic Load Balancing Algorithm

OLB algorithm assigns requests to the first DC expected to become available. It

checks all available DCs for their remaining times to become available for serving the

new request, then routes the request to the one with minimum waiting time, as

illustrated by Figure 3-4. In the figure each DCx load represents the time a job has to

wait before being served by this DC, so the shortest waiting time determines the DC

to be selected. As OLB algorithm tends to keep all DCs busy, it has a shortcoming of

not considering the execution time of the request on the selected DC. So despite that a

request might not wait a long time before starting to execute, it might take long

execution time causing other requests to wait longer, increasing the makespan of

requests [168].

Figure 3-4: Process of Opportunistic Load Balancing Algorithm

46

 Min-Min Algorithm [168][42]

This algorithm is based on Minimum Completion Time algorithm, but instead of

scheduling one request at a time, it considers a set of unmapped requests. The

algorithm starts by finding the minimum completion time for all requests that need

scheduling, where all DCs are available to serve any of them. Once the list is sorted

out, the request with minimum completion time is assigned to the corresponding DC

that will provide this minimum completion time. The list then is updated again while

excluding the scheduled request and adding its execution time to the execution time of

all other requests at the DC busy serving it. As a result of this selection, if the number

of small requests is bigger than large requests the makespan will be expanded by large

requests [163].

Authors in [42] enhance the performance of Min-Min algorithm by introducing

LBIMM (Load Balancing Improved Min-Min) algorithm which reduces the execution

time of each resource and improves imbalance resulting from consuming resources

with high computational power in serving small requests, while large requests remain

with DCs with lower resources. Another enhancement introduced in [42] is by

accounting for user priorities, where users are classified into two groups, one for high

priority requests and another for low priority ones. PA-LBIMM (User-Priority Aware

Load Balancing Improved Min-Min) algorithm performs Min-Min algorithm on the

group of high priority requests first, followed by the second group; which guarantees

better offered service for high priority requests.

 2-Phase Load Balancing Algorithm

This algorithm was proposed by authors of [166] based on two already known load

balancing algorithms: Load Balancing Min-Min (LBMM) and Opportunistic Load

Balancing (OLB). In the first phase OLB is used to distribute requests among DCs

keeping all DCs in working state. In the second phase LBMM is executed at each DC

to make sure the execution time of the request is minimized. Benefits of the 2-phase

algorithm include better overall execution times for requests as well as more efficient

load balancing [167].

 Max-Min Algorithm

It operates in the same manner as Min-Min algorithm, but Max-Min schedules larger

requests with maximum execution time first to the DC that will guarantee their

minimum completion time. This criterion aims at reducing penalties occurring from

processing of requests with long execution time [168]. As large requests are processed

first, it allows smaller requests to be processed meanwhile simultaneously on other

DCs [49]. Max-Min algorithm out-performs Min-Min algorithms when short requests

are much more than long requests. When this is not satisfied, the large number of

large requests executed earlier will increase the system’s makespan [163].

 Resource Aware Scheduling Algorithm (Duplex)

Duplex algorithm deploys both Min-Min and Max-Min algorithms alternatively,

making use of the benefits of both algorithms [163]. Since Min-Min algorithm is more

efficient when the number of small requests is less than larger ones, and Max-Min

algorithm performs better when small requests outnumber larger ones, Duplex

47

algorithm deploys either one of these algorithms to enhance the system’s

performance. As a result of alternative execution of the two algorithms, neither small

requests nor large ones wait for long times, thus achieving smaller makespans at

various load situations and different scales of distributed systems [163].

 Join Idle Queue Algorithm

This algorithm starts by distributing requests among idle DCs first until all of them

are occupied, then requests are assigned to DCs with the least number of jobs so that

average queue size at each DC is minimized [194], as illustrated in Figure 3-5. Since

these decisions of finding the least occupied DC can be made ahead of a request’s

arrival, this algorithm significantly reduces the communication overhead during

request’s processing time. However, it only considers the number of queued jobs for

its decisions and not their sizes, which might mislead the decision for a shorter queue

having x large requests and taking more processing time than another longer queue

with smaller requests. This issue is considered by the algorithm proposed in this thesis

later in Chapter 5.

Figure 3-5: Process of Join Idle Queue Algorithm

 Power Aware Load Balancing Algorithm (PALB)

Aiming to provide an algorithm that minimizes the amount of wasted power by

unutilized algorithms, authors of [82] introduce the PALB algorithm. Their approach

is to keep track of utilization percentages of all compute nodes, and accordingly

decide how many DCs are actually needed for the current load. Un-needed DCs could

migrate their jobs and switch-off, which according to tests done by the authors; can

save up to 79% of the amount of consumed energy if compared to other non-power-

aware scheduling mechanisms.

 Double Threshold Energy Aware Load Balancing Algorithm (DT-PALB)

48

This algorithm was proposed by authors of [78] as a means of balancing the load

among DCs in a way that conserves consumed energy. The algorithm has three phases

[167]:

1. Load balancing phase: The choice of where to place or migrate a request is

done based on how much DCs are utilized. If nodes have a utilization

percentage between 25-75%, then the least utilized DC will be chosen.

2. Upscale phase: At peak periods when all current DCs are utilized above 75%,

the algorithm powers on additional DCs to serve the additional requests.

3. Downscale phase: when any of the DCs’ utilization falls below 25% the

algorithm migrates all the VMs on this DC to be able to switch it off.

Although this algorithm proposes an efficient method for load balancing at high and

average load situations, it can cause performance degradation at low loads. Since

DCs’ utilization is likely to drop below 25% at low load situations, the number of

migration processes will significantly increase which reduces performance and

increase costs. [167]

 Enhanced Equally Distributed Load Balancing Algorithm

This algorithm proposed in [157] aims at distributing requests equally among

available resources. It allocates resources to the least loaded DC aiming to achieve

fastest response time for the request. Each DC is assigned a counter variable

representing the number of requests currently being handled by the DC. This counter

is checked by the algorithm every time a request needs to be migrated/assigned, and

the chosen DC is the one with the smallest counter. Whenever a new request arrives to

the DC the counter is incremented by 1, and whenever a request finishes its service

the counter is decremented by 1. Although this algorithm balances the load equally

among DCs providing low response times and high resource utilization, it doesn’t

consider requests’ weights [112] (all requests affect the counter by 1 step up or

down). This could lead to load imbalance when one DC carries 10 small requests

while another is serving 10 larger requests.

Figure 3-6: Process of Enhanced Equally Distributed Load Balancing Algorithm

49

 Decentralized Content aware Load Balancing Algorithm

Based on workload and client aware policy (WCAP), this decentralized algorithm

proposed in [66] distributes requests based on their content to the most suitable DC to

process them. Each request is defined by its UPS (Unique and Special Property),

which is used to select the target DC for the request. According to this criterion, the

selected DC is the one that is able to provide best processing capabilities in lowest

time for the requests, because it receives request according to its capability and

specialization. Content information is used to search for the most suitable DC, which

improves and speeds up the search process, improving overall system performance

[126].

 Enhanced MapReduce Algorithm [106]

MapReduce [170] is a distributed data processing architecture which follows two

main steps in assigning requests to DCs: request mapping and reducing results. The

algorithm implements 3 methods [90]: ‘part’ which initiates partitioning and mapping

of tasks into smaller parts, ‘comp’ which compares the different parts, and ‘group’

which reduces tasks by grouping similar parts together. This method is enhanced by

authors of [106] who propose to add a load balancing layer between the Map and

Reduce tasks to prevent partitioning of small tasks and only divide large ones [90].

More algorithms for task-scheduling and load balancing could be found in literature

but are not studied here for their complexity and for not being the best solutions for the

situation targeted in this thesis: Balancing user requests between cloud DCs. A few of these

algorithms are listed below shortly where they are also known from optimization theory:

 Genetic Algorithm : mainly used for large solution spaces [168], this algorithm

subdivides a task into subtasks generating a population, then performs four main steps

(Selection, crossover, mutation and evaluation) until the best solution could be found

[108].

 Simulated Annealing: A recursive algorithm that also divides tasks into smaller

subtasks, but considers all possible solutions for a subtask, even the poor ones. This

algorithm is based on ‘System Temperature’ which cools down after each iteration

eliminating more and more poor solutions. Algorithm stops and an ideal solution is

found after the system temperature drops near zero or after 150 iterations. [168]

 Tabu Search: An algorithm based on solution space search that keeps track of already

visited solution regions so that they are not repeated again. It initializes with a random

mapping generated by uniform distribution, and then performs ‘short hops’ into

unvisited solution regions trying to find better solutions [71].

 Optimal Scheduling Algorithm A*: is an algorithm based on binary tree search

technique [168]. It starts with a root node that represents a void solution, and starts

producing child leaves representing possible solutions. At each level of the tree the

best possible solution is chosen to become parent node, produce child nodes, become

inactive, and continue searching down the tree [92].

 Honeybee Foraging Algorithm

50

Inspired by nature for self-organization, this algorithm was introduced by authors in

[158]. It resembles the behavior of honeybees when foraging bees are sent looking for

food sources, then return to the hive foraging the distance to the source and its quality.

Performance of this algorithm is enhanced by system’s diversity, but not with the

increased system size [126].

Table 3-4: Comparison and Summary of Load Balancing Algorithms

Algorithm Type Description Pros Cons

Round Robin
Decentralized

[50], Static

Requests are

assigned to DCs in

a circular manner.

Even distribution

of requests

among DCs

[167].

Doesn’t

consider tasks’

processing

times.

Weighted

Round Robin

Decentralized,

Static

DCs are assigned

weights according

to their processing

capabilities. High

weights means

more received jobs.

Jobs are assigned

according to

DCs’ capabilities.

Better resource

utilization [49].

Requests’

processing times

are not

considered.

Dynamic

Round Robin

Decentralized,

Dynamic

Defines two rules

for reducing DC’s

power consumption

based on retiring

state and retirement

threshold

Allows for better

power

management in

DCs

Not scalable for

large number of

DCs [112]

Randomized
Decentralized,

Static

Assigns tasks in a

random order

Low complexity,

short response

time

Status of DCs is

not considered,

could result in

overload

Minimum

Completion

Time

Decentralized,

Dynamic

Assigns tasks to

DC offering

minimum task

execution time

High utilization,

minimum

execution time

for requests

Overloads DCs

with high

processing

power

Opportunistic

Load

Balancing

Decentralized,

Dynamic

Assigns requests to

the first DC

expected to become

idle

Simplicity [168]

Doesn’t

consider request

execution time,

Longer

makespan

51

Min-Min

Algorithm

Decentralized,

Static

Assigns requests

according to

minimum

completion time at

corresponding DC

Fast [49],

Schedules best

case first

Doesn’t

consider current

DCs’ load, Load

imbalance [42]

2-Phase

Algorithm

Decentralized,

Static

Based on LBMM

and OLB

algorithms

Better execution

time, Enhanced

load balancing

[167]

Works only in a

static

environment

[167]

Max-Min

Algorithm

Decentralized,

Static

Schedules large

jobs first to the

DCs guaranteeing

minimum

completion time

Better load

balance, Larger

requests get

served at more

powerful DCs

Small jobs wait

longest

Duplex

Algorithm

Decentralized,

Static

Combines best of

Min-Min and Max-

Min Algorithm

Minimal

overhead, High

performance [49]

Static Algorithm

Join Idle

Queue

Decentralized,

Dynamic

Assigns requests to

DCs with minimal

number of requests

Low response

time, no overhead

at job arrival

[112]

Requests’ sizes

are not

accounted for

Power Aware

Load Balancer

Decentralized,

Dynamic

Distributes DCs in

order to maintain

lowest power

consumption by

DCs

High availability

of compute

nodes, reduced

power

consumption [82]

Algorithm could

result in

unnecessary

migrations at

low loads

Double

Threshold

Energy-Aware

Load Balancer

Decentralized,

Dynamic

Balances load and

saves energy in 3

phases: Load

balancing, Upscale

and downscale

Efficient Load

Balancing

Unnecessary

migrations at

low loads

degrade

performance

[167]

Enhanced

Equally

Distributed

Load

Balancing

Decentralized,

Dynamic

Requests are

assigned to the DC

with lowest current

load.

Low response

time, increased

utilization

Weights of

requests are not

considered.

52

Decentralized

Content Aware

Algorithm

Decentralized,

Static

Distributes requests

based on their

content to DCs that

serve them best

Improved search

for DCs,

Increased system

performance

Static Algorithm

Enhanced

MapReduce

Algorithm

Decentralized,

Static

Based on mapping

tasks and reducing

task results

Load balancing

layer reduces

overhead for

reduce tasks

High processing

time

 According to tests and simulations done by [75], it can be concluded that no single

algorithm would work best for all cloud environments. Although some algorithms are

superior to others in many aspects; there would always be a compromise in terms of cost or

performance. For example: algorithms such as round-robin, weighted round-robin and similar

tactics all have the same approach of distributing load according to how much requests

servers have received so far, but they all ignore the fact that the current number of received

requests is no indication for the system state while a solid indication for system state is the

remaining idle resources of the servers [150]. This applies to all other static load balancing

algorithms, which ignore the current system state in their decisions. Dynamic algorithms

provide better options in this issue, however there are very few available examples in

literature, and according to [35] none of them considers the future state of the system or the

effect of migrating requests to it, and only a few algorithms consider the energy efficiency of

data centers.

 In Chapter 6 of this thesis two novel load balancing algorithm will be introduced that

avoid most of the mentioned drawbacks. Both are dynamic algorithms which distribute load

based on current system state and consider the future state of the system after this request

arrives. Unlike most approaches in literature that define load balancing as an approach to

balance the load equally among all DCs, in this thesis a strategy of ‘load un-balancing’ is

adopted. These algorithms tend to perform request consolidation on a fewer number of DCs

without violating SLAs of requests in order to minimize the number of active DCs and

switch-off idle ones for energy efficiency considerations. The same ‘load un-balancing’

strategy has been studied by a different approach by authors of [44] supporting the hypothesis

of un-even load distribution among DCs for satisfying users’ SLAs or for enhancing DC

performance. Algorithms are analyzed by studying system of two DCs operating by the

respective algorithm and modeled using Markov Chains, where algorithms for solving

system’s stead-state probabilities are explained. Similar work has been introduced by authors

of [175] following similar analysis method for dynamic routing networks using three multi-

server DCs with special mutual overflow among them.

53

Chapter 4 Methodology

Having explained the main concepts of cloud computing, related technologies as

virtualization, migration and server consolidation as well as challenges faced by cloud

developers as energy efficiency and load balancing, the second part of this thesis proposes

novel models for solving these challenges. In the context of this chapter the methodology by

which cloud DCs are studied and analyzed are introduced and explained. Section one

explains mathematical models used to represent cloud DCs as queuing systems and perform

steady state queuing analysis to study the system and predict its performance under different

workload situations. Notations used within all DC queuing models will be addressed,

followed by the assumptions that were made to allow for modeling data centers as queuing

systems using Markov Chains. Section two introduces a simulation platform used to test and

verify the modeled DCs as queuing systems using OMNeT++ simulator. Simulation defines

entities that comprise a basic queuing system, such as source, queue and servers with

different configurations according to each implemented model, where these entities and their

interconnections are defined and explained. Contrary to the mathematical models solved by

stochastic queuing theory, simulations are experimental methods for performance evaluation

executed by artificially generated events and measurements by a computer program. The last

Section three of this chapter a real test-bed of a minor data center set-up using two servers is

illustrated, where proposed algorithms can be benchmarked to verify results of analytical

models and simulations.

4.1 Mathematical Models

 In this context a data center is described as a queuing system with multiple servers to

serve different requests simultaneously, where all servers have a common queue at which

arrivals are inserted first before a controller decided if the arrival will be served at this DC

and at which sever, will be queued, or will be migrated as proposed by load balancing

algorithms. This approach is accurate for modeling data centers as they have several servers

hosted in racks, and requests arriving to the DC requesting SaaS, PaaS or IaaS services are

hosted at any server with sufficient processing capacity by creating a virtual machine to serve

this request. For illustration of the explained model components refer to Figure 4-1. The

models proposed by this thesis are based on previous work by the main supervisor of this

work and its author and published in [119], [134], [138], [127], [140], [120] and [141] where

previous work constitutes the building blocks for the complete and more general models in

this context. Models introduced within this thesis describe the DC at any time instant by a

state (𝑥, 𝑧), where x is the number of active servers in the data center and z is the number of

queued arrivals waiting to be served. The control of the queuing system follows from a Finite

State Machine (FSM) for states (𝑥, 𝑧). System is initially at state (0,0) where no servers are

active and no arrivals are waiting for service. The state of the data center changes whenever

an arrival/departure/activation event happens, as will be explained later per each model.

When an arrival occurs, the DC Control decides whether this arrival will either be

54

immediately served or queued according to the current state of the system. Buffered frames

are organized in the queue in the order of their arrival, and are served strictly according to a

service strategy, e.g.: First-In, First-Out (FIFO) strategy. The queuing system reaches its

maximum capacity at state (𝑛, 𝑠), where 𝑛 is the number of available servers in the data

center, and 𝑠 is the maximum buffer capacity. Arrivals occurring when the system is full are

assumed to be lost; or as some models require, migrated to another DC for load balancing

purposes. As soon as a server becomes idle, it will either be re-occupied by the frame at the

head of the queue, or it will be deactivated in case of an empty queue. All these decisions are

derived from the FSM of the controller and communicated to the scheduler which updates the

state of the queue and servers accordingly.

Figure 4-1: Generic Model for a Data Center with Dynamic Activation/Deactivation of

Servers

At any state (𝑥, 𝑧), if an arrival happens that will cause a server to be activated,

system state changes to (𝑥 + 1, 𝑧); but when a new arrival occurs and is scheduled to be

buffered, system state changes to (𝑥, 𝑧 + 1). When an arrival finishes its service time, the

server it had occupied will be either reoccupied by another packet from the head of the queue,

changing the system state to (𝑥, 𝑧 − 1) as the queue size is reduced by one, or if the queue

was empty the server will be deactivated and the system state will change to (𝑥 − 1,0).

Arrivals to the DC are assumed to occur according to a general distribution function with

arrival rate 𝜆, where interarrival times have an average value of 1
𝜆⁄ . Service times of each

server in the DC are also assumed to follow a general distribution function having an average

55

of 1 𝜇⁄ , where 𝜇 is the service rate of one server. All servers within the DC are assumed to be

homogeneous, so for 𝑥 activated servers the overall service rate of the DC is 𝑥𝜇.

 For the analytical solutions of the models in this thesis, Markovian assumptions are

made in order to be able to solve for the probabilities of steady system states. Arrivals are

assumed to occur according to a Poisson distribution, where interarrival times follow a

negative exponential distribution function with mean value of 1 𝜆⁄ . Service times are also

assumed to follow a negative exponential distribution function with mean 1 𝜇⁄ , so that the

basic model of a DC could be assumed as a Markovian 𝑀/𝑀/𝑛/𝑛 + 𝑠 queuing system. All

proposed models of data centers as continuous-time Markov Chains are solved using

Kolmogorov Equations through a novel iterative-recursive algorithm to obtain the steady

state probability for each of the system states. Solutions are followed by calculations of the

most significant performance metrics that describe system’s behavior as average number of

requests in the data center, average delays, loss probability, etc.

 The use of queuing systems for modeling data centers and understanding their

behavior has been studied by several authors in literature. Similar models of data centers as a

two- dimensional Markov chain have been introduced in [115], [192], [113], [16], [17], and

[13]. However the novelty of the algorithms proposed in this context compared to all

previously mentioned algorithms is that our algorithms provide much simpler and exact

solutions for solving steady state probabilities of the model via iterative recursive algorithms

with consideration to all aspects describing system’s behavior.

4.2 Simulation Technique

 In order to verify the models solved using approximate assumptions or when

mathematical solutions are too complex, a simulation tool is necessary. In this thesis all

proposed models are verified by implementation of simulation models using OMNeT++ IDE

tool (Objective Modular Network Integrated Development Environment) [131] and tested as

well under different conditions that cannot be analyzed by theoretical analysis. For example,

solving steady state probabilities of a queuing system requires Markovian assumptions to be

made, which restricts interarrival and service time distributions to only one type. However as

interarrival and service times are not always negative exponentially distributed, a simulation

is required in order to check the model’s performance under different non-Markovian realistic

assumptions.

 OMNeT++ is a discrete event open source simulator that has been used in a rising

number of publications since its public release in 1997. It is based on C++ programming

language and offers a simulation framework for several domains such as queuing networks,

distributed systems, wired and wireless communication networks, sensor networks, storage

area networks, etc... It provides a simple graphical user interface as well as built-in modules

for constructing any desired network to be simulated rather than building a simulation model

from scratch, which allows modules to be reusable and facilitates building large scale

simulations for various areas. OMNeT modules are either simple modules which are dynamic

modules written in C++ or a group of simple modules grouped together forming one

56

compound module with various functionalities. Modules constructing a model communicate

with each other via passing of messages through gates, where messages are forwarded to their

destination module through output gates and received via input gates. Gates are

interconnected according to the model’s architecture via links that can be unidirectional or

bidirectional. Modules also have parameters which provide configuration data such as

random numbers following a defined probability distribution for defining module parameters,

e.g.: server’s service time. A typical OMNeT++ model is composed of the following files:

1. NED File

Network Description File describes the structure of the implemented model to be

simulated. It contains simple modules declarations as well as their gates, parameters

and configurations, compound modules declarations which describe its gates and

parameters and which simple modules that constitute it, and finally network

definitions and interconnections between modules’ gates. NED files come with a

graphical editor, where users can either edit the NED file in source mode or perform

modifications within the graphical user interface.

2. C++ Files

Where each simple module needs a C++ class that dictates its functions and how it

performs. Although every single module within the simulated model has its own C++

file, compound modules don’t require any.

3. Initialization File

Initialization File (.INI) contains all configurations and parameters required by the

model simulation to execute. It specifies values and distributions for different

variables of all modules in the model, such as distribution of interarrival times and

their mean value, servers’ service/activation times and their mean values as well as

simulation duration or stopping condition.

Among the main advantages provided by OMNeT [25] are the ease of customization

of all available modules to match the desired simulated network, as well as the ability to

embed the simulation into bigger applications with data applications for accepting inputs and

extracting outputs in files of common types. The modules that it already embeds also allow

for simpler implementations as a user can easily build upon them and modify them as

required. This ease of use and advantages have motivated the use of OMNeT in several

research areas and publications. Authors of [22], [128] and [200] used OMNeT for simulating

wireless and mobile networks, others used it for sensor networks [83] [102], optical networks

[196][96] and related ones in the area of high performance computing [147] [43] and cloud

computing simulations [114][26][27].

 To simulate the basic data center explained in the previous section and illustrated in

Figure 4-1, a few built in components from the queuing library of OMNeT++ are used. As

shown in Figure 4-2 the cloud DC can be modeled as a source module that generates requests

and forwards them into a FIFO queue, then these requests are served by any of the available

servers which send a served arrival into a sink module to be destroyed. Briefly, the simple

modules used perform the following functions:

57

1. Source Module

The Source module generates messages to be forwarded into the passive queue

according to a distribution defined in the initialization file.

2. Passive Queue

A Passive Queue acts as the buffer for the data center which stores arrivals in a FIFO

order, where in this simulation the queue is defined to have a specific finite capacity

such that any arrival after this capacity is reached will be dropped. It has multiple

output gates for forwarding of arrivals to servers at which they will be served. The

passive queue acts as the controller deciding where arrivals should be forwarded,

which could be decided according to several strategies such as priority selection or

round robin. In this simulation round robin is used where any random empty server is

selected to start serving an arrival when the queue controller decides upon its start

service time.

3. Server

The Server module performs the function of a server in the cloud data center that

receives an arrival, starts processing it by creating the requested VM and running any

necessary applications. When an arriving request finishes service it releases its

resources for use by other queued arrivals. Service time of the simple server module is

defined in the initialization file according to any desired distribution and mean value,

also for some simulations, as will be later explained, servers are configured to have a

random activation time for more realistic assumptions.

4. Merge

A Merge module was added to the simulation model of load balancing algorithms in

order to collect all arrivals of each DC and forward them to the sink module. It is

necessary as it dramatically reduces the number of input gates at the sink module to

only one per each DC instead of having one input gate per server per DC.

5. Sink

Sink module is the final destination for all serviced arrivals, and it represents the

departure of a request from the data center.

For each model among those presented in later chapters a compound module is

implemented with the respective functionalities, specifications and variables. Several

experiments are performed for each model in order to predict its performance and explore the

effect of each parameter on its behavior. For accuracy of results, all measurements are

repeated several times with the same parameters and different seeds used for generating

random numbers in order to obtain multiple readings and deliver an average result with a

defined 95% confidence interval.

58

Figure 4-2: Basic DC Simulation Model

59

4.3 Experiment Setup and Measurements

 For further proofing of the obtained results from analytical solutions and simulations

of the proposed models, a test-bed is implemented for a sample data center consisting of two

servers in order to test and run algorithms using VMware tools [190] to identify how they

perform in real-life scenarios. This verification is of high importance as despite assuming

realistic assumptions for most system aspects through simulations, not all effects encountered

by a real-life running system can be accounted for. Effects such as how system scales with

increasing its size, types of cabling or connections among its entities and the protocols they

run, efficiency and response times of a centralized controller, etc. are all aspects that are best

to draw conclusions based upon real-life experimentation.

 The test bed used is constructed using three ESXi servers with one data store

connected within one LAN via ISCSI, as illustrated in Figure 4-3. One of the three servers is

configured with vCenter [186] to act as a centralized controller for the data center providing

proactive management over the other servers and their hosted virtual machines. The data

store holds all virtual machine files and was supplied with operating system images to be

deployed upon them. Test bed setup was performed by the aid of previous research work

done by authors of [153], [130] as well as several virtualization software listed below:

1. ESXi Hypervisor [60]

ESXi is a bare-metal hypervisor that installs directly on the server and performs the

function of virtualizing the server for hosting several logical virtual machines.

2. VMware vCenter [186]

vCenter acts as a platform for managing all ESXi servers, data stores and virtual

machines within the data center. It was installed on one of the servers in order to

remotely manage other servers for performing functionalities such as deploying,

shutting down or migrating a virtual machine or monitoring the performance of

servers and each of their hosted virtual machines.

3. VMware vSphere [188]

vSphere is the software package through which ESXi is deployed on servers and

vCenter is installed for centralized management of the data center. It acts as a user

interface to ease the configuration process by the end user via connecting it to

vCenter, where this can be performed through installing vSphere client on any

windows machine. An important add-on of vSphere is vMotion which is used for

testing the proposed load balancing algorithm for migration of virtual machines

between the two servers.

After the test bed was installed the proposed algorithms and their test cases were deployed

using scripts that are automatically run by ESXi servers using PowerCLI software [187].

60

Figure 4-3: Test Bed Architecture

61

Chapter 5 Energy-Efficient Cloud Data Centers

 This chapter introduces the proposed Multiple Parallel Hystereses model which

allows for achieving an energy efficient operation of cloud data centers while maintaining

users’ service level agreements. The algorithm is based upon the idea of server consolidation

where the number of active servers in the data center is adapted to its current load, so that

under-utilized servers can be turned-off or put into sleep mode to save energy consumed

while running idle. The novelty of this model is illustrated in its ability to model the data

center with consideration to realistic aspects such as server activation overhead and reduced

service rates during sleep modes, performing automatic sever consolidation and accurately

predicting the performance of the data center with upper bounds for users’ delay using an

iterative-recursive algorithm for solving system state probabilities at any given load situation.

Although the idea of modeling DCs using queuing systems with hystereses thresholds

for servers’ activation/deactivation have been previously introduced in literature, the

proposed algorithm introduced in this chapter for solving queuing systems with hystereses is

the simplest among all previous work as it is the first to discover the recursive nature of

steady state equations used for solving state probabilities. Keilson et al. [129] were the first to

introduce the idea of setting activation and deactivation hystereses thresholds for servers

based on the number of requests in the system. Authors provided exact analysis for the multi-

server threshold queues with hysteresis using Greens methods developed by the same author

in [86]. Due to complexity of the analysis method, authors were not able to extend their

solutions beyond systems with 2 heterogeneous servers. The same queuing model was

analyzed by authors of [79] for instantaneous server activations and further extended in [41]

to include server activation overhead and bulk arrivals; where their analysis was based on the

method of stochastic complementation for solving steady state probabilities using a closed-

form solution. Complexity of stochastic complementation method has also limited their

analysis to systems with limited number of heterogeneous servers and limited bulk size.

Explicit mathematical analysis by methods of Green Function [129] or by Stochastic

Complement analysis [79] lead to rather complex equations which are difficult to evaluate

and have been applied to very small systems. Novelty of the recursive algorithm proposed in

this thesis is shown in its ability to easily compute steady-state probabilities of arbitrarily

large heterogeneous systems without any stability problems.

This chapter starts with an explanation for the parallel hysteresis model and how

hysteresis allows for implementing server consolidation and adaptation to the DC’s current

load. The second section explains the recursive algorithm used for solving the model along

with mathematical analysis for its most important performance metrics. Section two also

introduces the OMNeT++ simulation model for a data center operating under the parallel

hysteresis algorithm as well as the architecture and implementation of the model on the cloud

DC test-bed. Results obtained from the recursive algorithm are presented in Section 3 and

62

verified in comparison to those obtained by OMNeT++ simulator model and testing the

model on a data center test bed using VMware.

5.1 Model Explanation

The Multiple Parallel Hystereses Model uses the hysteresis behavior previously

introduced by the thesis’ author and main supervisor in [119] and [133] to provide the DC

with load-dependent behavior. It throttles activation/deactivation of servers by defining upper

and lower thresholds for activation and deactivation of each server; respectively, to avoid

frequent oscillations between on/off states in servers, and thus automatically adapting the

number of active servers in the DC to its current load. Upper and lower thresholds constitute

a hysteresis where the upper threshold for server activation is defined by the number of

buffered arrivals 𝑤(𝑥) for each number of active servers x, so that when the system is running

with x active servers it is required to hold 𝑤(𝑥) arrivals in its buffer to make sure that load

has increased to the limit that a new server is required to be activated for 𝑥 = 1,2, … , 𝑛. These

hystereses thresholds force the DC to activate only the amount of servers required to serve

the current load, while keeping the rest of the servers inactive or in sleeping mode, thus

automatically consolidating requests into minimal acceptable number of servers. Multiple

thresholds are specified – one per server - to avoid frequent oscillations between activations

and deactivations of servers, where hystereses thresholds allow server activations to be

throttled upon short load bursts by buffering arrivals until reaching a certain buffering

threshold indicating that the current load has increased to a limit that a new server activation

is required. When a new arrival occurs at this threshold level, one new server activation is

triggered. Values for hysteresis thresholds are set with consideration to maximum delays that

could be tolerated by the arriving request, which could be derived from arrival’s Service

Level Agreement (SLA). Another characteristic of the model to guarantee minimal delays is

that deactivation of servers do not occur except when a server has no more queued arrivals to

serve, which ensures that arrivals are served at the maximum service rate of activated servers.

 The model considers two different server activation delays which model the durations

required by a switched-off server to change its state into switched-on or by a server in sleep

mode to change its state into active. It also models DVFS strategies where servers work at a

reduced service rate by reducing their operational frequencies for efficient energy

consumption. These two aspects will be explored separately by case studies at the end of this

chapter. The state transition diagram explaining the system behavior is shown in Figure 5-1,

where the two types of states (shaded/Un-shaded) represent the system states with/without

activation overheads, respectively. Un-shaded states represent a model with instantaneous

activations of servers, where a new arriving request occurs at the border

states (0,0), (𝑥, 𝑤(𝑥)), … for 𝑥 = 1,2, … , 𝑛 − 1, where 𝑤0 = 𝑤(0) = 0, 𝑤(1) = 𝑤1 + 𝑤0, etc.

would lead to an immediate server activation by a horizontal transition arrow into

state(1,0), (𝑥 + 1, 𝑤(𝑥)), … for 𝑥 = 1,2, … , 𝑛 − 1, respectively. These horizontal transitions

are not shown in the model, but rather the shaded states are introduced to indicate that the

activations of a server is not an instantaneous process, but takes a period of time that is

assumed in this model to be negative exponentially distributed with an average of 1/α.

63

As shown in Figure 5-1, the system starts at the bottom left idle state, represented

as (0,0) where the system has null active servers and buffered arrivals. At this idle state

when an arrival occurs at rate λ it triggers a server to be activated, but since activation times

are not negligible, the arrival will be buffered until the triggered server is activated with an

average activation time of 1 𝛼⁄ , thus the state of the system changes to (0,1). At this instant

two events may occur: either another new arrival happens before the server gets activated, or

the server activates. If a new arrival occurs first it gets buffered until the server gets activated

and the system’s state changes to (0,2) where further arrivals will be buffered until a

hysteresis threshold is reached to trigger activation of another server, or in case the triggered

server becomes active then the 𝑥 component of the state increases by one indicating an active

server and the 𝑧 component reduces by one as one arrival starts its service time. If the server

activates first, then it will start servicing the arrival in the buffer leaving the buffer empty,

and the state of the system changes to (1,0). Another two events are possible at this state:

either a new arrival occurs and the system changes to state (1,1) by buffering this arrival until

the server is finished with the arrival it is currently serving, or if the server finishes first then

the system turns into an idle state (0,0), and so on….

In Figure 5-1 the events of triggering a server to be activated are marked as ‘A’ with

bold arrows. Servers are only triggered for activation when an arrival occurs at defined

system states: (0,0), (1, 𝑤(1)), (2, 𝑤(2)), (𝑥, 𝑤(𝑥)), … for 𝑥 = 0,1,2, … , 𝑛 − 1 and 𝑤(𝑥) =

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑥where 𝑤(𝑥) indicate the queue thresholds for triggering activation of a

new server 𝑥, while 𝑤𝑥 indicates the increase in threshold for new arrivals to be buffered

before activating a new server 𝑥 relative to threshold of server 𝑥 + 1, respectively. Boundary

values for 𝑤𝑥 are 𝑤0 = 0 and 𝑤𝑛 = 𝑠. Server deactivations are indicated in the figure also by

bold arrows and marked as ‘D’, where deactivation of a server is only allowed when a server

becomes idle, and there are no more arrivals to be served in the queue. Server deactivations

are only triggered when an arrival finishes services at any of these system

states: (1,0), (2,0), … , (𝑛, 0).

Generally, when the system is at any general state (𝑥, 𝑧), expected events are either an

arrival event, departure event, or server activation event. The system state changes according

to each of these events as follows:

1. If an arrival event occurs:

The current system state has to be checked:

 If the arrival occurs at any of the defined border states at which the arrival

exceeds a defined queuing threshold and a new server must be activated, i.e.

states (0,0), (1, 𝑤(1)), … , (𝑛 − 1, 𝑤(𝑛−1)), then a server activation is triggered.

 If the arrival occurs at any state where the buffer is full, i.e.

(0, 𝑠), (1, 𝑠), … . (𝑛, 𝑠), the arrival will be lost since the queue is fully occupied.

 If the arrival occurs at any other state other than the states mentioned in the above

two conditions, the arrival will be queued.

64

Figure 5-1: State Transition Diagram of Multiple Parallel Hystereses Model with Activation Overhead

2. If a departure event occurs:

Departure event occurs after an arrival has completed its service time at one of the

systems’ servers, and the system state has to be checked:

 If the departure occurs and the buffer is still occupied with arrivals, the server

will be re-occupied with the arrival at the head of the queue according to FIFO

policy.

1,1 2,1

2,w1

µ1,0

λ

λ

λ

µ2,0

λ

λ

µ1,w1

µ1,2

µ1,1 µ2,1

λ µ2,2

µ2,w1

3,w1

2,

w1+1

2,w(2)

3,

w1+1

3,w(2)

λ

λ

λ λ

λ

µ2,w
(2)

µ2,

w1+2

µ2,

w1+1
µ3,w1+1

λ µ3,w1+2

µ3,w
(2)

3,

w(2)+1

n,

w(2)+1

3,

w(2)
+2

n,

w(2)
+2

λ µn,w
(2)

+2

λ µn,w
(2)

+3

0,0 1,0

1,w1

2,0
µ3,0

3,0
µ4,0

3,1

λ

λ µ3,1

λ µ3,2

µ3,w1

n,0
µn,0

n,w1

n,

w1+1

n,w(2)

λ

λ µn,w1+1

λ µn,w1+2

n,1

λ

λ

λ µn,2

µn,w1

µn,1

µn,w
(2)

λ µn,w
(2)

+1λ µ3,w
(2)

+1

0,1

λ

0,w1

λ

λ

α

α

α

0,

w1+1

λ

1,

w1+1

λα

α

1,w(2)0,w(2)

λ

λ 2α

2α

α

α

αα
2αλ

0

w(2)+1

1

w(2)+1

2

w(2)+1

2,

w(2)
+2

1,

w(2)
+2

0,

w(2)
+2

λ

λ 3α

0,s

λ

λ

1,s

λ

2,s

λ

nα
(n-1)α

(n-2)α

n-1,

s

λ

α

n,s

λ

λ µn,s

µ1,

w1+1

λ
µ1,

w1+2

λ
µ1,w

(2)

λ
µ1,

w
(2)

+1

λ

λ

µ1,

w
(2)

+3

λ µ1,s

λ
µ2,

w
(2)

+1

λ µ2,

w
(2)

+2

λ
µ2,

w
(2)

+3

λ µ2,s

2α
α

λ
µn-1,s

DA

2α

A

D

µ1,

w
(2)

+2
λ

µ3,

w
(2)

+2

2α

λ
µ3,

w
(2)

+3

α

A

A

A

D

DDDDD

A

65

 Otherwise if the departure event occurs and the queue is empty, then the server

at which departure occurred will be deactivated.

3. If a server is activated:

If a server had been triggered for activation and its activation time has ended, then this

server will accept the arrival at the head of the queue, thus reducing the queue size by

one and increasing the number of active servers by one.

 In Figure 5-1, service rates at each state are indicated as 𝜇𝑥,𝑧 to represent the service

rate at the respective state (𝑥, 𝑧). In case of homogeneous service rates, 𝜇𝑥,𝑧 is equivalent to

𝑥𝜇, which is the assumption in the analytical solution. However, the model is adaptive to

different service rates at each server, and also to different service rates of the same server at

different stages, i.e. active, sleeping, switched-off, etc... Activation rates also may exceed α

(activation rate of one server) in case a new activation is triggered before the previously

triggered server is activated. This adds more 𝛼 to the activation rate, and it is allowed to

increase only up to 𝑛𝛼 when all the servers in the system are triggered for activation, but

none is active yet.

 Hystereses threshold values for the model are derived such that an arrival’s SLA is

not violated in terms of average response time. For each number 𝑥 of active servers

where 𝑥 = 1,2, … 𝑛, a threshold 𝑤(𝑥) is specified such that the worst case mean delay with the

current service load would still be tolerated under the specified SLA. This worst case mean

delay could be explained as follows: for an arrival that meets the system at state (𝑥, 𝑤(𝑥) −

1), this arrival will change system state to (𝑥, 𝑤(𝑥)) and will experience the longest mean

delay. Compared to arrivals before and after this arrival, the ones arriving before it

experienced a shorter queue and thus a shorter mean delay, and the arrival after it will exceed

the threshold value and trigger a new server activation which will increase the service rate so

it will also experience a shorter mean delay. Worst case mean delay of this arrival can be

calculated knowing that there are 𝑤(𝑥) − 1 customers ahead of it in the queue, added to them

one already being serviced in the server at which the arrival will be serviced. These

𝑤(𝑥) arrivals are being serviced at a rate of 𝑥𝜇 (in case of homogeneous servers), so the worst

mean delay time could be calculated by the following equation:

𝑡𝑤𝑜 =
𝑤(𝑥)

𝑥𝜇

(5-1)

Accordingly, since the worst case mean delay two must be smaller than or equal to the delay

bound specified by the SLA, by setting two to the SLA threshold value the hysteresis threshold

could be obtained using Equation 5-2 and rounding down to the nearest integer value.

 𝑤(𝑥) ≤ 𝑡𝑤𝑜 ∗ 𝑥𝜇

(5-2)

Another approach for setting hysteresis thresholds according to SLA is by not violating

percentiles of the response time distribution function. Percentiles defined by SLAs require

that for a defined percentage of time, the delay should not exceed a certain maximum delay.

66

In this case a different calculation approach should be adopted, which is not considered in the

scope of this thesis. The model of Figure 5-1 describes all cases where arriving jobs are

served without any I/O interruption (as in case of paged computer systems). The model can

also be applied to paged computer systems; in that case the arrival rate λ includes all returns

after a page fault interruption.

5.2 Model Analysis

Analysis for the multiple parallel hystereses model explained above is performed

using two methods as will be explained in this section. First the model is analyzed

mathematically by solving the Markov chain shown in Figure 5-1 using a novel iterative

recursive algorithm for solving state probabilities of the system by which performance

metrics could be calculated to evaluate the model under Markovian assumptions. In the

second subsection a simulation model is constructed for a DC operating under multiple

hystereses model in order to verify analytical results as well as testing the model’s

performance under non-Markovian assumptions to verify its validity under general

conditions.

5.2.1 Mathematical Analysis

Analysis and calculation of state probabilities for the Markov chain of the Multiple

Hystereses model with activation overhead is performed using standard Kolmogorov Forward

Equations in a recursive manner. A recursive solution is adapted here to avoid numerical

instabilities that occur when using explicit formulas and numerical solutions. The model is

solved under the Markovian assumptions that all inter-arrivals and service times follow a

negative exponential distribution, as well as servers’ activation times. At any state (𝑥, 𝑧) in

the Markov Chain; the rate of arrivals is 𝜆, total service rate of the system is 𝜇𝑥,𝑧 = ∑ 𝜇𝑖
𝑥
𝑖=1 ,

and activation rate is 𝛼𝑥,𝑧 which is the summation of activation rates for all servers triggered

for activation at the respective state.

 The algorithm for calculating state probabilities 𝑝(𝑥, 𝑧) for 𝑥 = 0,1, … 𝑛 and 𝑧 =

0,1, … 𝑠 follows the following steps:

 Assume 𝑝(0,0) = 1

 At all states (0, 𝑗), where 𝑗 = 1,2, … 𝑠 − 1, Kolmogorov forward equation follows

from Equation 5-3

(𝜆 + 𝛼0,𝑗) 𝑝(0, 𝑗) = 𝜆 𝑝(0, 𝑗 − 1)

(5-3)

 Using equation 5-3, states (0, 𝑗) where 𝑗 = 1,2, … 𝑠 − 1 can be calculated relative to

𝑝(0,0)

using Equation 5-4

𝑝(0, 𝑗) =
𝜆

𝜆+𝛼0,𝑗
 𝑝(0, 𝑗 − 1)

 (5-4)

67

 Probability of state (0, 𝑠) can be calculated according to Equation 5-5

𝑝(0, 𝑠) =
𝜆

𝛼0,𝑠
 𝑝(0, 𝑠 − 1)

(5-5)

 Using the balance equation at state (0,0) expressed in Equation 5-6, 𝑝(1,0) can be

calculated exactly relative to the assumed 𝑝(0,0)

 𝑝(1,0) =
𝜆

𝜇1,0
 𝑝(0,0)

 (5-6)

 Assume 𝑝(1, 𝑠) = 𝑦

 Using balance equation at state (1, 𝑠), probability of state (1, 𝑠 − 1) can be calculated

according to Equation 5-7

 𝑝(1, 𝑠 − 1) =
𝜇1,𝑠+𝛼1,𝑠

𝜆
 𝑝(1, 𝑠)

(5-7)

 Probabilities of states (1, 𝑗) for 𝑗 = 𝑠 − 2, 𝑠 − 3, … 1 can be calculated recursively

using Equation 5-8

𝑝(1, 𝑗) =
1

𝜆
[(𝜆 + 𝜇1,𝑗+1 + 𝛼1,𝑗+1)𝑝(1, 𝑗 + 1) − (𝜇1,𝑗+2)𝑝(1, 𝑗 + 2) − (𝛼0,𝑗−2)𝑝(0, 𝑗 −

2)]

 (5-8)

 As Equation 5-8 can be used to solve state (1,0) in terms of variable 𝑦, it can be

equated to the numerical value of state (1,0) obtained by Equation 5-6 to solve for 𝑦

 Substitute the obtained value of 𝑦 in states 𝑝(1, 𝑗) for 𝑗 = 𝑠 − 2, 𝑠 − 3, … 1

 Remaining system states can be solved in the same manner recursively according to

the following general equations for each 𝑖, where 𝑖 = 2,3, … 𝑛

i. Assume 𝑝(𝑖, 𝑠) = 𝑦 (5-9)

ii. 𝑝(𝑖, 𝑠 − 1) =
𝜇𝑖,𝑠+𝛼𝑖,𝑠

𝜆
 𝑝(𝑖, 𝑠) (5-10)

iii. For all states (𝑖, 𝑗) where 𝑗 = 𝑠 − 2, 𝑠 − 3, … 0

𝑝(𝑖, 𝑗) =
1

𝜆
[(𝜆 + 𝜇𝑖,𝑗+1 + 𝛼𝑖,𝑗+1)𝑝(𝑖, 𝑗 + 1) − (𝜇𝑖,𝑗+2)𝑝(𝑖, 𝑗 + 2) − (𝛼𝑖−1,𝑗−2)𝑝(𝑖 − 1, 𝑗

− 2)]

 (5-11)

iv. Probability of state (𝑖, 0) can be found numerically using balance equation at state

(𝑖 − 1,0), equate numerical value to the value obtained from Equation 5-11 to

evaluate 𝑦

v. Substitute the value of 𝑦 into states 𝑝(𝑖, 𝑗) for 𝑗 = 𝑠 − 2, 𝑠 − 3, … 1

68

 After obtaining all probabilities of state, calculate normalization factor

 Normalization Factor=1 ∑ ∑ 𝑝(𝑖, 𝑗)𝑎𝑙𝑙 𝑗𝑎𝑙𝑙 𝑖⁄

(5-12)

 Multiply all probabilities of state by the normalization factor

Having obtained all steady state probabilities of the DC model under Multiple Parallel

Hystereses algorithm, performance metrics are necessary to evaluate and study the system

performance. Most significant performance metrics of the DC are derived using equations

below:

 State distribution of busy servers

 𝑃(𝑥) = ∑ 𝑝(𝑥, 𝑧)𝑠
𝑧=0

(5-13)

where the probability of x active servers can be obtained by adding up all probabilities

of states where x servers are active.

 Average number of busy servers, also indicating the amount of carried traffic

 𝑌𝑠 = ∑ 𝑥𝑃(𝑥)𝑛
𝑥=1

(5-14)

carried traffic by the average number of servers is calculated by summing the

multiplication of the probability of each states by the number of active servers in this

state.

 State distribution of buffered arrivals

 𝑄(𝑧) = ∑ 𝑝(𝑥, 𝑧)𝑛
𝑥=0

(5-15)

 Mean queue length, i.e. average number of buffered arrivals

 𝐿 = ∑ 𝑧𝑄(𝑧)𝑠
𝑧=0

(5-16)

 Probability of an arrival to be lost (Blocking Probability)

 𝐵 = ∑ 𝑝(𝑥, 𝑠)𝑛
𝑥=0

(5-17)

69

since arrivals are lost when the system’s buffer reaches its capacity, loss probability of

the DC follows from the summation of all states where 𝑧 = 𝑠.

 Probability of an arrival to be delayed upon arrival

 𝑊 = 1 − 𝐵

 (5-18)

Due to activation delay of servers, all arrivals to the system experience delays except

those who are lost.

 Mean waiting time with respect to all arriving requests following from Little’s law

[80]

 𝐸[𝑇𝑤] = 𝐿/𝜆

(5-19)

 Mean waiting time with respect to buffered requests (excluding those arrivals that are

lost)

 𝐸[𝑇𝑤|𝑇𝑤 > 0] = 𝐿/𝜆𝑊

(5-20)

 Activation rate of idle servers

𝑅𝐴 = 𝜆 ∗ ∑ ∑ 𝑝(𝑥, 𝑤(𝑖) + 𝑖 − 𝑥)

𝑛−1

𝑖=𝑥

𝑛−1

𝑥=0

 (5-21)

where Equation 5-21 sums up all states at which a new server activation is triggered

due to exceeding buffering threshold by a new arrival request, and multiplies them by

λ as triggering a new server activation occurs as a result of an arrival event.

 Deactivation rate of active servers

𝑅𝐷 = ∑ 𝑝(𝑥, 0) ∗ 𝜇𝑥,0

𝑛

𝑥=1

 (5-22)

since deactivation of a server occurs only when a server turns idle, i.e., after an arrival

is served and the queue is empty, Equation 5-22 adds up all states where the queue

size is null, and each state is multiplied by its respective service rate.

 Average number of servers in activation phase

𝑌𝐴 = ∑ ∑
𝛼𝑥,𝑧

𝛼

𝑠

𝑧=0

𝑛−1

𝑥=0

∗ 𝑝(𝑥, 𝑧)

 (5-23)

70

 where Equation 5-23 calculates the average number of servers in activation phase by

 multiplying the probability of each state in the system by the number of servers

triggered for activation at this state represented as 𝛼𝑥,𝑧 = 𝑖𝛼, where 𝑖 = 0,1, … 𝑛. Another

more general calculation is shown in Equation 5-24:

𝑌𝐴 = ∑ ∑ ∑ (𝑖 − 𝑥 + 1) ∗ 𝑝(𝑥, 𝑤(𝑖) + 𝑖 − 𝑥 + 𝑗)

𝑤(𝑖+1)+𝑖−𝑥+1

𝑗=1

𝑛−1

𝑖=𝑥

𝑛−1

𝑥=0

 (5-24)

 Power consumption of servers inside the DC

 𝑃𝑠 = 𝑌𝑠𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + 𝑌𝐴𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔

(5-25)

In the simplest form of this model servers that are not yet triggered for activation

remain switched-off, thus eliminating the power consumed by running idle and

limiting the power consumption to servers running at their full speed or being

activated. Power consumed by running servers can be computed by multiplying the

average number of active servers by the power consumed by a running

server 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔, which is estimated to be equal to 25W as reported in [5] for an Intel

Pentium M 1.6 GHz Processor. Power consumed by servers in the activation phase

can be calculated by multiplying the average number of servers in activation phase

times the power spike caused by activation, which is assumed to be equivalent to that

consumed by a server running at full speed.

 Power-Saving Efficiency

 𝜂 = (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 − 𝑃𝑠) (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔)⁄

(5-26)

in this context power saving efficiency is measured as the amount of power saved by

applying the hystereses algorithm to data centers instead of operating them by the

always-on strategy. This definition implies that the highest efficiency can be achieved

at low load situations where power consumed by idle servers can be saved, whereas at

high load situations when the DC is fully utilized the space for power saving

efficiency is minimal.

5.2.2 Simulation Model

For testing the Multiple Hystereses Model for achieving energy efficiency introduced

in this chapter, a compound OMNeT++ module is implemented as shown in figure 5.2. As

earlier explained in Section 4.2 the source module generates arrivals with a random

interarrival time following a negative-exponential distribution function, where the average

time between arrivals depends on the load experienced by the DC. Arrivals are forwarded

from the source to the passiveQueue module which decides whether the arrival should be

71

immediately served thus triggering the activation of a new server for serving it, or will be

queued until the next activation threshold is reached. In case an activation threshold is

reached which is determined by the number of buffered arrivals, the criterion of choosing

which server to be activated is done using a round-robin approach, and the time required by a

server to be activated is randomly selected according to a negative-exponential distribution.

When a server is activated a message is passed from the server to the queue requesting to

send the arrival buffered at the head of the queue, where service times of arrivals at servers

are negative-exponentially distributed with an average of one unit time for each server in the

DC. When the service time of an arrival ends, it is forwarded to the sink module where it will

be discarded from the DC, and the server at which it had been served at will pass a message

to the queue asking for the arrival at the head of the queue to start its service time. In case of

an empty buffer the server will be deactivated or put into a sleep mode.

The algorithm is tested under several parameters specified in the initialization file of

the model (.ini), where the mean value of interarrival, service and activation times are

specified for generating exponential random numbers with respective mean values. The

duration of the simulation is also specified, where it is set to end after the millionth arrival

leaves the DC. To test the performance of a DC operating under the proposed algorithm and

under diverse load conditions, the simulation runs under load value per server ranging from

0.1 to 1, where a load of 0.1 per each server indicates long interarrival times in comparison to

service times, and a load of 1 indicates high load at servers as arrival rate is equal to the

service rate. Throughout this simulation the average service time for each server in the DC is

assumed to be 1, so for simulating the DC under different loads the interarrival times are

varied according to equation 5-27:

𝜌 =
𝐴

𝑛
=

𝜆

𝑛𝜇
=

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒

𝑛∗𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒

𝑛𝜌

(5-27)

Figure 5-2 illustrates the (.ned) file for the simulation, which shows all simple modules and

their interconnections. The procedure followed by the simulation is explained through flow

charts in Figure 5-3 which explain the span of arrivals and servers inside the data center,

respectively.

Most important performance metrics for evaluating DC’s performance under Multiple

Hystereses Model are calculated using the following equations:

 State distribution of busy servers

 𝑃(𝑥) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑤𝑒𝑟𝑒 𝑎𝑐𝑡𝑖𝑣𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠

(5-28)

Where at the instance of each arrival the number of active server is recorded, so that

the probability of x active servers can be measured by counting the times x servers

were on at arrival instants divided by the total number of arrivals.

72

 Mean delay of delayed arrivals

𝐸[𝑇𝑤|𝑇𝑤 > 0] =
∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠

(5-29)

The number of delayed arrivals is determined by a counter that is incremented every

time a job enters the queue, which represents all arrivals that are accepted in the DC

and not lost. All accepted arrivals are considered to be delayed due to activation delay

of servers. Delay of each delayed arrival is measured as the difference between its

arrival time and the time it started service.

 Power saving efficiency

 𝜂 =
Φ−∑ 𝐴𝑐𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟∗𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒𝑎𝑙𝑙 𝑠𝑒𝑟𝑣𝑒𝑟𝑠

Φ

 Φ = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∗ 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

(5-30)

where the activity period of each server in the DC is measured and multiplied by the

amount of power consumption per unit time, then added together to calculate the total

power consumption of the DC. Subtracting the amount of consumed power using

hystereses model from the amount of consumed power by servers operating under the

always on strategy and dividing by it results in the power saving efficiency factor.

Figure 5-2: Basic DC Simulation Model

73

YesNo Queue Full?

Arrival forwarded to

Queue

Queue Size equal to

Hysteresis threshold?

Start

Interarrival

Timer Expires

Arrival generated at

Source

Arrival forwarded to

Queue

Buffer Arrival
Trigger new

Server Activation

No Yes

Server Activated/

Finishes Service

Start servicing

Arrival

Service

Time Ends

 Arrival

forwarded to Sink

Start

Server

idle

Arrival occurs

Queue Size equal to

Hysteresis threshold?

Trigger Server

Activation

Arrival

Buffered

NoYes

Server Activated

Start servicing

Arrival at the

head of the

queue

Start servicing

Arrival

Service

Time Ends

Queue Empty?

No

Yes

Figure 5-3: Flow Charts explaining Life Cycle of Arrivals and Servers inside the DC

5.3 Results

5.3.1 Performance Evaluation

This section introduces the results obtained by testing the performance of a data

center under the proposed Multiple Hystereses Model. Results in this section are obtained by

solving the recursive solution introduced in Section 5.2.1 using MATLAB tool, from the

implemented simulation using OMNeT++ software as well as from PowerShell scripts

running on the DC test bed. The model is tested under various loads to see how its

performance changes under light/heavy load conditions. All figures are shown for load value

𝜌 =
𝐴

𝑛
=

𝜆

𝑛𝜇
= 0, … ,1 with variable arrival rate 𝜆 = 0, … ,100 arrivals per unit time and

constant service rate per server μ fixed to 1 request per unit time for each of the 100 servers.

Parameters such as hystereses width and activation rate are also varied to see how they affect

74

system performance. An identical queuing system without the algorithm is also presented for

comparison and to clarify the improvements achieved by implementing the Multiple

Hystereses model on the DC’s performance. For all results introduced in this section the

activation delay of sleeping servers is assumed to be of a minimal value in order to study the

effects of varying other parameters, where the effect of varying activation times will be

separately studied in Section 5.3.2.

5.3.1.1 Probability of State P(x)

 The main target for introducing the hysteresis behavior in this model is to adapt the

number of servers in the DC to its current load, thus reducing the frequency of

activations/deactivations of servers and being able to consolidate the load onto the lowest

number of active servers to switch-off idle servers or put them into sleep mode. This is

illustrated in Figure 5-4 which shows probability of state 𝑃(𝑥) for 𝑥 = 0, 50 and 100 active

servers for a date center with 𝑛 = 100 servers, 𝑠 = 300 buffer places and hysteresis width

𝑤 = 3. A hysteresis width of 3 implies the following: after the first server is triggered for

activation when the first request arrives, the second server is triggered for activation when an

arrival occurs to a queue size of 3; the third server is triggered for activation when an arrival

occurs to a queue size of 6, etc. The figure shows that 𝑃(0), i.e. probability of having zero

active servers is highest when the load approaches zero, and decreases rapidly to zero as load

increases and more servers are turned on to accommodate the increased load. An exact

opposite behavior occurs at 𝑥 = 100, where the probability of having 100 active servers is

zero for all small and intermediate load values, then increases to 1 as the system load

approaches 𝜌 = 100 when arrival rate and service rates have equivalent values. For

intermediate load values as 𝑥 = 50, 50 active servers are only needed when the system is

half loaded, which is shown in the figure by a probability peak around 𝜌 = 50 and zero

probability at other smaller or higher loads. Figure 5.4 also compares the model results to

the results of standard

M/M/n/n+s queue with the same parameters without server consolidation whose results are

shown in dashed lines. Proposed model shows that it enhances the automatic adaptability of

the number of active servers in the data center to the load value by concentrating the

probability of 𝑃(𝑥) around respective load value 𝜌 = 𝑥, for 𝑥 = 0,1,2, … . 𝑛.

5.3.1.2 Server Activation Rates RA

Another effect of increasing hystereses widths and increasing number of buffered

arrivals before activating a new server is reducing server activation/deactivation rates. This

effect is one of the main effects of the hystereses model by which automatic server

consolidation is achieved. Figure 5-6 compares server activation rates of an 𝑀/𝑀/𝑛/𝑛 +

𝑠 queue vs. one with hystereses having identical parameters 𝑛 = 100 and 𝑠 = 300. The

figure shows that servers’ activation rates decreases rapidly as hysteresis width increases,

which reduces the oscillation between on/off states in servers thus avoiding delays and power

spikes experienced by activating switched-off/sleeping servers. This occurs because as more

arrivals are buffered, new server activation will be delayed more until load increases to a

defined level by hysteresis thresholds. Varying hysteresis thresholds results in a

75

corresponding variation of the servers’ activation rates as increasing the number of buffered

arrivals delays the activation of servers and thus reduces the activation rate, as shown in

Figure 5-7.

Figure 5-4: Probabilities of State P(x) of the Server Group inside Cloud Data Center

Figure 5-5: Probabilities of State P(x) of the Server Group for variable Hysteresis Widths

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load Factor A/n

P
ro

b
ab

il
it

y
 o

f
S

ta
te

 P
(x

)

Hystereses Model

M/M/n/n+s Queue

x=50 x=100x=0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load Factor A/n

P
ro

b
ab

il
it

y
 o

f
S

ta
te

 P
(x

)

w=1

w=3

w=5

x=0 x=50 x=100

76

Figure 5-6: Server Activation Rate RA for variable Hystereses widths

Figure 5-7 Server Activation Rate RA for Hystereses Model vs. an equivalent 𝑴/𝑴/𝒏/𝒏 + 𝒔

Queue

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Load Factor A/n

S
er

v
er

 A
ct

iv
at

io
n

 R
at

e
R

 A

w=2

w=3

w=4

w=5

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Load Factor A/n

S
er

v
er

 A
ct

iv
at

io
n

 R
at

e
R

 A

M/M/n/n+s

Hystereses w=3

77

5.3.1.3 Power Consumed by Servers PS

For evaluating the model’s efficiency at reducing power consumption, Figure 5-8

shows the amount of consumed power for a DC operating under hystereses model with

𝑛 = 100 and 𝑤 = 2,3,4 and 5 versus an 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue operating under always-on

strategy. Power consumed at different server states is adopted from [5], where a server

operating at full capacity consumes 25W as well as those being activated, and servers that are

in-active are assumed to be switched-off with zero power consumption in the hystereses

model, where in the always-on strategy they are idle with power consumption of 6W per unit

time. Figure 5-8 shows a huge reduction in consumed power achieved by the hystereses

model at low loads and decreasing as the load on the DC increases. At a load value

approaching zero, the hystereses model keeps all servers switched-off thus consuming zero

power compared to the 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue without hystereses which keeps all servers on

and idle consuming 600W without any useful output. As the load increases, hystereses model

tends to have lower server activation rate thus achieving lower power consumption. At

significantly high loads, e.g. 𝜌 = 1, all servers at the DC tend to be switched-on to serve the

increased load of incoming requests, thus diminishing the effect of any power saving

algorithm. The figure also shows that the hystereses width has almost no effect on the amount

of consumed power, which limits the variation in power consumption to the status of idle

servers being on and idle or switched-off. Results for a hysteresis width of 1 were not

included in the figure due to the lack of a significant effect on the power consumption.

Figure 5-8: Power Consumption of Servers inside the DC for various Hystereses Widths vs.

𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

Load Factor A/n

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

S

M/M/n/n+s

w=2

w=3

w=4

w=5

78

5.3.1.4 Power Saving Efficiency 𝜼𝒔

Another measure of model’s power saving capability is shown in Figure 5-9, which

shows the power-saving efficiency of a DC with 100 servers operating under the hystereses

model and how efficiency varies with varying the hystereses thresholds. The figure also

shows power saving efficiency of an equivalent 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue without hystereses for

comparison. As elaborated earlier in equation 5-26 the figure shows the amount of power

saved by applying hystereses model compared to always-on strategy, where the highest

efficiency value would be 1 when all servers are switched-off and the least value approaches

zero when the DC is fully operative. As the figure shows; highest efficiency is achieved only

when the DC is under low load where the hystereses model saves energy consumed by idle

equipment. Power saving efficiency diminishes as the load increases and the DC tends to

have all its equipment under high load. Figure 5-9 also shows that efficiency is not affected

by hystereses widths.

Figure 5-9: Power Saving Efficiency for Hystereses Model with various Widths vs. 𝑴/𝑴/
𝒏/𝒏 + 𝒔 Queue

5.3.1.5 Mean Delay of Delayed Frames 𝑬[𝑻𝒘|𝑻𝒘 > 0]

The main side effect of the hystereses model for reducing power consumption and

achieving server consolidation is the increased delays. As more arrivals tend to be buffered in

a system with hystereses instead of immediately being served, the mean delay time will

increase according to the increase in the hysteresis width, as shown in Figure 5-10. Results

are shown for variable hysteresis widths 𝑤 = 1,2,3 and 4 vs. a system without hystereses

(𝑀/𝑀/𝑛/𝑛 + 𝑠 queue) to show that although introducing the hystereses improves system

performance, it increases the mean waiting time of buffered requests. As explained earlier,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load Factor A/n

P
o

w
er

 S
av

in
g

 E
ff

ic
ie

n
cy

M/M/n/n+s

w=2

w=3

w=4

w=5

79

this delay increase is the main criteria to be taken into account while designing the system

parameters in order not to violate customers’ SLAs. In this context the mean delay is

calculated for only those arrivals that experience delay in the DC’s queue, not with respect to

all DC’s arriving requests. This is intended as the second calculation method would lower the

average delay value and provide a misleading average value for delay, whereas calculating

the average while considering only those who wait provides a more realistic measure and

could be used as a Quality of Experience ‘QoE’ metric while the mean delay of all arriving

requests 𝐸[𝑇𝑊] is used as a Quality of Service ‘QoS’ metric. Despite the increased delay,

applying hystereses model to a DC achieves an interesting effect of almost constant delays

for a huge load range, i.e. average delay is almost constant for all requests while load on the

data center is 5-95% loaded. This ‘plateau’ of delays is highly beneficial for administrators

for provisioning required configuration parameters and required hardware for their DC. As

the proposed hystereses model and its analytical solution can provide an exact estimate for

the average delay of delayed requests, administrators can tune their configuration parameters

for hystereses widths as well as buffer sizes to match the delay value required such that users’

SLAs are not violated while the load to the DC varies from 5% to 95%.

Figure 5-10: Mean Waiting Time of Buffered Requests
𝑬[𝑻𝑾 | 𝑻𝑾 > 𝟎] for variable Hystereses Widths vs. 𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue

Results obtained by the analytical solution shown in Figure 5-10 are supported by

results from OMNeT++ simulations for the same test cases. Figure 5-11 shows the delay

measured by the simulation model with a 95% confidence interval compared to the average

delay calculated by mathematical analyses for delayed arrivals. The figure shows that the

analytical solution provides an upper limit for the average delay, where delays measured from

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Load Factor A/n

M
ea

n
 w

ai
ti

n
g

 t
im

e
o

f
D

el
ay

ed
 F

ra
m

es

E
[T

w
|T

w
>

0
]*

M/M/n/n+s

w=1

w=2

w=3

w=4

80

the simulation is slightly lower
1
. Simulation tends to provide lower delays due to the nature

of the hystereses model; as a new arrival to the queue could increase its length to reach a

threshold value at which a new activation is triggered, thus increasing the service rate of the

system and reducing delay of buffered arrival. This effect could not be accounted for in the

calculated mean delay using Little’s Law [80] in equation 5-20.

Figure 5-11: Mean Waiting Time of Buffered Requests 𝑬[𝑻𝑾 | 𝑻𝑾 > 𝟎] for variable

Hystereses Widths (Analytical Solution vs. Simulation)

5.3.1.5 Model Validation

 This section provides validation for the proposed hystereses which has proved its

efficiency in enhancing DC’s performance by achieving server consolidation and reduced

power consumption. However the analytical results provided for the model is done under

Markovian assumptions, i.e., negative-exponential inter-arrival times and service times as

well as negative-exponential activation times for servers. As these assumptions do not apply

to all types of traffic or all types of hardware, the model was tested under different

distributions for inter-arrival, service and activation times in order to show its validity and

applicability to any DC type disregarding the distributions of times mentioned earlier.

Various distributions are applied in the OMNeT++ simulation model for a system with

parameters 𝑛 = 100, 𝑠 = 200, 𝑤 = 2 and 𝛼 = 0.1 while measuring the mean delay of

delayed frames for being the most critical parameter affected by the hystereses model.

1
 The differences between analytic and simulation results originate from the calculation of the mean number

of delayed arrivals used in Equations 6.16 and 6.19 as they include cases where servers are in an activation
phase but may be deactivated when no new server activation is required, c.f. state transitions indicated by “D”
in Figure 5-1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
D

el
ay

ed
 F

ra
m

es

E
[T

w
 |
 T

w
 >

 0
]

w=1

w=2

w=3

w=1 (Simulation)

w=2 (Simulation)

w=3 (Simulation)

81

5.3.1.5.1 Various Inter-arrival Time Distributions

 Figure 5-12 shows mean delay of delayed frames for a DC operating under hystereses

model while using different distributions for generating random inter-arrival times while

simulating the model using OMNeT++. Different mean values for inter-arrival times are used

to reflect load variation experienced by the DC, e.g.: for a load value 𝜌 = 𝑥 per server, the

average time between two requests generated at the source module of the simulation would

be equal to 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = 1 𝑛𝑥⁄ as per equation 5-27. Figure shows results while using the

following distributions with respective configurations for generating inter-arrival times:

 Exponential distribution with mean 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙

 Constant interarrival times = 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙

 Uniform distribution with limits [0 , 2 ∗ 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙]

For observing effects of variable inter-arrival time distributions, service times’ and activation

times’ distributions were both generated using a negative-exponential distribution function

with means 10s and 0.1 seconds, respectively. As the figure shows; measured mean delay is

not affected by varying the distribution used for generating inter-arrival times between

requests, which proves the validity of the model and its applicability to different distributions

of interarrival times rather than Markovian.

Figure 5-12: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Inter-Arrival Time

Distributions

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
D

el
ay

ed
 R

eq
u

es
ts

E
[T

W
 |
 T

W
 >

0
]

Exponential

Constant

Uniform

82

5.3.1.5.2 Various Service Time Distributions

 For testing the effect of altering the distribution of service times experienced by

requests at servers inside the DC, OMNeT++ simulations were conducted using the following

distributions for generating service times for each arrival upon entering the server at which it

will be served:

 Exponential distribution with mean 10

 Constant interarrival times = 10

 Uniform distribution with limits [0,20]

Figure 5-13 shows that the mean delay experienced by users while generating exponential

service times is not much affected while using different distributions, which proves

applicability of the model for any service time distributions and validity of the Markovian

assumption used by the analytical solution. Results in the figure were obtained while keeping

the generating negative exponentially distributed inter-arrival times with respective means to

the required load value as well as negative exponentially distributed server activation times

with mean value of 1 which raises the mean delay value to 1s at load values approaching

zero. The small dependence of the mean waiting time on the service time distribution is (at

first sight) counter-intuitive, but can be explained by making use of the results of Figure 5-7:

with increasing values of the hysteresis width the server activation rates decrease rapidly and

thus the mean waiting time of delayed frames is less affected by the service time distribution.

Figure 5-13: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Service Time

Distributions

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
D

el
ay

ed
 R

eq
u

es
ts

E
[T

W
 |
 T

W
 >

 0
]

Exponential

Constant

Uniform

83

5.3.1.5.3 Various Activation Time Distributions

Similar to the previous two test-cases Figure 5-14 shows the validity of the

assumption of negative-exponentially distributed servers’ activation times and the

applicability of the hystereses algorithm to model any type of DC with any distribution for

servers’ activation times. Results in the figure were obtained while generating service times

according to a negative-exponential distribution with mean value of 10s and inter-arrival

times according to the same distribution but with mean values retrieved from Equation 5-27

to reflect the DC’s load while distributions for generating servers’ activation times varied as

follows with 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 0.1:

 Exponential distribution with mean 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

 Constant interarrival times = 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

 Uniform distribution with limits [0,2 ∗ 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛]

Figure 5-14: Mean Delay of Delayed Requests E [Tw |Tw>0] for different Server Activation

Times Distributions

5.3.2 Case Study 1: Sleep Modes and Effect of Server’s Activation Rates

One of the novelties of the proposed hystereses model is its ability to model realistic

properties of servers such as the time required for activation of switched-off servers and its

associated power spike. This subsection compares two approaches taken when a server

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
D

el
ay

ed
 R

eq
u

es
ts

E
[T

W
 |
 T

W
 >

 0
]

Exponential

Constant

Uniform

84

finishes its service and the DC’s queue is empty: Cold Stand-by (CSB) and Hot Stand-by

(HSB). CSB is the basic approach where a server is completely deactivated when it becomes

idle, and has to be booted when a server activation is triggered. HSB avoids this booting

delay and instead puts servers in a sleep mode where they are in-active, consuming less

energy and can be activated again faster than CSB mode. HSB mode provides several sleep

states depending on which components of the server are put to sleep, where deep sleep states

with more inactive components require longer activation times than light sleep states. This

can be represented in the proposed hystereses model by varying the activation rate of servers

and thus their average booting/wakeup times. As CSB requires long activation times to boot

servers, servers in CSB mode require a smaller α.; whereas servers in HSB mode have large α

as they require shorter wake-up times.

In addition to the variation in activation times between turned off/sleep states, a

variation in power consumption must also be considered. Totally switched-off servers in CSB

mode consume no power; however sleep states specified by HSB mode still consume power

as not all components of the server are put to sleep. For evaluating the efficiency of sleep

modes integrated into the proposed hystereses model, power consumed by DC with/without

adopting sleep states are compared as well as the average delay experienced by delayed

arrivals. The power consumed by servers in CSB or HSB mode is calculated according to the

following equations:

 𝑃𝑆,𝐶𝑆𝐵 = 𝑌𝑠 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + 𝑌𝐴 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔

(5-31)

𝑃𝑆,𝐻𝑆𝐵 = (𝑌𝑠 + 𝑌𝐴) ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + (𝑛 − 𝑌𝑠 − 𝑌𝐴) ∗ 𝑃𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔

(5-32)

𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 follows from [5] to be equal to 25W as the energy consumed by a server operating at

full capacity, while 𝑃𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 is assumed to have an average value of 1.56W according to [53]

where sleeping states consume an average of 26% of idle power consumption. This value is

assumed for all sleep states since the difference in power consumption between different

sleep states is minor as components that are already idle have low power consumption.

Following from Equations 5-31 and 5-32 power-saving efficiency for CSB and HSB modes

by which the amount of power saved by these power saving modes compared to always-on

strategy can be calculated as follows:

 𝜂𝐶𝑆𝐵 = (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 − 𝑃𝑆,𝐶𝑆𝐵) 𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔⁄

(5-33)

 𝜂𝐻𝑆𝐵 = (𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 − 𝑃𝑆,𝐻𝑆𝐵) 𝑛 ∗ 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔⁄

 (5-34)

Figure 5-15 shows plots for power saving efficiency obtained using Equations 5-33

and 5-34 for a DC with parameters 𝑛 = 100, 𝑠 = 200 and 𝑤 = 2 by varying the value of

85

activation rate α as follows: Since CSB mode shuts down any idle server and boots it again

when a server activation is triggered, it requires long mean activation times and thus smaller

activation rates shown in Figure 5-15 as 𝛼 = 0.25. For HSB mode idle servers are put to

sleep at deep/light sleep modes, thus require shorter wake-up times and larger activation rates

varying between 0.5,1,4 and ∞ where deeper sleep states have smaller α and lighter sleep

states have higher 𝛼. As the figure shows power saving efficiency of CSB mode is higher at

low loads when the system is lightly loaded and not fully utilized, so it saves power

consumed by idle servers by turning them off. As load increases; HSB mode outperforms

CSB mode as DC utilization increases and the average number of idle servers as well as their

idle durations are highly reduced which eliminates the power saving effect by CSB mode. At

these load ranges and according to Figure 5-7 servers are likely to have high activation rates

where power-saving efficiency of HSB dominates since it eliminates the power spikes

associated with reactivation of sleeping servers. As α increases and time required to wake up

a sleeping server is reduced, power saving efficiency of HSB mode at relatively high loads

also increases. For validating power saving capabilities of the hystereses model using either

CSB or HSB modes, an equivalent 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue operating at always-on strategy is

shown in Figure 5-15 to have much lower power-saving efficiency especially at low load

regions when all servers are kept on without being utilized.

Figure 5-15: Power Saving Efficiency for CSB Mode vs. HSB Mode with various Sleep

States

Having explored the efficiency of the proposed sleeping modes within the hystereses

model in saving power consumed by the DC, their effect on the mean delay of requests at the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load Factor A/n

P
o

w
er

 E
ff

ic
ie

n
cy

CSB Mode

HSB Mode =0.5

HSB Mode =1

HSB Mode =4

HSB Mode =

M/M/n/n+s

86

DC is shown in Figure 5-16. Figure 5-16 shows mean delays for variable server activation

rates, where the average time taken by a server to be activated could be obtained as 1/𝛼. CSB

mode shows the highest average activation time; i.e. 4 seconds corresponding to an average

activation rate of 0.25 per server which is visible at load values approaching zero where the

only delay experienced by an arriving request is that while a server is being activated. As

load increases and more severs are activated the mean delay value drops and stabilizes until

the DC is almost 95% loaded. HSB mode have shorter wake-up times depending on which C

state the server entered after being idle, where deep sleep states require longer wake-up times

which is represented in the figure by an average activation rate of 0.5,1 and 4 for deeper and

lighter sleep states, respectively. As the figure shows, small activation rates result in longer

activation times, which increase the average delay of buffered requests. This effect is also

mostly obvious at small loads, when almost all requests arrive at the DC require a server to be

activated. When compared to an equivalent 𝑀/𝑀/𝑛/𝑛 + 𝑠 queue with parameters, it can be

noticed that the proposed hystereses model and its sleep modes highly increase the mean

delay value, which is the main drawback for power-saving efficiency. However, as the model

and its recursive solution can accurately predict the average delay of delayed requests

according to system parameters, they can be easily tuned to match the required delay value

according to users’ SLAs’

Figure 5-16: Mean Waiting Time of Buffered Requests 𝑬[𝑻𝑾 | 𝑻𝑾 > 𝟎]for variable

Activation Rates vs. 𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Load Factor A/n

M
ea

n
 w

ai
ti

n
g

 t
im

e
o

f
D

el
ay

ed
 F

ra
m

es

 E
[T

w
|T

w
>

0
]*

CSB Mode

HSB Mode =0.5

HSB Mode =1

HSB Mode =4

HSB Mode =

M/M/n/n+s

87

5.3.3 Case Study 2: Reduced Service Rates by DVFS

As explained briefly in sub-Section 3.1.3, DVFS is an approach that reduces the

frequency by which a server operates by specifying various P-states each with a defined

operating frequency and voltage. Various P-states correspond to different power consumption

modes, where the reduction in operational frequency results in a corresponding reduction in

consumed power. P-states have a main difference to C-states as illustrated in the previous

section: a server enters a P-state when it is busy serving a request, but reduces its service rate

for energy efficiency purposes, whereas C-states are only entered by servers when they are

completely idle.

In the STD of the hystereses model shown in Figure 5.1 the service rate of any state

(𝑥, 𝑧) is represented as 𝜇𝑥,𝑧, which follows from Equation 5-27 in the basic cases without

DVFS as the total service rate of a homogeneous server system is the summation of service

rates of all servers.

𝜇𝑥,𝑧 = 𝑥𝜇 (5-35)

To reflect a DC implementing DVFS technology, 𝜇𝑥,𝑧 can be varied for each state of the DC

to represent different service rates for different P-states servers can operate at. Typically,

reduced service rates are adopted when the DC is experiencing low loads to avoid severe

performance degradation. A relatively low load situation can be represented in the hystereses

model by a defined low queue threshold 𝑧∗; such that when the queue size is lower than the

buffering threshold servers operate at a reduced service rate of 𝜇∗ per server; according to

Equation 5-36:

𝜇𝑥,𝑧 = 𝑥𝜇 𝑓𝑜𝑟 𝑧 > 𝑧∗

 𝜇𝑥,𝑧 = 𝑥𝜇∗ 𝑓𝑜𝑟 𝑧 ≤ 𝑧∗ (5-36)

 For calculating the consumed power by servers operating under DVFS strategy, the

following equation is used:

𝑃𝑆 = 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ∗ ∑ ∑ 𝑥 ∗ 𝑝(𝑥, 𝑧)

𝑠

𝑧=𝑧∗+1

𝑛

𝑥=1

+ 𝑃𝐷𝑉𝐹𝑆 ∗ ∑ ∑ 𝑥 ∗ 𝑝(𝑥, 𝑧)

𝑧∗

𝑧=0

𝑛

𝑥=1

 (5-37)

The first part of the equation calculates the power consumed by servers operating at full

speed when buffer size is above the threshold by multiplying the average number of servers

operating at full power by the power consumption of a server operating at full speed 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔.

The second part of Equation 5-37 calculates the reduced power consumed by servers with

reduced service rates when buffer capacity is less than or equal to the defined buffering

threshold for DVFS, where 𝑃𝐷𝑉𝐹𝑆 varies depending on the P-state at which a server operates

and 𝜇∗ varies accordingly:

 𝜇∗ = 𝑃𝐷𝑉𝐹𝑆 𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔⁄ (5-38)

88

 Figures 5-16, 5-17and 5-18 shows the performance of a DC operating under

hystereses model while implementing various P-states a server can enter by reducing its

operational frequency to reduce its power consumption. P-states used in these test cases are

adopted from [5] where P1 is the state with highest frequency and performance and P5 is the

state with lowest frequency and lowest performance. Figure 5-17 shows mean delays of

buffered arrivals for a DC operating in CSB mode with parameters 𝑛 = 100, 𝑠 = 200, 𝑤 =

2, 𝛼 = 1 and 𝑧∗ = 5 where servers are only allowed to reduce their operational frequency

when the queue size is lower than or equal to 5 buffered arrivals. As this buffering threshold

is only reached at low load values, it results in a delay spike as shown in Figure 5-17 which

increases as frequency decreases. This increase in delay is caused by the reduction in the

operational frequency of the server which elongates the time it requires to finish servicing an

arrival, thus increasing service time and mean waiting time of arrivals. Reduced service rates

result also in an increased buffer size which triggers more servers to be activated while

hystereses thresholds are reached. The increased activation rate of servers around load

regions where queue size is equal to z* illustrated by Figure 5-18 causes more servers to be

brought into service than the number required to serve the current load value. As the load

value increases with a corresponding increase in buffer size, the increased number of

activated servers exit P states and increase their service rates to accommodate the increasing

load, which is reflected in Figure 5-17 by a rapid decrease in the mean delay of delayed

arrivals as the service rate of the DC rapidly increases. Figure 5-17 also shows that the more

frequency is reduced, the more average delay increases when servers operate at P states

causing system buffer to be filled faster thus triggering more servers for activation and

increasing server activation rate.

Figure 5-17: Mean Waiting Time of Delayed Frames for Hystereses Model under different P-

States

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 F
ra

m
es

E
 [

T
W

 |
 T

W
 >

 0
]

P1

P2

P3

P4

P5

89

Figure 5-18: Server Activation Rate for Hystereses Model with DVFS under different P-

States

Figure 5-19: Power Saving Efficiency of Hystereses Model under different P-States

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Load Factor A/n

S
er

v
er

 A
ct

iv
at

io
n

 R
at

e
R A

P1

P2

P3

P4

P5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load Factor A/n

P
o

w
er

 S
av

in
g

 E
ff

ic
ie

n
cy

P1

P2

P3

P4

P5

90

 Despite the increase in mean delay noted in Figure 5-17, the corresponding power

saving efficiency due to dynamic frequency scaling is minimal. Figure 5-19 shows the

efficiency of hystereses algorithm with DVFS at saving power for different P-states, where

graph lines overlap on the figure due to the minimal differences in efficiency. This is

explained as follows: despite the expectation that the amount of power consumption should

be reduced by reducing the operational frequency of servers, this reduction is power

consumption by active servers is compensated by more servers triggered for activation and

becoming active due to the increased service time, mean delay and accordingly buffer size

which triggers more servers to be activated thus consuming more power. This hypothesis is

supported by the shifted peak of server activation rates in Figure 5-18 compared to a

hystereses system without DVFS in Figure 5-7.

 Another parameter of interest is when to put servers in the DC into P-states. Figures

5-20 and 5-21 showcase results of a DC whose servers operate at P3 state when 𝑧∗ reach

different queuing thresholds 𝑧∗ = 5, 50, 100, 150. Despite power saving efficiency is not

increased due to the increase in number of activated servers compensating the energy saving

by reduced operational frequency as Figure 5-20 shows, the mean delay of delayed requests

is highly affected by increasing 𝑧∗. Figure 5-20 illustrates that as 𝑧∗ increases delay rapidly

increases due to the reduction in service rates over longer load values which elongates

durations spent by arrivals in the DC’s buffer. This increased mean delay value is maintained

over longer load ranges as servers keep operating in P-states for longer times until buffering

threshold 𝑧∗ is reached.

Figure 5-20: Mean Waiting Time of Buffered Frames for Hystereses Model under DVFS

with different values for Parameter z*

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 F
ra

m
es

E
[T

W
 |
 T

W
 >

 0
]

z*=5

z*=50

z*=100

z*=150

91

Figure 5-21: Power Saving Efficiency of Hystereses Model under DVFS with different values

for Parameter z*

 Choosing among different parameters for z* and P-states under test in this section

should always be done while considering users’ SLAs, as attempts to reduce power

consumption or number of activated servers always result in degradation in DC’s

performance in terms of increased delays for delayed arrivals. Important to be mentioned also

is that all before mentioned results show that application of DVFS in a DC under hystereses

model and the reduced service rates due to frequency reduction alter its server consolidation

effect. This is most visible in altering peak values of server activation rates and ant which

load values they are achieved, as well as altering the concentration of probabilities of x active

servers at respective load x, which defies the goal of the model to consolidate the DC’s load

on the least number of possible servers to maintain users’ SLAs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load Factor A/n

P
o

w
er

 S
av

in
g

 E
ff

ic
ie

n
cy

z*=5

z*=50

z*=100

z*=150

92

93

Chapter 6 Load Balancing Algorithms between Cloud

Data Centers

 This chapter introduces two algorithms for the purpose of balancing the load

dynamically among data centers in the cloud to maintain an efficient performance during

peak-load periods. As previously explained in Chapter 3, load balancing between cloud DCs

is required in order to avoid in-efficient load distribution where some DCs suffer an overload

that can result in performance degradation and violation of its customers’ SLAs while other

DCs are under-utilized. Dynamic Load balancing also helps in providing better utilization of

resources as well as maintaining prescribed SLAs for customers.

 The novelty of the algorithms proposed in this thesis results from the fact that they are

using decentralized, dynamic algorithms that perform load balancing decisions at the instant

of each request’s arrival. As concluded from the discussion provided in Chapter 3 for existing

load balancing techniques in literature most algorithms had drawbacks of being static,

centralized, having long processing times or result in reduced resources’ utilization and long

average response times for requests. The two proposed algorithms avoid mostly all of these

issues by having the following properties:

 Algorithms operate separately at each DC avoiding the need for any centralized nodes

that may cause bottlenecks or single points of failure.

 All load balancing decisions are taken considering the current state of the local DC as

well as foreign DCs to which requests could be migrated to. Future states of the DCs

after requests arrive to them are also considered to make sure that requests are

balanced optimally between DCs without causing overload at any of them.

 Unlike the common convention of load balancing algorithms to balance the load

evenly between DCs, the proposed algorithms do not encourage migrations between

DCs unless needed for providing better service for users. The two algorithms compare

between the approach of balancing the load only at overload situations and thus,

keeping the un-balanced load situation as long as performance is not degraded, and

balancing the load at low and high load regions for achieving lowest average waiting

time possible.

 Maintaining service level agreements of requests in terms of average response times is

the main criteria for the load balancing process. If at the instance of each arrival a

request cannot be served at its own DC according to prescribed SLAs, it will be

migrated to another DC offering better response time.

 Algorithms account for overheads resulting from migrating requests between DCs,

such as transmission delays due to geographical distances between DCs which must

be taken into account to determine whether migration would be beneficial or not, as

well as for the overhead required for communicating the actual load situations at

different DCs.

94

 This chapter models the load balancing process between two DCs by two different

algorithms: Local Server System First (LSSF) and Shortest Response Time First (SRTF),

each defining a preference for where to schedule a request at its arrival instant. For each

algorithm, the first section models the system using a two-dimensional Markov Chain

representing the states of the two DCs, and illustrating all the possible scenarios that could

occur to a DC, from accepting a request, migrating a request, or declining to serve it.

Theoretical analysis for solving the Markov Chain represented by the state transition diagram

of the model using a simple recursive solution is explained along with computations of

significant performance metrics for evaluating the system. Section two in each algorithm

explains a simulation model of the algorithm using OMNeT++, where the algorithm is

simulated for two DCs to verify analytical solution under Markovian assumptions, and is then

extended to more than two DCs and general interarrival and service distributions. In the third

section each algorithm is implemented on the test bed described in Chapter 4 for actual

testing of the algorithm using real traffic requests.

6.1 Algorithm 1: Local Server System First (LSSF)

Local Server System First algorithm is based on the idea of maintaining unbalanced

load among cloud DCs as long as required to meet SLAs. The algorithm balances the load by

migrating arriving requests from highly loaded DCs to lightly loaded ones in case of overload

situations only if the user SLAs’ cannot be maintained at the arriving request’s local DC. At

low and average load situations, an arriving request would always be directed to its local

server system first, only until the local server system is totally occupied at which case the

algorithm is triggered. If an arrival doesn’t find a place to occupy at its local DC, foreign DCs

are checked if they can accommodate this arrival; if a match is found while considering

migration overhead to this DC then the arrival will be migrated and served, otherwise the

arrival will be lost.

6.1.1 Model Definition

 For modeling the Local Server System First (LSSF) load balancing algorithm DCs

are abstracted as multi-server queuing models, as explained previously in Chapter 5. The

most basic case of the algorithm is illustrated in Figure 6-1 in the form of two DCs with

mutual overflow of requests between them. Each DC is assumed to be aware of its own

current state along with current state of the foreign DC. This could be implemented by having

the two DCs exchange their current states via periodic update messages, or through a central

controller to which current states are sent then it broadcasts them back to all nodes. For ease

of analysis, the DCs studied in the basic case illustrated in this section are assumed to be

homogeneous where each DC has the same number of homogeneous servers having equal

service rates, and queues of all DCs operate according to FIFO queuing discipline.

Parameters for the model in the Figure 6-1 are explained in the following Table 6-1 for

𝐷𝐶𝑖, 𝑖 = 1,2.

95

M

λ1

F
IF

O

M

n1,µ1

x1*

s1

x1

M

λ2

F
IF

O

M

n2,µ2

x2*

s2

x2

Departures

Server

Group

Losses

C10 C20

Losses
C12

C21

Mutual Overflows
Arrivals

Figure 6-1: System Model for two Data Centers under LSSF Algorithm

Table 6-1: Definition of Model Parameters

𝑛𝑖 Number of homogeneous servers in each 𝐷𝐶𝑖

𝜇𝑖 Service rate of each one of the homogeneous servers in 𝐷𝐶𝑖

𝑠𝑖 Buffer size at each 𝐷𝐶𝑖 where buffer sizes are dimensioned such that

arrivals’ SLA is maintained even for the last arrival in the buffer in terms of

average response time. In this model with Markovian service times and for

defined delay threshold 𝑡𝑊,𝑇 the mean response time for requests 𝑡𝑤𝑖 should

never exceed the delay threshold, as explained by Equation 6-1.

Accordingly, 𝑠𝑖 is dimensioned by the following Equation 6-2:

𝑡𝑤𝑖 =
𝑠𝑖

𝑛𝑖𝜇𝑖
 ≤ 𝑡𝑊,𝑇 i=1,2 (6-1)

𝑠𝑖 ≤ 𝑡𝑊,𝑇 ∗ 𝑛𝑖𝜇𝑖 (6-2)

Equation 6-1 is derived from the following reasoning: the average waiting

time for any arrival before it could start being serviced can be derived by

dividing the number of arrivals ahead of it in the queue by the service rate by

which these arrivals are served. When the last arrival occurs to the queue at

position 𝑠𝑖, this arrival will have 𝑠𝑖 − 1 customers ahead of it in the queue,

plus one customer in the server at which this arrival will be served. The

average service rate of the system at the instance of an arrival catching the

last place in the queue is 𝑛𝑖𝜇𝑖 as all servers are active and each is serving

96

requests at a rate of 𝜇𝑖. By dividing the number of arrivals ahead of the

arrival occupying the last place in the queue by the DC’s total service rate its

average waiting time can be obtained.

𝜆𝑖 Arrival rate of requests to 𝐷𝐶𝑖

M Refers to Markovian interarrival and service times which are negative-

exponentially distributed

𝑥𝑖 Number of customers at each 𝐷𝐶𝑖, either being served or in the queue

𝑥𝑖
∗ Threshold for accepting any arrivals migrated from an outside DC. If the

current system state (i.e. number of customers in the system) is less than or

equal to 𝑥𝑖
∗ then 𝐷𝐶𝑖 will accept a migrated arrival, otherwise only local

arrivals are accepted until reaching buffer capacity. 𝑥𝑖
∗ is dimensioned such

that the average response time of a migrated arrival to 𝐷𝐶𝑖 added by the

migration time 𝑡𝑀 from its overloaded 𝐷𝐶𝑗 to 𝐷𝐶𝑖 could still meet the

average response time defined by SLA: 𝑡𝑊,𝑇, as illustrated by equation 6-3.

𝑡𝑀 +
𝑥𝑖

∗−𝑛𝑖+1

𝑛𝑖𝜇𝑖
 ≤ 𝑡𝑊,𝑇 (6-3)

Equation 6-3 follows the following reasoning: an arrival to 𝐷𝐶𝑖 when it is

occupied by 𝑥𝑖
∗ customers will find 𝑥𝑖

∗ − 𝑛𝑖 customers ahead of it in the

queue, so the arrival has to wait for these customers to become scheduled for

service plus the residual time until the first service termination occurs. By

dividing the number of customers in the foreign DC by the service rate

𝑛𝑖𝜇𝑖 at which the migrated arrival will be served, the average response time

of the migrated arrival could be calculated. As the average response time met

by a new arrival is constituted by cumulating service times of arrivals ahead

of it in the system, it is determined to follow an Erlangian distribution of

order 𝑥𝑖
∗ − 𝑛𝑖 + 1. The migration time is assumed in this context for

simplicity to have a constant duration, which results in a shifted Erlangian

distribution for the total average response time by 𝑡𝑀. Average response time

added to the migration time from the overloaded 𝐷𝐶𝑗 to 𝐷𝐶𝑖 should be less

than the average response time specified by SLA. Accordingly, 𝑥𝑖
∗ could be

calculated using Equation 6-4:

𝑥𝑖
∗ ≤ (𝑡𝑊,𝑇 − 𝑡𝑀) ∗ 𝑛𝑖𝜇𝑖

+ 𝑛𝑖 − 1 (6-4)

𝐶𝑖0 Logical condition for rejection of an arrival at 𝐷𝐶𝑖

𝐶𝑖𝑗 Logical condition for migrating an arrival from 𝐷𝐶𝑖 to 𝐷𝐶𝑗

97

 The load balancing model operates according to the following strategy: At the

instance of an arrival occurring at any 𝐷𝐶𝑖 i from its own customers, one of the following

cases will occur according to the system state:

 If at least one server is idle then the arrival will be immediately served at its local DC

 If all servers are occupied and 𝑥𝑖 < 𝑠𝑖, the arrival will be buffered at its local DC

 If the local DC of the arrival is completely occupied, then the arrival could be

migrated to another DC where its SLA could be maintained. Thus, the local server

system is always preferred by an arrival unless the system is totally occupied. Job

migration between DCs has an overhead represented by migration time from one DC

to another, indicated as 𝑡𝑀. If no available DC is suitable for the job to migrate to

then the arrival will be dropped.

If an arrival didn’t find a place at its own server system, then a foreign DC will decide

whether to accept or reject the arrival based on the following conditions illustrated in Figure

6-1 for the basic case of only two data centers:

 𝐶12: (𝑥1 = 𝑛1 + 𝑠1) AND (𝑥2 ≤ 𝑥2
∗)

 An arrival will be migrated from 𝐷𝐶1 to 𝐷𝐶2 iff 𝐷𝐶1 is fully occupied, and the

number of requests in 𝐷𝐶2 is less than or equal to the defined threshold 𝑥2
∗.

 𝐶10: (𝑥1 = 𝑛1 + 𝑠1) AND (𝑥2 > 𝑥2
∗)

 An arrival will be dropped from 𝐷𝐶1 iff 𝐷𝐶1 is fully occupied, and the number of

 requests in 𝐷𝐶2 is greater than the defined threshold 𝑥2
∗.

 𝐶21: (𝑥2 = 𝑛2 + 𝑠2) AND (𝑥1 ≤ 𝑥1
∗)

An arrival will be migrated from 𝐷𝐶2 to 𝐷𝐶1 iff 𝐷𝐶2 is fully occupied, and the

number of requests in 𝐷𝐶1 is less than or equal to the defined threshold 𝑥1
∗.

 𝐶20: (𝑥2 = 𝑛2 + 𝑠2) AND (𝑥1 > 𝑥1
∗)

An arrival will be dropped from 𝐷𝐶2 iff DC2 is fully occupied, and the number of

requests in 𝐷𝐶1 is greater than the defined threshold 𝑥1
∗.

 After the handling of arrivals is decided upon (admitted to the

queue/migrated/rejected), accepted requests are served in a First-In First-Out (FIFO) order.

By implementing this algorithm SLAs of requests are guaranteed to be maintained in terms of

average response times; losses are reduced since arrivals that arrive at a fully occupied DC

have an opportunity to be migrated and served elsewhere, and finally, DCs are protected from

reaching overload states by rejecting migrating requests upon a defined threshold so that local

arrivals have priority to be served at their local DCs.

6.1.2 Model Analysis

 In order to analyze the proposed LSSF algorithm and understanding its behavior, the

basic case of balancing the load among two DCs is first studied analytically using Markov

Chains. A state transition diagram representing system’s states is introduced and explained

followed by an algorithm for solving the steady state probability for each system state which

are then used to calculate significant performance metrics to evaluate the algorithm such as

loss, delay and migration probabilities as well as mean waiting times. Following sub-sections

98

introduce a simulation model for the algorithm to verify the analytical model and extend it

beyond Markovian assumptions for interarrival and service times, as well as testing the

algorithm between two servers in a DC using the test bed explained earlier in Chapter 4.

6.1.2.1 Mathematical Analysis

 For evaluating the model’s performance, this section shows a representation of the

model using two-dimensional Markov Chains. Figure 6-2 shows the state transition diagram

for two data centers while applying the previously explained LSSF load balancing algorithm

between them. Each state in the state transition diagram is represented by (𝑥1 , 𝑥2), where 𝑥1

represents the number of requests in DC1, and 𝑥2 represents the number of requests in DC2,

either being served or queued while waiting for service. Transitions between states are

indicated by directed arrows from one state to another labeled by the transition rate that

caused this transition. Migration thresholds Xj* and Xi* for migration from 𝐷𝐶𝑖 to 𝐷𝐶𝑗 and

vice versa, respectively are indicated in the diagram by dashed lines.

Generally, when the system is at any general state (𝑥1 , 𝑥2), expected events are either an

arrival event or a departure event at either one of the DCs. The system state changes

according to each of these events as explained below for DC1 and the same applies at DC2:

1. In case of an arrival event of a local customer occurring at DC1 at rate 𝜆1:

If 𝑥1 < 𝑛1 then the arrival will be served immediately by one of the available servers

at the DC. If 𝑛1 ≤ 𝑥1 < 𝑛1 + 𝑠1 the arrival will be accepted and queued as all

servers are busy and the queue is not yet fully occupied. In both before-mentioned

cases the state of the system will change to (𝑥1 + 1, 𝑥2). If 𝑥1 = 𝑛1 + 𝑠1 then the

arrival cannot be accepted at its local DC, so other DCs are checked for availability to

accommodate this arrival so that it is not lost. Availability is determined by migration

thresholds of foreign DCs, so if the number of customers at one of the DCs is lower

than its defined migration threshold, the arrival is migrated to it and the system state

changes to (𝑥1 , 𝑥2+1). If no suitable DC could be found, the arrival would be lost

without a change in the system change.

2. In case a server completes serving an arrival at DC1 :

If 𝑥1 ≤ 𝑛1 then the arrival served at a rate of 𝑥1𝜇1 will leave the system and the

server would be switched-off as the queue size is zero. If 𝑛1 < 𝑥1 ≤ 𝑛1 + 𝑠1 the

served arrival at a rate of 𝑛1𝜇1 will leave the system and the server would be

occupied by a request from the head of the queue. In both cases the system state to

change to (𝑥1 − 1, 𝑥2).

99

n1+1

0

n1

0

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2μ2 μ2

n1+1

1

n1

1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ22μ2 2μ2

n1+s1

0

n1+s1-1

0

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2μ2 μ2

n1+s1

1

n1+s1-1

1

λ1

n1μ1

λ1

n1μ1

λ2 2μ2 2μ2
λ1+λ2

1

0

0

0

λ1

μ1

λ1

2μ1

λ2 λ2μ2 μ2

1

1

0

1

λ1

μ1

λ1

2μ1

λ2 λ22μ2 2μ2

n1+1

n2

n1

n2

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+1

n1

n2+1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2

n1+s1-1

n2

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2n2μ2 n2μ2

n1+s1

n2+1
n1+s1-1

n2+1

λ1

n1μ1

λ1

n1μ1

λ2 n2μ2 n2μ2λ1+λ2

1

n2

0

n2

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+1

0

n2+1

λ1

μ1

λ1

2μ1

λ2 λ2n2μ2 n2μ2

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ1+λ2 n2μ2

n2μ2

n1+1

n2+s2-1

n1

n2+s2-1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+s2

n1

n2+s2

λ1+λ2

n1μ1

λ1+λ2 λ1+λ2

n1μ1n1μ1

n1+s1

n2+s2-1
n1+s1-1

n2+s2-1

λ1

n1μ1

λ1

n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2+s2

n1+s1-1

n2+s2

λ1

n1μ1

λ1

n1μ1

1

n2+s2-1

0

n2+s2-1

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+s2

0

n2+s2

λ1+λ2

μ1

λ1+λ2

2μ1

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2

n2μ2

λ2 λ2

λ1

λ1

X2*

X2*+1

n2+s2

X1* X1*+1 n1+s1

Figure 6-2: State Transition Diagram for two DCs operating under LSSF Algorithm

 For solving the steady state probabilities of the Markovian queuing model explained

above a system of linear balance equations has to be solved according to the method of

Markov Chain analysis (see solution for the service strategy SRTF). In this section an

approximate solution based on product-form state distribution for non-border states of the

state transition diagram is presented following a step-wise algorithm, as explained below:

 Assume the probability of state (0,0)

𝑝(0,0) = 1 (6-5)

100

n1+1

0

n1

0

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2μ2 μ2

n1+1

1

n1

1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ22μ2 2μ2

n1+s1

0

n1+s1-1

0

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2μ2 μ2

n1+s1

1

n1+s1-1

1

λ1

n1μ1

λ1

n1μ1

λ2 2μ2 2μ2
λ1+λ2

1

0

0

0

λ1

μ1

λ1

2μ1

λ2 λ2μ2 μ2

1

1

0

1

λ1

μ1

λ1

2μ1

λ2 λ22μ2 2μ2

n1+1

n2

n1

n2

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+1

n1

n2+1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2

n1+s1-1

n2

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2n2μ2 n2μ2

n1+s1

n2+1
n1+s1-1

n2+1

λ1

n1μ1

λ1

n1μ1

λ2 n2μ2 n2μ2λ1+λ2

1

n2

0

n2

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+1

0

n2+1

λ1

μ1

λ1

2μ1

λ2 λ2n2μ2 n2μ2

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ1+λ2 n2μ2

n2μ2

n1+1

n2+s2-1

n1

n2+s2-1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+s2

n1

n2+s2

λ1+λ2

n1μ1

λ1+λ2 λ1+λ2

n1μ1n1μ1

n1+s1

n2+s2-1
n1+s1-1

n2+s2-1

λ1

n1μ1

λ1

n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2+s2

n1+s1-1

n2+s2

λ1

n1μ1

λ1

n1μ1

1

n2+s2-1

0

n2+s2-1

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+s2

0

n2+s2

λ1+λ2

μ1

λ1+λ2

2μ1

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2

n2μ2

λ2 λ2

λ1

λ1

X2*

X2*+1

n2+s2

X1* X1*+1 n1+s1

1

2

2

3

3

Figure 6-3: Solution Sub-Spaces for LSSF Algorithm

 Consider sub-space 1 shown in Figure 6-3:

Sub-space 1 includes all states where 𝑥1 < 𝑛1 and 𝑥2 < 𝑛2. For these specific states,

no overflow occurs between the two DCs as not all servers are fully occupied, so any

new local arrival to any of the two DCs will be immediately served by its own DC

without any need to be migrated to the foreign DC. Accordingly, each state in this

sub-space 1 can be solved using the product-form solution in equation 6-6.

𝑝(𝑥1, 𝑥2) = 𝑝(0,0) ∗
𝜆1

𝑥1

𝜇1
𝑥1 ∗ 𝑥1!

∗
𝜆2

𝑥2

𝜇2
𝑥2 ∗ 𝑥2!

for 𝑥1 < 𝑛1 and 𝑥2 < 𝑛2

(6-6)

101

 Consider sub-space 2 shown in Figure 6.3:

States in sub-space 2 are the states where an arrival to a DC is queued at its own DC.

No mutual overflows occur at these states because local DCs are not completely

occupied yet, so the two DCs could be treated as independent. These states could be

solved also using product form solution illustrated in equation 6-7.

𝑝(𝑥1, 𝑥2) = 𝑝(0,0) ∗
𝜆1

𝑛1

𝜇1
𝑛1 ∗ 𝑛1!

∗
𝜆2

𝑛2

𝜇2
𝑛2 ∗ 𝑛2!

∗ (
𝜆1

𝜇1𝑛1
)

𝑥1−𝑛1

∗ (
𝜆2

𝜇2𝑛2
)

𝑥2−𝑛2

for 𝑛1 ≤ 𝑥1 < 𝑛1 + 𝑠1 − 1 and 𝑛2 ≤ 𝑥2 < 𝑛2 + 𝑠2 − 1

(6-7)

Subspaces 1 and 2 both rely on product-form solution based on independence of DCs,

which is a valid approximation at small load values where the mass of probability lies

in these two subspaces. Whereas for heavy load situations and large values of 𝜆1

and 𝜆2, the mass of the probability will be shifted to the border states, since DCs tend

to be completely occupied and mutual overflows occur between them which makes

the product-form solution invalid.

 Consider sub-space 3 shown in Figure 6-3 indicating all border states:

As product form solution cannot be applied to solve these states due to mutual

overflows between DCs, each state has to be solved separately using local balance

equation between each state and its neighbor states. At this point in the algorithm, all

inner states from sub-spaces 1 and 2 have been calculated relative to state (0,0) using

the previously explained product-form solution. Following local balance equilibrium

rules, each of the border states is in statistical equilibrium with its lower neighbor

states, so all border states can be calculated relative to inner states according to the

following equations:

For lower border states (0, 𝑛2 + 𝑠2), (1, 𝑛2 + 𝑠2), (2, 𝑛2 + 𝑠2),…. (𝑛1 + 𝑠1 − 1,𝑛2 +

 𝑠2):

 State (0, 𝑛2 + 𝑠2) can be calculated according to Equation 6-8:

 𝑝(0, 𝑛2 + 𝑠2) =
𝜆2

𝑛2𝜇2
𝑝(0, 𝑛2 + 𝑠2 − 1)

(6-8)

 States (1, 𝑛2 + 𝑠2), (2, 𝑛2 + 𝑠2),… (𝑛1 − 1, 𝑛2 + 𝑠2) are calculated using

Equation 6-9:

𝑝(𝑥1, 𝑛2 + 𝑠2) =
1

𝑥1𝜇1 + 𝑛2𝜇2
((𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑥1, 𝑛2 + 𝑠2 − 1))

(6-9)

102

 States (𝑛1, 𝑛2 + 𝑠2), (𝑛1 + 1, 𝑛2 + 𝑠2),… (𝑥1
∗, 𝑛2 + 𝑠2) can be calculated

using Equation 6-10:

𝑝(𝑥1, 𝑛2 + 𝑠2)

=
1

𝑛1𝜇1 + 𝑛2𝜇2
((𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑥1, 𝑛2 + 𝑠2 − 1))

(6-10)

 States (𝑥1
∗ + 1, 𝑛2 + 𝑠2), (𝑥1

∗ + 2, 𝑛2 + 𝑠2),… (𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2) can be

calculated using Equation 6-11:

𝑝(𝑥1, 𝑛2 + 𝑠2) =
1

𝑛1𝜇1 + 𝑛2𝜇2
(𝜆1𝑝(𝑥1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑥1, 𝑛2 + 𝑠2 − 1))

(6-11)

For right border states (𝑛1 + 𝑠1, 0), (𝑛1 + 𝑠1, 1), (𝑛1 + 𝑠1, 2)… (𝑛1 + 𝑠1, 𝑛2 + 𝑠2 −

1):

 State (𝑛1 + 𝑠1, 0) can be obtained using Equation 6-12:

 𝑝(𝑛1 + 𝑠1, 0) =
𝜆1

𝑛1𝜇1
𝑝(𝑛1 + 𝑠1 − 1,0)

(6-12)

 States (𝑛1 + 𝑠1, 1), (𝑛1 + 𝑠1, 2), … (𝑛1 + 𝑠1, 𝑛2 − 1) can be calculated using

Equation 6-13:

𝑝(𝑛1 + 𝑠1, 𝑥2)

=
1

𝑛1𝜇1 + 𝑥2𝜇2

(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) + (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2

− 1))

(6-13)

 States (𝑛1 + 𝑠1, 𝑛2), (𝑛1 + 𝑠1, 𝑛2 + 1) … (𝑛1 + 𝑠1, 𝑥2
∗) can be calculated using

Equation 6-14:

𝑝(𝑛1 + 𝑠1, 𝑥2)

=
1

𝑛1𝜇1 + 𝑛2𝜇2

(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) + (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2

− 1))

(6-14)

103

 States (𝑛1 + 𝑠1, 𝑥2
∗ + 1), (𝑛1 + 𝑠1, 𝑥2

∗ + 2) … (𝑛1 + 𝑠1, 𝑛2 + 𝑠2 − 1) can be

calculated using Equation 6-15:

𝑝(𝑛1 + 𝑠1, 𝑥2) =
1

𝑛1𝜇1 + 𝑛2𝜇2

(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) + 𝜆2𝑝(𝑛1 + 𝑠1, 𝑥2 − 1))

(6-15)

 After calculating lower and right border states; bottom right corner state

(𝑛1 + 𝑠1, 𝑛2 + 𝑠2) can be calculated using Equation 6-16:

𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2)

=
1

𝑛1𝜇1 + 𝑛2𝜇2
(𝜆1𝑝(𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2) + 𝜆2𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2

− 1))

 (6-16)

 After all state probabilities have been calculated relative to the assumption made by

Equation 6-5, the assumed state probability 𝑝(0,0) can be calculated by obtaining the

normalization factor from Equation 6-17:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑝(0,0) =
1

∑ ∑ 𝑝(𝑥1,𝑥2)
𝑛2+𝑠2
𝑥2=0

𝑛1+𝑠1
𝑥1=0

 (6-17)

Using Equation 6-17, exact values of remaining state probabilities are calculated by

multiplying obtained values by normalization factor.

 Having all state probabilities of a system of two DCs with mutual overflow

calculated, the most significant performance metrics that allow studying the behavior of 𝐷𝐶𝑖,

𝑖 = 1,2 are derived from the following equations:

 Carried traffic by each 𝐷𝐶𝑖 𝑌𝑖 indicating the average server occupancy at each 𝐷𝐶𝑖

𝑌1 = ∑ ∑ 𝑥1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

+ ∑ ∑ 𝑛1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1

 (6-18)

𝑌2 = ∑ ∑ 𝑥2𝑝(𝑥1, 𝑥2)

𝑛2−1

𝑥2=0

𝑛1+𝑠1

𝑥1=0

+ ∑ ∑ 𝑛2𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2

𝑛1+𝑠1

𝑥1=0

 (6-19)

where the average number of active servers is calculated by adding up the

multiplication of the probability of each state by the number of active servers during

this state.

104

 Probability of a request being lost due to overload 𝐵𝑖

𝐵1 = ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑥2
∗+1

 (6-20)

where an arrival to 𝐷𝐶1 is lost iff 𝐷𝐶1 is completely occupied, and the number of

customers at 𝐷𝐶2 exceed the migration threshold. Thus any new arrival at these states

cannot be accepted by both DCs and will be lost. Probability of loss at 𝐷𝐶2 follows

the same reasoning as shown in equation 6-21. States at which losses occur at either

DCs are shown in Figure 6-4.

𝐵2 = ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑛1+𝑠1

𝑥1=𝑥1
∗+1

 (6-21)

 Probability of a request being migrated from 𝐷𝐶𝑖 to a less loaded DC 𝑀𝑖

𝑀1 = ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑥2
∗

𝑥2=0

 (6-22)

𝑀2 = ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑥1
∗

𝑥1=0

 (6-23)

where an arrival to a fully occupied DC can be migrated to another DC if the number of

requests at the foreign DC doesn’t exceed its defined migration threshold. States at which

migration between DCs occur are indicated in Figure 6-4.

 Mean number of buffered arrivals 𝐿𝑖

𝐿1 = ∑ ∑ (𝑥1 − 𝑛1)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1+1

(6-24)

𝐿2 = ∑ ∑ (𝑥2 − 𝑛2)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2+1

𝑛1+𝑠1

𝑥1=0

(6-25)

where an arrival to a DC will be buffered if all servers were busy at its arrival

instance.

105

n1+1

0

n1

0

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2μ2 μ2

n1+1

1

n1

1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ22μ2 2μ2

n1+s1

0

n1+s1-1

0

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2μ2 μ2

n1+s1

1

n1+s1-1

1

λ1

n1μ1

λ1

n1μ1

λ2 2μ2 2μ2
λ1+λ2

1

0

0

0

λ1

μ1

λ1

2μ1

λ2 λ2μ2 μ2

1

1

0

1

λ1

μ1

λ1

2μ1

λ2 λ22μ2 2μ2

n1+1

n2

n1

n2

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+1

n1

n2+1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2

n1+s1-1

n2

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2n2μ2 n2μ2

n1+s1

n2+1
n1+s1-1

n2+1

λ1

n1μ1

λ1

n1μ1

λ2 n2μ2 n2μ2λ1+λ2

1

n2

0

n2

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+1

0

n2+1

λ1

μ1

λ1

2μ1

λ2 λ2n2μ2 n2μ2

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ1+λ2 n2μ2

n2μ2

n1+1

n2+s2-1

n1

n2+s2-1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+s2

n1

n2+s2

λ1+λ2

n1μ1

λ1+λ2 λ1+λ2

n1μ1n1μ1

n1+s1

n2+s2-1
n1+s1-1

n2+s2-1

λ1

n1μ1

λ1

n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2+s2

n1+s1-1

n2+s2

λ1

n1μ1

λ1

n1μ1

1

n2+s2-1

0

n2+s2-1

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+s2

0

n2+s2

λ1+λ2

μ1

λ1+λ2

2μ1

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2

n2μ2

λ2 λ2

λ1

λ1

X2*

X2*+1

n2+s2

X1* X1*+1 n1+s1

B2

B1

M1

M2

Figure 6-4: Sub-space indicating Loss and Migration Probabilities for DC1 and DC2

 Probability that a request is immediately served upon arrival to its own DC 𝐼𝑖

𝐼1 = ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

(6-24)

𝐼2 = ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

(6-25)

where immediate service only happens if a request arrives to a DC with idle severs.

Probabilities of immediate service for DC1 and DC2 are illustrated in Figure 6-5.

106

n1+1

0

n1

0

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2μ2 μ2

n1+1

1

n1

1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ22μ2 2μ2

n1+s1

0

n1+s1-1

0

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2μ2 μ2

n1+s1

1

n1+s1-1

1

λ1

n1μ1

λ1

n1μ1

λ2 2μ2 2μ2
λ1+λ2

1

0

0

0

λ1

μ1

λ1

2μ1

λ2 λ2μ2 μ2

1

1

0

1

λ1

μ1

λ1

2μ1

λ2 λ22μ2 2μ2

n1+1

n2

n1

n2

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+1

n1

n2+1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2

n1+s1-1

n2

λ1

n1μ1

λ1

n1μ1

λ2 λ1+λ2n2μ2 n2μ2

n1+s1

n2+1
n1+s1-1

n2+1

λ1

n1μ1

λ1

n1μ1

λ2 n2μ2 n2μ2λ1+λ2

1

n2

0

n2

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+1

0

n2+1

λ1

μ1

λ1

2μ1

λ2 λ2n2μ2 n2μ2

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ1+λ2 n2μ2

n2μ2

n1+1

n2+s2-1

n1

n2+s2-1

λ1

n1μ1

λ1 λ1

n1μ1n1μ1

λ2 λ2n2μ2 n2μ2

n1+1

n2+s2

n1

n2+s2

λ1+λ2

n1μ1

λ1+λ2 λ1+λ2

n1μ1n1μ1

n1+s1

n2+s2-1
n1+s1-1

n2+s2-1

λ1

n1μ1

λ1

n1μ1

λ2 λ2n2μ2 n2μ2

n1+s1

n2+s2

n1+s1-1

n2+s2

λ1

n1μ1

λ1

n1μ1

1

n2+s2-1

0

n2+s2-1

λ1

μ1

λ1

2μ1

λ2 λ2 n2μ2

1

n2+s2

0

n2+s2

λ1+λ2

μ1

λ1+λ2

2μ1

λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2 λ2 n2μ2

n2μ2

λ2 λ2

λ1

λ1

X2*

X2*+1

n2+s2

X1* X1*+1 n1+s1

I2

I1

Figure 6-5: Sub-space indicating Probability of Immediate Service for DC1 and DC2

 Probability of a request being delayed upon arrival to its own DC 𝑊𝑖

𝑊1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) − 𝐵1

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1

− ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑛2−1

𝑥2=0

(6-26)

𝑊2 = ∑ ∑ 𝑝(𝑥1, 𝑥2) − 𝐵2

𝑛2+𝑠2

𝑥2=𝑛2

𝑛1+𝑠1

𝑥1=0

− ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑛1−1

𝑥1=0

(6-27)

Equations 6-26 and 6-27 follow from the fact that an arrival to a DC will be buffered

if at the instant of its arrival all servers in this DC are busy, and it either finds a place

in the queue to be buffered, or migrated to a remote DC where it might also be

buffered there if all servers in the remote DC are occupied.

107

 Mean waiting time of a request 𝑤𝑖

𝑤1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗ (𝑥1 − 𝑛1 + 1) ∗
ℎ1

𝑛1

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1−1

𝑥1=𝑛1

+ ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2) ∗ [𝑡𝑀 + (𝑥2 − 𝑛2 + 1) ∗ ℎ2/𝑛2]

𝑥2
∗

𝑥2=𝑛2

 (6-28)

The mean waiting time of arrivals depends whether an arrival is served at its local DC

or migrated to a foreign one. The first part of Equation 6-28 calculates the delay an

arrival would experience if it was served at its own DC according to Little’s Theorem

[80], which is the service time of all arrivals ahead of it in the queue, in addition to

one arrival in the server at which it will be served. The second part of Equation 6-28

describes the delay of migrated arrivals, calculated as the summation of service times

of all arrivals in the foreign queue, plus service time of one arrival at the server at

which it will be served added to them the migration time from local to foreign DC.

 Mean waiting time of a delayed request 𝑡𝑤𝑖

𝑡𝑤𝑖 = 𝑤1 𝑊1⁄

(6-29)

where the mean waiting time of delayed arrivals is calculated by dividing the mean

waiting time of all arrivals by the waiting probability.

Results for all above explained performance metrics will be shown in the following Section

6.1.3 and verified against results from simulations and test bed experimentation.

6.1.2.2 Simulation Model

Besides the analytical solution explained in the previous sub-section for

mathematically analyzing the LSSF load balancing algorithm a simulation model has also

been implemented using OMNeT++. Figure 6-6 shows the NED file for the simulation model

which shows two DCs with mutual overflow of requests between them operating under the

LSSF strategy. Each DC is composed of simple and compound modules: source, passive

queue, servers and a merger for collecting served requests before being disposed at the

combined sink module. Each DC has a separate source module for generating arrival requests

according to each DC’s type of requests, load value and interarrival time distribution. When

an arriving request is generated at a source module it has to decide whether the request will

be served at its own DC thus exiting via the gate connecting to its own passive queue; or if

the local passive queue is full then the request could be migrated to the foreign DC and exits

the source module via the output gate connected to foreign passive queue if its size is below

the defined migration threshold level. If the local passive queue was full and the foreign

108

passive queue length exceeds the defined threshold then the arrival is considered to be lost

and discarded at the source module. Requests are generated at the two source modules at

arrival instances following a Poisson distribution by generating negative-exponentially

distributed inter-arrival times between requests.

Figure 6-6: Simulation Model for testing LSSF Algorithm between two DCs

The passive queue module forwards arriving requests to idle servers in a FIFO order

where idle servers are selected in a round-robin strategy. When a request is forwarded to the

passive queue it has to check whether any of the DC’s servers are idle so that the request can

immediately forwarded to the idle server to start being serviced; or if all servers are busy then

the arriving request will be queued. At each server requests’ service times are generated

according to a negative-exponential distribution; where after service times are elapsed

requests are forwarded to the merge module to exit the DC by forwarding them to the sink

module. Figure 6-7 shows a flow chart explaining the operation of the LSSF simulation

program.

109

Event

Trigger

Arrival

Event

Departure
Event

rate λ rate µ

DC has an idle

server?

Start Service

Immediately

Yes

Schedule

departure event

after t=avg(1/µ)

Is Queue

full?

No

Enqueue

Job

No

Check if any

 foreign DCi has queue

size < Threshold

Yes

Migrate

Job

Yes

Job is lost

No

Queue size

>0?

Deactivate

Server

Insert arrival from head of the

queue to the idle server

No Yes

Reduce queue

size by 1

Schedule

departure event

after t=avg(1/µ)

Figure 6-7 Flow Chart for OMNeT ++ Simulation Model for LSSF Load Balancing

Algorithm

 Significant performance metrics of DCs operating under LSSF strategy such as loss,

migration and delay probabilities as well as mean delay of delayed requests are calculated

according to the equations below for each DC:

 Loss Probability 𝐵

𝐵 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑠𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

 (6-30)

 Migration Probability 𝑀

𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

(6-31)

110

 Delay Probability 𝑊

𝑊 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

(6-32)
where

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑙 𝐷𝐶

+ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑞𝑢𝑒𝑢𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠

 Mean Delay of Delayed Frames 𝐸[𝑇𝑊 | 𝑇𝑊 > 0]

𝐸[𝑇𝑊 | 𝑇𝑊 > 0] =
∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

(6-33)

where

∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

= ∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑖𝑛 𝑙𝑜𝑐𝑎𝑙 𝐷𝐶

+ ∑ 𝐷𝑒𝑙𝑎𝑦𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑖𝑛 𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝐷𝐶

Due to the increased flexibility of the simulation at testing different parameters of the

algorithm that cannot be altered in the analytical solution, various distributions for inter-

arrival, service and activation time have been tested to eliminate the dependability of the

algorithm on Markovian assumptions. All simulation results presented in the upcoming

results section are based upon data gathered from 20 simulation runs and presented with a

95% confidence interval.

6.1.2.3 Experimental Setup

For testing its effectiveness in real-time environments, LSSF algorithm was tested

using the cloud DC test-bed explained previously in sub-Section 4.3. Each of the physical

servers running ESXi hypervisor emulates a DC with 10 servers in the proposed algorithm,

where each one of the physical servers can host and serve up to 10 VMs simultaneously.

Configuration scripts specifying the algorithm steps were written and tested first using

Windows’ PowerShell to troubleshoot any errors during script execution; afterwards scripts

were imported to PowerCLI for automatic deployment on servers. Scripts were configured to

run for the duration required to create and serve 100,000 requests; attempts for producing

results for higher number of requests required more memory space and time than possible and

resulted in running errors. Scripts were supplied with data arrays for interarrival and service

times for each arriving request, which were generated by Matlab according to specified

111

random number distributions. During scripts’ execution data is gathered in order to evaluate

model’s performance, such as number of delayed requests and delay time of each, number of

migrated arriving requests and number of lost arriving requests in order to calculate the

performance metrics in the same manner as specified in the previous simulation section. As

the placement of the VM whether to be hosted at its local DC or migrated to a foreign DC is

performed upon its arrival, vSphere and vMotion allow for deploying the virtual machine on

its local server system or migrate it to the other server, respectively. Scripts are set to create

and deploy 100,000 VM requests where throughout the experiments statistics are collected

such as number of delayed/ migrated VMs and average delay of a VM request.

6.1.3 Results

 This section shows numerical results for the most significant performance metrics by

which the system performance can be depicted and service level agreements of users are

determined; such as average delays, loss, migration and delay probabilities. The algorithm is

tested between two data centers under different load values to indicate how the algorithm

performs at low, average and high load situations. Figures below show the results for each of

the defined performance metrics calculated at a DC implementing the LSSF algorithm vs. DC

without load balancing to report the enhancement done by algorithm. Results are also shown

for cases with/without migration overhead where queue thresholds are adjusted accordingly

to maintain users’ SLAs. For the test cases shown below both DCs are allocated the same

parameters in terms of number of homogeneous servers, queue size and load value per server,

thus the values for performance metrics calculated at any of them and presented below will

be equivalent.

Test cases in this section show results for two identical DCs each having 𝑛 = 10

homogeneous servers where each server has an average service rate 𝜇 = 1 arrival /second,

and all servers in the DC have a common buffer place of size 𝑠 = 30. System’s load value is

varied between 0 till 1.2 per server to show how the algorithm will affect the system

performance at low-load / overload situations. Delay limit defined by the users’ SLAs is set

to 𝑡𝑊𝑇 = 3, which indicates that a user served at its own DC will always experience a delay

that is at most equal to that defined by SLA even if it occupied the last available buffer space

upon its arrival. In case the arrival had to migrate to a foreign DC, delay limit also defines

that the waiting time at the foreign DC along with the migration overhead to it should not

exceed the defined SLA value. The two test cases illustrated in this section show cases for

different values of migration time. First is 𝑡𝑀 = 0 indicating cases where migration time is

small or negligible, typically in cases of migration between server groups within the same DC

or between nearby DCs. Second case with 𝑡𝑀 = 2 indicating relatively long migration times

where transmission time between DCs require more time relative to the average service time

of requests.

Case 1: Two identical DCs with 𝑛𝑖 = 10, 𝑠𝑖 = 30, 𝑡𝑀 = 0 and defined threshold migration

𝑥𝑖
∗=39.

Case 2: Two identical DCs with 𝑛𝑖 = 10, 𝑠𝑖 = 30, 𝑡𝑀 = 2 and defined threshold migration

𝑥𝑖
∗=19.

112

Figure 6-8 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF

Algorithm

 Test case 1 of the LSSF algorithm sets the migration threshold at each DC to 𝑥𝑖
∗=39,

which allows the DC to accept foreign arrivals until only one buffer place is empty, this

remaining place can only be occupied by a local arrival so any foreign arrivals will be lost.

Whereas case 2 sets the migration threshold to 𝑥𝑖
∗=19, allowing less buffer places at the DC

to be occupied by foreign arrivals to compensate the delay due to migration overhead. The

selection of parameters for the test cases is reasoned by the SLAs delay limit. For case 1, the

threshold is high to allow for more migrations since there is no migration overhead, and the

only delay an arrival experiences is due to buffering at the foreign DC. While for case 2, the

threshold is reduced so that the delay of a foreign arrival buffered at the DC along with the

migration overhead will still fulfill the defined SLA. Figure 6-8 shows loss, migration and

waiting probabilities for any of the DCs versus system load, where the results for both DCs

are identical as they have identical system parameters. Results are shown for the two cases

with/without migration overhead and for a DC without the load balancing algorithm.

As shown in Figure 6-8 the waiting probability of an arrival is not affected for a DC

with/without LSSF algorithm, neither affected by the migration overhead, as the waiting

probability is related to the system capacity which is not affected by the algorithm. However,

the algorithm reduces the loss probability B due to the fact that an arrival that doesn’t find a

place at its local DC can migrate to another DC if load balancing is implemented, whereas

without load balancing it would have been lost. Loss probability is lower for the case of

0 0.2 0.4 0.6 0.8 1 1.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Load Factor A/n

B (t
M

=0)

M (t
M

=0)

W (t
M

=0)

B (t
M

=2)

M (t
M

=2)

W (t
M

=2)

B (M/M/n1/s1)

W (M/M/n1/s1)

113

negligible migration overhead as the threshold is higher and more arrivals can be accepted.

For the case of non-negligible migration overhead, the algorithm will still perform better for

the cases of high load (A/n=0.9), but as the load increases to overload situations and buffers

get filled up, threshold is easily reached thus loss probability increases to be similar to a DC

without load balancing algorithm. Finally, Figure 6-8 shows that the migration probability for

both test cases has the same value at average load situations as long as migration threshold is

not reached. Once the DC experiences an overload situation and threshold is reached, case 2

with lower threshold will have higher number of dropped arrivals and thus migration

probability drops.

Figure 6-9 shows the average delay calculated for delayed arrivals only. Average

delays are kept bounded below the defined SLA by choice of system parameters. The figure

shows that the application of LSSF load balancing algorithm does not affect the delay of

those arrivals who wait. Slight variations only occurs at overload situations because for test

case 2 of the algorithm, less migrations occur and thus more arrivals are lost, which

accordingly reduces the average response time. Compared to a DC without load balancing the

mean delay value depends on migration overhead; where for zero overhead the delay is

slightly larger at overload situations than without load balancing as more arrivals are

migrated and delayed at foreign DCs. As migration overhead increases mean delay value is

reduced to match that of a system without load balancing.

Figure 6-9 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 F
ra

m
es

E
[T

W
 |
 T

W
 >

0
]

t
w

 (t
M

=0)

t
w

 (t
M

=2)

t
w

 (M/M/n1/s1)

SLA Limit

114

 Besides performance metrics obtained from analytical solution provided for the LSSF

algorithm, the model was also implemented using an OMNeT++ simulation model between

two DCs and on a the real DC test-bed for proving its effectiveness. Figures 6-10 and 6-11

show results for significant performance metrics obtained from the simulation and test-bed

compared to those from analytical results. Figure 6-10 shows loss, delay and migration

probabilities for two DCs operating by LSSF algorithm with the following parameters at all

platforms: 𝑛 = 10, 𝑠 = 30 and 𝑡𝑚 = 0 with 95% confidence intervals for simulation and test-

bed results. In figure 6-10 results from different platforms have only minor differences as

shown in the figure, where analytical solution always provides an upper bound for

probabilities. Minor differences in calculated metrics result from factors in simulation and

test-bed that cannot be accounted-for in the analytical solution; such as when an arrival is

migrated to a foreign data center where the status of the foreign data center is very likely to

change during the migration time. For example, a migrated arrival that is supposed to migrate

to a foreign DC with a small queue size could find the queue empty during the elapsed

migration time and thus gets immediately served. Another difference between analytical

solution and other platforms is its accuracy in calculating very small numbers at all load

values. This effect is shown in Figure 6-11 where mean delay of delayed frames has a zero

value at low delays values despite having a non-zero value reported by the analytical

solution. This effect occurs due to the fact that the simulation and test-bed experiments run

for a defined number of users, and for obtaining minor effects such as delays a very low loads

the number of observed arrivals need to be extremely high for the results to match those

reported analytically. These factors beside the different random number generators used for

generating inter-arrival and service times tend to cause a variation between results obtained

from different platforms.

Another test-case obtained through test-bed experimentation is by testing the LSSF

algorithm on four DCs instead of only two to prove its scalability across any number of DCs.

Parameters for the test case included 4 servers each can handle 10 VMs simultaneously to

match a DC with 10 servers, 30 buffer places and migration threshold of 29 queued arrivals

without overhead. Figures 6-12 and 6-13 show the calculated performance probabilities and

average delays where results show minor differences between the case of only two DCs.

These minor differences in probabilities show lower loss probability and higher migration

probability for the case with 4 DCs. This is explained by the economy of scale effect; as the

number of DCs increase the probability of an arrival that would have been lost at its local DC

to be accepted at another foreign DC increases, thus decreasing number of lost arriving

requests and increasing number of migrated ones. All previously reported results shows that

LSSF algorithm is effective at reducing loss probabilities of arrivals while maintaining SLAs

by cooperation between DCs to server arrivals that cannot be served at their own DCs, and is

scalable to any number of DCs

115

Figure 6-10 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF

Algorithm without overhead implemented on various Platforms

Figure 6-11 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm

without overhead implemented on various Platforms

0 0.2 0.4 0.6 0.8 1 1.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Load Factor A/n

W Analytical Sol.

W VMware

W OMNeT++

B Analytical Sol.

B VMware

B OMNeT++

M Analytical Sol.

M VMware

M OMNeT++

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 A
rr

iv
al

s
E

[T
W

 |
 T

W
 >

 0
]

 App. Sol.

VMware

OMNeT++

116

Figure 6-12 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for LSSF

Algorithm without overhead implemented on DC Test-bed

Figure 6-13 Mean Waiting Time of Delayed Requests versus Load (A/n) for LSSF Algorithm

without overhead implemented on DC Test-bed

0 0.2 0.4 0.6 0.8 1 1.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Load Factor A/n

W (4 DCs)

W (2 DCs)

B (4 DCs)

B (2 DCs)

M (4 DCs)

M (2 DCs)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 A
rr

iv
al

s
E

[T
W

 |
 T

W
 >

 0
]

4 DCs

2 DCs

117

6.2 Algorithm 2: Shortest Response Time First (SRTF)

 Shortest Response Time First algorithm ‘SRTF’ is a generalized upgrade of one of the

already existing algorithms in literature explained in Chapter 3, the Join Shortest Queue

algorithm. Upon a request’s arrival, Join Shortest Queue ‘JSQ’ algorithm decides which DC

the arrival will be routed based on the queue size of each DC. Arrivals are routed to the

shortest queue assuming that this selection criterion will guarantee a shorter waiting time for

the arrival request than if it was served at its local DC. However, this criterion does not

account for the service rates of servers at each DC, for example; joining a longer queue at a

DC with high service rates might guarantee shorter waiting time than joining a shorter queue

at a DC with low service rates. Thus, JSQ algorithm will only achieve minimal delays for

requests only in case of homogeneous DCs with servers having homogeneous service rates.

Shortest Response Time algorithm ‘SRTF’ generalizes this special case and allows for

maintaining SLAs of users in terms of delay by proposing a criterion for managing the load

between heterogeneous DCs with heterogeneous service rates. SRTF estimates the average

delay time that an arriving request will experience at each of the available DCs, then routes it

to the DC offering the least average waiting time. This approach allows for more accurate

load balancing decisions and guarantees lowest average waiting time for users as it accounts

for users’ SLAs while considering the current state of each DC. As the number of DCs and

their servers increase along with their buffering capacity, economy-of-scale effect results in

better performance for SRTF algorithm in terms of shorter average delays and lower loss

probabilities.

6.2.1 Model Definition

 This section explains the SRTF algorithm by applying it on two DCs modeled as two

queuing systems with mutual overflow of requests between them. Similar to the previously

explained LSSF algorithm in Section 6.1.1, the basic model consists of two identical DCs,

each having 𝑛𝑖 homogeneous servers and equal buffer space of length 𝑠𝑖. Each server is

assumed to have a service rate of 𝜇𝑖, and arrivals to each DC occur with an average rate of 𝜆𝑖.

The basic model is illustrated in Figure 6-10 using the same notations explained previously in

Section 6.1.1 and will not be explained again to avoid repetition. As the figure shows, arrivals

to any of the DC arrive to a gateway node first before being routed to the DC where they will

be served as chosen by the algorithm. Assignment strategy at this gateway node is done

according to the following rules:

 If an arrival finds an empty server at its local DC, it will be routed to it for being

served immediately

 If no idle servers are available at the local DC, the arrival will be routed to the foreign

DC if it has any idle servers where it will also be immediately served.

 If all servers at both DCs are busy, then the average waiting time that the arrival

would experience if it was routed to each of the DCs is calculated using the following

equation, for 𝑖 = 1,2, given that the queue at any of the DCs is not full :

118

𝑡𝑤𝑖 =
𝑥𝑖 − 𝑛𝑖 + 1

𝑛𝑖𝜇𝑖

 (6-30)

where the expected waiting time of an arrival is the summation of service times of all

arrivals ahead of it in the FIFO queue, plus one arrival being served at the queue at

which it will be served at in the future.

1. After calculating the expected waiting times at both DCs, the arrival will be routed to

the DC offering minimal expected average waiting time according to the following

condition in equation 6-31:

min {𝑡𝑤1 =
𝑥1 − 𝑛1 + 1

𝑛1𝜇1
, 𝑡𝑤2 =

𝑥2 − 𝑛2 + 1

𝑛2𝜇2
}

(6-31)

2. If queues at both DCs are full, then the arrival will be lost.

According to the strategy explained above, SRTF algorithm provides the minimal delay an

arrival could experience as it explores the current status of all available DCs to which the

arrival can be migrated. However, this comes with an overhead due to the decision that has to

be taken at the instant of arrival of each request before it is routed to the most suitable DC.

Figure 6-14 System Model for two Data Centers under SRTF Algorithm

6.2.2 Model Analysis

 This section provides analysis for the proposed SRTF algorithm using different

approaches. First the state transition diagram of the Markov Chain for two DCs operating

under the algorithm is introduced and explained followed by an approach for solving steady

state probabilities of the system numerically using Gauss-Seidel Method for the linear

119

equations in equilibrium states. Mathematical analysis of the algorithm under Markovian

assumption is verified in following sub-sections by OMNeT++ simulations as well as test-

bed experimentation that test the model under more general traffic conditions and extended

system parameters.

6.2.2.1 Mathematical Analysis

 For evaluation of model’s performance this section shows the model of two DCs

operating under SRTF strategy represented by a two-dimensional Markov Chain. Figure 6-15

shows the state transition diagram indicating the states of both DCs and transitions between

states at the instances of a request’s arrival or end of a request’s service time. Figure below

shows the special case of two homogeneous DCs with identical number of servers 𝑛1 = 𝑛2,

equal buffer places 𝑠1 = 𝑠2 and identical service rates for all servers 𝜇. This selection of

parameters makes the system similar to a single DC with 2𝑛 servers and 2𝑠 buffer places in a

FIFO queue for an approximate solution. This economy of scale advantage provided by the

SRTF algorithm allows an arrival to experience the lowest possible average waiting time, as

it has the advantage of twice the number of available servers and twice the buffer space.

 In this two-dimensional Markov chain shown below events are either arrival events to

either one of the two DCs or a departure event from one of the servers at the two DCs.

Changes to the current general state (𝑥1, 𝑥2) occur according to the following conditions:

1. In case of an arrival event occurs:

1.1. If 0 ≤ 𝑥1 < 𝑛1 and 0 ≤ 𝑥2 < 𝑛2 then an arrival at a rate of 𝜆1 will be served at DC1

changing system state into (𝑥1 + 1, 𝑥2) and an arrival at a rate of 𝜆2 will be served at

DC2 changing system state into (𝑥1, 𝑥2 + 1). Both arrivals will be immediately

served by idle servers at their local DC.

1.2. If 0 ≤ 𝑥1 < 𝑛1 and 𝑥2 ≥ 𝑛2 then an arrival at a rate of 𝜆1 or 𝜆2will be routed to DC1

where it will be served at one of the idle servers in DC1, thus system state changes to

(𝑥1 + 1, 𝑥2)

1.3. If 𝑥1 ≥ 𝑛1 and 0 ≤ 𝑥2 < 𝑛2 then an arrival at a rate of 𝜆1 or 𝜆2will be routed to DC2

where it will be served at one of the idle servers in DC2, thus system state changes to

(𝑥1, 𝑥2 + 1)

1.4. If 𝑥1 ≥ 𝑛1 and 𝑥2 ≥ 𝑛2 then the assignment strategy for an arrival will depend on the

current system state in terms of queue size and service rate. Figure 6-15 indicates

transition rates to states where the arrival will be served at 𝐷𝐶1 or 𝐷𝐶2 by functions

𝜆(𝑄1) and 𝜆(𝑄2) respectively. These functions are determined as follows:

𝜆(𝑄1) = {

𝜆1 + 𝜆2 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1 < ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2 ⁄

𝜆1 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1 = ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2 ⁄

0 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1 > ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2 ⁄

(6-32)

𝜆(𝑄2) = {

𝜆1 + 𝜆2 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1 > ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2 ⁄

𝜆2 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1 = ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2 ⁄

0 𝑖𝑓 (𝑥1 − 𝑛1 + 1) 𝑛1𝜇1 < ⁄ (𝑥2 − 𝑛2 + 1) 𝑛2𝜇2 ⁄

120

(6-33)

where decisions calculated by equations 6-32 and 6-33 guarantee routing of arriving

requests to the DC whose queue offers shortest average waiting time. If both queues

offer equal waiting times, then an arrival would be served at its local DC to avoid

further delays resulting from migration overhead.

1.5. Finally, if 𝑥1 = 𝑛1 + 𝑠1 and 𝑥2 = 𝑛2 + 𝑠2, then all arrivals will be lost without a

change to system state

2. In case of a departure event; current state (𝑥1, 𝑥2) will change as follows:

2.1. If departure occurs at a DC where 𝑥𝑖 ≤ 𝑛𝑖, the server will be switched-off as there

are no more arrivals to serve. System state changes by reducing 𝑥𝑖 element by 1.

2.2. If departure occurs at a DC where 𝑥𝑖 > 𝑛𝑖, then system state changes also by

reducing 𝑥𝑖 element by 1, where a request from the head of the queue will replace the

departed arrival at the server.

For solving the state probabilities of the Markovian model explained above no closed-

form solution exists nor could a recursive one be deduced similar to LSSF algorithm. To

overcome this problem, Forward Kolmogorov balance equations were obtained for each state

in the system, then the formed system of linear equations is solved numerically using Gauss-

Seidel method with successive over-relaxation. Gauss-Seidel method starts by assuming an

initial solution for the value of state probabilities, and through successive iterations the error

between the assumed value and the correct value ‘defect’ is corrected stepwise with each

iteration cycle. The algorithm is applied through the following steps illustrated by Figure 6-

16:

1. All states are assumed to have an initial state probability, e.g., probabilities equal to the

reciprocal of the number of states.

2. The following steps are performed at each state:

2.1. Knowing the balance equation, a defect value resulting from the assumption of equal

probabilities for all states is calculated.

2.2. Probability of the state is corrected by subtracting the term
𝑑𝑖

𝑎𝑖
∗ 𝑅𝐸𝐿, where 𝑑𝑖 is the

defect value, 𝑎𝑖 is the coefficient of the probability of state 𝑖 defined as the

aggregated output rates from state 𝑖 and REL is the relaxation factor.

2.3. Defect values calculated from all states are added into term SD

3. Having calculated one round (iterative cycle) of all stages of step 2, cumulative defect

value SD is checked against a defined threshold ε:

3.1. If SD ≤ ε

Algorithm is stopped and calculated steady state probabilities are normalized by

dividing the value of each state by the summation of all state probabilities.

3.2. If SD > ε

Step 2 is repeated for as many rounds until the defect value decreases below the

defined threshold, where the stopping condition is re-checked at the end of each

round.

121

n1+1

0

n1

0 n1μ1

λ1

n1μ1
n1μ1

λ1+λ2 λ1+λ2μ2 μ2

n1+1

1

n1

1 n1μ1

λ1

n1μ1
n1μ1

λ1+λ2 λ1+λ22μ2 2μ2

n1+s1

0
n1+s1-1

0 n1μ1n1μ1

λ1+λ2μ2 μ2

n1+s1

1
n1+s1-1

1 n1μ1n1μ1

λ1+λ2 2μ2 2μ2
λ1+λ2

1

0

0

0

λ1

μ1

λ1

2μ1

λ2 λ2μ2 μ2

1

1

0

1

λ1

μ1

λ1

2μ1

λ2 λ22μ2 2μ2

n1+1

n2

n1

n2

λ(Q1)

n1μ1

λ1+λ2

n1μ1n1μ1

λ(Q2) λ(Q2)n2μ2 n2μ2

n1+1

n2+1

n1

n2+1

λ(Q1)

n1μ1

λ1+λ2 λ(Q1)

n1μ1n1μ1

n2μ2

n1+s1

n2

n1+s1-1

n2 n1μ1n1μ1

λ(Q2) λ1+λ2n2μ2 n2μ2

n1+s1

n2+1
n1+s1-1

n2+1
n1μ1n1μ1

λ(Q2) n2μ2 n2μ2λ1+λ2

1

n2

0

n2

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2

1

n2+1

0

n2+1

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2 n2μ2

λ2 n2μ2 λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2

n2μ2

n1+1

n2+s2-1

n1

n2+s2-1

λ(Q1)

n1μ1

λ1+λ2 λ(Q1)

n1μ1n1μ1

n1+1

n2+s2

n1

n2+s2

λ1+λ2

n1μ1

λ1+λ2 λ1+λ2

n1μ1n1μ1

n1+s1

n2+s2-1
n1+s1-1

n2+s2-1

λ(Q1)

n1μ1

λ(Q1)

n1μ1

λ(Q2) λ1+λ2n2μ2 n2μ2

n1+s1

n2+s2

n1+s1-1

n2+s2

λ1+λ2

n1μ1

λ1+λ2

n1μ1

1

n2+s2-1

0

n2+s2-1

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2

1

n2+s2

0

n2+s2

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2 n2μ2 n2μ2 λ(Q2) n2μ2 λ1+λ2 n2μ2

n2μ2

λ1+λ2

λ1+λ2

n2μ2

n2μ2

λ(Q1) λ(Q1) λ(Q1)

λ(Q1) λ(Q1)

λ(Q2)

λ(Q2)

λ(Q2)

λ(Q2)

λ(Q2) n2μ2λ(Q2) n2μ2

Figure 6-15 State Transition Diagram for two DCs operating under SRTF Algorithm

Defect value is calculated at each state using balance equations obtained according to the

following equations:

 For first row states indicated by sub-space 1 in Figure 6-17:

 For state (0,0)

Balance equation is

(𝜆1 + 𝜆2)𝑝(0,0) = 𝜇1𝑝(1,0) + 𝜇2𝑝(0,1)

(6-34)

so defect value can be calculated as

𝑑 = (𝜆1 + 𝜆2)𝑝(0,0) − 𝜇1𝑝(1,0) − 𝜇2𝑝(0,1)

(6-35)

and the probability of state can be corrected as described in step 2.2 using

equation 6-36:

𝑝(0,0) = 𝑝(0,0) − 𝑑 ∗ 𝑅𝐸𝐿/(𝜆1 + 𝜆2)

(6-36)

122

Initialize

State

Probabilities

Set d=0,

SD=0

Terminate

Algorithm

Yes

No

For all system states:

1. Calculate defect value

2. Correct state probability

Check if SD ≤ ε

Calculate

cumulative

defect for all

states SD

Normalize

State

Probabilities

Figure 6-16 Flow Chart for Gauss-Seidel Algorithm

 For states (1,0) till (𝑛1 − 1,0)

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1)𝑝(𝑥1, 0) − 𝜆1𝑝(𝑥1 − 1,0) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 +

1,0) − 𝜇2𝑝(𝑥1, 1)

(6-37)

 For state (𝑛1, 0)

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1)𝑝(𝑛1, 0) − 𝜆1𝑝(𝑛1 − 1,0) − 𝑛1𝜇1𝑝(𝑛1 + 1,0) −

𝜇2𝑝(𝑛1, 1)

(6-38)

 For states (𝑛1 + 1,0) till (𝑛1 + 𝑠1 − 1,0)

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1)𝑝(𝑥1, 0) − 𝑛1 ∗ 𝜇1𝑝(𝑥1 + 1,0) − 𝜇2𝑝(𝑥1, 1)

(6-39)

 For state (𝑛1 + 𝑠1, 0)

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1)𝑝(𝑛1 + 𝑠1, 0) − 𝜇2𝑝(𝑛1 + 𝑠1, 1)

(6-40)

123

n1+1

0

n1

0 n1μ1

λ1

n1μ1
n1μ1

λ1+λ2 λ1+λ2μ2 μ2

n1+1

1

n1

1 n1μ1

λ1

n1μ1
n1μ1

λ1+λ2 λ1+λ22μ2 2μ2

n1+s1

0
n1+s1-1

0 n1μ1n1μ1

λ1+λ2μ2 μ2

n1+s1

1
n1+s1-1

1 n1μ1n1μ1

λ1+λ2 2μ2 2μ2
λ1+λ2

1

0

0

0

λ1

μ1

λ1

2μ1

λ2 λ2μ2 μ2

1

1

0

1

λ1

μ1

λ1

2μ1

λ2 λ22μ2 2μ2

n1+1

n2

n1

n2

λ(Q1)

n1μ1

λ1+λ2

n1μ1n1μ1

λ(Q2) λ(Q2)n2μ2 n2μ2

n1+1

n2+1

n1

n2+1

λ(Q1)

n1μ1

λ1+λ2 λ(Q1)

n1μ1n1μ1

n2μ2

n1+s1

n2

n1+s1-1

n2 n1μ1n1μ1

λ(Q2) λ1+λ2n2μ2 n2μ2

n1+s1

n2+1
n1+s1-1

n2+1
n1μ1n1μ1

λ(Q2) n2μ2 n2μ2λ1+λ2

1

n2

0

n2

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2

1

n2+1

0

n2+1

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2 n2μ2

λ2 n2μ2 λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2

n2μ2

n1+1

n2+s2-1

n1

n2+s2-1

λ(Q1)

n1μ1

λ1+λ2 λ(Q1)

n1μ1n1μ1

n1+1

n2+s2

n1

n2+s2

λ1+λ2

n1μ1

λ1+λ2 λ1+λ2

n1μ1n1μ1

n1+s1

n2+s2-1
n1+s1-1

n2+s2-1

λ(Q1)

n1μ1

λ(Q1)

n1μ1

λ(Q2) λ1+λ2n2μ2 n2μ2

n1+s1

n2+s2

n1+s1-1

n2+s2

λ1+λ2

n1μ1

λ1+λ2

n1μ1

1

n2+s2-1

0

n2+s2-1

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2

1

n2+s2

0

n2+s2

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2 n2μ2 n2μ2 λ(Q2) n2μ2 λ1+λ2 n2μ2

n2μ2

λ1+λ2

λ1+λ2

n2μ2

n2μ2

λ(Q1) λ(Q1) λ(Q1)

λ(Q1) λ(Q1)

λ(Q2)

λ(Q2)

λ(Q2)

λ(Q2)

λ(Q2) n2μ2λ(Q2) n2μ2

1

2

3

4

5

6 7

8

9

Figure 6-17 Solution Sub Spaces for SRTF Algorithm

 For first column states indicated by sub-space 2 in Figure 6-17:

 For states (0,1) till (0, 𝑛2 − 1)

𝑑 = (𝜆1 + 𝜆2 + 𝑥2𝜇2)𝑝(0, 𝑥2) − 𝜆2𝑝(0, 𝑥2 − 1) − 𝜇1𝑝(1, 𝑥2) − (𝑥2 + 1) ∗

𝜇2𝑝(0, 𝑥2 + 1)

 (6-41)

 For state (0, 𝑛2)

𝑑 = (𝜆1 + 𝜆2 + 𝑛2𝜇2)𝑝(0, 𝑛2) − 𝜆2𝑝(0, 𝑛2 − 1) − 𝜇1𝑝(1, 𝑛2) −

𝑛2𝜇2𝑝(0, 𝑛2 + 1)

(6-42)

124

 For states (0, 𝑛2 + 1) till (0, 𝑛2 + 𝑠2 − 1)

𝑑 = (𝜆1 + 𝜆2 + 𝑛2𝜇2)𝑝(0, 𝑥2) − 𝜇1𝑝(1, 𝑥2) − 𝑛2𝜇2𝑝(0, 𝑥2 + 1)

(6-43)

 For state (0, 𝑛2 + 𝑠2)

𝑑 = (𝜆1 + 𝜆2 + 𝑛2𝜇2)𝑝(0, 𝑛2 + 𝑠2) − 𝜇1𝑝(1, 𝑛2 + 𝑠2)

(6-44)

 For states included in rows from 1 to 𝑛2-1 and columns from 1 to 𝑛1+𝑠1-1 indicated

by sub-space 3 in Figure 6-17:

 For states where 𝑥1 = 1: 𝑛1 − 1 and 𝑥2 = 1: 𝑛2 − 1

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑥2𝜇2)𝑝(𝑥1, 𝑥2) − 𝜆1𝑝(𝑥1 − 1, 𝑥2) − 𝜆2𝑝(𝑥1, 𝑥2 −

1) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑥2) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑥1, 𝑥2 + 1)

(6-45)

 For states (𝑛1, 1) till (𝑛1, 𝑛2 − 1)

𝑑 =

(𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑥2𝜇2)𝑝(𝑛1, 𝑥2) − 𝜆1𝑝(𝑛1 − 1, 𝑥2) − (𝜆1+𝜆2)𝑝(𝑛1, 𝑥2 −

 1) − 𝑛1 ∗ 𝜇1𝑝(𝑛1 + 1, 𝑥2) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑛1, 𝑥2 + 1)

(6-46)

 For states where 𝑥1 = 𝑛1 + 1: 𝑛1 + 𝑠1 − 1 and 𝑥2 = 1: 𝑛2 − 1

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑥1, 𝑥2 − 1) −

𝑛1𝜇1𝑝(𝑥1 + 1, 𝑥2) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑥1, 𝑥2 + 1)

(6-47)

 For states included in rows from 𝑛2 to 𝑛2 + 𝑠2 − 1 and columns from 1 to 𝑛1 − 1

indicated by sub-space 4 in Figure 6-17:

 For states (1, 𝑛2) till (𝑛1 − 1, 𝑛2)

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑛2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2) −

𝜆2𝑝(𝑥1, 𝑛2 − 1) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑛2) − 𝑛2 ∗ 𝜇2𝑝(𝑥1, 𝑛2 + 1)

(6-48)

 For states where 𝑥1 = 1: 𝑛1 − 1 and 𝑥2 = 𝑛2 + 1: 𝑛2 + 𝑠2 − 1

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑥2) −

(𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑥2) − 𝑛2𝜇2𝑝(𝑥1, 𝑥2 + 1)

(6-49)

125

 For state (𝑛1, 𝑛2)

𝑑 = [𝜆(𝑄1)(𝑛1, 𝑛2) + 𝜆(𝑄2)(𝑛1, 𝑛2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑛1, 𝑛2) − (𝜆1 + 𝜆2) ∗

𝑝(𝑛1, 𝑛2 − 1) − (𝜆1 + 𝜆2)𝑝(𝑛1 − 1, 𝑛2) − 𝑛1𝜇1𝑝(𝑛1 + 1, 𝑛2) − 𝑛2𝜇2𝑝(𝑛1, 𝑛2 + 1)

 (6-50)

 For states (𝑛1 + 1, 𝑛2) till (𝑛1 + 𝑠1 − 1, 𝑛2) indicated by sub-space 5 in Figure 6-17:

𝑑 = [𝜆(𝑄1)(𝑥1, 𝑛2) + 𝜆(𝑄2)(𝑥1, 𝑛2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑥1, 𝑛2) − (𝜆1 + 𝜆2)

∗ 𝑝(𝑥1, 𝑛2 − 1) − 𝜆(𝑄1)(𝑥1 − 1, 𝑛2)𝑝(𝑥1 − 1, 𝑛2)

− 𝑛1𝜇1𝑝(𝑥1 + 1, 𝑛2) − 𝑛2𝜇2𝑝(𝑥1, 𝑛2 + 1)

(6-51)

 For states (𝑛1, 𝑛2 + 1) till (𝑛1, 𝑛2 + 𝑠2 − 1) indicated by sub-space 6 in Figure 6-17:

𝑑 = [𝜆(𝑄1)(𝑛1, 𝑥2) + 𝜆(𝑄2)(𝑛1, 𝑥2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑛1, 𝑥2) − (𝜆1 + 𝜆2)

∗ 𝑝(𝑛1 − 1, 𝑥2) − 𝜆(𝑄2)(𝑛1, 𝑥2 − 1)𝑝(𝑛1, 𝑥2 − 1)

− 𝑛1𝜇1𝑝(𝑛1 + 1, 𝑥2) − 𝑛2𝜇2𝑝(𝑛1, 𝑥2 + 1)

(6-52)

 For states included in rows from (𝑛1 + 1) till (𝑛1 + 𝑠1 − 1) and columns from

(𝑛2 + 1) till (𝑛2 + 𝑠2 − 1) indicated by sub-space 7 in Figure 6-17:

𝑑 = [𝜆(𝑄1)(𝑥1, 𝑥2) + 𝜆(𝑄2)(𝑥1, 𝑥2) + 𝑛1𝜇1 + 𝑛2𝜇2]𝑝(𝑥1, 𝑥2) − 𝜆(𝑄1)(𝑥1 − 1, 𝑥2) ∗

𝑝(𝑥1 − 1, 𝑥2) − 𝜆(𝑄2)(𝑥1, 𝑥2 − 1)𝑝(𝑥1, 𝑥2 − 1) − 𝑛1𝜇1𝑝(𝑥1 + 1, 𝑥2) −

𝑛2𝜇2𝑝(𝑥1, 𝑥2 + 1)

(6-53)

 For last row states indicated by sub-space 8 in Figure 6-17:

 For states (1, 𝑛2 + 𝑠2) till (𝑛1 − 1, 𝑛2 + 𝑠2)

𝑑 = (𝜆1 + 𝜆2 + 𝑥1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑛2 + 𝑠2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 +

𝑠2) − (𝑥1 + 1) ∗ 𝜇1𝑝(𝑥1 + 1, 𝑛2 + 𝑠2)

(6-54)

 For states (𝑛1, 𝑛2 + 𝑠2) till (𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2)

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑥1, 𝑛2 + 𝑠2) − (𝜆1 + 𝜆2)𝑝(𝑥1 − 1, 𝑛2 +

𝑠2) − 𝜆(𝑄2)(𝑥1, 𝑛2 + 𝑠2 − 1)𝑝(𝑥1, 𝑥2 − 1)−𝑛1𝜇1𝑝(𝑥1 + 1, 𝑛2 + 𝑠2)

(6-55)

126

 For last column states indicated by sub-space 9 in Figure 6-17:

 For states (𝑛1 + 𝑠1, 1) till (𝑛1 + 𝑠1, 𝑛2 − 1)

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑥2𝜇2)𝑝(𝑛1 + 𝑠1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2 −

1) − (𝑥2 + 1) ∗ 𝜇2𝑝(𝑛1 + 𝑠1, 𝑥2 + 1)

(6-56)

 For states (𝑛1 + 𝑠1, 𝑛2) till (𝑛1 + 𝑠1, 𝑛2 + 𝑠2 − 1)

𝑑 = (𝜆1 + 𝜆2 + 𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑛1 + 𝑠1, 𝑥2) − (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1, 𝑥2 −

1) − 𝜆(𝑄1)(𝑛1 + 𝑠1 − 1, 𝑥2) ∗ 𝑝(𝑛1 + 𝑠1 − 1, 𝑥2) − 𝑛2 ∗ 𝜇2𝑝(𝑛1 + 𝑠1, 𝑥2 +

1)

(6-57)

 Finally for state (𝑛1 + 𝑠1, 𝑛2 + 𝑠2)

𝑑 = (𝑛1𝜇1 + 𝑛2𝜇2)𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2) − (𝜆1 + 𝜆2)𝑝(𝑛1 + 𝑠1 − 1, 𝑛2 + 𝑠2) − (𝜆1 +

𝜆2)𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2 − 1)

(6-58)

 Having obtained all state probabilities of a system of two DCs using Iterations of

Gauss- Seidel method with defined threshold of 𝜖 = 10−6, the most significant performance

metrics for evaluating algorithm’s performance are calculated for the 𝐷𝐶𝑖, 𝑖 = 1,2, using the

following equations below and illustrated by sup-spaces shown in Figure 6-18:

 Carried traffic by each 𝐷𝐶𝑖 𝑌𝑖 indicating the average server occupancy at each 𝐷𝐶𝑖

𝑌1 = ∑ ∑ 𝑥1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

+ ∑ ∑ 𝑛1𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1

 (6-59)

𝑌2 = ∑ ∑ 𝑥2𝑝(𝑥1, 𝑥2)

𝑛2−1

𝑥2=0

𝑛1+𝑠1

𝑥1=0

+ ∑ ∑ 𝑛2𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2

𝑛1+𝑠1

𝑥1=0

 (6-60)

 Probability of a request being lost when both data centers are fully occupied 𝐵𝑖

𝐵1 = 𝐵2 = 𝑝(𝑛1 + 𝑠1, 𝑛2 + 𝑠2)

 (6-61)

127

 Probability of a request being migrated from 𝐷𝐶𝑖 to a less loaded DC 𝑀𝑖

𝑀1 = ∑ ∑ 𝑝

𝑛2−1

𝑥2=0

(𝑥1, 𝑥2)

𝑛1+𝑠1

𝑥1=𝑛1

+ ∑ 𝑝

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑛1 + 𝑠1, 𝑥2) + ∑ ∑ 𝑝

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑥1, 𝑥2)

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄2)

𝜆(𝑄1) + 𝜆(𝑄2)

(6-62)

𝑀2 = ∑ ∑ 𝑝

𝑛2+𝑠2

𝑥2=𝑛2

(𝑥1, 𝑥2)

𝑛1−1

𝑥1=0

+ ∑ 𝑝

𝑛1+𝑠1−1

𝑥1=𝑛1

(𝑥1, 𝑛2 + 𝑠2) + ∑ ∑ 𝑝

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑥1, 𝑥2)

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄1)

𝜆(𝑄1) + 𝜆(𝑄2)

 (6-63)

where an arrival is migrated from 𝐷𝐶𝑖 if there exists an empty server in 𝐷𝐶𝑗 and none at

 𝐷𝐶𝑖, or if all servers and buffer places in 𝐷𝐶𝑖 are occupied while 𝐷𝐶𝑗 has an empty

buffer space, or finally if there are empty buffer spaces in both 𝐷𝐶𝑖 and 𝐷𝐶𝑗 but 𝐷𝐶𝑗

offers a shorter response time.

 Mean number of buffered arrivals 𝐿𝑖

𝐿1 = ∑ ∑ (𝑥1 − 𝑛1)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1+𝑠1

𝑥1=𝑛1+1

(6-64)

𝐿2 = ∑ ∑ (𝑥2 − 𝑛2)𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=𝑛2+1

𝑛1+𝑠1

𝑥1=0

(6-65)

 Probability that a request is immediately served upon arrival to its own DC 𝐼𝑖

𝐼1 = ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2+𝑠2

𝑥2=0

𝑛1−1

𝑥1=0

(6-66)

𝐼2 = ∑ ∑ 𝑝(𝑥1, 𝑥2)

𝑛2−1

𝑥2=0

𝑛1+𝑠1

𝑥1=0

(6-67)

where a request is immediately served at its 𝐷𝐶1 if a server was idle at the instance of

its arrival.

128

n1+1

0

n1

0 n1μ1

λ1

n1μ1
n1μ1

λ1+λ2 λ1+λ2μ2 μ2

n1+1

1

n1

1 n1μ1

λ1

n1μ1
n1μ1

λ1+λ2 λ1+λ22μ2 2μ2

n1+s1

0
n1+s1-1

0 n1μ1n1μ1

λ1+λ2μ2 μ2

n1+s1

1
n1+s1-1

1 n1μ1n1μ1

λ1+λ2 2μ2 2μ2
λ1+λ2

1

0

0

0

λ1

μ1

λ1

2μ1

λ2 λ2μ2 μ2

1

1

0

1

λ1

μ1

λ1

2μ1

λ2 λ22μ2 2μ2

n1+1

n2

n1

n2

λ(Q1)

n1μ1

λ1+λ2

n1μ1n1μ1

λ(Q2) λ(Q2)n2μ2 n2μ2

n1+1

n2+1

n1

n2+1

λ(Q1)

n1μ1

λ1+λ2 λ(Q1)

n1μ1n1μ1

n2μ2

n1+s1

n2

n1+s1-1

n2 n1μ1n1μ1

λ(Q2) λ1+λ2n2μ2 n2μ2

n1+s1

n2+1
n1+s1-1

n2+1
n1μ1n1μ1

λ(Q2) n2μ2 n2μ2λ1+λ2

1

n2

0

n2

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2

1

n2+1

0

n2+1

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2 n2μ2

λ2 n2μ2 λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2 λ1+λ2 n2μ2

n2μ2

n1+1

n2+s2-1

n1

n2+s2-1

λ(Q1)

n1μ1

λ1+λ2 λ(Q1)

n1μ1n1μ1

n1+1

n2+s2

n1

n2+s2

λ1+λ2

n1μ1

λ1+λ2 λ1+λ2

n1μ1n1μ1

n1+s1

n2+s2-1
n1+s1-1

n2+s2-1

λ(Q1)

n1μ1

λ(Q1)

n1μ1

λ(Q2) λ1+λ2n2μ2 n2μ2

n1+s1

n2+s2

n1+s1-1

n2+s2

λ1+λ2

n1μ1

λ1+λ2

n1μ1

1

n2+s2-1

0

n2+s2-1

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2

1

n2+s2

0

n2+s2

λ1+λ2

μ1

λ1+λ2

2μ1

n2μ2 n2μ2 n2μ2 λ(Q2) n2μ2 λ1+λ2 n2μ2

n2μ2

λ1+λ2

λ1+λ2

n2μ2

n2μ2

λ(Q1) λ(Q1) λ(Q1)

λ(Q1) λ(Q1)

λ(Q2)

λ(Q2)

λ(Q2)

λ(Q2)

λ(Q2) n2μ2λ(Q2) n2μ2

B1

M1

W1

I1

Figure 6-18 Sub Spaces for Performance Metrics of SRTF Algorithm

 Probability of a request being delayed upon arrival to its own DC 𝑊𝑖

𝑊1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗
𝜆(𝑄1)

𝜆(𝑄1) + 𝜆(𝑄2)

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

+ ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2)

𝑛1+𝑠1−1

𝑥1=𝑛1

(6-68)

𝑊2 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗
𝜆(𝑄2)

𝜆(𝑄1) + 𝜆(𝑄2)

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

+ ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2)

𝑛2+𝑠2−1

𝑥2=𝑛2

(6-69)

Equations 6-68 and 6-69 describe the cases at which an arriving request will be

buffered at its own DC. Buffering occurs if all local servers are occupied and the

remote DC is fully occupied so the arrival can only be buffered at its local buffer, or if

129

the waiting time that will be experienced in the local buffer is shorter than the waiting

time at the remote buffer.

 Mean waiting time of a request 𝑤𝑖

𝑤1 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗ (𝑥1 − 𝑛1 + 1) ∗
ℎ1

𝑛1

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄1)

𝜆(𝑄1) + 𝜆(𝑄2)

+ ∑ 𝑝(𝑥1, 𝑛2 + 𝑠2) ∗

𝑛1+𝑠1−1

𝑥1=𝑛1

(𝑥1 − 𝑛1 + 1) ∗
ℎ1

𝑛1

 (6-70)

𝑤2 = ∑ ∑ 𝑝(𝑥1, 𝑥2) ∗ (𝑥2 − 𝑛2 + 1) ∗
ℎ2

𝑛2

𝑛2+𝑠2−1

𝑥2=𝑛2

𝑛1+𝑠1−1

𝑥1=𝑛1

∗
𝜆(𝑄2)

𝜆(𝑄1) + 𝜆(𝑄2)

+ ∑ 𝑝(𝑛1 + 𝑠1, 𝑥2) ∗

𝑛2+𝑠2−1

𝑥2=𝑛2

(𝑥2 − 𝑛2 + 1) ∗
ℎ2

𝑛2

 (6-71)

The mean waiting time of arrivals at the local DC is calculated using Little’s Theorem

and delay probabilities explained by Equations 6-68 and 6-69. Each term in the two

equations is multiplied by the average delay that would be experienced by the arrival

at its own DC, which is equal to the number of customers ahead of the arrival in the

queue upon its arrival instance divided by the service rate of the DC.

 Mean waiting time of a delayed request 𝑡𝑤𝑖

𝑡𝑤𝑖 = 𝑤𝑖 𝑊𝑖⁄

(6-72)

where the mean waiting time of delayed arrivals is calculated by dividing the mean

waiting time of all arrivals by the waiting probability.

Results for all above explained performance metrics will be shown in the following Section

6.2.3 and verified against results from simulations as well as test bed experimentation.

6.2.2.2 Simulation Model

Similar to the simulation model for LSSF algorithm introduced in sub-Section 6.1.2.2

the simulation model of SRTF algorithm has the same components and functions; except for

decisions on placement of arriving requests which will only be explained here to avoid

repetition. When an arriving request is generated at the source module of the DC, it checks

the status of its own DC as well as all other DCs in order to forward the request to the DC at

130

which it can receive the lowest response time. Arrival requests exit the source module via the

output gate connected to the local DC only when there is an idle local server available or if

the local passive queue length is lower than length of all other foreign queues. When the

arriving request has to be migrated, the source module forwards it to another DC with an idle

server or if none exist then to the DC offering shortest response time. Calculations for loss,

migration and delay probabilities as well as mean delay of delayed requests are calculated

using equations 6-30, 6-31, 6-32 and 6-33 respectively.

6.2.2.3 Experimental Setup

The test-bed configuration used for implementing SRTF algorithm and evaluating its

performance on real server equipment is the same as that explained in Section 6.1.2.3 and

will not be explained again to avoid repetition. The only difference is in the PowerCLI scripts

deployed on vSphere for implementing the algorithm and its allocation strategies for VM

requests.

6.2.3 Results

This section evaluates the performance of SRTF algorithm and its effectiveness in

balancing the load between DCs while maintaining the lowest possible mean delay for

delayed arrivals. Besides solving the model analytically using Gauss-Seidel method, it is

simulated on two DCs using OMNeT++ and implemented on a DC test-bed. Results for the

three approaches are shown in Figure 6-19 for the waiting, loss and migration probabilities of

arriving requests at the two DCs compared to waiting and loss probabilities of an equivalent

DC without load balancing. Results from the simulation and test-bed are presented with 95%

confidence intervals using a sample size of 20. The figure shows that when compared to a DC

without load balancing both waiting and loss probabilities are reduced by the SRTF algorithm

as load balancing allows arriving requests that would have been delayed or lost at their local

DC to be migrated to another DC where it will experience lower response time. Considering

different implementation approaches for the algorithm, all the three methods show almost the

same results for probabilities with only minor differences due to the difference in how each

platform operates. Most importantly is that the analytical solution always provides upper

bound for the results, which allows for accurate prediction for the behavior of DCs. The same

effect can be observed in Figure 6-20 showing mean delay for delayed arrivals obtained from

different platforms compared to that of a DC without load balancing. As illustrated in the

results, SRTF is able to maintain the low delay values until high load values where delay

slightly increases due to the migrated arrivals that wait at foreign DCs.

Zero delay values at low-loads resulting from simulation and test-bed platforms

occurs due to the minor waiting probability approaching 10−6 which implies one in a million

delayed arrivals. Such rare effects can hardly be captured in the simulation unless it runs for

several millions of users and for the test-bed unless millions of VMs were created. However

both scenarios would consume extremely long time durations (in order of days) that could not

be conducted through this work and is of minimal importance as the main concern for delay

values is to always be kept under defined SLA levels during high load regions

131

Figure 6-19 Loss (B), Migration (M) and Delay (W) Probabilities vs. Load (A/n) for SRTF

Algorithm implemented on various Platforms

Figure 6-20 Mean Waiting Time of Delayed Requests versus Load (A/n) for SRTF Algorithm

implemented on various Platforms

0 0.2 0.4 0.6 0.8 1 1.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Load Factor A/n

W G. S. Method

W OMNeT++

W VMware

B G. S. Method

B OMNeT++

B VMware

M G. S. Method

M OMNeT++

M VMware

B (M/M/n1/s1)

W (M/M/n1/s1)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 A
rr

iv
al

s
E

[T
W

 |
 T

W
 >

 0
]

G. S. Method

VMware

OMNeT++

M/M/n1/s1

132

For further validation of the SRTF model and the assumptions made for solving it

analytically using Markov Chains, the simulation model has been altered to test other inter-

arrival and service time distributions than the negative-exponential distribution assumed by

Markovian models. Figures 6-21 and 6-22 show the mean delay of delayed requests while

using various distributions with the same mean value for generating requests’ inter-arrival

and service times, respectively. In Figure 6-21 the following distributions have been used for

generating inter-arrival durations:

 Exponential distribution with mean 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙

 Constant interarrival times = 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙

 Uniform distribution with limits [0,2 ∗ 𝑡𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙]

Figure 6-21 Mean Delay of Delayed Requests E [Tw |Tw>0] for SRTF Algorithm for

different Inter-Arrival Time Distributions

Mean delays in Figure 6-22 were obtained for service durations generated by the following

distributions:

 Exponential distribution with mean 1

 Normal distribution with mean 1 and variance 12

 Uniform distribution with limits [0,2]

 Constant interarrival times = 1

2
 The mean and variance used for this case in the simulation tool refer to the range -∞<t<∞ of the stochastic

variable t. The error for the mean and variance due to the truncation decreases rapidly with increasing mean

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 A
rr

iv
al

s
E

[T
W

 |
 T

W
 >

 0
]

Exponential

Uniform

Constant

133

Both figures show that the difference in delay value resulting from inter-arrival and service

times obtained from different distributions are minimal, which proves the applicability of the

proposed models to any type of DCs and the validity of Markovian assumptions required for

modeling and solving the algorithms using Markov Chains.

Figure 6-22 Mean Delay of Delayed Requests E [Tw |Tw>0] for SRTF Algorithm for

different Service Time Distributions

6.3 Comparison and Evaluation

Having provided results for the performance of LSSF and SRTF algorithms within the

previous two sections of this chapter, this section provides a comparison between the two

algorithms with an evaluation for each algorithm and use-cases when each one can be of

better use. Results in this section was based on DCs with 10 servers, a queue of size 30 and

for LSSF algorithm migration thresholds are set to 19 and 39 for cases with/without

migration overhead, respectively. Another test case is included for SRTF algorithm with

migration overhead (𝑡𝑚 = 2) obtained from test-bed experimentation in order to have a fair

comparison between the two algorithms in cases of negligible (𝑡𝑚 = 0) or long (𝑡𝑚 = 2)

migration overheads.

Considering delay as a main factor affecting users’ SLA and their Quality of

Experience (QoE), Figure 6-23 compares mean delays experienced by those arriving requests

who wait for a DC implementing SRTF algorithm and LSSF algorithm with/without

migration overhead and an equivalent DC without load balancing. Results show that SRTF

algorithm can achieve the lowest average delay for delayed arrivals over all load values since

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 A
rr

iv
al

s
E

[T
W

 |
 T

W
 >

 0
]

Exponential

Normal

Uniform

Constant

134

delay is its main criteria for load balancing. Increase in migration overhead only results in a

minimal increase in the mean delay values at low and intermediate load regions since the

algorithm will always assign the arriving requests to the DC with minimal response time and

migration overhead. As load value increases all DCs tend to be overloaded, thus migrations

decrease and losses increases resulting in a decrease in the mean delay value. As for LSSF

algorithm it maintains the same delay experience of users in DCs without load balancing for

low and intermediate load values, whereas for high and overload regions when migrations

occur the delay value differs according to the value of migration overhead. For negligible

values of migration overhead the average delay tends to be higher as less arrivals are lost

where they are migrated and delayed at foreign DCs. As migration overhead increases these

migrations are reduced and accordingly the mean delay value. Disregarding migration

overheads, SRTF algorithm is able to provide lower mean response times for delayed

requests.

These effects are also visible in Figure 6-24 which compares loss, delay and migration

probabilities for the previously mentioned systems. Shortest mean delays of SRTF algorithm

shown in Figure 6-23 is caused by lower loss and delay probabilities compared to a DC

without load balancing, where the decrease in these probabilities is compensated by a high

migration probability since arriving requests are always routed to the DC offering least

response time. DCs operating under LSSF algorithm also achieve lower loss probabilities

than those without load balancing as arrivals can be migrated to foreign DCs instead of being

lost.

Comparing the two algorithms together; both algorithms are able to reduce loss

probabilities with slightly lower losses achieved by SRTF algorithm due to absence of

migration thresholds that could prevent a foreign DC from accepting a migrated request.

SRTF also shows lower waiting probabilities than LSSF for both values of migration

overhead due to the fact that SRTF migrates an arrival to a foreign DC if it could receive

instant service there other than waiting at its local queue. These effects are compensated by

much higher migration probabilities for SRTF as LSSF algorithm prevents an arriving request

to be migrated unless it finds its local DC at its full capacity which only occurs at

high/overload situations; whereas SRTF allows migrations regardless of system load.

Migration probabilities for both algorithms tend to drop at overload situations when the

migration overhead is high, where at these situations the DCs tend to be overloaded with long

expected delay durations for any arriving request where these long delays added to it long

migration overheads would not meet the migration criteria of a request to have its delay limit

specified by SLAs met at the foreign DC upon migration.

Generally, each of the proposed load balancing algorithms presented in this chapter is

superior under certain conditions. For cases when users’ requests are highly sensitive to delay

and service level agreements SRTF would be the best choice for load balancing among DCs

as it provides the lowest mean delay an arrival could experience. However for cases with high

migration overheads and long transmission delays between geographically distant DCs, LSSF

would perform better as it tends to suppress migrations to overload situations only.

Determining migration thresholds of LSSF algorithm could be tuned according to migration

delay values, where long delays require low thresholds and short migration overheads require

higher thresholds.

135

Figure 6-23 Mean Delay of Delayed Frames for LSSF and SRTF Algorithms compared to

𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue

Figure 6-24 Loss (B), Delay (W) and Migration (M) Probabilities for LSSF and SRTF

Algorithms compared to 𝑴/𝑴/𝒏/𝒏 + 𝒔 Queue

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

Load Factor A/n

M
ea

n
 W

ai
ti

n
g

 T
im

e
o

f
B

u
ff

er
ed

 A
rr

iv
al

s
E

[T
W

 |
 T

W
 >

 0
]

LSSF (t
M

=0)

LSSF (t
M

=2)

SRTF (t
M

=0)

SRTF (t
M

=2)

M/M/n1/s1

0 0.2 0.4 0.6 0.8 1 1.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Load Factor A/n

B LSSF t

M
=0

B LSSF t
M

=2

B SRTF t
M

=0

B SRTF t
M

=2

W LSSF t
M

=0

W LSSF t
M

=2

W SRTF t
M

=0

W SRTF t
M

=2

M LSSF t
M

=0

M LSSF t
M

=2

M SRTF t
M

=0

M SRTF t
M

=2

B M/M/n/n+s

W M/M/n/n+s)

136

137

Chapter 7 Conclusion and Outlook

The rise of Cloud Computing technology and its huge development over the past

years resulted in a rapid growth in the size of its data centers and accordingly its energy bill.

Power consumed by data centers for operating and cooling of its equipment contributes to

almost 1.5% of the world-wide energy consumption, and is forecasted to increase over the

coming years. In attempt to reduce this increased consumption numerous approaches have

been proposed such as server consolidation, sleep modes and reduced operational frequency

by Dynamic Voltage and Frequency Scaling, all of which tend to achieve an energy efficient

operation by cloud data centers. Besides the energy challenge, designing load balancing

algorithms to balance the load among several data centers of cloud providers while meeting

the requirements of cloud computing services is another challenge. Despite the existence of

several load balancing approaches in literature most of them could not offer efficient load

balancing solutions for cloud computing for being static, having single points of failure,

requiring long transmission delays or long processing delays due to complexity. Cloud

Computing however require algorithms that are dynamic with automatic resource

provisioning for fast adaptation to any updates in the data center’s state, proactive to over-

load situations by preventing them from occurring, distributed without centralized points of

failure to avoid relying the data center’s operation on a single node, and finally and most

importantly perform load balancing decisions without any compromise to users’ specified

Service Level Agreements (SLA).

This thesis contributes to solving the energy efficiency and load balancing dilemmas

in Cloud Computing environments by proposing an algorithm for energy efficiency based on

the idea of server consolidation for an efficient operation of DCs; as well as two load

balancing algorithms to distribute the load among several operator’s DCs with the goal of

enhancing DCs’ performance while meeting users’ SLAs. For studying these algorithms and

accurately predicting their effects on DCs’ performance a modeling approach for DCs as

queuing systems has been introduced in Chapter 4. In the context of chapter 4 all modeling

details and assumptions that accurately describe the DC’s operation using queuing system

operations are illustrated by describing different system states and transition among these

different states using Markov Chains. Besides explaining theoretical methodology followed

for analyzing the proposed algorithms, Chapter 4 also introduced other platforms used for

testing the algorithms. OMNeT++ simulation models are explained with their compound and

simple modules required to implement a queuing system with different operational strategies

in accordance to the implemented algorithm. A test-bed for emulating cloud DCs has also

been set-up for better understanding of the algorithms’ behavior in realistic environments.

Within the context of Chapter 5 in this thesis an algorithm for energy efficiency

operation of Data centers has been proposed. The algorithm is based on the idea of server

consolidation by consolidating the DC’s load on fewer number of servers so that other under-

utilized servers are turned idle and can be switched-off to save their idle power consumption.

This is performed in the algorithm using hystereses behavior where defined queuing

thresholds are set to determine a load surge that requires new server activation. The algorithm

138

is explained using Markov Chains and analyzed mathematically using a novel recursive

algorithm which solves for the steady-state probabilities of the system under Markovian

assumptions. Most significant performance metrics required for evaluating the algorithm are

explained such as probabilities of system states, mean delays of delayed arriving requests,

servers’ activation rates and power saving efficiency. The algorithm has shown its ability to

dynamically adapt the number of active servers in the DC to its current load, so that the load

of the DC is consolidated on the least number of active servers. This is proven by showing

the probability of state peaks at each corresponding load value and the vast reduction in

activation rates of servers. Besides its effective consolidation strategy the algorithm also

shows a favorable effect of stabilizing the mean delay of delayed requests over a vast range

of loads, where delays remain almost of a constant value while system is loaded between 5 to

95%. The proposed hystereses algorithm has also proven its efficiency at meeting its original

goal of reducing power consumption of DCs with an achieved power saving efficiency of

20% at low load values due to the reduced number of active servers.

In addition to its efficiency at reducing DC’s power consumption, the proposed

hystereses algorithm accommodates several realistic properties of servers such as activation

overheads, sleep modes and DVFS specified by C-states and P-states, respectively. Two case

studies have been presented in this thesis to show case the effectiveness of sleep modes and

reduced frequency states at increasing the energy efficiency of cloud data centers. The first

case study was implemented by the model of the proposed hystereses algorithm by varying

activation overheads as well as power consumption at different system states to model servers

being in sleep states, where long activation overheads implied deeper sleep states and less

energy consumption whereas short activation overheads implied light sleep states and

relatively higher power consumption. Sleep states indicated by HSB modes were also

compared against CSB mode where idle servers are completely switched-off. Analysis have

shown that sleep modes are able to reduce the delay experienced while booting a server from

an off state significantly at low load values, while switching-off servers is slightly more

efficient at reducing energy consumption. Decisions on how to compromise between saving

energy with minimal degradation in system performance should be carefully considered by

DCs’ administrators for selecting appropriate operation modes for their systems. The second

case study provided insights into the application of DVFS states on servers for reducing their

frequency and accordingly power consumption. Model results have shown that as operational

frequency decreases the service durations of arriving requests is increases as well as number

of buffered arrivals thus triggering more servers to be activated. Thus the attempt to reduce

energy consumption is accompanied by increased delay of requests causing performance

degradation as well as more activated servers that compensate the power-saving effect. Thus

DVFS should only be applied in cases when a DC is hosting requests that are not time-

sensitive in order to save energy consumption considerably.

This thesis also introduced two algorithms for load balancing between cloud DCs

within the context of Chapter 6, LSSF and SRTF. Both algorithms have been modeled using

two-dimensional Markov Chains and solved analytically using an iterative algorithm for

LSSF and Gauss-Seidel method for SRTF to obtain steady state probabilities of the DC

operating by the model. The two algorithms are proposed for different use-cases; LSSF

algorithm is proposed for scenarios when migration overhead between DCs is large compared

to service and waiting times of requests as it suppresses migrations to cases when an arrival

139

could not be accepted by its local DC. This effect has been proven by results of the analytical

solution where LSSF algorithm shows reduced loss probabilities for arrivals as it migrates

arrivals instead of being lost as well as slightly higher mean delays but bounded to be lower

than specified SLAs. Different cases of LSSF algorithm have been tested with various

migration overheads to show their effect where higher thresholds increase migration

probability and average delays. These configuration parameters of the algorithm should be set

according to SLA requirements agreed upon between cloud providers and their users.

The second proposed algorithm is an upgrade to the known JSQ algorithm which

performs load balancing decisions in consideration to response times of servers in the DC

rather than queue lengths. SRTF routes an incoming arrival to the DC where it would receive

either an instant service or the shortest average delay time. Analysis of the algorithm showed

that it is able to significantly reduce the average delays of requests compared to LSSF and

DCs without load balancing, but at the expense of high migration probabilities. SRTF is

foreseen to be most efficient at balancing the load among DC handling time-sensitive

applications where migration overhead is not significant to the average delay values.

In addition to analytical solutions provided for the proposed algorithms in this thesis

that easily enable system administrators to tune their system parameters and accurately

predict the performance of DCs operating by any of the proposed algorithms; models have

also been tested by simulations as well as test-bed implementations for exploring different

application cases that cannot be tested by theoretical analysis as they are based upon

Markovian assumptions. OMNeT++ simulations carried out for the three proposed algorithms

with various distributions for inter-arrival times, service times and activation times showed

that Markovian assumptions are a valid assumptions as model’s performance was not affected

by the change of any of the distributions. Test-bed experiments for load balancing algorithms

on 4 DCs rather than the case of only two DCs implemented by the analytical solutions also

showed its validity and applicability to balance the load among any number of DCs.

In conclusion, proposed algorithms in this thesis have shown their effectiveness at

achieving an energy efficient operation for cloud DCs as well as balancing the load among

several DCs effectively. Analysis methods used for studying these algorithms have also

shown to be of high accuracy at predicting behavior of DCs operating by these algorithms.

Close observation of the presented results show that energy efficiency algorithm is most

effective at low/average load situations where the gain by reducing or eliminating power

consumption of idle servers is high, while at high loads when the system is fully operative the

power saving efficiency tends to zero. Whereas for load balancing the proposed algorithms

have shown to be of most importance at regions of high load / overload to prevent losses of

requests by migrating them to foreign DCs. Different load balancing criterion were shown to

have different effects on QoE of arriving requests in terms of average delay, thus selecting a

strategy for load balancing among cloud DCs should always be done in reference to users

SLAs to make sure they are not compromised.

An outlook for the work done in this thesis is to compare the results obtained from

testing proposed algorithms against other existing approaches in literature. For example;

recursive algorithm proposed for solving the multiple hystereses model for energy-efficiency

could be compared to other analysis methods for the same queuing model such as Green’s

Method or Stochastic Complementation which provide exact numerical solutions for multi-

140

server queuing systems with hystereses. However this was not performed due to the high

complexity of the previously mentioned methods and their limitations to solving test-cases of

small sizes. As for the load balancing algorithms, further studies are required for approaching

an exact numerical solution for solving steady-state probabilities of a model composed of any

number of DCs with mutual overflows. Algorithms for mathematical analysis proposed in

this thesis are limited to cases of only two DCs with mutual overflow represented using two-

dimensional Markov Chains, where the addition of further DCs to the model corresponds to

an increase in the dimension of the Markov Chain resulting in high dimensional models that

cannot be solved exactly to the best of our knowledge but can be simulated by extending the

proposed simulation models.

Through the context of this thesis algorithms have been proposed and tested using

various methods to predict their effect when deployed to real DCs. Although a test-bed was

configured to emulate a DC using minimal hardware equipment and the same software used

by cloud operators, experimentation on large-scale DCs would be more insightful for testing

the algorithms on larger set of equipment serving real online user requests instead of traffic

generated using simulators. This step was not feasible during the time frame of this thesis as

it required granted access for carrying out experimental work at one of the cloud providers’

premises, which unfortunately was not achievable. Such experimentation could allow for

testing the algorithms under more complicated scenarios beyond the capability of analytical

solution such as balancing the load between more than two DCs or handling bulk arrivals;

which are all cases that could be predicted using our simulation models

141

References

[1] “Big Data’s Impact on the data Supply Chain”, Cognizant 20-20 Insights, May 2012

[2] “Data Center Efficiency with Intel Power Management Technologies”, Intel

Information technology, February 2010

[3] “Data Center Users Group Special Report: Inside the Data Center 2008 and Beyond”,

Technical Report by Emerson Network Power, 2008.

[4] “Energy Logic: Reducing Data Center Energy Consumption by Creating Savings that

Cascade Across Systems”, White Paper by Emerson Network Power, 2009.

[5] “Enhanced Intel SpeedStep Technology for the Intel Pentium M Porcessor”, White

Paper by Intel, March 2004

http://download.intel.com/design/network/papers/30117401.pdf

[6] A. B. Nagarajan, F. Mueller, C. Engelmann, S. L. Scott, “Proactive fault tolerance for

HPC with Xen virtualization”, Proceedings of the 21
st
 Annual International

Conference on Supercomputing, Seattle, Washington, USA, June 17-21, 2007, pp. 23-

32.

[7] A. Beloglazov, R. Buyya, “Adaptive threshold-based approach for energy-efficient

consolidation of virtual machines in cloud data centers”, Proceedings of the 8
th

International Workshop on Middleware for Grids, Clouds and e-Science, article no. 4,

Bangalore, India, 2010

[8] A. Beloglazov, R. Buyya, “Energy Efficient Allocation of Virtual Machines in Cloud

Data Centers”, 10
th

 IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, Melbourne, Australia, 2010, pp. 577-578.

[9] A. Beloglazov, R. Buyya, “Energy Efficient Resource Management in Virtualized

Cloud Data Centers” Proceedings of the 10
th

 IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, 2010, pp. 826-831.

[10] A. Beloglazov, R. Buyya, “Managing Overloaded Hosts for Dynamic Consolidation

of Virtual Machines in Cloud Data Centers Under Quality of Service Constraints”,

IEEE Transactions on Parallel and Distributed Systems, volume 24, No.7, pp. 1366-

1379, July 2013.

[11] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya, “A Taxonomy and Survey of

Energy-Efficient Data Centers and Cloud Computing Systems”, Journal of Advances

in Computers, vol. 82, pp. 47-99, 2011.

[12] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, L.

Dittmann, “Cloud RAN for Mobile Networks: A Technology Overview”, IEEE

Communications Surveys and Tutorials, vol. 17, no. 1, pp. 405-426, 2015.

[13] A. Gandhi, M. H. Balter, I. Adan, “Server Farms with Setup Costs”, Journal of

Performance Evaluation, vol. 67, issue 11, pp. 1123-1138, November 2010.

[14] A. Gandhi, M. H. Balter, M. A. Kozuch, “The Case for Sleep States in Servers”,

Proceedings of the 4
th

 Workshop on Power-Aware Computing and Systems, Article

no. 2, Portugal, October 2011.

[15] A. Gandhi, M. H. Balter, R. Das, C, Lefurgy, “Optimal Power Allocation in Server

http://download.intel.com/design/network/papers/30117401.pdf

142

Farms”, Proceedings of the 11
th

 International Joint Conference on Measurement and

Modeling of Computer Systems, Seattle ,USA, June 2009, pp. 157-168

[16] A. Gandhi, S. Doroudi, M. H. Balter, A. S. Wolf, “Exact Analysis of the M/M/k/Setup

Class of Markov Chains via recursive Renewal Reward”, proceedings of the ACM

SIGMETRICS International Conference on Management and Modeling of Computer

Systems, pp. 153-166, USA, June 2013.

[17] A. Gandhi, V. Gupta, M. H. Balter, M. A. Kozuch, “Optimality Analysis of Energy-

Performance Trade-off for Server Farm Management”, Journal of Performance

Evaluation, vol. 67, issue 11, pp. 1155-1171, November 2010.

[18] A. Greenberg, J. Hamilton, D. A. Maltz, P. Patel, “The cost of a Cloud: research

problems in data center networks”, ACM SIGCOMM Computer Communication

Preview Newsletter, vol. 39, issue 1, pp. 68-73, January 2009.

[19] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, X. Zhu, “VMware

Distributed Resource Management: Design, Implementation, and Lessons Learned”,

VMware technical Journal, Spring 2012.

[20] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema,

“Performance Analysis of Cloud Computing Services for Many-Tasks Scientific

Computing”, IEEE Transactions on Parallel and Distributed Systems, Volume 22

Issue 6, pp. 931-945, June 2011

[21] A. Khiyaita, M. Zbakh, H. El Bakkali, D. El Kettani, “Load Balancing Cloud

Computing: State of art”, Network Security and Systems (JNS2), pp. 106-109, 20-21

April 2012.

[22] A. Koepke et al., “Simulating Wireless and mobile Networks in OMNeT++ the

MiXiM vision”, Proceedings of the 1
st
 International Conference on Simulation Tools

and techniques for Communications, Networks and Systems & Workshops, article no.

60, Marseille, France, March 2008

[23] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, R. H. Katz, “NapSAC:

Design and Implementation of a Power-Proportional Web Cluster”, Proceedings of

the 1
st
 ACM SIGCOMM workshop on Green Networking, pp. 15-22, New Delhi,

India, August 2010.

[24] A. Shribman, B. Hudzia, “Pre-copy and post-copy VM live migration for memory

intensive applications”, Proceedings of the 18
th

 International Conference on Parallel

processing workshops Euro-Par’12, Greece, August 27-31, 2012

[25] A. Varga, R. Hornig, “An Overview of the OMNeT++ Simulation Environment”,

Proceedings of the 1
st
 International Conference on Simulation Tools and techniques

for Communications, Networks and Systems & Workshops, article no. 60, Marseille,

France, March 2008

[26] A. W. Malik et al., “CloudNetSim++: A Toolkit for Data Center Simulations in

OMNeT++”, 11
th

 Annual High Capacity Optical Networks and Emerging/Enabling

Technologies, Charlotte, NC, 2014, pp. 104-108.

[27] A. W. Malik, S. U. Khan, “Data Center Modeling and Simulation Using OMNeT++”,

Chapter from Handbook on Data Centers, pp. 839-855, March 2015.

[28] A.K. Sidhu, S. Kinger, “ Analysis of Load Balancing Techniques in Cloud

143

Computing”, International Journal of Computers and Technology, Volume 4 No.2,

pp. 737-741, March-April, 2013

[29] Ad-Hoc Advisory group, “ICT for Energy Efficiency”, Brussels, 24.10.2008

http://ec.europa.eu/information_society/activities/sustainable_growth/docs/consultations/advi

sory_group_reports/ad-hoc_advisory_group_report.pdf

[30] Advanced Configuration and Power Interface Specification, November 2013

http://www.acpi.info/spec.htm

[31] Average electricity consumption per electrified household.

https://www.wec-indicators.enerdata.eu/household-electricity-use.html

[32] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, N.

McKeown, “ElasticTree: saving energy in data center networks”, Proceedings of the

7
th

 USENIX Conference on Networked Systems Design and Implementation, San

Jose, California, April 2010.

[33] B. Kepes, “Understanding the Cloud Computing Stack: SaaS, PaaS, IaaS”, White

paper, July 2016

https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-

paas-iaas/

[34] B. Li, J. Li, J. Huai, T. Wo, Q. Li, L. Zhong, “EnaCloud: An Energy-Saving

Application Live Placement Approach for Cloud Computing Environments”, IEEE

International Conference on Cloud Computing, Bangalore, 2009, pp. 17-24

[35] B. Yang, X. Xu, F. Tan, D. Park, “An Utility-Based Job Scheduling Algorithm for

Cloud Computing Considering Reliability Factor”, International Conference on Cloud

and Service Computing (CSC), pp.95-102, 12-14 December 2011.

[36] C. A. Waldspurger, “Memory Resource Management using VMware ESX Server”,

Proceedings of the 5
th

 symposium on Operating Systems design and implementation,

vol. 36, issue SI, pp. 181-194, winter 2002.

[37] C. Chou, D. Wong, L. N. Bhuyan, “DynSleep: Fine-Grained Power Management for a

Latency-Critical Data Center Application”, proceedings of the International

Symposium on Low Power Electronics and Design ISLPED ’16, pp. 212-217, San

Francisco, USA, August 2016.

[38] C. Chou, L. Bhuyan, “A Multicore Vacation Scheme for Thermal-Aware Packet

Processing”, 33
rd

 International Conference on Computer Design ICCD, pp. 565-572,

New York, 2015.

[39] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield,

“Live Migration of Virtual Machines”, Proceedings of the 2
nd

 conference on

Symposium on Networked System Design & Implementation NSDI 2005, Volume 2,

pp. 273-286.

[40] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, R. Friedrich, “Smart Cooling of

Data Centers”, Proceedings of the International Electronic Packaging Technical

Conference and Exhibition ASME 2003, pp. 129-137, Hawaii, USA, July 2013

[41] C. F. Chou, L. Golubchik, J. C. S. Lui, “Multiclass Multiserver Threshold-Based

Systems: A Study of Non- instantaneous Server Activations”, IEEE Transactions on

Parallel and Distributed Systems, vol. 18, no.1, pp. 96-110, January 2007.

[42] C. Huankai, F. Wang, N. Helian, G. Akanmu, “ User-priority guided Min-Min

http://ec.europa.eu/information_society/activities/sustainable_growth/docs/consultations/advisory_group_reports/ad-hoc_advisory_group_report.pdf
http://ec.europa.eu/information_society/activities/sustainable_growth/docs/consultations/advisory_group_reports/ad-hoc_advisory_group_report.pdf
http://www.acpi.info/spec.htm
https://www.wec-indicators.enerdata.eu/household-electricity-use.html
https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-iaas/
https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-iaas/

144

scheduling algorithm for load balancing in cloud computing”, National Conference on

Parallel Computing Technologies, pp. 1-8, 21-23 February 2013

[43] C. Minkenberg, G. Rodriguez, “Trace-Driven co-simulation of High-performance

Computing Systems using OMNeT++”, International Conference on Simulation Tools

and Techniques, 2009.

[44] C. Peoples, G. Parr, S. McClean, P. Morrow, B. Scotney, “Energy Aware Scheduling

across ‘Green’ Cloud Data Centers”, IFIP/IEEE International Symposium on

Integrated Network Management (IM 2013), pp. 876-879, 27-31 May 2013.

[45] C. Wu, R. Chang, H. Chan, “A Green Energy-Efficient Scheduling Algorithm using

the DVFS Technique for Cloud Datacenters”, Journal of Future Generation Computer

Systems, vol. 37, pp. 141-147, July 2014.

[46] C. Y. Li, C. Peng, P. Cheng, S. Lu, X. Wang, F. Ren, T. Wang, “An Energy Efficient

Perspective on Rate Adaptation for 802.11n NIC”, IEEE Transactions on Mobile

Computing, vol. 15, no. 6, pp. 1333-1347, June 2016.

[47] D. Borgetto, H. Casanova, G. Da Costa, J. Pierson, “Energy-aware Service

Allocation”, Journal of Future Generation Computer Systems, vol. 28, issue 5, pp.

769-779, May 2012.

[48] D. Cavdar, F. Alagoz, “A Survey of Research on Greening Data Centers”, 2012 IEEE

Global Communications Conference GLOBECOM, Anaheim, CA, 2012, pp. 3237-

3242.

[49] D. Chaudhary, B. Kumar, “Analytical Study of Load Scheduling Algorithms in Cloud

Computing”, International Conference on Parallel, Distributed and Grid Computing

(PDGC), pp. 7-12, 11-13 December 2014.

[50] D. Chaudhary, R.S. Chhillar, “A New Load Balancing Technique for Virtual Machine

Cloud Computing Environment”, International Journal of Computer Applications,

Volume 69, No. 23, pp. 37-40, May 2013

[51] D. Dharwar, S. S. Bhat, V. Srinivasan, D. Sarma, P. K. Banerjee, “Approaches

Towards Energy-Efficiency in the Cloud for Emerging Markets” IEEE International

Conference on Cloud Computing in Emerging Markets CCEM, pp. 1-6, Bangalore,

2012

[52] D. Kakadia, N. Kopri, V. Varma, “Network-aware Virtual Machine Consolidation for

Large Data Centers”, Proceedings of the 3
rd

 International Workshop on Network-

Aware Data Management, article no. 6, 2013.

[53] D. Meisner, B. T. Gold, T. F. Wenisch, “PowerNap: eliminating server idle power”,

Proceedings of the 14
th

 International Conference on Architectural Support for

programming languages and operating systems, pp. 205-216, USA, March 7-11, 2009.

[54] D. Meisner, T. F. Wenisch, “DreamWeaver: architecture support for deep sleep”,

Proceedings of the 17
th

 International Conference on Architectural support for

programming Languages and Operating Systems, pp. 313-324, London, England,

March 3-7, 2012

[55] D. Niyato, S. Chaisiri, L. B. Sung, “Optimal Power management for Server Farm to

Support Green Computing”, Proceedings of the 9
th

 IEEE/ACM International

Symposium on Cluster Computing and the Grid, pp. 87-91, May 2099.

145

[56] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, E. Y. Wang, “Bringing

Virtualization to the x86 Architecture with the Original VMware Workstation”, ACM

Transaction on Computer Systems (TOCS), Volume 30, Issue 4, Article No. 12,

November 2012.

[57] E. Le Sueur, G. Heiser, “Dynamic Voltage and Frequency Scaling: The Laws of

Diminishing Returns”, Proceedings of the International Conference on Power Aware

Computing and Systems, pp. 1-8, Vancouver, BC, Canada, 2010.

[58] E. Le Sueur, G. Heiser, “Slow Down or Sleep, That is the Question”, Proceedings of

the USENIX Annual Technical Conference, Portland, OR, June 2011.

[59] E. N. Elnozahy, M. Kistler, R. Rajamony, “Energy-efficient Server Clusters”,

Proceedings of the 2
nd

 International Conference on Power0aware Computer Systems,

pp. 179-197, 2002

[60] ESXi Hypervisor http://www.vmware.com/products/esxi-and-esx.html

[61] G. Buttazzo, “Scalable Applications for Energy-Aware Processors”, in Embedded

Software, 2002, pp. 153-165.

[62] G. Dhiman, T. S. Rosing, “System-Level Power Management using Online

Learning”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 28, no. 5, pp. 676-689, May 2009.

[63] G. Sarmila, N. Gnanambigai, P. Dinadayalan, “ Survey on Fault Tolerant Load

Balancing Algorithms in Cloud Computing”, 2
nd

 International Conference on

Electronics and Communication Systems (ICECS), pp. 1715-1720, 26-27 February

2015.

[64] G. von Laszewski, L. Wang, A. J. Younge, X. He, “Power-aware Scheduling of

Virtual Machines in DVFS-enabled Clusters”, IEEE International Conference on

Cluster Computing and Workshops, New Orleans, LA, 2009, pp. 1-10.

[65] H. H. Kramer, V. Petrucci, A. Subramanian, E. Uchoa, “A Column Generation

Approach for Power-Aware Optimization of Virtualized Heterogeneous Server

Clusters”, Journal of Computers and Industrial Engineering, vol. 63, issue 3, pp. 652-

662, November 2012.

[66] H. Mehta, P. Kanungo, M. Chandwani, “Decentralized Content Aware Load

Balancing Algorithm for Distributed Computing Environments”, Proceedings of the

International Conference and Workshop on Emerging Trends in Technology ICWET,

pp. 370-375, 2011.

[67] H. Mi, H. Wang, G. Yin, Y. Zho, D. Shi, L. Yuan, “Online Self-Reconfiguration with

performance Guarantee for Energy-Efficient Large-Scale Cloud Computing Data

Centers”, IEEE International Conference on Services Computing, pp. 514-521,

Miami, Florida, 2010.

[68] H. Nakada, T. Hirofuchi, H. Ogawa, S. Itoh, “Toward Virtual machine Packing

Optimization Based on genetic Algorithm”, Chapter at Distributed Computing,

Artificial Intelligence, Bioinformatics, Self-Computing and Ambient Assisted Living,

vol. 5518, pp. 651-654

[69] https://azure.microsoft.com

[70] https://cloud.google.com/appengine/

http://www.vmware.com/products/esxi-and-esx.html
https://azure.microsoft.com/
https://cloud.google.com/appengine/

146

[71] I. De Falco, R. Del Balio, E. Tarantino, R. Vaccaro, “Improving search by

incorporating evolution principles in parallel Tabu search”, IEEE World Congress on

Computational Intelligence, Proceedings of the First IEEE Conference on

Evolutionary Computation, volume 2, pp. 823-828, 27-29 June 1994.

[72] I. Habib, “Virtualization with KVM”, Linux Journal, Article no. 8, vol. 2008, Issue

166, February 2008.

[73] I. Mitrani, “Service Center trade-offs between Customer Impatience and Power

Consumption”, Journal of Performance Evaluation, vol. 68, issue 11, pp. 1222-1231,

November 2011.

[74] I. Takouna, W. Dawoud, C. Meinel, “Accurate Multicore Processor Power Models for

Power-aware Resource Management”, Proceedings of the IEEE 9
th

 International

Conference on Dependable, Autonomic and Secure Computing (DASC), pp. 419-426,

Sydney, 2011.

[75] I.A. Mohialdeen, “Comparative Study of Scheduling Algorithms in Cloud Computing

Environments”, Journal of Computer Science, pp. 252-263, 2013.

[76] I.J.B.F. Adan, J. Wessels, and W.H.M. Zijm. Analysis of the symmetric shortest

queue problem. Stochastic Models, 6:691–713, 1990
[77] IBM Corporation, “IBM’s Strategy for Dynamic Infrastructure”, 2008

[78] J. Adhikari, S. Patil, “Double Threshold Energy Aware Load Balancing in Cloud

Computing”, Fourth International Conference on Computing, Communications and

Networking Technologies, pp. 1-6, 4-6 July 2013.

[79] J. C. S. Lui, L. Golubchik, “Stochastic Complement Analysis of Multi-Server

Threshold Queues with Hysteresis”, Journal of Performance Evaluation, vol. 35,

issues 1-2, March 1999, pp. 19-48.

[80] J. D. C. Little, “A Proof of the Queuing Formula: 𝐿 = 𝜆𝑊”, Operations Research,

9(3), pp. 383-387, May 1961.

[81] J. G. Koomey, “Growth in Data Center Electricity Use 2005 To 2010”, August 1,

2011

http://www.analyticspress.com/datacenters.html

[82] J. Galloway, K. Smith, J. Carver, “An Empirical Study of Power Aware Load

Balancing in Local Cloud Architectures”, 9
th

 International Conference on Information

Technology: New Generations, pp. 232-236, 16-18 April 2012.

[83] J. Guo, Z. Y. Lei, “A Kind of Wormhole Attack Defense Strategy of WSN based on

Neighbor Nodes Verification”, IEEE 3
rd

 International Conference on Communication

Software and Networks, pp. 564-568, 2011.

[84] J. Hamilton, “Cooperative Expandable Micro-Slice Servers (CEMS): Low Cost, Low

Power Servers for Internet-Scale Services”, proceedings of Conference on Innovative

Data Systems Research, 2009.

[85] J. Jeong, S. Kim, H. Kim, J. Lee, E. Seo, “Analysis of Virtual Machine live-migration

as a method for Power-Capping”, The Journal of Supercomputing, vol. 66, issue 3,

pp. 1629-1655, December 2013.

[86] J. Keilson, “Green’s Function Methods in Probability Theory”, Journal of the London

Mathematical Society, Volume s1-42, Issue 1, pp. 368-369, 1967.

http://www.analyticspress.com/datacenters.html

147

[87] J. Koomey, “Growth in data center electricity use 2005 to 2010”, report by Analytical

Press, completed at the request of The New York Times.

[88] J. Kremer, “Cloud Computing and Virtualization”, White paper

[89] J. Onisick, “Data Center 101: Server Virtualization”, September 2010,

http://www.definethecloud.net/tag/data-center-virtualization/

[90] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, J. Al-Ajroodi, “A Survey of Load

Balancing in Cloud Computing: Challenges and Algorithms”, Second Symposium on

Network Cloud Computing and Applications (NCCA), pp. 137-142, 3-4 December

2012.

[91] K. Bilal, S. U. Khan, J. Kolodziej, L. Zhang, K. Hayat, S. A. Madani, N. Min-Allah,

L. Wang, D. Chen, “A Comparative Study of Data Center Network Architectures”,

Proceedings of the 26
th

 European Conference on Modeling and Simulation ECMS,

2012.

[92] K. Chow, B. Liu, “On Mapping Signal Processing Algorithms to a Heterogeneous

Multiprocessor System”, International Conference on Acoustics, Speech, and Signal

Processing, Volume 3, pp. 1585-1588, 14-17 April 1991.

[93] K. Church, A. Greenberg, J. Hamilton, “On delivering Embarrassingly Distributed

Cloud Services”, Proceedings of 7
th

 ACM workshop on Hot Topics in Networks

‘Hotnets’, Calgary, Canada, October 6-7, 2008

[94] K. H. Kim, A. Beloglazov, R. Buyya, “Power-aware Provisioning of Virtual

Machines for Real-Time Cloud Services”, Journal of Concurrency and Computation:

Practice and Experience, vol. 23, issue 13, pp. 1491-1505, September 2011.

[95] K. Kant, “Data Center Evolution, A Tutorial on State of the art, issues, and

challenges”, Journal of Computer Networks: The International Journal of Computer

and Telecommunications Networking Volume 53 Issue 17, December, 2009, Pages

2939-2965.

[96] K. S. Kim, “Integration of OMNeT++ Hybrid TDM/WDM-PON Models into INET

Frameworks”, International Workshop on OMNeT++, 2011.

[97] K. S. Rao, P. S. Thilagam, “Heuristics based server consolidation with residual

resource defragmentation in cloud data centers”, Journal of Future generation

Computer Systems, vol. 50, issue C, pp. 87-98, September 2015.

[98] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, E. Roman, “Optimized pre-copy live migration

for memory intensive applications”, Proceedings of the International Conference for

High Perfomance Computing, Networking, Storage and Analysis, Article No. 40,

Seattle, Washington, November 12-18, 2011

[99] L. A. Barroso, U. Hoelzle, “The Case for Energy-Proportional Computing”, Journal

of Computer, vol. 40, issue 12, pp. 33-37, December 2017.

[100] L. A. Barroso, U. Hoelzle, “The Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines”, Text Book.

[101] L. Bertini, J. C. B. Leite, D. Mosse, “Power Optimization for Dynamic Configuration

in Heterogeneous Web Server Clusters”, Journal of Systems and Software, vol. 83,

issue 4, pp. 585-598, April 2010.

[102] L. C. Zhong, J. M. Rabaey, A. Wolsitz, “An Integrated Data-Link Energy Model for

Wireless Sensor Networks”, IEEE International Conference on Communications, vol.

http://www.definethecloud.net/tag/data-center-virtualization/

148

7, pp. 3777-3783, 2004.

[103] L. Gkatzikis, I. Koutsopoulos, “Migrate or Not? Exploiting Dynamic Task Migration

in Mobile Cloud Computing Systems”, IEEE Wireless Communications 2013, pp. 24-

32

[104] L. He, D. Zou, Z. Zhang, C. Chen, H. Jin, S. A. Jarvis, “Developing resource

consolidation frameworks for moldable virtual machines in Clouds”, Journal of

Future Generation Computer Systems, vol. 32, pp. 69-81, March 2014

[105] L. Kleinrock, “A Vision for the Internet”, ST Journal for Research , Volume 2, pp 4-

5, November 2005

[106] L. Kolb, A. Thor, E. Rahm, “Load Balancing for MapReduce-based Entity

Resolution”, proceedings of 28
th

 International Conference on Data Engineering

(ICDE), pp. 618-629, 2012.

[107] L. M. Silva, J. Alonso, P. Silva, J. Torres, A. Andrzejak, “Using Virtualization to

improve Software Rejuvenation”, Sixth IEEE International Symposium on Network

Computing and Applications NCA 2007, Cambridge, MA, 2007, pp. 33-44.

[108] L. Wang, H.J. Siegel, V.P. Roychowdhury, A. Maciejewski, “Task Matching and

Scheduling in Heterogeneous Computing Environments Using a Genetic-Algorithm-

Based Approach”, Journal of Parallel and Distributed Computing, Volume 47, Issue

1, pp. 8-22, November 1997

[109] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer and W. Karl, "Scientific

Cloud Computing: Early Definition and Experience," 10th IEEE International

Conference on High Performance Computing and Communications HPCC 2008,

Dalian, pp. 825-830

[110] L. Zhu, J. Chen, Q. He, D. Huang, S. Wu, “ITC-LM: A smart Iteration-Termination

Criterion Based Live Virtual Machine Migration”, Proceedings of the 10
th

 IFIP

International Conference on Network and Parallel Computing NPC 2013, vol. 8174,

pp. 118-129

[111] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, M. Zaharia, “A view of Cloud Computing”,

Communications of the ACM, Volume 53 Issue 4, April 2010. Pages 50-58.

[112] M. Aruna, D. Bhanu, R. Punithagowri, “A Survey on Load Balancing Algorithms in

Cloud Environment”, International Journal of Computer Applications, Volume 82,

No. 16, pp. 39-43, November 2013.

[113] M. E. Gebrehiwot, S. A. Aalto, P. Lassila, “Optimal Sleep-state Control of Energy-

Aware M/G/1 Queues”, Proceedings of the 8
th

 International Conference on

Performance Evaluation Methodologies and Tools, pp. 82-89, Bratislava, Slovakia,

December 2014.

[114] M. Gusat, R. Birke, C. Minkenberg, “Delay-Based Cloud Congestion Control”, IEEE

Global Telecommunications Conference GLOBECOM 2009, Honolulu, 2009, pp. 1-

8.

[115] M. Herlich, N. Bredenbals, H. Karl, “Delayed (de-)activation in Servers with a Sleep

Mode”, Journal of Sustainable Computing: Informatics and Systems, vol. 10, pp. 48-

55, June 2016.

149

[116] M. K. Bhatti, C. Belleudy, M. Auguin, “Hybrid Power Management in Real Time

Embedded Systems: an Interplay of DVFS and DPM Techniques”, Journal of Real-

Time Systems, vol. 47, issue 2, pp. 143-162, March 2011.

[117] M. Kozuch, M. Satyanarayanan, “Internet Suspend/Resume”, proceedings of the

Fourth IEEE Workshop on Mobile Computing Systems and Applications WMCSA

’02, page 40, June 20-21, 2002

[118] M. Lin, A. Wierman, L. L. H. Andrew, E. Thereska, “Dynamic Right-sizing for

Power-proportional Data Centers”, IEEE/ACM Transactions on Networking (TON),

vol. 21, issue 5, pp. 1378-1391, October 2013.

[119] M. Mashaly, “Modeling and Evaluation of Power Management Strategies in ICT

Systems”, M.Sc. Thesis, 2011.

[120] M. Mashaly, P.J. Kühn, “Modeling and Analysis of Virtualized Multi-Service Cloud

Data Centers with Automatic Server Consolidation and Prescribed Service Level

Agreements”, 41st IEEE conference on Local Computer Networks (LCN), November

7-10, 2016, Dubai, UAE.

[121] M. R. Hines, U. Deshpande, K. Gopalan, “Post-copy live migration of Virtual

Machines”, ACM SIGOPS Operating Systems Review, vol. 43, Issue 3, pp. 14-26,

July 2009.

[122] M. Shiraz, A. Gani, R. H. Khokhar, R. Buyya, “A Review on Distributed Application

Processing Frameworks in Smart Mobile Devices for Mobile Cloud Computing”,

IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp. 1294-1313, 2013.

[123] M. Sindelar, R. K. Sitaraman, P. Shenoy, “Sharing-aware algorithms for virtual

machine colocation”, Proceedings of the 23
rd

 annual ACM symposium on Parallelism

in Algorithms and Architectures, pp. 367-378, San Jose, California, USA, 4-6 June

2011

[124] M. Stansberry, “2014 Data Center Industry Survey”, survey by Uptime Institute, 2014

[125] N. Cordeschi, M. Shojafar, D. Amendola, E. Baccarelli, “Energy-Efficient adaptive

networked datacenters for the QoS support of real-time applications”, The Journal of

Supercomputing, vol. 71, issue 2, pp. 448-478, February 2015.

[126] N. Kansal, I. Chana, “Cloud Load Balancing Techniques: A Step Towards Green

Computing”, International Journal of Computer Science (IJCSI), Volume 9, Issue 1,

pp. 238-246, January 2012.

[127] N. Mostafa, M. Mashaly, M. Ashour, “Modeling and Simulation of Energy-Efficient

Cloud data Centers”, IEEE Conf. 2nd International Conference on Engineering and

Technology ICET, Cairo, Egypt, April 19-20, 2014

[128] N. Sarkar, R. Membarth, “Modeling and Simulation of IEEE 802.11g using

OMNeT++”, Text Book, January 2010.

[129] O. C. Ibe, J. Keilson, “Multi-Server Threshold Queues with Hysteresis”, Journal of

Performance Evaluation, Vol. 21, Issue 3, January 1995, pp. 185-213.

[130] O. Mostafa, “Implementation of a Test Bed for Testing Load balancing Algorithms in

Cloud DCs”, Bachelor Thesis at the Faculty of Information Engineering and

Technology, German University in Cairo, 2016.

[131] OMNeT++ Discrete Event Simulator Documentation https://omnetpp.org/documentation

https://omnetpp.org/documentation

150

[132] P. Berham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

A. Warfield, “Xen and the Art of Virtualization”, Proceedings of the 19
th

 ACM

symposium on Operating Systems Principles SOSP 2003, pp. 164-177.

[133] P. J. Kühn, “Systematic Classification of Self-Adapting Algorithms for Power-Saving

Operation Modes of ICT Systems”, 2
nd

 International Conference of Energy-Efficient

Computing and Networking (e-Energy 2011), New York, USA, May 30- June 1, 2011

[134] P. J. Kühn, M. Mashaly, “Dynamic Load Balancing in Cloud Networks – Resource

Management, Modeling and Performance”, Proc. of the second Conf. on Energy-

Efficient Data Centers (E 2DC 2013), Berkeley, CA., May 21, 2013.

[135] P. Mahadevan, P. Sharma, S. Banerjee, P. Ranganathan, “Energy Aware Network

Operations”, Proceedings of the 28
th

 IEEE International Conference on Computer

Communications Workshops INFOCOM ‘09, pp. 25-30, Rio de Janeiro, Brazil, April

2009

[136] P. Mell, T. Grance, “The NIST definition of Cloud Computing”, NIST, 2011

[137] P. Riteau, C. Morin, T. Priol, “Shrinker: Improving live migration of virtual clusters

over WANs with distributed data duplication and content-based addressing”,

Proceedings of the 17
th

 International Conference on Parallel Processing (Euro-

Par’11), Volume Part 1, pp. 431-442, Springer-Verlag Berlin, 2011

[138] P.J. Kuehn, M. Mashaly, “Multi-Server, Finite Capacity Queuing System with Mutual

Overflow”, Proc. 2nd European Teletraffic Seminar (ETS), Karlskrona, Sweden, Sept.

30.0ct.2013

[139] P.J. Kühn, M. Mashaly “Performance of Self-Adapting Power-Saving Algorithms for

ICT Systems”, IFIP/IEEE Symposium on Integrated Network and Service

Management (IM 2013), Ghent, May 27-30, 2013.

[140] P.J. Kühn, M. Mashaly, “Automatic Energy Efficiency Management of Data Center

Resources by load-dependent server activation and sleep modes”, Elsevier Journal of

Ad Hoc Networks, Volume 25, Part B, Pages 497-504, 2014.

[141] P.J. Kühn, M. Mashaly, “Load Balancing in Distributed Cloud data Center

Configurations – performance and Energy-Efficiency”, submitted to the 6th

International Workshop on Energy Efficient Data Centers E2DC 2017, Hong Kong

[142] P.J. Kühn, M. Mashaly, “Modeling and Performance Evaluation of Self-Adapting

Algorithms for the Optimization of Power-Saving Operation Modes”, Proc. 1st

European. Teletraffic Seminar (ETS), Poznan, Poland, February. 14-16, 2011.

[143] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, R. Bianchini, “CoScale:

Coordinating CPU and Memory System DVFS in Server Systems”, Proceedings of

the 45
th

 Annual IEEE/ACM International Symposium on Microarchitecture MICRO-

45, pp 143-154, Vancouver, Canada, December 2012.

[144] Q. Zhang, L. Cheng, R. Boutaba, “Cloud Computing: state-of-the-art and research

challenges”, Journal of Internet Services and Applications, Volume 1, Issue 1, pp 7-

18, May 2010

[145] R. Ahmad, A. Gani, S. Hamid, M. Shiraz, F. Xia, S. Madani, “Virtual machine

migration in cloud data centers: a review, taxonomy, and open research issues”,

Journal of Supercomputing, volume 71, Issue 7, pp 2473-2515, July 2015

151

[146] R. Basmadjian, F. Niedermeier, H. De Meer, “Modelling and Analyzing the Power

Consumption of Idle Servers”, 2012 Sustainable Internet and ICT for Sustainability

(SustainIT), Pisa, 2012, pp. 1-9

[147] R. Birke, G. Rodrigez, C. Minkenberg, “Towards Massively Parallel Simulations of

Massively Parallel High-Performance Computing Systems”, International Conference

on Simulation Tools and Techniques, 2012.

[148] R. Buyya, C. Vecchiola, S. T. Selvi, “Mastering Cloud Computing”, Text Book, 1
st

Edition, May 2013

[149] R. Kohavi, R. M. Henne, D. Sommerfield, “Practical guide to controlled experiments

on the web: listen to your customers not to the hippo”, Proceedings of the 13
th

 ACM

SIGKDD international conference on knowledge discovery and data mining, pp. 959-

967, San Jose, California, USA, August 12-15, 2007

[150] R. Lee, B. Jeng, “Load Balancing Tactics in the Cloud”, International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 447-454, 10-

12 October 2011

[151] R. W. Ahmad, A. Gani, S. H. Ab.Hamid, M. Shiraz, A. Yousafzai, F. Xia, “A survey

on virtual machine migration and server consolidation frameworks for cloud data

centers”, Journal of Network and Computer Applications, vol. 52, pp. 11-25, June

2015

[152] R. Zhou, F. Liu, C. Li, T. Li, “Optimizing Virtual Machine Live Storage Migration in

Heterogeneous Storage Environment”, Proceedings of the 9
th

 ACM

SIGPLAN/SIGOPS International Conference on Virtual execution environments,

Houston, Texas, USA, March 16-17, 2013.

[153] S. Fayek, “Building a GUC Mini Cloud Test Bed”, Bachelor Thesis at the Faculty of

Information Engineering and Technology, German University in Cairo, 2015.

[154] S. Kumar, V. Talwar, V. Kumar, K. Schwan, “Vmanage: Loosely coupled platform

and virtualization management in data centers”, Proceedings of the 6
th

 International

Conference on Autonomic Computing ICAC, June 15-19, Barcelona, Spain, 2009.

[155] S. Liu, S. Ren, G. Quan, M. Zhao, S. Ren, “Profit Aware Load Balancing for

Distributed Cloud Data Centers” IEEE 27
th

 International Symposium on Parallel and

Distributed Processing, Boston, MA, 2013, pp. 611-622.

[156] S. Liu, S. Ren, G. Quan, S. Ren, “Profit Aware Load Balancing for Distributed Cloud

data Centers”, IEEE 27
th

 International Symposium on Parallel ^ Distributed

Processing (IPDPS), May 2013

[157] S. Mulay, S. Jain, “Enhanced Equally Distributed Load Balancing Algorithm for

Cloud Computing”, International Journal of Research in Engineering and Technology,

Volume 2, Issue 6, pp. 976-980, June 2013.

[158] S. Nakarani, C. Tovey, “On Honey Bees and Dynamic Server Allocation in Internet

Hosting Centers”, Journal of Adaptive Behavior, Volume 12, Issue 3-4, pp. 223-240,

2004.

[159] S. Nedevschi, L. Popa, G. Iannacconem S. Ratnasamy, D. Wetherall, “Reducing

Network Energy Consumption via Sleeping and Rate-Adaptation”, Proceedings of the

5
th

 USENIX Symposium on Networked Systems Design and Implementation, pp.

152

323-336, San Francisco, California, April 2008.

[160] S. Niles, P. Donovan, “Virtualization and Cloud Computing: Optimized Power,

Cooling and Management Maximizes Benefits”, White Paper 118, Revision 3,

Schneider Electric.

http://www.schneider-electric.ch/documents/company/white-

papers/whitepaper_virtualization_and_cloud_computing_en.pdf

[161] S. Osman, D. Subhraveti, G. Su, J. Nieh, “The design and implementation of Zap: a

system for migrating computing environments”, Proceedings of the 5
th

 Operating

Systems Design and Implementation (OSDI 2002), Boston, MA, December 2002.

[162] S. Osman, D. Subhraveti, G. Su, J. Nieh, “The design and implementation of Zap: a

system for migrating computing environments”, Proceedings of the 5
th

 Symposium on

Operating systems design and implementation OSDI 2002, vol. 36 issue SI, pp. 361-

376, Winter 2002.

[163] S. Parsa, R. Entezari-Maleki, “ RASA: A New Task Scheduling Algorithm in grid

Environment”, World Applied Sciences Journal (Special Issue of Computer and IT),

Volume 7, pp. 152-160, 2009

[164] S. Patel, R. Patel, H. Patel, S. Vahora, “ CloudAnalyst: A survey of Load Balancing

Policies”, International Journal of Computer Applications, volume 117, pp. 21-24,

May 2015

[165] S. Srikantaiah, A. Kansal, F. Zhao, “Energy aware Consolidation for Cloud

Computing”, Proceedings of the 2008 Conference on Power Aware Computing and

Systems

[166] S. Wang, K. Yan, W. Liao, S. Wang, “Towards a Load Balancing in a Three-level

Cloud Computing Network”, 3
rd

 IEEE International Conference on Computer Science

and Information Technology (ICCSIT), Volume 1, pp. 108-113, 9-11 July 2010.

[167] S.B. Shaw, A.K. Singh, “A Survey on Scheduling and Load Balancing Techniques in

Cloud Computing Environment”, 5
th

 International conference on Computer and

Communication Technology (ICCCT), pp. 87-95, 26-28 September 2014

[168] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,

M. Theys, B. Yao, D. Hensgen, R. Freund, “A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks onto Hetereogeneous

Distributed Computing Systems”, Journal of Parallel and Distributed Computing,

Volume 61, Issue 6, pp. 810-837, June 2001.

[169] T. C. Ferreto, M. A. Netto, R. N. Calheiros, C. A. De Rose, “Server Consolidation

with migration control for virtualized data centers”, Journal of Future Generation

Computer Systems, vol. 27, issue 8, pp. 1027-1034, October 2011.

[170] T. Gunarathne, T. Wu, J. Qiu, G. Fox, “MapReduce in the Clouds for Science”,

proceedings of the 2
nd

 International Conference on Cloud Computing Technology and

Science (CloudCom), pp. 565-572, November/December 2010.

[171] T. Hirofuchi, H. Nakada, S. Itoh, S. Sekiguchi, “Reactive Consolidation of Virtual

Machines Enabled by Postcopy Live Migration”, proceedings of the 5
th

 International

Workshop on Virtualization technologies in Distributed Computing, pp. 11-18, San

Jose, California, USA, June 2011

[172] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J. Pierson, A. V. Vasilakos, “Cloud

http://www.schneider-electric.ch/documents/company/white-papers/whitepaper_virtualization_and_cloud_computing_en.pdf
http://www.schneider-electric.ch/documents/company/white-papers/whitepaper_virtualization_and_cloud_computing_en.pdf

153

Computing: Survey on Energy Efficiency”, ACM Computing Surveys Journal

(CSUR), vol. 47, issue 2, article no. 33, January 2015.

[173] T. Mudge, U. Holzle, “Challenges and Opportunities for Extremely Energy-Efficient

Processes”, IEEE Micro, vol. 30, no. 4, pp. 20-24, July-August 2010.

[174] T. Wood, G. T. Levin, P. Shenoy, P. Desnoyers, E. Cecchet, M. D. Corner, “Memory

buddies: exploiting page sharing for smart colocation in virtualized data centers”,

proceedings of the ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, 2009, pp.31-40.

[175] T.-J. Lu, W. Yue, T. Hasegawa, “A Mutual Overflow System with Simultaneous

Occupation of Resources”, Journal of the Operations Research Society of Japan, Vol.

41, No. 1, March 1998, pp. 81-90.

[176] U. Deshpande, K. Keahey, “Traffic-Sensitive Live Migration of Virtual Machines”,

15
th

 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

Shenzhen, 2015, pp. 51-60.

[177] U. Deshpande, U. Kulkarni, K. Gopalan, “Inter-rack live Migration of Multiple

Virtual Machines”, Proceedings of the 6
th

 International workshop on Virtualization

Technologies in Distributed Computing Data, pp. 19-26, Delft, The Netherlands, June

18-22.

[178] V. Avelar, D. Azevedo, A. French, “PUE: A Comprehensive Examination of the

Metric”, The Green Grid, white paper no.49, 2014

http://www.thegreengrid.org/

[179] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros, I. Brandic, R. Buyya, C. A. F. De

Rose, “Towards autonomic detection of SLA violations in Cloud Infrastructures”,

Journal of Future Generation Computer Systems, vol. 28, issue 7, pp. 1017-1029, July

2012.

[180] V. J. Maccio, D. G. Down, “On Optimal Policies for Energy-Aware Servers”, Journal

of Performance Evaluation, vol. 90, pp. 36-52, August 2015.

[181] V. K. M. Raj, R. Shriram, “Power Management in Virtualized Datacenter – A

Survey”, Journal of Network and Computer applications, vol. 69, Issue C, pp. 117-

133, July 2016.

[182] V. Medina, J. M. Garcia, “A survey of migration mechanisms of virtual machines”,

Journal of ACM Computing Surveys (CSUR), vol. 46, issue 3, Article no. 30, 2014.

[183] V. Shrivastana, P. Zerfos, K. Lee, H. Jamjoom, Y. Liu, S. Banerjee, “Application-

aware Virtual Machine Migration in Data Centers”, Proceedings of IEEE INFOCOM

2011, New York, pp 66-70.

[184] V. Valancius, N. Laoutaris, L. Massoulie, C. Diot, P. Rodriguez, “Greening the

internet with nano data centers”, Proceedings of the 5
th

 International conference on

Emerging networking experiments and technologies, Rome, Italy, December 1-4,

2009

[185] V. Venkatachalam, M. Franz, “Power Reduction Techniques for Microprocessor

Systems”, ACM Computer Surveys (CSUR), vol. 37, no. 3, pp. 195-237, 2005.

[186] Vcenter Server https://www.vmware.com/products/vcenter-server.html

[187] VMware PowerCLI Documentation

https://www.vmware.com/support/developer/PowerCLI/

http://www.thegreengrid.org/
https://www.vmware.com/products/vcenter-server.html
https://www.vmware.com/support/developer/PowerCLI/

154

[188] vSphere http://www.vmware.com/products/vsphere.html

[189] W. Fisher, M. Suchara, J. Rexford, “Greening Backbone Networks: Reducing Energy

Consumption by shutting off cables in bundled links”, Proceedings of the 1
st
 ACM

SIGCOMM workshop on Green Networking, pp 29-34, New Delhi, India, August

2010.

[190] www.vmware.com

[191] X. Evers, “ A Literature Study on Scheduling in Distributed Systems”, October 1992

[192] Y. Chen, F. Xia, D. Shang, A. Yakovlev, “Fine-grain Stochastic Modeling of

Dynamic Power Management Policies and Analysis of their Power-Latency

Tradeoffs”, IET Software, vol. 3, no. 6, pp. 458-469, December 2009.

[193] Y. Gao, H. Guan, Z. Qi, Y. Hou, L. Liu, “A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing”, Journal of Computer

and System Sciences, vol. 79, issue 8, pp. 1230-1242, December 2013.

[194] Y. Lua, Q. Xiea, G. Kliotb, A. Geller, J. Larus, A. Greenberg, “ Join-Idle-Queue: A

Novel Load Balancing Algorithm for Dynamically Scalable Web Services”,

International Journal on Performance Evaluation, Volume 68, Issue 11, pp 1056-1071,

November 2011.

[195] Y. Wang, X. Wang, “Virtual Batching: Request Batching for Server Energy

Conservation in Virtualized Data Centers”, IEEE Transactions on Parallel and

Distributed Systems, vol. 24, no. 8, August 2013.

[196] Y. Zhao, J. Zhang, Y. Ji, W. Gu, “Routing and Wavelength Assignment Problem in

PCE-Based Wavelength-Switched Optical Networks”, Journal of Optical

Communications and Networking, vol. 2, issue 4, pp. 196-205, 2010.

[197] Z. Cao, S. Dong, “An energy-aware heuristic framework for virtual machine

consolidation in Cloud computing”, Journal of Supercomputing, vol. 69, issue 1, pp.

429-451, July 2014

[198] Z. Ren, B. H. Krogh, R. Marculescu, “Hierarchical Adaptive Dynamic Power

Management”, IEEE Transactions on Computers, vol. 54, issue 4, pp. 409-420, April

2005.

[199] Z. Wang, C. Mccarthy, X. Zhu, P. Ranganathan, V. Talwar, “Feedback Control

Algorithms for Power Management of Servers”, Proceedings of the 3
rd

 International

Workshop on Feedback Control Implementation and Design in Computing Systems

and Networks (FeBid), Annapolis, MD 2008.

[200] Z. Zhang, Z. Lu, Q. Chen, X. Yan, L. R. Zheng, “COSMO: CO-Simulation with

MATLAB and OMNeT++ for Indoor Wireless Networks”, IEEE Global

Telecommunications Conference GLOBECOM 2010, Miami, Florida, 2010, pp. 1-6.

http://www.vmware.com/products/vsphere.html
http://www.vmware.com/

155

Acknowledgements

I would like to express my most sincere gratitude to my supervisor Prof. Paul J. Kühn

for I would’ve never done this project without his invaluable knowledge, ideas, guidance and

support through the past 7 years. I am grateful for giving me the chance to become an

external PhD student at University of Stuttgart and for his patience to supervise me remotely.

He has taught me everything I know about conducting research and teaching, and for that I

am eternally grateful. I would also like to thank Prof Hermann de Meer and Prof. Andreas

Kirstädter for reviewing this thesis within a short time frame.

I would also like to thank the German University of Cairo and DAAD for funding my

research visits and allowing me to conduct parts of my research work at the University of

Stuttgart. Also for the company EMC2 for the equipment used at the GUC mini-cloud lab

where our experimental work was conducted. Throughout my study and employment years at

the GUC I have met many people whom I am grateful for their support; my supportive

colleagues: Hadil, Yasmine, Maria and Hana, my students whom I benefited a lot from

supervising their bachelor theses: Andrew, Nada, Mary, Omar, Shady, Karim and Marwan. I

am most grateful to my lecturers who have taught and guided me: Dr. Tallal, Dr. Ashour, Dr.

Amr and especially Prof. Yasser Higazi who has been my greatest support since my first day

of employment at the GUC.

Through the long journey of the PhD I have been blessed to have a supporting and

understanding family. I wouldn’t have been able to finish this work without the support of my

Mother, for she has always supported and motivated me, allowed me to have endless working

hours and always encouraged me to be the best person I can. She has always been my role

model in all life aspects: a great loving mother, a successful team leader and a reputable

Professor. Also I am thankful for my Father who is the greatest father one could have, for

being our strength during the tough times and the backbone of our family. I am forever

grateful to them for the quality life and education they gave me and for their endless

encouragement and support to me and my brother who has also been my greatest motivator

through each step of my life. I have been lucky and thankful to have an understanding

husband who encouraged me and put up with my long study hours and research trips. Finally

my gratitude and prayers go out to my late grandmother for her endless love and

encouragement.

