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1, Introduction

This study gives a concise survey of the
development of loss calculation methods

for gradings within the past 60 years.

Some of the older formulae seem to be
rather unpretentious from the present
point of view. However, simplicity of for-
mulae and easy evaluation were remarkable
advantages in the times before digital com-
puters became the dally tool of traffic
engineers - and are often advantages still
today. Let us not forget that even A.K.
Erlang himself has published simple approx-
imation formulae derived from his own
exact solutions because of the difficulties
of evaluation in his time!

Comparing the results of many simple ap-
proximations with later and much more so-
phisticated ones we can sometimes ascertain
only so small differences in the range of
small losses (B = 0,005) that they are not
of important practical meaning.

However, modern networks with alternate
routing, using high usage groups, require
more exaclt methods of course, but these
must always be prepared for easy practical
application.

Before beginning now let me explain, what
fields of pioneer work in grading research
must unfortunately be out of the scope of
this abridged review ., Firstly,this is
the history of artificial traffic tests,
from the first manually bandled throw-
downs forward to artificial traffic ma-
chines (the first machine Dbeing published
as early as 1928 by Elliman and Fraser) up
to the daily use of digital computers for
traffic simulation, which has, without any
doubt, initiated a new epoch in traffic
theory.

Secondly, I must resign to present the

widespread and valuable investigations of
many authors searching systematically-by
means of traffic measurements—for the best
possible types of gradings with respect to
various applications and different hunting-
methods.

Also many econimical investigations related
to Moe’s principle and similar methods can-
not be considered in the present paper. And
finally, Dr. Bretschneider will handle in

a second survey the most modern methods
which are calculating the call congestion
of individual gradings on digital computers
by very large systems of state equations.

II. Abbreviations

For the comparison of the various methods of
loss calculation it will be useful to apply
uniform abbreviations as follows:

g Number of incoming groups or
subgroups resp.

k Availability (accessibility) per
selector multiple

n Number of trunks (lines) in the

outgoing group (route)
h Interconnection number
g - B Average (or uniform) interconnect-

D ion number of a grading (Grading
Ratio)
A Offered traffic
Y Carried traffic
R Overflow traffic (non-random rest
of traffic offered)
v, D Variance V or variance coefficient

D = (V-R) of overflow traffic R

Beitrag des Instituts fOr Nachrichten-
vermittiung und Datenverarbeitung der
Technischen Hochschule Stuttgart zum
5th International Teletraffic Congress
New York vom 14, - 20. Juni 1967
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III. 1 The Introduction of Gradings

Fig. 1 Call Congestion B = f(4)
With growing amount of automatic telephone with n = 40 Trunks
traffic it became more and more uneconomic
to apply selectors having such a large num-
ber k of contacts that each out of n out-
going trunks of a group could be hunted.
On the other hand, it led to a rather poor 09—
efficiency of the trunks if groups were '
divided into 2 or more small separate sub-
groups, (see fig. 1 and fig. 2). The large
number of grading types having been devel-
oped till now cannot be discussed here in
detail. A very impressive introduction to
the different grading types can be found
for example in Elldin's publication ilt,

\

Generally spoken, any interconnecting
scheme between the outlets of g 2 2 se-
lector multiples, each multiple consisting
of one or more selectors, may be defined

as a grading. The selector multiples have
k common outlets each (as a rule

“ky= k2 =...kj...= ke, but not necessarily
so), and because of k < n each offered call
has a limited access to only k out of the n
outgoing trunks (lines) of the group.

The interconnections between the different
selector multiples form one grading if each
subgroup influences directly or indirectly
the blocking probability of all the other
(g-1) subgroups.

O trunks

The famous first Grading Patent of E.A.Gray AV

was filed to the U.S. Patent Office already erl

in July 1907 |2]. —_——t
25 0 35 40

III, 2 Available Formulac for Full Access

The theory of loss calculation for gradings Fig. 2 Carrie% ?rfigigogeg ErﬁgyTrunks

could start from many formulae already in (¥/n) =
use for full available groups. The best
known are counted up here:



PCT 1 (Infinite number of sources = various methods from simple to more compli~
constant call density) cated ones:

A. Not Truncated Distribﬁtions
3 B. Interpolation between Boundary Values
n~Y+38 VY (B=a002) C. Step by Step Calculation for Sequential

1908 Moiina ang 1318 Lely: Hunting and PCT 1
D. Statistical Equilibrium combined with
Passage Probability

B_ “A.f i
=€ fon x! E. Presumed Truncated Distributions com-
bined with Passage Probability

1908 Campbell:

X

1913 Christensen (and brlang): F. Alternate Routing with Limited Access
20 X 2
X=sn '

(B= 0.001~~ ¢ = 33) IV, Loss Formulae for Gradings
IV, A, Not Truncated Distributions

1917 kriang (Exact Solution):

411 methods described here are based on the
AN assumpbion "no holes in the multi l%"s
7;7 From this follows that all states{0= x < n}
B= — = E; 5 (4) are assumed to exist merely on the consid-

é} Al ered actual n trunks of a group.
o Y

i=0 !’

A, 1 E.C. Molina’s Formula No.l for
PCT 1 (1921) 13]

Molina continued former pioneer investi-

PCT 2 (Finite number g of sources) gationsef M. Rorty (1905). Molina made the
following assumptions:

1916 Milon: ' Assumption No.1l: The carried traffic be
) n equally distributed among all n outgoing
B = (_K) lines by appropriate grading and hunting-
n methods. Then, for "x trunks busy", each
out of (x) patterns is equally probable.

1907 Molina and 1918 Lely: Assumption No.2: The probability of state
within the finite number of n outgoing lin-
es be approximately a Poisson distribution

-7
- )X )T e A (ef. III.2):
B = ¥ (91 (1-0) T b P
X=n -4
X) = @ o (?)
p ) x!
1918 Engset and 1920 0'Dell: - Therefore
-4, A
(n) = e A Ao
g (14 gl A P nl (2)
jﬁ (q)_ i g-4 ' -4 From assumption No. 1 the blocking probabil-
: AR ity c(x) can be derived that a call occur-
t=0 ing during the state{x}cannot find any idle .

trunk out of these k trunks which can be

t it lect H
1918 Erlang, 1923 Martin and 1928 Fry hunted by its selector group

(Exact Solution)

AN o) / — Q)
(?7) ks g-n . _ A C\X')” (n (V/
B= & - oy X7 gy k)
ST 9). 1! q
P o .
oy -The passage probability is
u(x) = 1-¢c(x )
. From (1), (3) and (4) one gets the expec-
III. 3 Types of Grading Formulae tation of call congestion (Molina-Formula

No. :
This survey will proceed the following way. °-1)

It will not be the chronological way in
any case, but is appropriate to handle the
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Aftver some transformation and by means of
eq.(3) and eq. (54) one can write this for-
mula in the following terms being appro-

priate for the evaluation
VGR ) a2 A 4E g
B, (-4 Ly oot £ A
; X=n~k Xap
(58)

From eq.(%B) fo..ows the carrieac traffic

v - afi-8,, A} (6)

4, 2 M, Merker®’s Loss Formula 192% 4|

Merker considers a grading with sequential
hunting having only 2 subgroups, each with
kg individual outlets and kp common out-
lets. Therefore the selectors have the

availability
k”"k."f“kz (7)

Congestion arises (approximately):

a) If one selector group has (kj+ jland
the other one (k=-j) busy outlets.

b) If at least all n = (2:k1+ kp) = (ky+k)
actual outlets are busy, eventually plus
further fictitious outlets(Woln+1),(n+2) .,
assumption "no holes in the multiple™).

The traffic offered to each subgfoup be
Ag, so the total offered traffic is
A = 2eAg,

Therewith one obtains 2 shares of the total
loss B:

k- ky 7
~4 As
By =€ "), e 8)
g 2 (ki) (k)1
-4 o AX 9)
Bé) = £ “Zj %7 (
X =Nt
Fi 11
rnasty B = Ba + Bb (70)
Molina’s Loss Formula No, 2(1931)

A. 3 E.C.
[5]

Molina investigates the same type of se-
quentially hunted gradings as Merker in
section A. 2,but for the generalized case
of g 2 2 selector groups(see figure 3),

SA1 ﬁAQ _-_SAJ-_ o _C!AQ

s ® ® s N
> Ky
Gumsmsm G w e medBes W o e W e e @ h >k
[ e e - = e --o>k2
Fig. 3

He obtains 2 shares of the total loss B.

a) If in one particular selector group
No. j all available kj + kp = k outlets are
busy, caused by its own offered traffic

As (type PCT 1), the share of call con=-
ggstion for this case becomes:

e X
B, =e¥.J ﬁ;j‘/‘ (1)

X =K

b) There may exist exactly (ki+ r) calls
originated from the traffic Ay offered to
the considered subgroup No. j, where r 2 O
be prescribed. The corresponding probabil-
ity is

—ap AR (12)

pi (kyrr) = e (ky#r)!

_Moreover, at least (kp-r) calls may exist

on the remaining (kp-r) common outlets
plus further (fictitious) commons ("no
holes in the multiple" assumed). Those
(kzmr) calls are allowed to originate from
any s out of the (g-1) other selector
groups .

By means of a sophisticated combinatorial
method Molina derives the formula for the
corresponding probability

Ry-of® (82"}
which implies all (g-1) other selector
groups. Therewith he obtains:

ko1
82 = Zo p,-(k,+r/‘-p(g_'){z(kz‘f)}
r=

Iar)
\ig/

Finally
B =8,+8, (14)

4, 4 AK.BErlang's Approximate Formulae |o]

For easy evaluation, Erlang has derived
two simple approximations from his Inter-
connection Formula (1920). For n,A > k
and small values of B:



(15)

For A << 1:
e’A.A_n
n-k)! n!
B=Ak'( ’)_____ (76)
nt -4 An-k
(n-k)!
IV. B. Interpolation between Boundary

Values

B.1 G.F. 0’Dell’s Method(1927)17]

The famous basic idea of 0?Dell starts
from the prescribed call congestion B in
case of PCT 1 and the corresponding admis-
sible traffic Ag offered to a full avail-
able group of k lines only, where k means
the accessibility of the considered group
with n > k trunks. Therewith one obtains
the carried traffic on k trunks only

Y, = (1= Ei (Ao)) A (1)

with B} (Ag) = B, Then Yy/k stands for
the lower bound of admissible carried traf-
fic per trunk. (The original publication
uses Ag for very small losses. S.A.Karls-
son suggested in 8] the use of Y, for the

application to higher values of 1o0ss.)

With increasing number of lines n and con-
stant accessibility k one obtains the lower
bound-loss formula according to A.K. Er-
lang's approximation for the interconnect-
ion formula (see eq. (A.15) ):

5 - ()" @

Therewith the upper bound of admissible
carried traffic per trunk becomes
Y g

n (3)
By means of eq. (1), (2) and (3) 0’Dell
interpolates between lower and upper limit
of load per line and writes

L O R i PV MY

A=77p ~ k J(1-8)

The interpolation factor C was determined
by O'Dell from measurements, using straight
(socalled O'Dell-) gradings with smoothly
progressing interconnection number and se-
quential hunting:

C = 0.53 B = 0.002

Einarsson, H8kansson, Lundgren and Tange
thoroughly investigated different kinds of
improved gradings using skipped inter-
connections |9{. They found values of C
up to = 0.9. For smoothed traffic 0sDell
recommends C = 1.

There is no doubt that 0'Dell’s elegant and
simple approximation of 1927 was one of the

® 0000

most effective auxiliary means for the di-
mensioning of limited-access groups.

B, 2 ?hellnterpolaticn Method of Z.FPopovic
10

Popovié starts -~ like O'Dell - from a given
grading (particularily from cyclic gradings)
with n outgoing trunks and accessibility k.
The call congestion B is prescribed. Randam
traffic of the type PCT 1 is assumed.

In opposition to 0’Dell the interpolation
factor is determined by combinatorial meth-
ods for the individual grading in consid-
eration.

Firstly, the admissible traffic Ap to a full
available group of n trunks is read out of
the Brlang-tables for the prescribed loss

B = E1 'n(An) N

Secondly, the traffic Ay offered to a full
available group of k lines is determined
similarly (B = Elyk(Ak)) For n/k groups
having k trunks each an offered total traf-
fic Ap ={n/k}-4; would be admissible.

The wanted offered traffic Ag to the con-
sidered grading becomes according to
Popovié

Angr‘“(An"‘ArJ'A (5)

‘The factor A represents the quality of the

grading. It is calculated by means of com-
binatorial formulae, which regard some in-
dividual properties of the grading. Ex-
tensive investigations into this method
?ave been made by M. Huber and M. Glauner
11

B

IV. C. Step by Step Calculation for
Sequential Hunting and PCT 1
C. 1 Calculation without Regard to the

Overflow Variance

The simplest approximate calculation "step
by step" can be done by reading out the
overflow traffics behind all individual or
common outlets of the first hunting posi-~
tion from Erlang’s El,n—Table. The appro-
priate partial overflows are added and are
used as the offered random traffic to indi-
viduals or commons of the next hunting-po-
sition and so forth.

This method yields of course too optimistic
values of loss, because the non-randomness
of overflow traffic is neglected.

C., 2 G.S, Berkeley’'s One-Parameter-Method
(1949) |12

Berkeley implicitly takes into account an
approximate variance of overflow. His
wellknown method may be explained by means
of the simple example in Fig. 4:
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Fig. 4 Berkeley's Loss Calculation

The overflow traffics Ry and R2 behind kj
steps (here k] = 2) are calculated by means
of Erlang’s Elsn—tables, where

A1+ Eyxq (A1)
AE'Ekl(Ae) .
Then an auxiliary offered traffic Ay has to

be chosen in the Erlang-tables such that
for k; trunks

Ry =
and R2 =

AQ'E/(,(AD):'(R;*RZ) (1)

Now the next steps (here kp = %) which are
hunted by the sum of the overflow traffics
(Ry1+ Rp) are added and one obtains

R = Ay Egur, (Ao) (2)

R being the approximate value of the actual
overflow traffic of the considered grading.
Therefore the call congestion is obtained

by
R (3)

The method yields good approximate values
of B for straight %’Dell gradings without
skipping, if the overflowing partial traf-
fics are not too much correlated because of
commonly hunted preceding steps. Correla-
tion diminishes the total variance of the
different partial overflows. Then the loss
calculation tends towards the safe side.

Graphs and tables according to Berkeley’s
method as well as artificial traffic tests
have been published by R.R. Mina 13

s

C. 3 The Two Parameter Method (Equivalent
Random Method)

Berkeley's approximate regard of the over-
flow variance is replaced by using over-
flow traffics with two correct parameters,
i.e. mean R and variance V.

This method has been developed and pub-

lished firstly by R.I. Wilkinson and

J. Riordan |14| on the 1.ITC 1955 and later
on by G. Bretschneider }lSi. Fundamental
theoretical investigations about the over-
flow problem by Vaulot (1935) |16|, Kosten
(193 ? Tl?T, Molina (1941), Nyquist (both
see |14|)and Giltay (1953) |18[1lead the way
to this method. The exact overflow distri-
bution has been calculated by R.Brockmeyer
already in 1954 [19].

The way of calculation resembles that of
Berkeley. By means of the small grading
example in fig.4 we can distinguish the
considered method and the Berkeley method.

Firstly, the overflow traffics B and Rp
are read out of tables or graphs as well as

their corresponding values Vi, Vo. Instead .
of an auxiliary traffic Ag only, another

equivalent random traffic A* and a corre-
sponding number n* of full available trunks
have to be chosen such a way that the over-
flowing traffic has both the mean Ry=(Rj+Rp)
and the variance Vp=Vj+Vp. To these n*
trunks the next kp= 3 common hunting steps
are added and the lost traffic becomes

#

R = A" Eperg, (A% (4)

and the call congestion-

B = _R (5)
Aytay

This method yields mostly somewhat larger
losses than the Berkeley method. In many
gradings the main reason for this fact is
the increasing correlation between differert
partial overflows with increasing hunting
position particularly if skipping is ap-
plied. This correlation, which diminishes
the overall variance, is not regarded if
the correct values Vi are added linearly.
The merely approximate regarding of over-
flow variance by the Berkeley method tends
to variances which are smaller than the
actual ones. This inaccuracy mostly re-
sults in a certain correction of this
“correlation-effect"., As with the Berkeley
method, straight gradings without skipping
are therefore best suited for the equiva-
lent random method.

The dominating importance of the two para-
meter equivalent random method does not
concern the calculation of gradings but the
design of alternate routing systems.

IV, D, Statistical Equilibrium combined with
Passage Probability

D. 1 General Remarks

In any group, no matter if there is full or
limited access to n trunks, (n+l) different
states are possible, i.e. O, or l,or 2 ...
or x or (n-1) or n trunks busy. Each
state{x} is composed of (§) different pat-
terns, each having a certain individual pat-
tern probability p((x)v), from which the
total probability of state {x}follows with



(x)
px) =2 p@,) (1)
V=1

In full available groups it makes no sense
to distinguish the various pattern proba-
bilities, if merely the time=- or call-
Congestion have to be calculated. However,
in gradings with limited agcess k<n all
patterns of the states {x ¢ k} can (but
must not) cause congestion for one ore more
out of all g selector groups, depending on
their individual topological busy positions
among the crosspoints of the grading. From
this fact follows that, strictly spoken,

in the most general case (without simplifi-
cation by symmetries) the probabilities of
all individual patterns

2 R) =2 (2)

X =0

should be calculated. This leads to the
strictly exact ways of solutions by means
of huge systems of linear equations having
up to 2% unknowns. Dr. Bretschneider will
report on these problems.

The conditional probability w(x,|x) that
within the existing state gx the pattern
(x)y exists can be calculated with these
exact methods by means of socalled transi-
tion probasbilities. This probabilities tell
us from which certain patterns (x-1),a cer-
tain pattern (x), can be born caused by a
successful call; and on the other hand,
which group of certain patterns (x-1), can
arise when our considered pattern (x), dies
because any one of these x calls is termi-
nated.

Let us now reflect on a method which could
simplify the calculation without giving up
the basic principle of Birth and Death
Frocess, used for the strictly exact calcu-
lations.

Because of the generally assumed time invar
iance of the considered stochastic process
of traffic flow, each state {x} as a whole
(including all its (%) patterns) will on
the average be born as often as it will die.
In other words, we make use of the conditim
applied for the first time by A.K.Erlang
and named the'Statistical Eouilibrium"|6]:

The mathematical expectation, that during
the existing state {x} an occuring call is
successful and that the state {x} "dies" in
upward direction, so that any one of the
possible patterns (x+1), is born, be named
the Passapge FProbability u(x). Obviously
u(x) can be written

wo (10, /x) - u(bq/) (3)

u«x%) being defined by :

non-blocked selector groups in case of(x)y

)]

Assuming moreover a negativ exponential
distribution of the holding time and with
the mean holding time h being unity, the
probability density for the death of any
existing pattern(x+l)y in downward direc-
tion, that is to say "for the birth of any
pattern (x), ", becomes

all g selector groups

d(xe1)= (x+1) L= (x+1) (5)

For poissonian offered traffic (PCT 1) with
the traffic intensity A, we can - by means
of (3) and (5) - write the recurrence for-
mula for the statistical equilibrium:

Aau(x‘l)»p(xul)+(x+l)-p(x+l)l'

Birth of the state {x} ©)

= A-u(x)-p(x) + x-p(x),

Death of tgé state {x}

n
Because of the condition z: p(x) = 1

o
the above recurrence formula yields

_:Lf T uce
p(x) = —r*ﬁ;“" (7)
S T u(y
/=7 Z=0

The complement to the state-passage~proba-

bility u(x) be named the state-congestion-
probability
\
¢ (x) = { IR (&)
where
c(x)= o0 for x <k

From (7) and (8) follows the time conges-
tion E, which in the case of FCT 1 equals
the call congestion B

n

2 c(x)-pix) (9)

X =k

£, =B =
K,

K,n

The difficulty in using this method lies in
the sufficiently close approximation of
u(x) or c(x) resp. Let us now consider
some of the most interesting applications.



D. 2 A.K. Erlang’s Interconnection Loss

Formula (1920) for PCT 1 (BIF) |6l

A.K. Erlang prescribes for his socalled
Ideal Erlang Grading

g, = (ﬂ) (10) or g, = (if k! (1)

2.0 With gq selector groups and with bal-
anced offered traffic, each selector group
has access to another combination "k out of
n trunks", Because of this special grading
each out of the possible different (Q
states {x} blocks exactly (§) out of all
(%) selector groups and effects the same
state-congestion-probability c(x) as well

as the game state-passage-probability
ul(x) = {1 - c(x)}. We obtain
(&)
k ,
c(x) = -EL (i2)
()
and

iy - -y

Inserting eq.(13) and (12) in eq.(7) and
(9) we get Erlangs famous Interconnection
Formula.

In case of random hunting, all x-patterns
become equally probable, therewith the in-
dividual call congestions of all g selector
groups equal B.

2.2 Using selectors with home position, the
(7) patterns per state {x} are not equally
probable any more, even in case of balanced
offered traffic., Nevertheless, the values
c(x) and u(x) remain unchanged.

Therefore, eg.(9) yields the correct over-
all call congestion B. The call congestions
of the individual g selector groups cannot
be calculated, because they depend on the
unknown pattern probabilities w(x),), which
in their turn are traffic-—dependent.

2.3 Using now go = (&) k! selector groups,
the formulae c%x) and u(x) according to eq.
(12) and (13) do not vary. However, each
combination "k out of n trunks" 1s hunted
by the selector groups with home position
in each out of k! possible permutations.
A1l (D) patterns of a state {x} will then be
equally probable again. Therefore, eq.(9)
yields the correct overall call congestion
B as well as the uniform values B for each
selector group (balanced traffic assumed).

For practically realized gradings with

g < (§) selector groups, mostly somewhat too
optimistic values of call congestion B are
obtained from the EIF. On the other hand,
the EIF does not stand for lower limit of
call congestion B (see lit.T6l, p.118).

D. 3

?,A. Longley's Investigations (1948)
20/ .

Longley calculates small gradings of dif-
ferent type exactly by solving the 2B
equations required. Inserting all exactly
calculated probabilities of state p(x) into
the equations of type (6) he obtains the
values u(x) and c(ig. The terms u(x) are
called K-factors in Longley's publication.

In a second step, larger gradings were in-
vestigated where the evaluation of 20 un-
knowns was impossible. Here the maximum
and minimum values of all K-factors were
calculated merely for the much easier li-
mits A -w and A - O,

Longley found that the differences between
the two K-series for A = w and A « O were
rather small. Because of these results a
simple approximate formula for u(x) is
given, which can be inserted intc eq.(7,9)
for the calculation of loss.

D, 4 Approximate Assumption No.":
411 (B) patterns (x)y of a state {x}

are equally probable

a) From this assumption No.l follows that
each selector group will have the same
state-congestion-probability. Considering
one arbitrarily chosen selector group,
whose k outlets are busy in the state {x},
we get for the remaining (x-k) existing
calls on (n~k) lines (27F) equally probable
patterns. Therefore (as for the EIF see

D. 2)
n-k X
C(x):{l-u(x)}:i(fn—)gl: % (1)

p(x) and B result from eq. (7) and (9).

b) If c{x) and u(x) represent sufficientl
good expectation values according to eq.(3%
though assumption No.l does not hold exact-
ly, the overall loss B accords with eq.(9),
whereas the individual losses of the g
selector groups may vary.

D, 5 Approximate Assumption No,2:

a) According to D. 4 b) it suffiees to have
adequately exact approximate values for
the expectation ulx)

()
W(x) = > W eaplx) ()

V=1

N
V]
~—

where the explicit single values of the sunm
must not be known. If u(x) is close to
reality the overall call congestion B ac-
cording to eq. (9) yields results close to
reality, too.



The actual values w(xl, |x) and ulpg,) can
vary the individual losses of the individ-

ual selector groups but not the value B, if

u(x) is sufficiently exact.

The approximate function u(x} can, of
course, differ from eq. (1%) and can be ob-
tained only by measurements or by combina-
torial methods with or without respect to
some individual properties of the gradings
inconsideration ﬁ)zl 221, l23|, Jeal.

b) J.N., Bridgford’'s Geometric CGroup Con-
cept (1961) 23]

The state blocking probability c(x) starts

with
¢(n-1)=(1- £) (15)

This starting value (called "p" in B.'s
paper) is exact for homogeneous gradings
and is also obtained by means of eq.(12).
Then the series is continued

¢ (n-2)-p? (16)

¢(n-3)=p?, etc.

The method has been applied to grading
types used by the Australian GPO and has
been found to be well suited.

D. 6 General Remarks to Gradings having a
Finite Number of Sources %PCT 2)

The time congestion is given by

Ey (£,n,9) = ) c(x)-p(x) (19)
X=k

and the call congestion by

t~1=

(g-x) p(x)cx
y

1k

>

B, («,n,q) = (20)

D. 7 The Method of Rohde and Stdrmer |24l

The general remarks in section D. 1 hold
also for gradings with offered PCT 2. In
this case, however, strictly exact solu=-
tions cannot be obtained. The instanta-
neous traffic intensity offered to each
individual selector group depends on that
number of its sources which take part in
the instantaneous existing pattern (x),
Therefore, the application of"Statistical
Equilibrium"can yield approximations only.
(Strictly exact solutions are - in the ge-
neral case - Svailable by means of the
solution of 2% equations of state.) The
recurrence formula (for "lost calls clear-
ed") holds:

Ko (gexet)ulx=1)p(x-1) +
+ (x+1) - p (x+1) = (17)
=L (qg-x)up(x) + x p(x) J

Therewith the probability of a state x
becomes

-1
ay . o uez
p(x) = ,{X) - %',C,U()

1+ (?),L‘Z_I u(z)

This theory is based on the approximate
assumptions "lost calls held" and "no holes
in the multiple’. The offered traffic is
defined by a value

3¢
A =9q-p (21)
with q being the number of traffic sources

and p being the probability for each out of
g independent sources to be busy under the

condition that an unlimited traffic flow

could exist, using n* = q full available
trunks., Starting from these assumptions
and using the agctual number n < g of trunks
hunted with limited access k < n < g, the
principle of statistical equilibrium is
applied. The following loss formula (re-
ferred to A*) is obtained:

B, (Ang) = ;kc(x)-p(*’)‘ %—X“ (22)

The value c(x) for gradings is an approxi-
mation, derived from a combinatorial solu-~
tion for two-stage link systems (the exact
derivation under their assumptions leads
to (£)/(®)). The actually applied approxi-
mations yield too pessimistic values of

loss for gradings as used in practice |21

mebnud No.1 by D, Bousch for Grauings
Carrying External and Internal Traf-

fic %ESI

Y. O

In gradings used for both-way traffic a
certain share of calls which originate from
a certain subscriber (or inlet) of the
grading will be connected to another sub-
scriber (or inlet) which belongs to the
same grading. In this case the traffic
between two subscribers (inlets) of the
same grading runs twice through this con-
sidered grading. This share of traffic
will be called jinternal traffic and needs
two trunks of the same group for one call.
The other share of traffic runs only once
through the grading and will be called
external traffic. N, Rénnblom |26| and
later on R. Fortet and Ch. Grandjean [27]
as well as D. Botsch ?25| solved this prob-



lem for full available groups and FCT 1.

For gradings two solutionsfor PCT 1 and
PCT 2 each have been developed by Botsch.
The solution No.l for PCT 1 and PCT 2 is
described here, solution No.2 follows in
section E.

From the assumption of statistical equilib-
rium and by means of a function u(x) for
the expectation value of the passage proba=-
bilities follows the recurrence formula for
a finite number q of scurces:

p(x+2) = Q;’igf ‘o(ex,t_‘P(X*’)'U(X”)

. (23)
t X 2y P (X)U(X) o)

Aoyt and Ripy being the call intensities
per idle source with respect to the exter-
nal and internal traffic; +the holding
time h being unity.

To get time- and call-congestion, the val-
ues for the probability distribution p(x)
obtained from eq. (23) have to be inserted
into the following equations:

Time ccngestion:

E, = 2 P(x)-c(x)+

x=k
(24)
o('f n-1
=M ST p(x)-u(x)-c(x+)
Lext *Xint  xok-1

Call congestion:
1 ¢ .
B = gy {2 (470 P10 c ¢
(25)

L int i
L oxt telnt

n-1
Y (q-x)- PO u(9-clxon)

Xak-1

Formulae for Poisson input FCT 1 follow by
passing to the limit q —» <0 ,

E. Fresumed Truncated Distributions Combi-
ned with Passage Probability

1 The Paim-Jacobaeus Loss Formula
e8], [29]

This method has firstly been suggested by
C. Palm 281, later on transformed to the
formula (1) by C. Jacobaeus |29| who suc-
cessfully used it also for his famous link-
system calculations.

The expectation value of passage probabil-

ity is chosen (see section D, 4):

(x)

()

Assuming small losses and offered Poisson
traffic A (PCT 1) an Erlang distribution
Ey x(A) as in a full available group is
présumed approximately.

c(x) = (D. %)

From this follows for n lines and the
accessibility k

A A
n %7 En (A)
E,=8, =2, ¢c(x)- = 1
k Bk Xzz‘k (X) i‘ A_,' En—k (A) ( J
i=0

1!

This formula yields -~ in the considered
range of small losses (B & 1%) - and for
good progressive gradings with skipping
very good results close to reality.

E. 2 The Modified Palm~Jacobaeus Loss

Formula [32],133(,[34],135]

In his wellknown book |30| of 1928 Th.C.
Fry has calculated the probability S(> k)
that a selector without home position
needs more than k steps to find an idle
trunk within a full available group having
n lines. When the offered traffic is 4g,
an Erlang-distribution with the mean car-
ried traffic Y is produced:

(2)

Y o= Ay {1-E,, (40) }

Analogously to eq. (1) this leads to the

exact formula

E/) (Ao)

Enk (Ao) (34)

S(>k) =

Not knowing this early solution of Th.C.
Fry, the same idea was mentioned by
A.Jensen 1954 |%1| in a Danish publication
and later on once again (1960) by the
author as a useful modification of the
Pj~Formula to extend its validity up to
high values of loss.

En (Ao)

E (A (38)

B, =

"generating FCT 1" of a full
and with

Ay being the
access group

Y = A, {1-E, (4) )} %)



©eing the prescribed carried traffic. From

this follows

A - (5)
actual -8,

By a large number of artificial traffic
tests with the availabilities 2 £ k $ 30 it
could be shown, that eq. (3) is indeed very
close to reality for progressive(sequent~
ially hunted) gradings with good skipping
and a sufficiently large average inter-
connection number

2.1 (6)

H o~ log (k+1)

The MPJ-formula has been tabulated in |34]
and [35].

Simplified gradings, however, without so-
prhisticated skipping can often save costs
remarkably with respect to the installation
of local exchanges as well as to the en-
largement of grading groups.

Thorough investigations by U.Herzog [36]
have shown that = in the interesting range
from at least B = 0,001 up to B = 0.50 the
simplification of gradings shifts the MPJ-
loss function Bg = f(A,k,n) practically par-
allel to the axis of the actual offered
traffic A! The amount of the adapting
shifting-value A4 can be easily calculated
by the empirical loss-~independent formula

A= Fof o) e (7)

K O+4k

The"Fitting Parameter F" characterizes the
type of a grading simplified for econowi-
cal reasons. Some further details can be
seen in this book in the paper of D. Botsch

1371 .

. 3 The Bg-Formula for Finite Number

of Sources [38], [37

Because of the good results in using the
MPJ-Formula for PCT 1, an analogous type
has been derived for FCT 2, i.e. for finite
number q of sources. In a paper of
Lricsson (1955) |39!the analogue to the
FJ-Formula can already be found here ap-
plied to link systems using the actual
traffic intensity o per idle source to a
full available route and combined with the
expectation values c(x) according to

eq. (D.14),

Applying the WMPJ-idea and using - instead
of O - that "generating" traffic intensity
Ao from which follows a prescribed carried
load Y with Erlang’s Bernoulli-distribution,
A, Bachle and U. Herzog found the time
congestion :

Ex (Ly,n,q) = A
: T E e (4, qk)

and the call congestion

B, (£0,9)
AN L ]
B (Lo,n9) = g k) )
With
(7)<
E(d,q) = -t (i0)

F(3)-<

0

being Erlang’s Bernoulli-Distribution
(mean holding time h = unity).

As in the case of the MFJ-formula, eq. (9)
holds very true for good progressive gra-
dings with skipping and may be adapted to
simplified gradings analogously.

The name“BQ—Formula” has been chosen from
"Bernoulli-Distribution-Quotient".

. 4 Method No.2 of D. Botsch for mixed

External and Internal Traffic [25]

The method according to section E. 3 has

been applied by D. Botsch (e¢f. D. 8) also
to both way circuits having internal and

external traffic.

His corresponding "Solution No 2" uses the
same expressions for time congestion By (24)
and all congestion By (25) as in"Solution
No 1", but different probabilities of state
p(x) are chosen:

The probabilities of state p(x) for "Solu-
tion No 2" must be calculated with "gener-
ating' offered traffics Agext and Aging
(or call intensitities Ogeyt and %gint
resp.), which lead to the prescribed car-
ried loads Yext and Ys;pnt in case of full
accessibility.

See also the paper |37] in this book, more-

over |25

fnl

. Alternate Routing in Case of Groups
with Limited Access

As published at the 4B ITC 1964 in London
|40] and in [35), |a1],|=2],]43], 44| the
Equivalent Random Method of R.I.Wilkinson
|14| or G.Bretschneider resp.|15| could be
extended to groups with limited access.

The variance coefficient D = (V-R) of over-
flow traffic behind a grading with n trunks




accessibility k and call congestion By is

k
D =p R 5 (1)

With R = A - By being the "rest" of the of-
fered traffic, i.e. the overflow traffic.
The parameter p = f(k, Bk) can be drawn
from diagrams. Tables are available for
(R, D) = £(4, k, n).

The dlmen51on1ng of secondary groups, to
which overflow traffic (R,D) is offered,
makes use of the same 1dea as the Equlv—
alent Random Method.An equivalent primary
grading (EPG) has to be chosen such, that
it generates the actual overflow trafflc
(R, D). Its ratio n*/k* has to be deter-
mlned such a way that this EPG and the
following actual secondary grading to-
gether form one total inhomogeneous gra-
ding, appropriate for sequential hunting.
Further details about this method can be
found in this book in the papers|45],

It should be denoted that Bridgford’s
method developed for two-stage link-systems
can also be applied for the special case of
one-stage gradings |23

V, Gradines in Delay Svystenms

V. 1 Interpolation Methods of E,Gambe|47]

Gambe tried to find simple approximations
for the delay probablllty W and for the
mean waiting time L with respect to gra-
dings having the avallabllity k and the
number of trunks n. For this purpose he
investigated interpolation methods, consid-
ering full available groups with k or n
trunks respectively.

V., 2 The Interconnection Delay Formula
(IDF) of M, Thierer |48

This seems to be the first exact solution
of this problem. It is derived in detail in
Thiererss paper, contained in this book
|48|. Applying the statistical equilib-
rium to Ideal Erlang Gradings,Thierer de-
velops a solution for the probability of

delay and the mean waiting time. The re-
sults of artificial traffic tests with
idesal

gradings square as exactly as pos-
with the theory. For familiar non-
ideal gradings the method ylelds good ap-
proximate values.

The formulae hold:

x -1

A T

[z-c(z) A]
Aj J-1 (1)

i

T [z-¢() y-A] 270

=1

=
il
Pﬁ:

x=kp(x)~ ¢ (x) (2)
& ¢ (2)-A
T _ g {p<x) k Z C z} A} <3)
A°§ p(x)-c(x)
Conclusion

In this paper, the author tried to give an
abridged but systematic survey of the ap-
proximate methods for loss calculation of
one stage gradings, which have been devel-
oped since 1920, Because of the huge num-
ber of publications in this field, it was
impossible to mention &all interesting
gtudies. Therefore the authors, which
couldn’t be named are asked to apologize.

There is a large number of problems nol yet
solved, as for example:

a) Improved approximate methods for loss
calculation, if unbalanced traffic is
offered.

b) Improved methods for loss calculation
in case of smooth traffic.
c) Problems of overflow traffic and alter-

nate routing with finite number of traf
fic sources.

Therefore, the treatment of gradings will
be an interesting field for traffic theo-
rists even in future.
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