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History and Development of Grading Theory

by AvrrED LoTzE *

This report gives a systematic survey of the approximate methods
for the calculation of gradings.

The various calculation methods for gradings in loss systems are
classified as follows:
Not truncated distributions.
Interpolation between boundary values.
Step by step calculation for sequential hunting and for PCT 1.
Statistical equilibrium combined with passage probability.
Presumed truncated distributions combined with passage probability.
Alternate routing with limited access.
Finally gradings in delay systems are considered.
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Entwickiung und derzeitiger Stand der Berechnungsverfahren
fiir Mischungen

Diese Arbeit gibt einen systematischen Uberblick iiber die Methoden

zur approximativen Berechnung von Mischungen.
Die zahlreichen Berechnungsmethoden fiir Mischungen in Verlust-

systemen werden wie folgt klassifiziert:

# Verteilungsfunktionen, die unabhingig von der Biindelgré8e sind,

® Interpolation zwischen Grenzwerten.

® Schrittweise Berechnung fiir geordnetes Absuchen und Zufallsverkehr
1. Art.

@ Statistisches Gleichgewicht in Verbindung mit der ,,Durchlafwahr-
scheinlichkeit*,

e Annahme von Verteilungen, welche die BiindelgréBe beriicksichtigen,
in Verbindung mit der DurchlaBwahrscheinlichkeit.

@ Alternative Leitweglenkung mit unvollkommener Erreichbarkeit.
Zum Schlufl werden Mischungen in Wartesystemen betrachtet.

1. Introduetion

This study gives a concise survey of the development of
loss calculation methods for gradings within the past 60
years. Some of the older formulas seem to be rather un-
pretentious from the present point of view. However, sim-
plicity of formulas and easy evaluation were remarkable
advantages in the times before digital computers became
the daily tool of traffic engineers — and are often ad-
vantages still today. Let us not forget that even A. K. Er-
LANG himself has published simple approximation formulas
derived from his own exact solutions because of the dif-
ficulties of evaluation in his time.

Comparing the results of many simple approximations
with later and much more sophisticated ones we can some-
times ascertain only so small differences in the range of
small losses (B S 0.005) that they are not of important
practical meaning.

However, modern networks with alternate routing, using
high usage groups, require more exact methods of course,
but these must always be prepared for easy practical ap-
plication.

The following fields of pioneer work in grading research
must unfortunately be out of the scope of this abridged
review,

o Firstly, this is the history of artificial traffic tests, from
the first manually handled throw-downs forward to arti-
ficial traffic machines (the first machine being published
as early as 1928 by ELLivmax and FrasER) up to the daily
use of digital computers for traffic simulation, which has,
without any doubt, initiated a new epoch in traffic
theory.

e Secondly the widespread and valuable investigations of
many authors searching systematically — by means of
traffic measurements — for the best possible types of
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gradings with respect to various applications and different
hunting methods.

2. Abbreviations

For the comparison of the various methods of loss cal-
culation it will be useful to apply uniform abbreviations as
follows:

q number of incoming groups or subgroups, re-
spectively,

k availability (accessibility) per selector multiple,

n number of trunks (lines) in the outgoing group

(route),

m interconnection number,

H = gk/n average (or uniform) interccnnection number
of a grading (grading ratio),

A offered traffic,

Y carried traffic,

R overflow traffic (non-random rest of traffic of-

fered),

variance V or variance coefficient D = (V — R)

of overflow traffic R,

x instantaneous number of existing occupations
~ (calls) in a group, subgroup ete.,

p(x), w(z) probabilities of a state {x},

A call rate in case of PCT 1,

o call rate per idle source in case of PCT 2,

E, Ey, By time congestion probabilities,

B, By, By call congestion probabilities,

=
o

% (2) passage probability in the state {«x} of a trunk
group (expectation value),

c(x) blocking probability in the state {z} of a trunk
group (expectation value),

q number of traffic sources.

In the following two types of traffic will be considered:

PCT 1 (Pure Chance Traffic of Type 1). An infinite number

of sources produces the offered traffic with the mean

value 4. The total call rate 4 is constant and in-
dependent of the number of busy sources.

PCT 2 (Pure Chance Traffic of Type 2). A finite number of
sources produces the offered traffic 4. Each idle
source has the constant call rate a.

In both cases, the sources are supposed to be independent
from each other. Idle sources start calls at random. This
implies a negative exponential distribution of idle times of
each source.

The distribution of holding times is also assumed in both
cases to be negative exponential with the mean value #y,
(termination rate: & = 1/tn).

Therefore, the offered traffic is given by the following

equations: PCT 1: A = At = Ae,
PCT 2: 4= (g— Y)ufe
where Y is the traffic carried on the trunk group.
8. General Remarks on Gradings

3.1. The introduction of gradings

With growing amount of automatic telephone traffic it

-became more and more uneconomic to apply selectors hav-

ing such a large number % of contacts that each out of n
outgoing trunks of a group could be hunted. On the other
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hand, it led to a rather poor efficiency of the trunks if
groups were divided into two or more small separate sub-
groups (Fig. 1). The large number of grading types having
been developed till now cannot be discussed here in detail.
A very impressive introduction to the different grading
types can be found for example in ELrpIn’s publication [1].
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Fig. 1. Call congestion B (: ) and carried traffic per trunk Y/n
(— — —) as a function of the traffic offered 4 with =40
trunks.

Generally spoken, any interconnecting scheme between
the outlets of g = 2 selector multiples, each multiple con-
sisting of one or more selectors, may be defined as a grad-
ing. The selector multiples have £ common outlets each (as
a rule by =kg="++-=1kj =+ = kg, but not necessarily
80), and because of k < n each offered call has a limited
access to only k out of the n outgoing trunks (lines) of the
group.

The interconnections between the different selector mul-
tiples form one grading if each subgroup influences directly
or indirectly the blocking probability of all the other (g — 1)
subgroups.

The famous first grading patent of E. A. GraY was filed
to the U.S. Patent Office already in July 1907 [2].

3.2. Available formulas for full access

The theory of loss calculation for gradings could start
from many formulas already in use for full available groups.
The best known are counted up here:

PCT 1: 1908 CAMPBELL:
n~ Y +38YY (B=0.002).
1908 Morina and 1918 Lery:
(=] Ax
B = e_A Z -x*"“ .
T="1
1913 CurisTENSEN (and ERLANG):
x Az 3 —
B=e¢—4 Znﬁnwzw Y4 c]/Y
Porms

(B=0.001 >¢=33).
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1917 ErRLANG (exact solution):

An nooA4t
B:W/;)?:EMA).

PCT 2: 1916 Moxn: B = (¥/n)".
1907 Morina and 1918 LrrLy:
1ot g —1 A
B= > (q )tx(1 — )Ty pem
z=n x 7

1918 ExcseET and 1920 O’'DELL:

1918 ErLANG, 1923 MarTIN and 1928 FrY (exact
solution):

(q) |
an
p__\n)  g=n 4

ST

i=o\?
3.3. Types of grading formulas

This survey will proceed the following way. It will not
be the chronological way in any case, but is appropriate to
handle the various methods from simple to more compli-
cated ones:

4.1, Not truncated distributions.

4.2. Interpolation between boundary values.

4.3. Step by step calculation for sequential hunting and
PCT 1.

4.4. Statistical equilibrium combined with passage prob-
ability.

4.5. Presumed truncated distributions combined with pas-
sage probability.

4.6. Alternate routing in case of groups with limited access.

4, Loss Formulas for Gradings

4.1. Not truncated distributions

All methods described here are based on the assumption
“no holes in the multiple”’. From this follows that all states
{0 £ x = n} are assumed to exist merely on the considered
actual n trunks of a group.

4.1.1. E. C. Moriva’s formula No. 1 for PCT 1 (1921) [3]

Morina continued former pioneer investigations of
M. Rorty (1905). Mor1na made the following assumptions:
No. 1: The carried traffic be equally distributed among
all » outgoing lines by appropriate grading and hunting

methods. Then, for “z trunks busy”, each out of (Z) pat-

terns is equallyiprobable.

No. 2: The probability of state within the finite number
of n outgoing lines be approximately a Poisson distribution
(ef. Section 3.2): Az

pla)=e~4 . 1)
From assumption No. 1 the blocking probability ¢(x) can
be derived that a call occuring during the state {x} cannot
find any idle trunk out of these k& trunks which can be
hunted by its selector group:

w-()G
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The passage probability is
u(@)=1—c(x). (3)

From egs. (1), (2), and (3) one gets after some transforma-
tions the expectation of call congestion (MornINa’s formula
No. 1), written in the following terms being appropriate for
the evaluation:

B, n(4) = (4)

— k) o A= S 4e
:Ak(nT*)—-(l——e“A Z —;‘“)4—8"‘4 —
* z=n—k *°

From eq. (4) follows the carried traffic
Y =A4[1 — By »(4)]. (5)

4.1.2. M. MERKER’s loss formula 1924 [4]

MEerKER considers a grading with sequential hunting hav-
ing only two subgroups, each with k; individual outlets and
kg common outlets. Therefore the selectors have the avail-

Congestion arises (approximately)

a) if one selector group has (k1 4- j) and the other one
(k — ) busy outlets.

b) if at least all n = (2k; + ks) = (k1 + k) actual outlets
are busy, eventually plus further fictitious outlets
(No. (n 4 1), (n + 2), ..., assumption “no holes in the
multiple”). .

The traffic offered to each subgroup be A, so the total

offered traffic is 4 = 24,

Therewith one obtains two shares of the total loss B:

k—Fka n oo
A Az
B = e—A ———‘—S-’—‘— 5 B = e“A — .
¢ :,‘Zo (kx + 9! (B —9)! b w &
Finally (7), (8)
B = B, + By. )

4.1.3. E. C. Morina’s loss formula No. 2 (1931) [5]

Morixa investigates the same type of sequentially hunted
gradings as MERKER in Section 4.1.2, but for the generalized
case of g = 2 selector groups (see Fig. 2).
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Fig. 2. Type of grading investigated by MoLINA.

He obtains two shares of the total loss B:

a) If in one particular selector group No. j all available
k1 + kg = k outlets are busy, caused by its own offered
traffic 4; (type PCT 1), the share of call congestion for
this case becomes

Blze_“i! i A;; .

!
oy xz:

(10)

b) There may exist exactly (ki - ) calls originated from
the traffic 4; offered to the considered subgroup No. j,

~ N1

where 7 = O be prescribed. The corresponding prob-
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ability is Akt
—e—d;
bt r) =t g
Moreover, atleast (ks — r) calls may exist on the remain-
ing (ke —r) common outlets plus further (fictitious) com-
mons (“no holes in the multiple” assumed). Those (ke — )
calls are allowed to originate from any s out of the (g — 1)
other selector groups.
By means of a sophisticated combinatorial method
Morina derives the formula for the corresponding

ability Pg-1) (= (b2 — 1)}

which implies all (7 — 1) other selector groups. Therewith
he obtains g,—1

By= D pillr+ 1) pg-ny {= (ke — )}
r=0
B= By -+ Bs.

(11)

(12)

Finally (13)

4.14. A. K. ERLANG’s approximate formulas [6]

For easy evaluation, ErraNG has derived two simple ap-
proximations from his Interconnection Formula (1920). For
n, 4> k and small values of B:

ANk Y \k
el
n n
and for 4 < 1:
(n — k! An Ank
— Ak - | -4
B=4 Y Y /e (n—k)° (18)

4.2. Interpolation between boundary values
4.2.1. G.F. 0'DErt’s Method (1927) [7]

The basic idea of O’DrLL starts from the prescribed call
congestion B in case of PCT 1 and the corresponding ad-
missible traffic 4o offered to a full available group of &
lines only, where k means the accessibility of the considered
group with » > k trunks. Therewith one obtains the car-
ried traffic on k trunks only

Yo=1[1— K1, 5(40)]14o (16)

with K1, x(A4o) = B. Then Yo/k stands for the lower bound
of admissible carried traffic per trunk. (The original publi-
cation uses Ao for very small losses. S. A. KARLSSON sug-
gested in [8] the use of Yy for the application to higher
values of loss.)

With increasing number of lines » and constant acces-
sibility k one obtains the lower bound loss formula accord-
ing to A. K. ERLANG’S approximation for the interconnec-
tion formula (see eq. (14)):

B = (Y/n)k. (17)
Therewith the upper bound of admissible carried traffic per
trunk becomes Y/n = BUk, (18)

By means of egs. (16), (17), and (18) O’Dzry interpolates
between lower and upper limit of load per line and writes
~opu g —gy To] koL,
(19)
The interpolation factor C' was determined by O’DrLL
from measurements, using straight (socalled O’DELr.-) grad-
ings with smoothly progressing interconnection number and
sequential hunting:

C=0.53... Ba 0.002.

Erxarsson, HiganssoN, LunperEN and TANGE thor-
oughly investigated different kinds of improved gradings
using skipped interconnections [9]. They found values of ¢
up to ~0.9. For smoothed traffic O’DELL recommends
C=1.

d=1"%
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4.2.2. The method of Z. Porovi¢ [10]

Porovid starts — like O’'DELL — from a given grading
(particularily from cyclic gradings) with n outgoing trunks
and accessibility £. The call congestion B is prescribed.
Random traffic of the type PCT 1 is assumed.

In opposition to O’DELL the interpolation factor is de-
termined by combinatorial methods for the individual grad-
ing in consideration.

Firstly, the admissible traffic 4, to a full available group
of » trunks is read out of the ErLANG-tables for the prescrib-
ed loss B = Hy »(4ny).

Secondly, the traffic 4 offered to a full available group
of k lines is determined similarly (B = Hi, r(d4y)). For
nfk groups having & trunks each a total offered traffic
Ay = (n/k) Ay, would be admissible.

The wanted offered traffic 4, to the considered grading
becomes according to Porovid

Ay = Ap+ (A — AD . (20)

The factor f represents the quality of the grading. It is
calculated by means of combinatorial formulas, which re-
gard some individual properties of the grading. Extensive
investigations into this method have been made by M. Hu-
BER and M. GLaunNER [11].

4.3. Step by step calculation for sequential hunting and PCT 1
4.3.1. Calculation without regard to the overflow variance

The simplest approximate calculation “step by step” can
be done by reading out the overflow traffics behind all in-
dividual or common outlets of the first hunting position
from ErLANG’s E1,,-table. The appropriate partial over-
flows are added and are used as the offered random traffic
to individuals or commons of the next hunting position and
so forth. i ‘

This method yields of course too optimistic values of loss,
because the non-randomness of overflow traffic is neglected.

4.3.2. G. S. BERKELEY’s one-parameter method (1949) [12]

BrrrELEY implicitly takes into account an approximate
variance of overflow. His method may be explained by
means of the simple example in Fig. 3.

§
AN 1 I N
kz:z{: M i Ry+R, }3

*

2 A1

__R
= Aty

Fig. 3. BERKELEYs loss calculation.

The overflow traffics Ry and Rg behind k; steps (here
k1 = 2) are calculated by means of ERLANG’s K1, n-tables,

whete  p 4y Fp (A1) and Ry = Ag Hy, (ds).
Then an auxiliary offered traffic 4¢ has to be chosen in the
Ernaxa-tables such that for ky trunks

Ao By, (Ao) = R1 + Ra. (21)
Now the next steps (here ke = 3) which are hunted by
the sum of the overflow traffics Ry -+ Re are added and
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one obtains R = Ao Ep, 5, (Ao) - (22)

R being the approximate value of the actual overflow traf-
fic of the considered grading. Therefore the call congestion
is obtained by R

= A Ay

The method yields good approximate values of B for
straight O’DELL gradings without skipping, if the overflow-
ing partial traffics are not too much correlated because of
commonly hunted preceding steps. Correlation diminishes
the total variance of the different partial overflows. Then
the loss calculation tends towards the safe side.

Graphs and tables according to BERKELEY’s method as
well as artificial traffic tests have been published by R. R.
Miva [13]. ’

(23)

4.3.3. The two parameter method (equivalent random
method)

BrrRKELEY’s approximate regard of the overflow variance
is replaced by using overflow traffics with two correct
parameters, i.e. mean R and variance V.

This method has been developed and published firstly by
R. I. WiLkinsox and J. RToRDAN [14] on the 1. ITC 1955
and later on by G.BrErscaNEIDER [15]. Fundamental
theoretical investigations about the overflow problem by
Vavror (1935) [16], KostEN (1937) [17], Mortva (1941),
Nyquist (both see [14]) and Ginray (1953) [18] lead the
way to this method. The exact overflow distribution has
been calculated by R. BRocKMEYER already in 1954 [19].

The way of calculation resembles that of BERKELEY. By
means of the small grading example in Fig. 3 we can dis-
tinguish the considered method and the BERKELEY method.

Firstly, the overflow traffics By and Rs are read out of
tables or graphs as well as their corresponding values Vi, V.
Instead of an auxiliary traffic 4o only, another equivalent
random traffic A* and a corresponding number n* of full
available trunks have to be chosen such a way that the
overflowing traffic has both the mean Ry = Ry + R and
the variance Vi = Vi -+ Vs. To these n* trunks the next
ko = 3 common hunting steps are added and the lost traf-

fic becomes R = A*Eps y3,(4%) (24)

and the call congestion is calculated according to eq. (23).
This method yields mostly somewhat larger losses than

‘the BERKELEY method. In many gradings the main reason

for this fact is the increasing correlation between different
partial overflows with increasing hunting position particu-
larly if skipping is applied. This correlation, which dimin-
ishes the overall variance, is not regarded if the correct
values V; are added linearly. The merely approximate re-
garding of overflow variance by the BErkELry method
tends to variances which are smaller than the actual ones.
This inaccuracy mostly results in a certain correction of this
“correlation-effect”. As with the BERRKELEY method,
straight gradings without skipping are therefore best suited
for the equivalent random method.

The dominating importance of the two parameter equi-
valent random method does not concern the calculation of
gradings but the design of alternate routing systems.

4.4. Statistical equilibﬁum combined with passage probability
4.4.1. General remarks

In any group, no matter if there is full or limited access
to n trunks, (n + 1) different states are possible, i.e. 0, or
1, or 2,..., or , ..., or (n — 1), or n trunks busy. Each
state {x} is composed of (Z) different patterns, each hav-
ing a certain individual pattern probability p((),), from
which the total probability of state {z} follows with
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)

p((e)) . (25)
1

o
83

p(x) =

v

i

In full available groups it makes no sense to distinguish-

the various pattern probabilities, if merely the time- or
call congestion have to be calculated. However, in gradings
with limited access k << n all patterns of the states {x = k}
can (but must not) cause congestion for one ore more out
of all g selector groups, depending on their individual
topological busy positions among the crosspoints of the
grading. From this fact follows that, strictly spoken, in the
most general case (without simplification by symmetries)
the probabilities of all individual patterns

}Z‘ (:)zzn (26)

=0

should be calculated. This leads to the strictly exact ways
of solutions by means of huge systems of linear equations
having up to 2”7 unknowns (see [20] —[22]).

The conditional probability w((z),|x) that within the
existing state {«} the pattern (z), exists can be calculated
with these exact methods by means of socalled transition
probabilities. These probabilities tell us from which certain
patterns (x —1), a certain pattern (z), can be born caused
by a successful call; and on the other hand, which group
of certain patterns (x— 1), can arise when our considered
pattern (x), dies because any one of these z calls is ter-
minated.

Let us now reflect on a method which could simplify the
calculation without giving up the basic principle of Birth
and Death Process, used for the strictly exact calculations.

Because of the generally assumed time invariance of the

considered stochastic process of traffic flow, each state {x}

as a whole (including all its (Z) patterns) will on the

average be born as often as it will die. In other words, we.
make use of the condition applied for the first time by
A. K. Erruane and named the “Statistical Equilibrium’ [6]:
The mathematical expectation, that during the existing
state {x} an occuring call is successful and that the state
{x} ““dies” in upward direction, so that any one of the
possible patterns (x + 1), is born, be named the State-
Passage Probability u(x). Obviously % (x) can be written

(2)
w(@) = D wi@)]2)u(@)). 27)

p=1
u((x),) being defined by
non-blocked selector groups in case of (), )

all g selector groups (28)

Assuming moreover a negativ exponential distribution of
the holding time and with the mean holding time % being
anity, the probability density d (x + 1) for the death of any
existing pattern (z 4 1), in downward direction, that is to
say ‘‘for the birth of any pattern (z),”’, becomes

: 1
d(x—{—l):(x—i—l)z:x—}—l. (29)
For Poissonian offered traffic (PCT 1) with the traffic
intensity 4, we can — by means of eqs. (27) and (29) —
write the recurrence formula for the statistical equilibrium:
Au@—1)plr—1)+ @+ Vpl +1) =
birth of the state {a} (30)
= Adu(e)p@) +2p().
R
death of the state {a}

AEU, Band 25
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n
Because of the condition ) p(x) = 1 theaboverecurrence
x=0
formula yields
Az z—1
P H %(2)
Y 2=0
(@) = : (31)

o 45 j—1 :
1+ > e
=17 =0
The complement to the state-passage probability u(x) be
named the state-blocking probability
c(x) =1—u(x) (32)
c(x) =0 for x<k.

From egs. (31) and (32) follows the time congestion F,
which in the case of PCT 1 equals the call congestion B

where

n
Bron=Br,n= ) c@)p(). (33)
2=k
The difficulty in using this method lies in the sufficiently
close approximation of u(x) or ¢(z), respectively. Let us
now consider some of the most interesting applications.

4.4.2. A. K. Errana’s Interconnection Loss Formula (1920)
for PCT 1 (EIF) [6]

A. K. ErraNG prescribes for his socalled Ideal Erlang

Grading ” n
gl:(k) or g2=(k k! (34)

a) With g; selector groups and with balanced offered traf-
fic, each selector group has access to another combina-
tion “k out of n trunks”. Because of this special grad-

ing each out of the possible different (z) states {x}

blocks exactly (z) out of all (%) selector groups and
effects the same state-blocking probability c(x),

o(x)=(Z)/(Z):1—u(x). (35)

Inserting eq. (35) in eq. (31) and (33) we get ERLANGS
famous Interconnection Formula.

In case of random hunting, all x-patterns become
equally probable, therewith the individual call con-
gestions of all g selector groups equal B.

b) Using selectors. with home position, the (Z) patterns
per state {x} are not equally probable any more, even
in case of balanced offered traffic. Nevertheless, the
values c(z) and u(x) remain unchanged.

Therefore, eq. (33) yields the correct overall call con-

gestion B. The call congestions of the individual g selec-
tor groups cannot be calculated, because they depend
on the unknown pattern probabilities w ((x),), which in
their turn are traffic-dependent.
Using now gg = (2) k! selector groups, the formulas
¢(z) and u(z) according to eq. (35) do not vary. How-
ever, each combination “k out of n trunks” is hunted
by the selector groups with home position in each out
of k! possible permutations. All (2) patterns of a state
{x} will then be equally probable again. Therefore.
eq. (33) yields the correct overall call congestion B as
well as the uniform values B for each selector group
(balanced traffic assumed).

For practically realized gradings with ¢ < (z) selec-
tor groups, mostly somewhat too optimistic values of
call congestion B are obtained from the EIF. On the
other hand, the EIF does not stand for a lower limit
of call congestion B (see [6], p. 118),

o
~
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44.3. H. A. LoxNeLEY’s investigations (1948) [23]

LowaLEY calculates small gradings of different type ex-
actly by solving the 27 equations required. Inserting all
exactly calculated probabilities of state p(z) into the equa-
tions of type (30) he obtains the values u(x) and ¢(x). The
terms u (z) are called K-factors in LoNGLEY’s publication.

In a second step, larger gradings were investigated where
the evaluation of 27 unknowns was impossible. Here the
maximum and minimum values of all K-factors were cal-
culated merely for the much easier limits A — co and
A 0.

Loncrry found that the differences between the two
K-series for 4 — o and 4 — 0 were rather small. Because
of these results a simple approximate formula for () is
given, which can be inserted into egs. (31), (33) for the
calculation of loss.

4.4.4. Approximate assumption No.1: All (Z) patterns
(@), of a state {x} are equally probable

a) From this assumption No. 1 follows that each selector
group will have the same state-congestion probability.
Considering one arbitrarily chosen selector group, whose

k outlets are busy in the state {«}, we get for the remain-

ing (z— k) existing calls on (n — k) lines (2:%) equally

probable patterns. Therefore (as for the EIF see Sec-

tion 4.2) Z:Z)/(Z):(i)/(z) (36)

c(x)=1;u(x)=(

p(z) and B result from egs. (31) and (33).

If ¢(x) and u(x) represent sufficiently good expectation
values according to eq. (27) though assumption No. 1
does not hold exactly, the overall loss B accords with
eq. (33), whereas the individual losses of the g selector
groups may vary.

b

=

4.4.5. Approximate assumption No. 2;

a) According to Section 4.4.4.b) it suffices to have ad-
equately exact approximate values for the expectation u(x)
where the explicit single values of the sum in eq. (27)
must not be known. If u(z) is close to reality the overall
call congestion B according to eq. (33) yields results
close to reality, too.

The actual values w{{z), | «) and % ((z),) can vary the indi-
vidual losses of the individual selector groups but not
the value B, if u () is sufficiently exact.

The approximate function w(z) can, of course, differ
from eq. (35) and can be obtained only by measurements
or by combinatorial methods with or without respect
to some individual propertles of the gradings in consid-
eration [24] — [27]

b) J. N. BripgrorD’s geometric oroup concent (1961) 261
N ALV L AL B gAY pr YRy YYRMVYPV ARV R =YY
The state-blocking probability c(z) starts with
k
—1)=1——.
o(n—1) - (37)
This starting value (called “p” in [26]) is exact for homo-

geneous gradings and is also obtamed by means of eq. (35).
Then the series is continued

c(n —2)=1p2, c(n—3) (38)

The method has been applied to grading types used by
the Australian GPO.

= p3, etc.

4.4.6. General remarks to gradings havmg a finite number
of sources (PCT 2)

The general remarks in Section 4.4.1 hold also for grad-
ings with offered PCT 2. In this case, however, strictly
exact solutions cannot be obtained. The instantaneous traf-
fic intensity offered to each individual selector group de-
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pends on that number of its sources which take part in
the instantaneous existing pattern (z),. Therefore, the ap-
plication of “Statistical Equilibrium” can yield approxima-
tions only. (Strictly exact solutions are — in the general
case — available by means of the solution of 27 equations
of state.) The recurrence formula (for “lost calls cleared”)
holds:

alg—r+Hule—p—1)+@+1)p
=alg —a)p@)u) +ep@).
Therewith the probability of a state {z} becomes

z—1
(i) a® H u(z)

z=1

(@+1)=
(39)

pla) = m P (40)
1+ Z (q) ol I—I u(z
S\ e
The time congestion is given by
a3
Byl n, q) = . o(x)p(a) (1)
=k

and the call congestion by

[Z(q—w (x)]/q—~Y. (42)

4.4.7. The method of K. Roupr and H. ST6rRMER [27]
This theory is based on the approximate assumptions

(o, 1, q

“lost calls held” and ‘“no holes in the multiple”. The
offered traffic is defined by a value
A*=qp (43)

with ¢ being the number of traffic sources and p being the
probability for each out of ¢ independent sources to be busy
wnder the condition that an unlimited traffic flow could
exist, using n* = ¢ full available trunks. Starting from
these assumptions and using the actual number n < ¢ of
tranks hunted with limited access k <<n < ¢, the prin-
ciple of statistical equilibrium is applied. The following loss
formula (referred to 4*) is obtained:
7

PCHCE

r=k

By (4%, n, q) = (44)

The value ¢(x) for gradings is an approximation, derived
from a combinatorial solution for two-stage link systems
(the exact derivation under their assumptions leads to
eq. (35)). The actually applied approximations yield too
pessimistic values of loss for gradings as used in practice
[24].

4.4.8. Method No. 1 by D. Borsca for gradings carrying
external and internal traffic [28]

v dirog Lo bt b oaar certain share of

Lu glauulgb u:st;u 100 UUl/u w'aly ma;fﬁ\/ a cervain snare o1
calls which originate from a certain subscriber (or inlet) of
the grading will be connected to another subscriber (or
inlet) which belongs to the same grading. In this case the
traffic between two subscribers (inlets) of the same grading
runs fwice through this considered grading. This share of
traffic will be called internal traffic and needs fwo trunks
of the same group for one call. The other share of traffic
runs only once through the grading and will be called ex-
ternal traffic. N. Roxnerom [29] and later on R. FORTET
and CH. GranpiEAN [30] as well as D. Borscu [28] solved
this problem for full available groups and PCT 1.

For gradings two solutions for PCT 1 and PCT 2 each
have been developed by BorscH. The solution No. 1 for
PCT 1 and PCT 2 is described here, solution No. 2 follows
in Section 4.5.

From the assumption of statistical equilibrium and by
means of a function u(x) for the expectation value of the
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passage probabilities follows the recurrence formula for a
finite number ¢ of sources:
g—x
R
g—2
+ PRy Zount p (@) w () u(z + 1).
oext and aine being the call rates per idle source with
respect to the external and internal traffic; the holding
time % being unity.
To get time- and call congestion, the values for the
probability distribution p(z) obtained from eq, (45) have

to be inserted into the following equations:
time congestion:

—1
Pz 2) = o OextP(@ + Dulx 4 1) 4+

(45)

(46)
n n—1
By= D plaje(a) + ——— 2, P@ul@e(+1),
z=1

Qext + Olint Z=F—1
call congestion:

1 n
(g —a@)p(@) c(z) + (47)
3

n~—1

D g o) p@ u@ele+1)].

%ext -+ Xint =1

Formulas for Poisson input- PCT 1 follow by passing to the
limit ¢ — oo

4.5. Presumed truncated distributions combined with passage
probability

4.5.1. The Patm-Jacosarus loss formula [31], [32]

This method has firstly been suggested by C. Pata [31],
later on transformed to the formula (48) by C. JacoBAEUS
[32] who successfully used it also for his famous link-system
calculations.

The expectation value of state-blocking probability ¢(x)
is chosen according to eq. (36).

Assuming small losses and offered Poisson traffic 4
(PCT 1) an Erlang distribution E1,,(4) as in a full avail-
able group is presumed approximately.

From this follows for » lines and the accessibility &

n Az oAl By (4)
By = By = x;kc @ (‘9;'—/;0 T) "~ Bue )

This formula yields — in the considered range of small
losses (B % 1%) — and for good progressive gradings with
skipping very good results close to reality.

(48)

4.5.2. The modified Parm-JacoBarus loss formula
[35]—[38]

In 1928 Tu. C. Fry [33] has calculated the probability
S(> k) that a selector without home position needs more
than £ steps to find an idle trunk within a full available
group having n lines. When the offered traffic is 4o, an
Erlang distribution with the mean carried traffic Y is

produced: Y = Ao{l . En (AO)} . (49)
Analogously to eq. (48) this leads to the exact formula
£, (AO)
S(>k) = — e 50
(>k) T (Ay) (50)

Not knowing this early solution of Tm. C. Fry, the same
idea was mentioned by A. JENSEN 1952 [34] in a Danish
publication and later on once again (1960) by the author
as a useful modification of the PJ-Formula to extend its
validity up to high values of loss:

B (Ao)

By =

T (61)
Lin-r{Ao)
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Ao being the “generating PCT 1” of a full access group
and with the prescribed carried traffic ¥ according to
eq. (49). From this follows

Aactual = Y/(l - Bk) . (52)

By a large number of artificial traffic tests with the
availabilities 2 << k& < 100 it could be shown, that eq. (1)
is indeed very close to reality for progressive (sequentially
hunted) gradings with good skipping and a sufficiently large
average interconnection number

Hry oo (53)

The MPJ-formula has been tabulated in [37] and [38].

Simplified gradings, however, without sophisticated skip-
ping can often save costs remarkably with respect to the
installation of local exchanges as well as to the enlarge-
ment of grading groups.

Thorough investigations [39] and [40] have shown
that — in the interesting range from at least B = 0.001
up to B = 0.50 — the simplification of gradings shifts the
MPJ-loss function By = f(4, k, ») practically parallel to
the axis of the actual offered traffic 4. The amount of the
adapting shifting-value A4; can be easily calculated by
the empirical loss-independent formula

2 k-2

60 +4k°
The “Fitting Parameter F”’ characterizes the type of a
grading simplified for economical reasons. Some further
details can be seen in [41].

Still more sophisticated adaption can be obtained by the
following loss-dependent formula (see [407)

1—B
1+-kB2"
Eq. (55) is applied for the new dimensioning outlines of
the Federal German Post Office.

AA L
1:F(7C—~ ) (54)

Ady = A4, (55)

4.5.3. The BQ-formula for finite number of sources [42],
[41]

Because of the good results in using the MPJ-formula for
PCT 1, an analogous type has been derived for PCT 2, i.e.
for finite number g of sources. In a paper of Ericsson (1955)
[43] the analogue to the PJ-formula can already be found
here applied to link systems using the actual call rate
o per idle source to a full available route and combined
with the expectation values ¢(z) according to eq. (36).

“generating” call rate o from which follows a prescribed
carried traffic ¥ with Ernawg-BerxourLrr’s distribution,
A. Bicmw and U. Herzog found the time congestion

(o, q)
By (oo, n, q) = Brn (%0, g — 1) (56)
and the call congestion
By (0, )
By (oo, n, q) = —“Bn—}rr(LOCO T (57)
With g e
En(oco,q)z(n)cxg/Z(i)ocﬁ (58)
i=0
and qg—n 59)

B (oo, 9) = (20, 9) =7

being ErLANG-BERNOULLYs distribution (mean holding time
h = unity).

As in the case of the MPJ-formula, eq. (57) holds very
true for good progressive gradings with skipping and may
be adapted to simplified gradings analogously.
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The name “BQ-formula’ has been chosen from “Bxgr-
NoULLI-distribution Quotient’.

4.5.4. Method No. 2 of D. Borscu for mixed external and
internal traffic [28]

‘The method according to Section 4.5.3 has been applied
by D. Botrscr (cf. Section 4.4.8) also to both way circuits
having internal and external traffic.

His corresponding “Solution No. 2 uses the same ex-
pressions for time congestion £y (eq. (46)) and call conges-
tion By (eq. (47)) as in “Solution No.1”, but different
probabilities of state p(x) are chosen:

The probabilities of state p (x) for “Solution Na. 2" must
be calculated with “‘generating” offered traffics Aoext and
Aoint (or call rates ogext and ogint, respectively), which
lead to the prescribed carried loads Yext and Yin 1n case
of full accessibility. See also [41] and [28].

4.6. Alternate routing in case of groups with limsted access

As published at the 4th 1TC 1964 in London [44] and
in [38], [45]—[49], the Equivalent Random Method (ERT-
Method) of R. I. Wkinsox [14], [60] or G. BrEuT-
SCHNEIDER, respectively [15] could be extended to groups
with limited access.

In this so-called RDA-method [44] the variance coefficient
D =V — R of overflow traffic behind a grading with n
trunks, accessibility %, and call congestion By is

D=pR2k/n (60)
with R = ABjy being the “‘rest” of the offered traffic,

ie. the overflow traffic. The parameter p = f(k, By) can

be drawn from diagrams. Tables are available for (R. D)
= f(4, k, n).

The dimensioning of secondary groups, to which overflow
traffic (R, D) is offered, makes use of the same idea as the
ERT-method. An equivalent primary grading (EPG) has
to be chosen such, that it generates the actual overflow
traffic (R, D). Its ratio n*/k* has to be determined in
a way that this EPG and the following actual secondary
grading together form one total inhomogeneous grading,
appropriate for sequential hunting. Further details about
this method can be found in [51], [52]. The ERT- and
RDA-method are also part of the new outlines of the Federal
German Post Office.

It should be denoted that BRIDGFORD’s method devel-
oped for two-stage link systems has also been applied for
the special case of one-stage gradings [26].

The problem of the exact calculation of overflow systems
with full or limited availability in primary and/or secondary
groups has been investigated in detail by R.ScHEHRER
[21], [22].

5.1. Interpolation methods of E. GAMBE [53]

The first step towards gradings in delay systems was done
by E. Gamsz. For gradings having the availability % and
the number of trunks » E. GaMBE investigated interpola-
tion methods to find simple approximations for the delay
probability W and for the mean waiting time 7y by con-
sidering full available groups with % or » trunks, respec-
tively.

5.2. Delay systems with ideal and nonideal gradings

5.2.1. The Interconnection Delay Formula (IDF) [54]—[56]

For ideal Erlang gradings with waiting M. THIERER de-
veloped explicit formulas for p(x), W, and tyw by applica-
tion of the statistical equilibrium under a special equilib-
rium condition:
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A= x—1
z u(z)
[ z—c@a *=°
pla) = zil o p , 2=0,1,.. ,n,
T+ 1@ (61)
T e —ele 4177°
z=1
W= > pe(x), (62)
r=k
2 L )4
plr) ) ——— -
T — (tzk{ xz;cz_c(z)A . (63)

The results of artificial traffic tests with ideal gradings
comply as exactly as possible with the theory. For familiar
nonideal gradings the method yields good approximate va-
lues, too. Tables for W (4) and 7w (4) have been calculated
according to the IDF for £ = 5 up to 40 and » = k up to
100 [56].

The solution has also been extended to the case where
the holding times are constant [57].

5.2.2. The Grading Delay Formula (GDF) [56]

For nonideal gradings M. THIERER has improved the
IDF by substitution of the distribution function p(x) ac-
cording to eq. (61) by the corresponding one of a fully
available trunk group with the same number of trunks »
and the same traffic carried. Traffic tests have shown that
the GDF yields good approximate results.

5.3. Combined delay and loss systems with gradings [58], [59]

Allowing only a finite number of waiting places in front
of each grading group P. KUnN investigated exact calcula-
tion methods for the probabilities of state and the distribu-
tion function of waiting times. For symmetrically struc-
tured systems a recursion algorithm for the probabili-
ties of state was derived on the basis of equilibrium equa-
tions and a special symmetry condition [59]. Comparing
with traffic tests the solution yields good approximate re-
sults for ideal and nonideal gradings.

6. Conclusion

The author tried to give an abridged but systematic
survey of the approximate methods for the calculation of
one stage gradings, which have been developed since 1920. .
Because of the huge number of publications in this field, it
was impossible to mention all interesting studies.

There is a large number of problems not yet solved, as
for example:

a) Improved approximate methods for loss calculation, if
unbalanced traffic is offered.

b) Improved methods for loss calculation in case of smooth
traffic.

¢) Problems of overflow traffic and alternate routing with
finite number of traffic sources.

Therefore, the treatment of gradings will be an interesting
field for traffic theorists even in future.
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