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ABSTRACT

Two-stage link systems for groupselection are
considered, having gradings between the outlets
of stage 1 or/and stage 2 respectively. Some
special cases as preselection or systems without
gradings are also described in detail.

Assuming stationarity of the traffic, the state
pattern probabilities can be determined by a
system of equations for these probabilities.
This system of equations is derived.

The structure of the link system 1s described by
means of matrices., The state patterns of the es-
tablished calls in the system are also denoted
by matrices,

Equations for the determination of the probabil-
ity of loss, the carried traffic and the offered
traffic are derived, Thus these gquantities can
be determined for two types of traffic : PCT 1
and PCT 2, i.e., Pure Chance Traffic of Type 1
(Poisson input, infinite number of sources, neg-
ative exponential holding time distribution) and
Pure Chance Traffic of Type 2 (binomial input,
finite number of sources, neg., ex. holding time
distribution).

236/1

1, INTRODUCLION

In modern telephone systems the switching net-
works are normally built up as multistage arrays
with conjugated selection : If a call occurs
then the central contrcl establishes a path be-
tween an inlet and an outlet of the network only
if a free trunk of the wanted outgoing group is
accessible. Such systems are called "link sys-
tems". :

In addition to a large number of approximate
procedures to calculate time congestion or call
congestion /1/ there exist some publications
/2/,/3/,/%/,/5/ et al. which deal with the exact
calculation of special two-stage link systems
without gradings.

The following paper is based on publications of
G.P.Basharin and gives an extension of these
methods to two-stage link systems for groupse-
lection w i t h gradings. (The special cases
of preselection and of systems without gradings
are included.) The presented structures are of
practical importance.

Let be given the types of offered traffic, the
structure of the system, and the hunting method
the loss probability is determined by means of
the system of equations of the state probabili-
ties.

Basharin has already shown /2/ that the number

of unknowns can be considerably reduced by in-

troducing conditions of symmetry. This question
is however not investigated in this paper.

2. TRAFFIC, STRUCTURE OF THE SYSTEM, HUNTING
METHOD

2.1, Traffic

Two types of offered traffic are distinguished :

a. Pure chance traffic of type 1 (PCT 1)
An infinite number of sources produces the
offered traffic; the call intensity A is con-
stant and independent of the number of occu-
pied sources (Poisson Input).

b. Pure chance traffic of type 2 (PCT 2)
A finite number of sources produces the of-
fered traffic, Each idle source has a call
intensity o0; the total call intensity A of
all sources depends on the instantaneous num-
ber of occupied sources.

In both cases, the distribution of the holding
times is assumed to be negative exponential with
the mean value h,

2.2. System

Two-stage link systems with the following struc-
ture (fig. 1) will be considered.

il,i2 number of inlets per multiple of stage 1,2
kl’kZ number of outlets per multiple of stage 1,2

sz number of outlets per multiple of stage 2
to the group r (re[1,R])
£1:85 number of multiples of stage 1,2 per link-
- block




G number of linkblocks

hl,hz number of multiples of stage 1,2

B number of outgoing trunks to group r

R *.nunber of outgoing groups (No,1,2,..r..R)

All G linkblocks have the same structure. The
number of outlets _k, per multiple to group r is
allowed to be differé&nt for each group, but is
the same one for each multiple,

We obtain glkla gzig , M2~rkza_rn2

where

> . grading of the outlets of stage 1 or/and

of the outlets to group r, resp.
=  without grading
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Two~stage link system with grading behind
the outlets of stage 1 and of stage 2

2.3. Hunting mode

Two types of hunting modes of the outlets in the
multiples of stage 1 have to be distinguished

a. random hunting
The probability that an idle outlet is occu-
pied is equal for all idle outlets in this
multiple.

b. sequential hunting
Starting at a fixed home position the outlets
will be hunted in sequential order,

The outlets in the multiples of stage 2 will al-
ways be sequentially hunted. However, an exten-
sion of the calculation method to "random hunt-
ing" of the outlets per multiple in stage 2
could be easily made, analogously to the consid-
erations of random hunting of the outlets per
multiple in stage 1.

3. THE SYSTEM OF EQUTIONS FOR THE STATE PROBA-
BILITIES

3.1. state pattern (X}

Considering the stationary traffic process, the
probabilities p(x) for the states

R
(xlxel 0. 2 =],
i.e. "x linklines are busy", are time invari-

ant and the principle of statistical equilib-
rium can be applied.

Then the state probabilities p(x) can be calcu-
lated by means of the transition probabilities
from and to neighbouring states. If a successful
call arrives or if an established call termi-
nates, each state transits into a neighbouring
state,

Hach state {x}'consists of & number of state
patterns [X}. Two state patterns{X'} and (%1}
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have the same number of x busy linklines and
outgoing trunks, however different pstterns.

Except the boundary states each state pattern 3Q
has some "higher" neighbouring state (HM3) pat-
terns {X+1} and some "lower" neighbouring state
(LNS) patterns [Y—ﬂ with (x+1) resp. (x-1) busy
linklines.

(These state patterns are treated in more detail
in section 4.2.)

The call intensity A _(PCT 1) resp. o« per idle
source (PCT 2) as well as the V termins-
tion rate = 1/h_ are allowed to be not uni-
form for the multiples{v[ve[l,N;ﬁBf stage
Ko, 1.

3.2. Transitionsg

To achieve a simpler presentation the deduction
given in this chapter is explained by means of
the case of sequential hunting of the outlets in
the multiples of stage 1 and for preselection
with ofTered PCT 1.

3.2.1. Transition {X+1} —s (%}

The probability that the considered state pat-
tern ?} originates by termination of a certain
established call in multiple v in stage 1 in a
gertain HNS-pattern {X+1} during the time inter-
val (t,t+at) is given by

p(X+1)i-at + oat)
v

The function o(st) contains terms of higher
order in at only.

In the general case there exists more than one
HNs-pattern §+ﬂ The probability that the con-
sidered state pattern originates from any HNS-
pattern is given by the summation

gp(?{“&-l)%——l)t + o(at) (3.1)
v

where

> : Sum over all HNS-patterns {¥+1}
A

3.2.2. Transition {%} — {¥+1}

The probability that a call arrives in a multi-
ple v of stage 1 during the time intervall
(t,t+at) is A_at. The probability that the con-
sidered state pattern fi disappears by the ar-
rival of a successgful call (transition into the
HNs-patterns {X+1}) is given by

p('i)Z?\ at + o(at) (3.2)
v
B
where
> : Sum over all multiples v of stage 1 where
B a new call can be established in the con-

sidered state pattern {X}.

3.2.3. Trensition {¥]—={¥-1}

The probability that a certain established call
in multiple v of stage 1 terminates during (t,
t+at) is At/hv,

Therefore, the probsbility that the considered
state pattern {?} dicappears by termination of
an established call (trensition into the LNKS-
patterns {X-1}) is

X
p«z>§gjglat + o(at) (3.3)
v
where
> ¢ Sum over all those multiples v of stage 1
C where outlets are occupled in the con-
sidered state pattern [?},
X_ : Number of occupled outlets in multiple v

v of stage 1 in the considered state pattern

{%}, where x,€[0,x].




3.2.4. Transition {i;l}u-*{%}

The probability that the considered state pat-
tern {Y originates by the arrival of a success-
ful cell in a definite multiple v of stage 1 in
8 certaln LiNS-pattern {ill} during (t,t+at) is

p(X-1)A, 4t + olat)

In the general case there exists more than one
LNS-pattern {X-1}] which can transit into the
considered state pattern {X} if a successful
call occurs in a definite mbltiple v of stage 1
(regarding sequential hunting). The probability
that the considered state pattern {X} arises
from any Lis-pattern {%21} is given Dy summation

Y. p(F-1)),at + olat) (3.4)
D

where

2 : Sum over all of these and only these LNS-

D patterns ;?-1} which can transit into the
considered state pattern §} if a success-
ful call is established in a certain
multiple of stage 1(where sequential hunt-
ing is regarded).

3.3. The egquations of the state pattern proba-
bilities

Considering the stationary traffic process, the
probability that a certain state pattern appears
is equal to the probability that it disappears,

From (3.1),...,(3.4) we obtain

—~ ﬁE ~ ~ Xvat
PRDZE + Ip(X-1A a6 p(X[Ta, a0 + 5
v D B C v

]= o(at)

Because of the time independence of the process
we obtain

gy 1 ~ ~ Xy
p(RH+L) = +5p(R-1)A - (DA D=L 1=0 (3.5)
% by g v [%;"%%v]
with the normalizing condition

%: p(X) =1 (3.6)

where
%Fcomprises all state patterns of the system

3.4, Number of unknowns

The number of unknowns U (different state pat-
terns) depends on the inividual structure of the
gradings in use,

By modification of the formula given by Basharin
in /4/ we receive an upper boundary value U_ for
the number of unknowns : u

ix M
]
= 150 el
u v=0" Y PRl
where : glkl
15= 1nf(12,k2) kf = B

N

4, FORMAL DESCRIPTION OF THE LINK SYSTENM STRUC-
TURE AND OF THE STATE PATTHERN {?}
In the following we use the indices
1,v,y e [1,M1 ] number of a multiple in stage 1
[ } number of a multiple in stage 2
[ ] number of a multiple within its
own linkblock
[ 1 ] number of an outlet in a mul-
tiple of stage 1
a,ffe [l,PkJ number of an outlet in a mul-
[ ] tiple of stage 2 tc group r

X e|l,i, number of an inlet in a multiple
' of stage 2

r,y e |L,R number of an outgoing group

m e 1,rn2 number of a trunk in an outgoing

group r
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!
we introduce the following abbreviated notations:
outlet(j,i,1) outlet j in multiple i of stage 1
multiple(i,1) : multiple i of stage 1

4.1, Description of the gradings
L.1.1. Greding between the outlets of stage 1

All G linkblocks have the same size and struc-
ture.Therefore, we need only one "linkblock
matrix"® (@) with the dimension (g, = k,) to de-
scribe their structure. Any type %f grading
between stage 1 and 2 is possible.

Within a linkblock an element -}, . characterizes
the outlet(j,i,1). Its numerical? value indi-
cates the number of the connected inlet of stage
2 within this linkblock, i.e. & .e[1,8,1,].

From this linkblock matrix (®) we can also de-
rive a "multiple matrix" (¢) with the dimension
(Mlx kl).

Ihe numerical value of the element y.. indicates
the number of a multiple in stage 2 to which
the outlet(j,i,1) is wired, i.e., ¥. .e 1,M,].

We obtain 1)
. & o1
i-1 1]
v, .= g (== - + 1 (4.1)
Ll 2(g1 rounded ( 1o )rounded
where
I= (1)

mod 8

1f we would define G individual linkblock ma-
trices, 1t would be possible to extend this des-
cription also to a system having linkblocks
which are different from each other.In the fol-
lowing however, for reason of simplicity, only
systems with uniform linkblocks are considered.

4.1.2, Grading between the outlets of stage 2

Bach multiple of stage 2 has the same number rk2
of outlets to a certain outgoing group No.r,

To describe the grading between the M2°rk2 out -
lets and the group No.r a "grading matrix®
(rF) with the dimension (M2x rkz) is applied,

Therefore B grading matrices are necessary. As
in section 4.,1.1. any type of grading is allowed.

The numerical value of the element 7y _. indi-
cates the number m of this outgoing trunk in
group r to which the outlet(b,a,2) is wired.

r¥ap™ me[l’PnZ] (4.2)
If an outlet(j,i,1) is wired to an inlet in mul-
tiple(a,2) it holds
?ij = g (4-3)
and from (4,2)
=m

Ty, o

4.2, Description of the state patterns X}

To desribe a certain state pattern fX} (x estab-
lished calls in the system) it is necéssary to
characterize the two states idle/busy of each
outlet in the multiples of stages 1 and 2. This
can be done by using "state matrices" (S) and

1)

L,2.1. Outlets of stage 1

The "link state matrix" (S) =
dimension (Mlx k,) denotes the
state of all out}ets of stage 1.

The numerical value of the element Sy indicates

the number of a group to which the ouglet(j,i,ﬂ

is connected. We obtain

s,.= O if the outlet(j,i,1) is not busy (4.1
Y= r if this outlet is busy to group r :

To denote only the difference between "busy" and
"not busy" it is usefull to introduce S§j where

[s; ] with the
+d occupation




sk, = 1 >0
1d- }if siA{ (4.5)
ol Ml =0

[}

~

4,2.2. OQutlets of stage 2 to group r

To denote the occupation state of all outlets of
stage 2 with respect to the outgoing group r we
introduce R "group state matrices" (rT)'

Let:
t_,= U if the outlet(b,a,2) to group r
r-ab .
is not busy (4.6)
= % if this outlet is busy and con- :
nected with the inlet X of 1its
multiple, Xe[1,1,]

where : 2

= (& .
= Prynea 1, (4.7)
I=(1) g g,

To denote the difference between "busy" and "not
busy" we introduce

troo=1 >0
where a is given by (#4.3)
Let :
A= [(D]vet,E]} = {helpel.R} w9

A= {(GD ] ve[L,R], v# r] (4.10)

4.2.3. Description of the state patterns {%},
1}, (-1}

Each considered state pattern gi} is fully de-

scribed by the matrices (3) andA .

The neighbouring state patterns can be charac-
terized by means of the "Kronecker-symbol"

d =1 ifx=y

Xy (4.11)
=0 if x% ¥y

Let faccording to (4,3))
Pow = © (4.12)
The matrlces J

ll r%v%w”"ﬁab+x %ﬂ]
denote uniquelf the HNS patterns The matrices
"le diy leand 1' differ only in the ele-
ment s__ . This element has in the matrix
"813 + rd&vd}wﬂ a numerical value which is by r
higher than in the matrlx“s ﬂ In the matrix

I top +X d, . d sl is the numérical value of the

element rtabkanhigher than in the matrix”

3 rtab“;
all other elements in this matrix are unchanged.
Accordingly we can denote the LNS-patterns by
means of the matrices

"Sij - rd;vdSWH urtab Jéchd"’
With this description of the state patterns it
is possible to formulate the system of eguations
of the state pattern probabilities exactly.

To illustrate this description of the system and
the notation of the state patterns we regard a
very small linksystem with gradings behind the
outlets of stage 1 and of stage 2 (fig.2):

linkblock 14 2 L2
navrix (@) =(5 3 ) G =25
121 grading 6 4
multiple (#) 212 matrices 1
matrix 343 2
4 34 (M = 3
L
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Stage Zxample of a

1, state pattern

i =5 ke=3 Np* 6 R
6) 00
, _1C 0
i 272 oot =i 2
. 20 2 0

et (9) =101 .

C) 00 ¢ 0

. & o4 (2T) “lo

M,z 4 Mgz 4 O

fig.2 Linksystem with G=2 linkblocks; formal de-
scription of the structure; notation of a
possible staterpattern of the system

5, SYSTEM OF EQUATIONS OF THE STATE PATTERN PRO-
BABILITIES

Here we regard random- and sequential hunting of
the outlets in the multiples of stage 1.

First we consider PCT 2 and groupselection. The
system of equations for PCT 1 is described in
section 5.2.2. Preselection is the special case
of groupselection with one group (R = 1)

Let
« the call intensity to group r of each idle

1 gource connected with the multiple(i, 1),
k
1 .
_ number of busy outlets
st = ?: SlJ in multiple(i,1) (5.1)
A= py (B8 ) (5.2)

the instantaneous call intensity in
multiple(i,1) to group r (where i
the number of inlets, i.e. source
per multiple in stage 1)

pli= /.0y (5.3)

the termination rate of each call
established from multiple(i,1) to
group r

In the last section we have distingulshed be-

tween the two states "busy" and "not busy" of an

outlet. Now we divide the state "not busy" in

idle, i.e. the outlet can be occupied by a call,
offered to the wanted group r;

blocked, i.e. the outlet has no access to an
idle outgoing trunk of group r.

5.1. Transitions

The formulae below are derived .in the following
way :

First (in section 5.1.1.) one considersa certain
state pattern {¥] and determines all its HNS-
patterns. rurthermore, one determines the corre-
sponding trangition coefficients to the consid-
ered pattern {X} for each individusl ENS-pattern,

Second (in section 5.1.2,) the same state pat-
tern {xi is regarded and one determines all the
(individuel) transition ccefficients by which it
can trensit to one of the HNS-patterns [X+1} .

Third (in section 5.1.3.) the transition coeffi-
cients from {?} to all LihS-patterns {X ﬂ are
determined.

#ourth (in section 5.1.4.) all LNS-patterns{%-1}
have to be determined, which can - by a success-
ful call - transit to the considered state pat-
tern {X¥]. This {¥-1} patterns depend on the
hunting mode. Furthermore, the individuel transi-
tion coefficients of each relevant Lis-pattern
{%-1} to (X} are determined.

5.1.1. Transition {¥+1} —{%}

With (4.4) up to (4.12) we obtain the transition
rate from all HiS-patterns [¥+1] to a certain
considered state pattern fﬂ - Dby enalogy to the
expression in (3.1) - as




2

{§+ﬂ-—f~{§} =

(5.4%)
R My ki kp "
1-s% -1 )% (18, )0
ZZP("SU*FMW 'xgacgbdalrm( S Xt S )
rEiv=iws=id=1 rv
Remarks:

(1-

(1-,

?VW

N

5.1,

SGW) By multiplication with this factor only

those state patterns {¥+1} are consid-
ered where the outlet(w,v,1) is not busy in
the state pattern {%X].

téd) By multiplication with this factor

those state vatterns are excluded where
the outlet(d,c,2) to group r is already busy
in the considered state pattern {%].

denotes whether the number of occupied out-
lets in multiple(v,1) is less or equal to
the number 1, of sources per multiple.

1
This factor is necessary for the case il<k1.
Yo = 1] if sx {‘ 4 (5.5)
=0 cl= 1

1
is necessary to distinguish whether a cer-
tain inlet in multiple(c,2) (accessible from
outlet(j,i,1)) is occupied via grading by
another outlet of stage 1.

For that purpose one has to check the state
of all outlets of stage 1 which are inter-
connected with the considered outlet.

vitg, kg
8= d, (5.6)
v gg;;;1 231 Y2 ¥ Py

yEv

i.e,

Syw™ 1 if the inlet of stage 2 is occupied
by an outlet(z,y,1l) which is wired
with outlet(w,v,1)

= O otherwise
where :
I = (v )mod £, acc.to (4.7)

P vi= g
¥ (y)mod g 2( g1>r-ounded

Only the out}ets of this linkblock which
contains the multiple v must be checked.

cd denotes whether the outgoing trunk in group

r to which the considered outlet(d,c,2) has
access 1s occupied by another outlet of
stage 2 via the grading.

Therefore we must check the state of all
outlets of stage 2 which are wired with the
considered outlet.

Mo ko
Tog= ?j txad (5.7)
r-ed g;l =1 T ef rxéd’rwef

ekc

i.e.
rTea™ 1 if the outgoing trunk is occupied by
an outlet(f,e,2) which is wired with
outlet(d,c,?2)
= 0 otherwise

2. Transition {%X}—={%+1}

With (4.4),...,(4.8),(4.12),(5.1),(5.2) we ob-
tain the transition rate from the considered

sta
o8y

te pattern {?} to all HNS-patterns - by anal-
to expression (3.2) - as

g M
W3 ) = otlsygla) 55 50 (-804,

where : (5.8)

r?‘v
r§y

acc,to (5.2)

takes into account whether a call offered to
group r via multiple(v,1) can be established.
r§v: 1 if all outlets in multiple(v,1) are
blocked for group r or busy
= 0 if at least one outlet in multiple
(v,1) has access to an idle trunk of
group r.
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Hence

r§v: 1} if ky-si -gﬁv{z v (5.9)
=0 : >0

where

sX acc.to (5.1) and

R number of blocked outlets in multiple(v,1)
r to group r.
!
fgvz Ej vy (5.10)
w=1
POy, denotes whether the outlet(w,v,1) is blocked

to group r, There are two conditions :

the outlet is not busy, i.e,(l-s¥ ) =1,

VW

and
@) either
the inlet of stage 2 connected with this
outlet is occupied by another outlet of
stage 1, i.e. g =1 (¢. acc.to (5.6))

VW

or

the accessible inlet of stage 2 is not
busy, i.e =0 but all outlets to group

r in multlpﬁe(c 2) are busy or blocked,

e, B =1 (see (5.12))

vw (1'S§w)[3vw+(1'9vw)rng] (5.11)
i.e.

w = 1 if the outlet(w,v,1) is blocked

TUUW. 5 if this outlet is idle

where:

erw= 1 if all these outgoing trunks in group

r which are accessible from outlet
(w,v,1) are busy

= 0 otherwise (5.12.1)
Therefore Kk
erw= 1 re = 0
i X
- 1f§;a(1mrrcd)(l"rtcd) L (512:2)

5.1.3. Transition fi}mma{?—ﬂ

With (4.4) up to (4.8) we obtain the transition
rate from {X} to all LNS-patterns {%-1} - vy
analogy to expression (3. 3) - as

W, k8

R S,
b4 -1} = p(fs. |, Q) VW
() —p (-1} = ollsg 135 30 50—
where: (5.13)
d = 1 if the outlet(w,v,1) is occupied to
Syw? group r

= O if this outlet is not busy or busy to
another group

5.1.4, Transition {ill]w_+{§j

with (4.4),..,(4.12),(5.1),(5.2) we obtaln the
transition rate from all LVS patterns é}

the certain considered state pattern { - by
analogy to expression (3.4) - as

£
AV
SE-1-{x Z%Z plisy o St uccawu,r&u_wﬁu:_égﬁ

r=1v=1Wald=1 rivw
(5.14)
where
d see section 5.1.3.
CHS
d v X 1 if the outlet(d,c,2) is busy and con-
r’cd” nected with the inlet X of this mul-

tiple
= O otherwise
& the last - sequentially hunted - outlet in

multiple(c,2) which is not idle for group r
in the considered state pattern.

Let : ]
ap= tAehTop  IF fe1, )]
=0 if = ko+l
we obtain w*+1
w= inf(@x ;z} gp<mtl, mel0, k,]) (5.15)

g, _N must be distinguished in the following
T VY manner




5.2.1.

Analogously to
(5.4),(5.8),

a. Sequential hunting of the outlets in the
multiples of stage 1

Wwe obtain

€ the last sequentially hunted outlet in
multiple(v,1) which is not idle to group
r in the considered state pattern {X}; it

holds
eX+1
E= inf(a*‘;;% uz<£*+1,£*e[0,k1]) (5.16)
where
u= sk v 0 if ze[l,k,]
=0 if z= k1+1
_ 1
My Gl (5.17)
rtvw
where

rnvw denotes whether the outlet w is - in
the LNS-pattern - the first idle out-
let in multiple(v,1) to group r.

For this purpose we must- check the state
of all outlets (§<w) which are blocked in
the considered state pattern.

r VW=1 if the outlet w is the first hunt-
ed idle outlet in multiple(v,1) to
group r in the LNS-pattern

=0 otherwise

Hence:
=1 w-1 =
rlvw .
if (5.18)
where:
rﬁvw =1 if the outlet(§,v,1) is blocked
B in the considered state pattern
(¥} however idle in the LNS-pat-
tern because the outlet(w,v,1)
has terminated its occupation
=0 otherwise
Hence: J
PPowg =(1-83 ) (1-8, 0 4 (5.19)
where:
e = ?VE acc.to (4.3)

b. Random hunting of the outlets in the multi-
ples of stage 1

We obtain
N the number of idle outlets in multlple

rovw (v,1) to group r in the LNS-pattern
vaw = kl'ss.+l"éav+rﬁvw (5.21)
where :

s¥ acc.to (5.1)
2 acc.to (5.10)

v
IS the number of outlets in multi-
VW 5le(v,1) which are blocked in -
the considered state pattern {%]
however idle in the LNS-pattern’
because the outlet(w,v,1) has
terminated its OCCupatiOn,
k
1
I’BVW - Eg:l Tl}VW,? (522)
SEw
where :
r@vw,g acc.to (5.19)

5.2. System of equatioms

System of equations for PCT 2

(3.5) and (3.6) we obtain with
(5.13),(5.14)

236/6

M,

T8 Gt“ - (-
Pllsyrd,, & lirtan ¥ dacdpallrd) fo) “): R e)

=1 iy

vax

r=ivz1

RM«}GTK

Ads 8.
*ZZZZP‘% altca 1 Sodl 1y 2erleak
rMvw

r=tv=twsld=1

R M k1 J (5.23)
- p(lis B A) 2 18,0 + Sywl :0
1j ;2 & “rivirly < mv ”
normalized by the condition
(5.24)

S p((3),A) =1
U

where % comprises all state patterns of the sys-
tem,

with
Aacc.to (4.9) oDacc.to (4.10) a acc.to (4.3)
c W (4,12) sij 0 (LP.L” Si'] " (“4',5)
s¥ (5.1)  Ltoy (h.6)  tx (4.8)
Oy v 1D ¥ ! (5.5) 8 v (5.6)
rTog o (5.7) L%, (5.9 y w o (87
r w (5.15) € :: (5.16)1"6?,).(5.20)

- (5.17) (5.21)

5.2.2. System of equations for PCT 1

is constant and in-

Here, the call intensity _A
of busy sources,

dependent of the number
Therefore we oObtain the system of equations
(5.23) and (5.24) with
r%v\= const.

v, = 1

(5.25)

6. SPECIAL CASES WITH SIMPLIFIED STRUCTURES
6.1. Groupselection (R=>l), G=>1,

gk"gz 2
Grading behind stage 2 (M )

2'r k2>r 2

Here the structure is

without grading between
the outlets of stage 1
(fig.3).

The matrices (@) and
(@) may be helpful if
the linklines between

stage 1 and stage 2
are wired in any man-
ner,

These matrices are not

necessary 1if each
multiple of stage 1 is
connected with each

Fig. 3
multiple of stage 2 in the same linkblock by one

linkline, i.e. k

17 Bt

1. Linklines wired sequentlally, i.e. outlet j
in each multlple of stage 1 in a certain
linkblock is connected with multlple(J 2) in
the same linkblock,

We obtain (cf, (4.1),(4.3)and(4.7))

i-1 . V-1
LS NNCERETIC IR
"1 "rounded 1‘rounded
X = (l>m0d glz I (6.1)
2. Linklines wired cyclically, i.e, outlet(j, I,
is connected with multiple((1+j-1)nod , R
in the same linkblock. oa £o
we obtain
i-1 sy s
a = g (—= +(i+j-1)
‘< g1)rounded mod &2 ]




v-1
c =g (— +(v+w-1)
?( g1>rounded mod g2 (6.2)
%= (l)mod g4 =1

In these two cases each outlet in a multiple of
stage 1 is connected with another multiple of

stage 2; therefore we can replace _N b N_ .
We obtain rivw ety

N =1

Ny (sequential hunting)

(6.3)

= k1’53_+1‘£ﬁv (random hunting)

From (5.6) we get
Sy = © (6.4)
This simplifies the determination of blocked out

lets o, - acc.to (5.11) and the equations(5.23),

6.2. Groupselection (R»1), G=1, e

6.2.1. Grading between the outlets of stage 1
(g1k>ep1y)

between the outlets of stage 2
(fig.4) the matrices ( J') and
A can vanish,

ﬂ“// Therefore we obtain the follow-
T ing modifications :

l ™S Because there is no grading

Fig, 4
rGyythe number of busy inlets in multiple(c,2)to

group r must be checked to be less then the
number of outlets rk2 in this multiple.

k
O =1 %ﬁ 1 = k
rovw . r2
if > d, (6.5)
O} zZ=1 syz’r ce {< k

r2

i.e.
erwa 1 if all outgoing trunks of groupr
which are accessible from outlet
(w,v,1) are busy (cf.(5.12.1)),
i,e. all outlets(rkz,c,z)are busy
= 0 otherwise
Then, @, 1is determined by (5.111'w1th .
acc.to (6.5); by the transition {x+1}——+{?}
acc.to (5.4) the multiplication with (1”r6
necessary.

From (5,23) we obtain

VW) is

R og kK (1-8% )y (-8 Yi- G )
\ vw' 'y VW VW
:L:i v2=1 §1p(l‘sij+ﬁi" S5l iy
B g £ r“vd% r
) vw?
+g;& %;1 g;lp("sij—réivéng v (6.6)
R & ki &
r T, & 8 y T
- ol »lelu- rA, , — ) <o
P HSiJU lr: V=J riv)ieAy ;;1 Ay ]J

6.2.2. Without grading (g1k1=g212), k,=g,
Missing the grading between the outlets of stage
1 (fig.5) we obtain

. . ?Vw = 0 acc.to (6.4)

1. Linklines wiredsequentially

As shown in section 6,1
all outlets Jj in the mul-
tiples of stage 1 are con-

. nected with the same mul-
Fig. 5 tiple(j,2).Therefore, re-
placing of _G by 6. 1is
possible. rovw row
We obtain

236/7

Gt
H

=k
{ rz (6.7)
< rk2

2. Linklines wired cyclically (cf. section 6.1)

. r
0 =1 Syw

it

row l}if % )

From (6.2) we obtain
a = (i+j-1)

mod g
¢ = (vtw-1) ‘ (6.8)
B ““’mod g5
and therefore we get 1,.!SO acc.to (6.5):
g, k =
G, =1 -1 1 =k
rUe : r2
eSS 4 A { (6.9)
— - s rce }
=0 y=1 Z=1 yz' < I1k2
where :
e = (y+2~1)mod £,

The celculation of o is given acc.to (5.11)
where G acc.to (6.7Y, 86 acc.to (6.9)resp.;
va (cf. section 6.1) is determined acc.to(6.3).
With these regards the system of equations (6.6)
normalized by (5.24) is simplified also.

6.3. Preselection (R=1), G=1, g, k,=n,
Because of R=1, we obtain s..=s§j (cf. (4.4) and
(4.5)). Therefore, ¢ . may bs° replaced by

S, . Svw?
vw

6.3.1. Grading between the outlets of stage 1
(g ky»g,1,) (fig.6)

s
j:ii Fig. 6

L~

From (6.6) we obtain

&y
2
V=

va)“"v( i- ng) (1- va)

Ky (1-
Z_l o555+ dsyl) n

1 W= v
gl 3 2 .8
VoW )
+ 2, ;l o(| sij'Jivdjwll) - 6.10)

k

£ S
- P<|lsijll>[};:]1[<1-svmv . ;ﬁl h_:_vz]]= o

6.3.2. Without grading (g k,;=g,i,), k =g,

Missing the grading between the outlets of stage
(fig.7) we obtain

1
va = 0 acc.to (6.4)
2 If the linklines are wired se-
quentially resp. cyclically
///—— 6w resp. Gc must be deter-
mined acc.to (6.7) resp.
;6.9) with regard to R=1,

N_is determined acc,to(6,3).
The system of equations(6.10)
is simplified.

This system of equations is also given for se-
quential wired linklines in /2/ for PCT 1 and
random hunting of the outlets of stage 1 and in
/1/,/6/ additional for PCT 2.

Fig. 7

7. PROBABILITY OF LOSS B, CARRIED TRAFFIC Y,
OFFERED TRAFFIC A

The deduction given here is done for the general
case (section 5). In the special cases the de-
scription of the state patterns and of the coef-
ficients is simplified (section 6).




with the state pattern probabilities calculated
acc, to (5.23) and (5.24) we can determine the

probability of loss, the carried traffic and the
offered traffic.
7.1. Probability of loss B
The probability of loss TB to group r is
Sle.5 50
> [p((o),A)gl A
PP = M (7.1)
Slots),m5 2
i} ols), =1 TV

where
ﬁicomprises all state patterns of the system

r?v acc.to (5.9)

acc.to (5.2) for PCT 2
(5.25) for PCT 1

The total loss B is given by

rzv

(0001, 5 S ]
s), .
Cpbesg Raal
S o050, 005 S 4 ]
S
7 ;;1 2;1 o
7.2, Carried traffic Y
The carried traffic .Y to group r is
r“%][p“s”“v:l >, a‘swf] (7.3)

and the total carried traffic Y is given by
M

1
r =2 [p(s),05) sx ] (7.4)
U v=1 :
where
s¥ acc. to (5.1)
7.3. Offered Traffic A
The offered traffic rA to group r is
Y
r
A= (7.5)
r l—PB

and the total offered traffic A is given by

. 2 Y
RIS (7.6)

8. EXAMPLE

In /6/ resp. /7/ ALGOL resp. FORTRAN programs are
presented for calculating the probability of loss
by means of the state pattern probabilities for
systems according to section 6,3.2. resp., 6.2.
and 6.3,

Diagram 1 shows the probability of loss B as a
function of the carried traffic per outgoing
trunk Y/n, for two systems. The values are cal-
culated by means of the above programs.

System]G gy kl 12 g5 k2 R
O RERERCEERERE

linklines wired se-
quentially;

random- oOr se-
quential hunting

@ |13 |4 |4 2|3 |1|grading between the

outlets of stage 1:
1548

(0) = <2 6 L 8);
3748

sequential hunting

236/8

The offered traffic is PCT 1 where XV=A.

1

pd

107 ’/fjj//
"/
/4@

ol L

Diagram 1
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