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Polling systems have a broad spectrum of applications, e.g. in modelling approaches for switching sys-
tems and Local Area Networks with medic access mechanisms based on tokens. This contribution presents
an approzimate analysis for polling systems with the service discipline 'limited—M’, wheredy the realistic
assumption of finite buffer capacity is taken into account. The analysis is an eztension to the method
presented by Tran-Gia and Raith in [135] where a finite capacity polling system with limited-1’ service
discipline has been investigated. Our analysis is based on an embedded Markov chain in conjunction with
a two-moment approzimation of server vacation and cycle times. The validation of the approzimation is

done by computer simulations.

1 Introduction

Local Area Networks (LANs) with token passing pro-
tocols are frequently modelled by polling systems with
cyclic service. Most of these modelling approaches con-
sider queues with infinite capacities. In the literature
multiqueue systems served by a single server have been
subject of numerous investigations (1} - (9], (11, 12, 15].
Various polling strategies like cyclic or priority service
and different types of service disciplines, e.g. exhaustive,
gated, or limited service have been considered. Most of
these investigations assume queues with infinite capac-
ities (1] - (7], [9, 12], whereas in practical systems the
buffer space is limited.

In (9] an approximation technique for cyclic queues
with non-exhaustive service and general switchover time
has been developed by Kihn. He introduced conditional
cycle times depending on whether the considered queue
is empty or not. The queue length has been assumed to
be infinite. ,

The analysis presented by Tran-Gia and Raith in{13]
is based on these conditional cycle times. However, some
modifications have been necessary to take the blocking
effects and the finite quene capacities into account. The
. analysis uses the technique of the embedded Markov
chain. Each queue is observed just prior to its polling
instant. The state probabilities of an arbitrary queue
immediately before its polling instant have been calcu-
lated from the state probabilities of the same queune at
the instant just prior to the poll of the preceding cy-

cle. The cycle times have been approximated by their
first two moments. For the calculation of the stable
state probabilities of all queues an iterative algorithm
has been used.

Lee presented in [13] a vacation model and its anal-
ysis for finite queue capacity and exhaustive service dis-
cipline. This analysis has been extended in (14] to the
limited service discipline. The vacation model can be
applied to analyze a polling system. In this context the
vacation time represents the interval between the instant
the server has finished the service of a station and its
arrival at the same station in the next cycle. To use
this method, the problem to determine the distribution
function of the vacation time remains to be solved.

In this paper we present a method to solve this prob-
lem. It is based on the algorithm presented in [15]. The
resulting theory allows the analysis of a finite capacity
polling system with limited-M’ service. Symmetrical
as well as nonsymmetrical load conditions are allowed.
Again general switchover times are taken into account.
In Section 2 we describe the model of the polling system.
The analysis of this model is presented in Section 3. In
Section ¢ we show some numerical results validated by
computer simulations. Finally, we make some conclud-
ing remarks.

2 Modelling

The basic model of a polling system is depicted in Fig-
ure 1. It consists of = stations which are served in cyclic
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Figure 1: Basic Model of the Polling System

order by a single server with a generally distributed se:z-

vice time Th; for each station. Every station consists of
a queue with §; buffer places. In each cycle every queue
is served until it is etther empty or a maximum aum-
ber of M packets is reached. Then the server polls the
succeeding queue. Due to these assumptions the consid-
ered service discipline is of the E-limited type (limited
from the exhaustive point of view) (3, 5]. A queue indi-
vidual, generally distributed switchover time T, ; can be
selected. The interval from the end of the last service
phase of a queue until the beginning of the first service
phase of the same queue in the next cycle corresponds
to the vacation time T, ; for that queue in a related va-
cation server model. The arrival processes are assumed
to be Poissonian with queue-specific rates A;.

(5]

3 DPerformance Analysis

In the following section a numerical algorithm for an
approximate analysis of the finite quene polling system
is presented. The algorithm is based on the approaches
presented in (9, 14, 13].

3.1 Markov Chain State Probabilities

The polling system depicted in Figure | can be analyzed
by an embedded Markov chain. Each queue is observed
just prior to its polling instaat, i.e. immediately before
the end of its vacation time, and at the instants im-
mediately after each service completion. In Figure 2 the
phase model for an azbitrazily chosen station 7 is shown.
The embedded points aze marked. At every embedded
point except the last, i.e. after the M-th service phase,
the server has to decide whether another packet can be
served at this queue or not. Since the service disciplineis
of the E-limited type a new service phase is then stacted

(1)

Figurs 2: Phase Model for 2 Station j

if at least one packet is waiting for service. If the queue
is empty the service of this station is completed and the
server polls the next station.

Let the n-th polling cycle of station 7 be the epoch
betwesn the n-th and (n+1)-st poll of this station. Then
p(”” denotes the joint probability that % packets ace
waiting for service at station j and m packets have al-
ready been served a.t this station in the n-th polling cy-
cle. For example pz o) denotes the p:oba.bxhty that one
pa.c‘ce* is W'a.ztmg for service at station j just prior the n-
th poll and pg“ denotes the probability that the queue
is empty immediately after the end of the third service
pna.ac. For ease of reading the subsczipt indicating
the observed station is omitted in the following, i.e. the
notations p(,m aad § will be used instead of p{"mg and
S, tespectively. These state probabilities can now be
calculated recussively. Analogously to [14] we obtain:
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In Equation (1) g; and A; denote the probability that
t packets arrive during a service time T or vacation time
T,, respectively. gf = T2 g% denotes the probability
that at least i packets arrive during a service time. Af
is defined in the same way.

To calculate these arrival probabilities the technique

presented in (13| can be used. Therefore, the probae
bility distzibution function of the service time T, aad
the vacation time T, are approximated by their first two
moments.

Kiha proposed in [10] two different approximations
for the probability distribution function of a random
variable T with mean T’ and coeficient of vadation ¢,
depending on the value of c.



In case of hypoexponential process types (0 < ¢ < 1),
a series of a deterministic (D) and an exponeatial (M)
phase is chosen. Its probability distribution function F
is given by

0 05ty
F(t) = (2)
1 —g~(t=t1)/ts 3 >t
where
=T(1-¢) (3)
and
ty = Te. ) (4)

In case of hyperexponential process types (¢ > 1),
an alternative of two exponential phases is chosen. Its
probability distribution function is given by

1= g™l = (1= g)es 3)
vwhere
ba =T/ 550) (6)
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3.2 Calculation of the Vacation Time

Let the random variable T,; be the time between the
beginning of the first and the end of the last service
phase of station j. It will be referred to as station time
in the following. Further, let ®,;, ®nj, and &, ; be the
La.placc-StzeltJes transforms (LST) of the station time,
service time, and switchover time of station 7, respec-
tively. The station index j will be omitted again in
the following formulas. Under the assumption of inde-
pendence between the event that exactly i packets are
served by the server in one cycle at this station and the
service time T}, the LST &, is given by

M .
&, =) di3 (8)
i=0

where d; denotes the probability that exactly ¢ packets
are served:

2g t=0
d = -1 (9)
e [J(l-a) i=1.M
k=0

and .
s -1
Pﬂ,i[zpk,i] 1=0.M -1
=0 (10)
1 =M.

In the preceding equations a; denote the braaching
probabilities of the phase model in Figure 2. Note that
Equation (8) becomes exact if the service time is con-
stant. Further, it should be mentioned that the super-
script (M for the polling cycle has been omitted for sase
of reading.

Under the assumption of independence between T,;
and T, ; for j = l..z, the LST of the vacation time is
given as follows:

Go; = ]] ®ou H 3,k (11)
k=1
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From the LST the first two moments can be easily
obtained by differentiating.

3.3 Arbitrary Time State Probabilities

To calculate the state probabilities at arbitrary time
instants we can use the results of {14]. In that paper
equations for the joint probabilities for a distinct queue
length and the server being in the m-th service phase or
the vacation phase of a station are presented. We don't
want to repeat the complete derivation of these equa-
tions here but only the most important results. The
interested reader is referred to [13] and [14] for deriva-
tions.

Let 7,m,; be the joint probability that the queue at
station 7 contains & packets at an arbitrary time instant
and that this time instant is in the m-th service phase
(m = 1.M) or the vacation phase (m = 0). In the fol-
lowing we will again omit the station index j. According
to [14] the w4 m can be calculated from:
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In Equation (12) the py. denote the steady state
probabilities of the embedded Markov chain. Note that,
form 3 1, the pg m.i~terms are zero and therefore don’t
contribute to the rgm. & denotes the frequency of em-
bedded points. Thus, the inverse of o is the average



interval between consecutive embedded points. It can
be expressed by

o™t = bE[T,] + (1 - b)E[TH] (13)

where b denotes the probability that an embedded point
is the point just prior to the polling instant of the con-
sidered station. It is given by:

S
b = Z p},.o. (14)

k=0

Using the theorem of the total probability, the state
probabilities at arbitrary time instants = are given by:

M
Tk = Z Th,m- (15)

m=0

After some algebraic manipulations we obtain the

final result:

- M
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With these arbitrary time state probabilities we can
easily derive some characteristic system measures as the
blocking probability, the mean queue length, and the
mean waiting time.

3.4 Numerical Algorithm

Using the expressions derived in the previous subsec-
tions, an iterative algorithm similar to that presented in
(15] can be developed. The main steps are:

1. Initialize all state probabilities and station times
for all queues

2. REPEAT {iteration cycle}

FOR all queunes DO

BEGIN

(ay Calculate the vacation time

(b) Calculate the probabilities for arrivals
during all service and vacation times

(¢) Calculate the state probabilities

(d) Calculate the branching probabilities

(e) Calculate the new station time

END;
UNTIL (convergence criterion A is fulfilled);

3. Calculate the state probabilities for arbitrary time
instants

4. Calculate the system characteristics

The convergence criterion A can, e.z., be defined as
A=304, (17)
=
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4 Numerical Results

In Figuzes 3 and ¢ some typical results obtained by the
presented analysis are compared with computer simu-
lations. A symmetrical system with 10 stations and 8
buffzr places at each station has been analyzed. The
sexvice time has been assumed to be a constant 100us
and the switchover time a constaat lps for all stations.
The system has beea symmetrically loaded.

Figure 3 shows the loss probability versus the offered
load per station. The maxdimum aumber of services per
cycle M has been varied between 1 and 40 without ob-
serving significant changes in the obtained results. This
is due to the fact that the switchover time has beea as-
sumed to be very small compared to the service time.
Therelore, the overhead per cycle is also small. The sit-
uation chaages if the switchoves time becomes nearly
equal to the service time and thus the overhead per cy-
cle is in the range of the transmission time of packets.
The depicted curve represeats the loss probability for
1< M <40
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Figure 3: Loss Probability versus Offered Load

[a Figure 4 the mean quene length versus the offered
load per station is depicted. As a parameter the maxi-
mum aumber of sexrvices per cycie U is used. The curves
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Figure 4: Mean Queue Lenzth versus Offered Load
show the typical behavior. If the system is slightly
loaded only a few buffer places aze occupied but if the to-
tal system becomes overloaded the meaa queue leagth
increases rapidly. For lower load conditions the three
curves are ideatical. Under high load a low number M
results in a higher number of occupied buffer places.
This is due to an increased overhead since less packets
can be served per cycle. This effect will be increased if
the overhead per cycle becomes higher.

These results correspond qualitatively to the well-
known behaviour of polling systems [13]. As we can see,
both figuces demonstrate an excellent accuracy of the
preseated method.

5 Conclusions

In merging two known analytical methods, we have de-
veloped an approximate algorithm to calculate charac-
teristic results for finite capacity polling systems with
Tlimited-M’ service. The analysis is based on ax itera-
tive calculation of the number of services at each station
and the vacation times. To obtain a distribution func-
tion for these random variables a two-moment approxi-
mation has been used. The comparison with computer
simulations has shown an excellent accuracy.
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