SAMPLED QUEUING SYSTEMS
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Institute for Switching and Data Technics, University of Stuttgart, Stuttgart, GERMANY

Two models of sampled queuing systems are treated, one with batch service in fixed intervals and
another one with batch arrivals in fixed intervals. For each of these two models the characteristic
traffic values, i.e., probabilities of state, mean queue length, mean waiting time, probability of waiting,
and waiting time distribution function are derived. Exact and approximate numerical values are given
as a support for practical applications.

. INTRODUCTION

.1 Statement of the Problem

Present and future application of computers in communication networks and modern
telephone and data switching systems require the analysis of sampled queuing systems.
The basic structure of such sampled queuing systems is shown in Figure 1. The peripheral
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Fig. 1. Basic structure of sampled queuing systems.

devices correspond, e.g., to a common controlled telephone switching system, to a time
sharing computer, or to data transmission devices. The data transfer between the periph-
eral devices and the Central Processing Unit (CPU) takes place in fixed intervals of

time, caused by the periodically closed sampling switch. Hence, two basic subsystems can
be distinguished from Figure 1. In the first subsystem corresponding to the peripheral
devices, the preprocessed or waiting calls are transferred to the CPU in fixed intervals of
time. This subsystem is named model 4 in this paper. In the second subsystem corres-
ponding to the CPU, the arrivals of the calls take place in fixed intervals of time. This
subsystem is named model B in this paper.
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There are many types of each subsystem, regarding its input and/or service process,
respectively, internal structure, queuing policy, etc, Some of them are dealt with in
literature. Very often generating functions of probabilities of state or Laplace-Stieltjes
transforms of waiting time distribution functions are given as results. In this paper new
and explicit solutions are derived which can be applied directly to computer network
design.

1.2 Description of the Two Models
2.1 Model A

This model corresponds to a peripheral device of a common controlled telephone or
data switching system or to the queuing users of a time sharing computer, etc.

The calls arrive according to a Poisson process with the arrival rate A. They have to
wait in the queue in the order of their arrival (probability of waiting = 1). Always after
a fixed interval of time 7 the sampling switch is closed and the waiting calls situated in
the n transfer places in front of the queue are transferred, e.g., to the buffer of a CPU or
to a service unit with a service time < T (batch service). It is assumed, that this transfer
cannot be blocked.

sampling
switch

AT TN to other devices
‘—v—‘ period T
trqnsfer places”

Fig. 2. Configuration of model 4. The queue has an infinite number of waiting places.

This model is similar to the model of Bailey [3]. But contrary to Bailey, in this
paper the state of the system is considered at an arbltrary instant 7, before the sampling
clock. Moreover, additional results are derived.

2.2 Model B

The central service unit has a constant service time k. Always after a fixed period of
¢ (¢ = integral number 2 1) service times the g peripheral devices are sampled syn-
chronously. One peripheral device corresponds, e.g., to a system similar to model A.
From each peripheral device 7 there are transferred k = 0, 1,2, - - -, n; calls per sampling
clock with certain probabilities g; (k). It is assumed that the probabilities g; (k) are in-
dependent of each other and from themselves in successive instants of the sampling
clock. The global probability of k arriving calls from all g devices is 7 (k) with k =
0,1,2,- -, m(batch arrivals).

synchronous
sampling switch
f central
Bgicne 1 5—‘((—:;—4 buffer service unit
<:ievice2-qz—-—-° - HH_
: W k)
device g AL T

Fig. 3. Configuration of model B. The buffer has an infinite number of waiting places.
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Within one global arriving batch the calls of device 2 are filed in the buffer behind
the calls of device 1, the calls of device 3 are filed behind the calls of device 2, etc. The
service discipline is first-come, first-served.

Besides the exact solution for an integral value of ¢ in Section III, an approximation
for the mean waiting time is dealt with in Section IV.2 for the case that ¢ = T/A isnot
an integral value but a real value. '

lI. ANALYSIS OF MODEL A

1.1 Generating Function of the Probabilities of State at an Arbitrary
instant

In statistical equilibrium the system is considered always at fixed instants ¢,, before
the next sampling clock (see Figure 4). The value of #,, can be chosen arbitrarily between

Xj Xiel
p; (x,t,) Py txty)
T
et
interval i ‘ interval is1 |
sampling sampling sampling
clock i-1 clock i clock iel

Fig. 4. Time intervals and sampling clock in model 4.

0 and 7. From Fig. 4 it can be seen that
T=1t,+1t,. )
The probability of x; or x;,, calls in the quete at an instant f,, before the sampling
clock i ori + 1 shall be p; (x, t,) o piy (%, £,), respectively. The random variables x
form an imbedded Markov chain. The number of arriving calls during the time intervals
t, or t, or T shall be k,, or k, or k, respectively. Then, directly before the sampling
clock i there are x; + k, calls in the system. Because n calls can be removed by the
sampling clock 7 at most, there are only max [(x; + k,, - 1), 0] calls in the system directly
after the sampling clock i, where
Xptky -n, xptk, 2,
max [(x; + k, - n),0] =
0, xp + ky, <nmo.
The random variable x;,, then is
Xip = Max [(xi +ky - n), 0] +k, . )

The sum of the independent random variables x; and k,, shall be the new random variable
Ui

up = x; +ky (32)
With the abbreviation
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v; = max [(;-n),0] , (3b)
Eq. (2) yields
X = v t ok, . 4)

To derive the wanted probabilities of state p (x, f,,) it is useful to introduce the
generating function Gx;,, (z, ¢,) of the probabilities p,; (x, £,). It is defined as

Gxyy (2, t,) = Z Din (X, 1) 2% . ()
x=0

Analogous to Eq. (5), Gv; (z) and Gk, (z) are the generating functions of the prob-
abilities for v; and k,, respectively. Because v; and k,, are independent random variables,
it follows from Eq. (4) and from probability theory that

Gxiyy (2, t,) = Gu; (2) - Gky @ . (6)

Gu; (2) can be expressed in terms of p; (x, ¢,,) and the probabilities of &, (using Equa-
tions (3a) and (3b)). In statistical equilibrium the probabilities of state must be invari-
able with time

pPi (X, tv) = Pin (xatv) = p(xytu) .

Therefore, in Eq. (6) the indicesi and i + 1 can be omitted. After several trans-
formations of Eq. (6) and the assumption of a Poisson input process the expression for
Gx (z,t,)is

n-1 n-1-u
(Ary)”
D Pt ) S @)
=0 =0 ) -
Gx (z,t,) = 2 erlz — AT(1) eMinz=T) (7)

The generating function (Eq. (7)) is similar to the generating function, which was
obtained by Crommelin and Pollaczek for a queuing system without a sampling clock
and with n servers and constant holding time (M/D/n) [8, 9].

In the numerator of Eq. (7) there are still # unknown probabilities p («, ¢, ) which are
eliminated in the following way. It is known from Crommelin and Pollaczek, that the
denominator of Eq. (7) has exactly 1 real and complex ro0ts zg, 25,25, = * , Z,, " * *» Zny
inside and on the unit circle, where z, = 1is always a root. Because forz < 1 the gener-
ating function Gx (z, t,,) is also < 1, the polynomial in the numerator of Eq. (7) must
have exactly the same 1 roots z, as the denominator. Hence, Eq. (7) can be written as

K - - - Zy) - v s (z - n-1 .
CoDEm2E ) o) et pen )

Gx (z,t,) =

The unknown constant X is determined by settingz = 1in Eq. (8) because Gx (1,¢,) = 1.
Then, the final expression for Gx (z, t,,) is after some transformations
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n-1

H (z-2,)
n~- AT  v=0 N
Gx (z,1,) = D) - Mot ©

I1a-=

(z, = roots of the denominator of Eq. (8) inside the unit circle).

Directly before the sampling clock there is #, = 0. For this special value of ¢,
Eq. (9) results in the generating function obtained by Bailey [3].

For the special case of n = 1 Eq. (9) reduces to

z -1 _
Gx (z,t,) = (1-AT) ;-e—}\—m‘)—j eMo(l-2) (10)

11.2 Mean Queue Length at an Arbitrary Instant and Mean Waiting Time

The mean queue length F [x, 7] at a certain arbitrary instant ¢, before the next
sampling clock can be easily obtained from the generating function Gx (z, t,)

dGx (z,t,)

P an

E[x,t,] =

z=1

The derivation of Eq. (9) with respect to z is (after some transformations)

P e}\T(l-z) E_ AT
dGx (z, t,) 1 & z
2 Y = + . —
dz Cx (2, 1,) z-1 ; z~ 2z, 102 Mo

From this equation follows forz = 1 after a determination of the limiting value by the
aid of L’Hopital’s rule

n-1 2
1 (n-ATY - n
E = -,
bl = ) G M (12)

For the special case of n = 1, Eq. (12) reduces to
1 - (1-AT)? _

Elenl = =505

A, (13)
Again for the special case of £, = 0, Eq. (12) becomes identical with that obtained by
Bailey.

The mean queue length £ referred to the whole sampling clock interval T is

1 [T
Q== E [x,fv] drv >
T Ji=o
or with Eq. (12)
n-1 2
- '}\T -
Q= L @A mn 1, (14)

1 -z, 2 (AT - n) 2
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On the other hand, Eq. (15) holds true generally
Q =2z, . (15)

Therefore, the mean waiting time ¢,, is obtained from Eq. (14) and Eq. (15)

R B SR A U
tw”x[thyJ'z(nvxr 1)} (16)

Especially forn = 1

ty= = . 17
Yo2(1-AT) a7
It should be noted, that Eq. (17) is identical with the waiting time referred to the
waiting calls in the system M/D/1. Furthermore ¢,, according to Eq. (16) is greater by
T/2 than the mean waiting timie referred to all calls in the system M/D/n. Figure 5 shows
some numerical results for ,,.

) M
25 2
2
20 2 A
tw 10
T 20

ARRPY/
Y

AT

n

Fig. 5. Mean waiting time in model 4.

1.3 Probabilities of State at an Arbitrary Instant

Probabilities of state p (x, #,) can be obtained by a retransformation of Equation (9).
Generally this retransformation is

1 d*Gx (z,¢t,)
plx,t,) = X! dz* ieo
but unfortunately, the derivation of order x of the generating function cannot be given
explicitly. Therefore, the generating function (Eq. (9)) is developed step by step into a
serial expansion with respect to z. Then a comparison between the coefficients of this
serial expansion and the coefficients of the general definition of the generating function
(see Eq. (5)) yields the probabilities p (x, ,,).

Equation (9) written in a different form
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H ¢z

_ AN - n At -Af,
Gx (z,t,) = - € T A TG € v (18)
I I (I-2)
v=1

=3

1
with the serial expansion | = E a* (]a| <1),Eq. (18) can be written as
- a
u=0

Gx (Zatv) = _)\—7 oMo H (Z‘ Zv) Z 4 }\T(l z)]u ~Atyz

H(I_Zu) e

or

Gx (z,t,) = AT - Aty H (z-z,) Z [Zuneu)\T —)\Z(MTH‘U)]

H(lfzu) e He

2 4
. a .
For the last exponential term in this expression the serial expansion e? = E it used

6x (e, = 2L MUH(Z_ZV)Z{ Z%t—)ﬂ
II (I'Zv) o= =0
(19)

Equation (19) is a polynominal in z. Now this expression must be arranged with re-
spect to powers of z to get the probabilities p (x, ¢, as the coefficients of this polyno-
mial. After some transformations this gives the explicit solution

b-1 R
M-, ar % SXCATY i
t = —_— v JAT SRRV BT U
ple,ty) = — e ]Z,: <e Z( D S e
Ii[ (1 - Zv) H=e ’
v=1
x-bn - ~bit—
; SN (BT + 1,)] Xtk
+ bAT -1 n uS l v
e MZO O S = Y . (20a)

forbn < x < (b+1)n (b=0,1,2, ) with
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<
So =1,
n-1
Si = (Zotzitzat tz,y) = Z Zi
i=0
net .
Sy = (2021 ¥ 2022+ 2023t ¥ Zp 02y ) = Z Zi1Ziz >
i1,12=0
(i1<i2)
Sy = 202122 " Zpoy (20b)
J
i
and with Z(-) = 0(j<i). (20c)
7

For the special case of n = 1, Eq. (20a) reduces to

px,t) = (1-\T)eMo [exm Z Jar LAGT+ )] &7 (1 LT zz))J'

e e=1-)! x-]

@1

11.4 Waiting Time Distribution Function

The waiting time of a fest-call is considered in order to determine the waiting time
distribution function. If the test-call arrives at the instant #,, before the next sampling
clock and finds

0,1,2,--+,n - 1 waiting calls in the system, it has to wait the time ¢, ,
n,n + lL,n + 2,---,2n ~ 1 waiting calls in the system, it has to wait the time
T+1,,
wn,wn + 1,wn + 2 -+ (w+ 1)n - 1 waiting calls in the system, it has to wait the
time
wl + ¢,

The probability, that a call arrives during the interval dt, at the instant 7, is constant
and independent of 7, because of the Poisson arrival process. Thus, on the other hand
dt,

T "
The probability that at the instant 7, there are already x calls waiting in front of the test-
callis p (x, £,). Because these two probabilities are independent of each other, the prob-
ability W{(wT + ¢, - dt,, wT + t,) that the test-call has to wait some time between
wTl + t, - dt, andwT + ¢, is

the probability that the arriving test-call falls in the interval d¢, at the instant z,, is
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(w+1)n-1 dl‘v
WWT+6,=dty, wl+1,) = 5" plot) o0, (22)
X=wWn
withw = 0,1,2,--- and0 < 1, < T.
From Eq. (22), it follows with dt,, — 0 for the waiting time distribution function
P(SwT+tg)
1 ty (w+ln-1
P<wrrey =5 03 b v P(Ewn . 03
T J, L
X=Wn
with
w-1 1 T (w+1)n-1
P(ZwT) = T f Z p(x,t,)dt, . (23b)
v=0 X=vn

Equations (23a) and (23b) contain integrals / of the form

1 t (w+1)n-1
1=;f S pu)dr,

1] X=WH

which can be calculated by inserting Equation (20a).
As result for the waiting time distribution function one obtains (after several trans

formations) the explicit formula

P(SWT‘*’ ty) = -——)\—T——-——— T Z - l)n—u S, - liz ek(].T”‘u)
H (1-z) =0 /=0
(w+)n-1 . in
[FAGT+1,)] >+
( xX=wn [(w+1)n—X] (x“fn“li)!

Wzn=1 r_yeq e
[- N(GT + 1,)] Nw T+ty) [_M
,Z;I' [(w-j)yn-pu-f]! >+ Z(n X~ )
- [w+Dn-ul ] . (24)

with
w=01,2,-and 0< ¢, < T,

and additionally Equations (20b) and (20c).
For the special case of n = 1, Eq. (24) reduces to

P(<uTiry =] )—\TAT {i [—x((gfj;u!)jwv NUT) 1] 25)

7=0
It should be noted that Eq. (25) is identical with the waiting time distribution func

tion referred to the waiting calls in the system M/D/1.
The complementary waiting time distribution function P (> wT + ¢,) is
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P(>wl+t,)=1-P(Swl+1g,) . (26)

An example for P (> wT + t,,) is given in Figure 6.

11,6 Mutual Influence of the Parameters 7 and 7 on the Mean Waiting Time

In many computer controlled queuing systems the performance of the sampling is
correlated with an interrupt in the central processor unit. These interrupts cause an ad-
ditional load for the central processor unit. Therefore, from the point of view of the
processor unit, it is desirable to keep the number of interrupts per time unit as small as
possible, i.e., to make the sampling clock interval 7" as long as possible. But on the other
hand, the absolute mean waiting time of a call in the queue must not be increased too

much.
1 - :
I ‘ §\\\\\ xr:'l 1.8
Pi>t) \ \\ \\
o N 16
\

\ \ 10

\0.2 06
I \

103

Fig. 6. Complementary waiting time distribution in model 4 for the case of n = 2.

To study the problem mentioned above, the absclute mean waiting time is con-
sidered in the case of an increased sampling clock interval 7. Butin order to keep the
mean waiting time under a certain limit, also the number of transfer places is increased
such that n/T is constant. Figure 7 shows the result of these considerations. This dia-
gram can be interpreted in the following way: For small arrival rates A it is not recom-
mendable to increase T" and n because the absolute mean waiting time is also increased
quite notably. Furthermore, for small A the additional load for the processor caused by
the interrupts does not matter. However, for large X the load of the processor is so great,
that the additional load caused by the interrupts is quite notable. In this case it is worth
increasing n and T, because the absolute mean waiting time remains in the same range
though the number of interrupts is considerably decreased.
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Fig. 7. Mutual influence of n and T on the absolute mean waiting time in model 4. T and ¢,,, are in
arbitrary time units. Curve 1: 7 = 1,n = 1. Curve 2: T = 2,n = 2,Curve 3: 7 = 3,n = 3.
Curve4: 7 = 4,n = 4.

11.6 Probabilities for the Number of Transferred Calls per Sampling Clock

If there are x < n waiting calls in the system directly before the sampling clock, all
x calls are removed from the queue and are transferred to the following device. If there
are X 2 n waiting calls in the system, » calls are transferred. Therefore, the probabilities
q (i) of i transferred calls can be easily obtained from Eq. (20a) with ¢z, = 0

q() =pG0 (0<i<n),
G =) px,0)=1-) p(x0=1-

n-

q ). @7

1
x=0

Iil. ANALYSIS OF MODEL B

H1.1 Generating Function of the Probabilities of State Directly Before and
Directly After the Sampling Clock

At first, the system (see Fig. 3) is considered with the global arrival group directly
after the sampling clock (see Figure 8).

The probability of x; or x;,; calls (including a call in the service unit) directly after
the sampling clock i ori + 1bepy, ; (x) or py ;4 (x), respectively. The random vari-
ables x form and imbedded Markov chain. The probability of k; or k;,, calls (with
k=0,1,2,---,m;m>c) arriving with the sampling clock i ori + 1 ber; (k) or
rivy (), respectively.

During the period T between two sampling clocks there can only be served ¢ calls at
most. Therefore, the random variable x;,, is

Xiep = max [(x;-¢),0] + kiyy (28)
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I’;(k) fm(k)
l X iel
Pr,itx) l Pr i)
st1:st2‘ ... stc / m
———— 7 e
sampling sampling
clock i clock i+1

Fig. 8. Time intervals and sampling clock in model B. (st = service time)

with
X; — C, X >c ,

Max [(x; - ¢), 0] ={O, Y <c
With the abbreviation
v; = Max [(x;-¢),0] , (29)
Eq. (28) can be written as
Xisp = 0 F ki - (30)

Equations (28), (29), and (30) are similar to Egs. (2), (3b) and (4) of model 4. So
the generating function Gx,, (z) of the probabilities of state p,, (x) in the case of statisti-
cal equilibrium can be obtained analogously to Eq. (7)

S o G- 21)

Gx, (z) = =0

WG’C (z) . (31a)

Where

Gk (z) = ir(k)zk , (31b)

k=0

is the generating function of the probabilities 7 (k).

It can be shown, that the denominator of Eq. (31a) lias exactly ¢ roots (real and com-
plex)zg,2,,25, ", 2y, ", Ze; inside and on the unit circle, where zo = 1 is alwaysa
root. Therefore, the unknown probabilities p,, (¢} in the numerator of Eq. (31a)are
eliminated in the same manner as in Equation (7). The result is analogous to Eq. (9)

5 [k] I;O[(Z - 2y)
z¢ - Gk(z)

.-
Gy (2) = —

TTa-=»

Gk () , (32)

where

m
E k] = Z k ¥ (k) = expectation of k . (33)

k=0
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Another expression for Gx,, (2) is obtained, when the ¢ factors (z - z,,) with ’z,, | <1
are cancelled out of the numerator and the denominator of Equation (31a). Then only

M = CT00tS Zo, Zowy, Zowns """ 5 Zps " * " 5 2y With Iz,, | > 1 remain in the expression for
Gx, (z)
m-1 1 -z
Gx, (2) = H “Gk(z) . 34
v=c 7%

Ifc << m - citis suitable to use Eq.(32),if ¢ >> m - c itis suitable to use
Equation (34).

The number x,, of calls in the system (buffer + server) directly after the sampling
clock is the sum of the number x,, of calls in the system directly before the sampling
clock and the number k of calls arriving with the sampling clock. Because the latter two
are independent random variables, the generating function Gx, (z) of the probabilities of
state p,, (x) directly before the sampling clock may be calculated from the equation

Gxp, (2) = Gx, (2) Gk (2) .
Applying Eq. (34) to this formula leads to
m-1

_Gxp(2) _ 1 -z,
G, (@) = 0 = !Ic - ZZ : (35)

1.2 Mean Queue Length
The mean queue length £, [x] directly before the sampling clock is

_ dGx, (z)

E, [x) = =28

z=1

The derivation of Eq. (35) with respect to z is after some transformations

) F1ong »
dz z -z, zy ~z
v=c li=c

Forz = 1Eq.(36) results in

m-1 1
Bl =), (37)
u=c
The mean queue length £, [x] directly after the sampling clock then is -
En [x] = B, [x] + E [k] . (3%)

1.3 Mean Waiting Time

In front of an arriving group there are in the mean £, [x] calls in the system (in-
cluding a call in the service unit). If at the moment of the group arrival, there is a call in
the service unit, this call starts its service time at the same moment. Therefore if the
group size of the arriving calls is k, the first call of this group has to wait in the mean
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E, [x] service periods, the second call has to wait in the mean £, [x] + 1 service peri-
ods, etc. and the last call has to wait in the mean E,, [x] + k - 1 service periods. So
the mean waiting time ¢ (k) of all calls of this group of size & is

r::(k)ﬁ[Ev[x1h+(EU[x1+1)h+- 4 (Ey (] k- DA

1,

In the mean, r (k) k calls arrive per sampling clock which will have the mean waiting
time 15, (k). Altogether E [k] calls arrive per sampling clock in the mean. Then, the

mean waiting time referred to all arriving calls is the weighted sum of the different (k)
with & = 1 throughm

or

£ (k) = (E ] +

% _ e rk) ko«
[w—;; E[k] lw(k)a

& . k-1
F [ ;1 r(k)k<5u [X]+—2”>,

m

Z r (k) k (k- 1)

1

k=1
Ev [x] h + —m] h, (393)
or
. 1 ( Var [k]
ty = E, [x]h + 3 < E k] +E [k} - ) , (39b)

with £, [x] from Eq. (37) and Var [k]

Il

m

Z (k - E [k])*r (k) = variance of k. For
k=0
the special case of ¢ = 1 Eq. (39b) reduces to

 _ 1 Var [k} 1 ~
tW‘2<E[k] 1 F (k] l)h

111.4 Probability of Waiting

First, the probability P (=0) is calculated, that an arriving call does not have to wait.
Only the first call of an arriving group needs not wait when the system is empty. The
probability that the system is empty directly before the sampling clock is p,, (0). p, (0)
can be obtained from Eq. (35) by settingz = 0

m-1 1

Py (0 =Gx, 0 =T *— (40)
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The probability that a call arrives at all with the sampling clockis 1 - r (0). Thus,
in the mean p,, (0) (1 - 7 (0)) - 1 calls arrive per sampling clock which do not have to
«  wait.

Altogether £ [k] calls arrive per sampling clock in the mean. Therefore, the probabil-
ity P (=0) is

Py (0) (1 - r(0)

PEO= "
or with Eq. (40)
1-r(0) %5 z, - 1
P(=0) = : (41)
E [k] E z,
The probability of waiting P (>0) then is
1-r@0 24 2z, -1
P(>0)=1 - . (42)
) AR | s

For the mean waiting time £, referred to the waiting calls, the following equation holds
true
fo

l‘ =
v p(>0)

(43)

with ¢, from Eq. (39b) and P (>>0) from Equation (42).

111.5 Probabilities of State p, (x)

The generating function (Eq. (35)) can be decomposed into partial fractions

0= . § D)

R vee 1 v=c 1
Cx, (2) = Z m-1 (z - z;) T Z m-1 z\
e H (zi-z,) e i H (zi -~ 2y) (1 - ;,>
(5%%) (vzi)

The last term of this expression is expanded into a series

et H(l - zy) - ‘
Gx, (z) = - Z Z < ) . (44)

= Zj H (ZZ>Z,)) =
(V:ﬁl)
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Equation (44) is a polynomial in z. The coefficients of this polynomial are the
wanted probabilities of state p,, (x)

Tz
P = ) || (45)
BRI
) ]

1.6 Waiting Time Distribution Function

Because the waiting time of the calls is always an integral multiple of the holding
time /4, the waiting time distribution function is a step function. Therefore, the waiting
time distribution function is represented here as P (<dh), where d is an integral number
2 0. The probability that a call has to wait exactly the time interval @k shall be W (d).
The probabilities W (d) are calculated analagously to the probability of waiting in Sec-

tion 1.4,
The derivation of the probabilities W (d) is shown by example of W (1). A call has to

wait for one service period when:

(1) Either it is the first call of the arriving group and there is one call in front of the
arriving group

(2) Or it is the second call of the arriving group and there are no calls in front of
the arriving group.

The probability, that there is no or one call in front of an arriving group, is D, (0) or
py (1), respectively. The probability, that the arriving group contains at least 1 or 2 calls,
is1 - r(0orl - r(0) - r(1),respectively. Therefore with each sampling clock

Py Q) [1-7 @) -r(D] - 1 +p,()[1-7r©O)] - 1,

calls arrive in the mean, which will have a waiting time of one service period. Altogether
E [k] calls arrive in the mean per sampling clock. Thus

W (1) = -El[—k] o O [1-7(©)-r (D] +p, (D I1-r (O] . (46)

Analogously to W (1) the general expressions for W (d) are derived

1 d d-x
—_ v 1- k|, d<m,
}_jp(x)[ Z_or()] m

E [k] porer}
W(d) = 1 . s (47
TR xz;mpv(x)[w; r(k)}, d>m,

with p,, (x) from Equation (45). The waiting time distribution function P (<dh) is

d
P(Edh) = 3 W () ,
i=0
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or with Eq. (47)

P(Sdh) = j=0 x=0

The complementary waiting time distribution function is
P(>dh) = 1 - P(<dh) .

The complementary waiting time distribution function W (>dh) referred to the waiting
calls is

P (>dh)

P (>0)

W (>dh) =

111.7 Distinction of Calls Coming from Different Peripheral Devices

As is shown in Fig. 3, the calls may come from g different peripheral devices with the
probability of group size g; (k). Since now only the global arriving group with probabil-
ity of group size r (k) was regarded, where r (k) is the convolution of the probabilities
q; (k), it is possible to calculate all quantities, which were derived in the Sections HI.1-
TIL.6 for the calls of the global arrival group and also for the calls coming from any pe-
ripheral device i.

The mean queue size in front of the arriving calls of device i shall be £y, ; [x]. Then
E, [x] isidentical to E}, [x] of Equation (37). Because all calls of the devices < i are
arranged before the calls of device i in the global arriving group, £, ; [x] is

i-1

Eyilx] = Epu [x] + Z Elk] (>1), (49)

j=1

ny
where E [k;] = qu,. (k).
k=0

Analogous to the mean waiting time of all calls of the global group in Eq. (39b), the

mean waiting time t‘f,’i of all calls coming from device i is
1 [ Var [k;]
fwi = Bou[x] 1 + 5<—b"[;€'j— +E [k - 1>h : (50)

In front of the arriving calls of device i there are no further calls, if the system is
empty at the arrival moment of the global group and if the global group contains no calls
of devices <i. The probability p,, ; (0), that the arriving calls of device ¢ find the system
empty, is therefore
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Py (0) , i=1, (512)
Pu,i ) = i-1
po O [Jas@ ., i>1, (51b)
j=1

where p,, (0) is identical to Equation (40).
Then, analogous to the probability of waiting for the calls of the global arriving group
in Eq. (42), the probability of waiting P; (> 0) for the calls of device 7 is

1 -4;(0)
E [ki]
The probabilities p,, ; (x), that there are x calls in front of the arriving calls of device i
can be obtained by a convolution of the probabilities p,, (x)} of Eq. (45) and the probabil-
ities g, (k) through g;_, (k) (similar to p,, ; (0)).
Then, the waiting time distribution function P; (<dh) of all calls coming from device
i is in analogy to Eq. (48)

P (>0) = Dy, (0) . (52)

I

f 2. p,,,,-(x){lffq,-(k)}
j k=0

J=np x=j-n+1

1
(A< (n.-
P (< (n; l)h) + 1]

The complementary waiting time distribution function W; (>dh) referred to the waiting
calls of device / is

(1- P (Sdhy)

Wi (>dh) = &0

IV. APPROXIMATIONS OF THE MEAN WAITING TIME
OF MODEL B

IV.1 Diagrams for the Mean Waiting Time ¢,,

For practical applications (e.g., in network dimensioning) one should have in particu-
lar diagrams of the mean waiting time vs all interesting parameters such as the offered
traffic (characterized by E [k], 7 (k), the maximum size m of the global arriving batch per
sampling clock) and the maximum number of service periods ¢ per clock interval. Be-
cause of this variety of parameters it is impossible to compress the most interesting para-
meter combinations in some few handy diagrams. The following method for approximate
diagrams yields, however, values of ¢, rather close to the exact ones.

The second term in Eq. (39b) depends only on Var [k] and £ [k] . Tests have
shown, that the value of £, [x] has approximately the same magnitude for different com-
binations of m and probabilities  (k), provided that £ [k] and Var [k] are constant.
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Therefore, diagrams for a fixed value ¢ can be drawn with an approximate t¥ asa func-
tion of £ [k}, where Var [k]/E [k] can be used as a parameter. Figure 9 shows an ex-
ample forc = 2andm = 6. This figure can be used also form # 6. Form < 6 the
exact values of 17, tend to be smaller and for m > 6 the exact values of ti tend to be

greater than the approximate values in these curves.

5 |

ol

SE—
=

i
I

0 02 04 06 .08 10

Fig.9. Approximate mean waiting time in model B with parameter Var {k] JE [k] for the case of
¢ =2andm = 6.

V.2 Approximation of the Mean Waiting Time t, in a System Where the
Clock Period is not an Integral Multiple of the Holding Time

If the sampling clock period is not an integral multiple of the holding time, the fol-
lowing approximations for the mean waiting time t are applicable: The sampling clock
period shall be T = ch, where c is a real value between the two successive integral values
¢, and ¢o. Then, the mean waiting times t;':,,cu and t:“,,co are calculated according to
Eq. (39b) with the given probabilities (k) of the input process once with ¢,, and once
with ¢, respectively. The mean waiting time ti then is obtained approximately by linear
interpolation between tfv,cu and t:’;,co

® # %
tw = (c-¢y) Lye, T (CO—AC) Lw,cy -

Of course, the same method can be used by means of the approximate diagrams de-
scribed in Section IV.1. In this case the approximate mean waiting time £¥ can be ob-
tained by a corresponding linear interpolation between two curves belonging to ¢, and
¢y, the same value of the parameter Var [k]/E [k] and the same abscissa value E [k]/c.

Simulation runs on digital computers have proved, that these handy methods yield
sufficient values for practical applications.

V. CONCLUSION

Many specific problems of computer aided communication networks, multiaccess
computers and other systems with common control can be analyzed by one of the models
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treated in this paper. Besides the theoretical results also exact and approximate numeri- ;
cal results presented here, are useful for practical engineering. ¥

More complex models of sampled queuing systems are achieved by a combination of  #
model 4 and model B (to be published at some future time).
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