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ABSTRACT

A two-stage queuing model is dealt with, which
corresponds to a simplified model of a modern
central controlled telephone or data switching
system. The primary system consists of g paral-
lel storages (inputl queues) corresponding to
different peripheiral devices. The secondary
system consists of a buffer and a service unit
.corresponding to the central processor unit.
The input process of the primary system is-a
Poisson process. The holding time of the serv-
ice unit in the secondary system is constant.
Always at fixed, equidistantly distributed in-
stants the input queues are inspected simulta-
neously for waibting informations. At those in-
spection instants from each input queue i there
are transferred at most nj informations to the
secondary system.

The analysis of this model is based on two sep-
arate single~-stage models, which were earlier
dealt with by the author in /1/. However, the
two-stage model treated in this paper takes in-
to consideration the dependency of the state of
the secondary system on the state of the primary
system.

~ In this paper, first the two single-stage models
mentiocned above and their main results are
‘briefly described. Then, the two-stage model

_is. studied in detail.

~For the primary system exact solutions for prob-
abilities of state, mean waiting time, waiting
time distribution function etc. are available.
For the secondary system exact solutions for
.certain probabilities of state, mean queue
length, mean waiting time and probability of
waiting are derived. For certain parameter com-

. binations an approximate solution for the mean
waiting time in the secondary system is given.

Furthermore, another operating mode of the two-
stage model is considered. For the case, that
- the input queues are inspected not simultane-~
ously but cyclically, an approximation is given
for the mean waiting time in the secondary
systen. .
Finally, several numerical results are presented.
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4. INTRODUCTION

Since the last few years digital computers are
used more and more as central control in modern
telephone and dats switching systems, in comau-
nication networks etc. The structure of such
central controlled systems can be subdivided
into two main functional varts, namely the pe-
riphery and the central unit. The informations,
generated in the peripheral devices, must be
transferred to the central unit, where they are
processed. On the other bhand, instructions gen-
erated in the central unit must be transferred
to the peripheral devices. In this paper, the
transfer of informations from the periphery to
the central unit is considered.

In principle, two different modes are possible
for this transfer:

Firstly, the informations can be transferred to

‘the central unit directly after their generation

in the periphery. But each input/output opera-
tion requires a certain amount of organization
time in the central unit (overhead) and the cur-
rently processed program must be interrupted.
Therefcre, the disadvantage of this method is,
that each randomly generated information causes
an interrupt in the central processor unit. This
would result in a relatively large amount of
overhead and so the waiting times of the infor-

‘mations would be increased in particular for a

large offered traffic.

Secondly, the informations may be bulfered in
the periphery after their generation. The cen-
tral unit may inspéct the periphery for waiting
informations in adequate ¥time intervals. This
method is mostly used in modern central con-
trolled telephone or data switching systems. The
time interval between two "inspection instants”
is constant in most of the reaslized systems.
Thus, the information transfer between the pe-
riphery and the central processor unit (CFU
takes place in fixed intervals of time. The bas-
ic structure of such a "sampled queuing system"
ig shown in Fig.4. The clocked information
transfer betweern the periphery and the CPU is
indicated by a sampling switch (gabte).
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Fig.1: Basic structure of a sampled queuing
system :

~In this paper in particular the waiting times of

the infermations in systems according to Iig.1
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are analyzed by the aid of simplified mathemati-
cal models. For this analysis, two single-stage
models are used as a basis, which were already
dealt with by the author in /1/. One of these
models corresponds to a peripheral device, the

“ Mmer one corresponds to the CPU. In this paper,

‘nowever, a two-stage model 1s dealt with, which

'~ following

corresponds to the general system of Fig.1 and
which takes into account the dependency cf the
state of the CFU on the periphery.

2. DESCRlruiauwx OF MODELS

2.1. SINGIE-STAGE MODELS FOR SUB-SYSTENS

Because the two single-stage models mentioned
above are used as a basis for the investigations
in the further sections, their structure and
their main results are briefly described in the
following. Their detailed analysis and further
results can be found in /1/.

2.1.1, MODEL CORRESPONDING TO A PERIFHERAL
DEVICE (MODEL A)

The configuration of a model corresponding to a
peripheral device is shown in Fig.2 (Model A).

ék

n }n transfer places

(clock reriod T)

i{ sampling switch

to the CPU

Fig.2: Configuration of Xodel A

The calls arrive according to a Poisson-process
with the arrival rate A. They have to wait in
the queue in the order of their arrival (proba-
bility of waiting = 1). It is assumed, that
there is an infinite number of waiting places.
Always after a fixed interval of time T the sam-
pling switch is closed and the waiting calls
situated in the n "transfer places" in front of
the queue are transferred e.g. to the buffer of
a CFU. It is assumed, that this transfer cannot
be blocked. p :

The principle way of solution for this model is
(ef. /4/):

: state x of the system is considered always
at fixed instants ty (0sty$T) before the next
sampling clock. The state x at these instants
forms an imbedded Markov chain.Then, the gener-
ating function Gx(z,ty) of the probabilities
p(x,ty) of state x at the instant t, before the
next sampling clock is derived for the case of
statistical equilibrium. The definition of the
generating function Gx(z,ty) is

(o]
Gx(zgtv) = Zép(x,tv)zx (1)
X=

The generating function Gx(z,ty) derived in /1/
is: vi-4

Yl—?\T J;%(Z‘Z\;)
GX(Z:{:'V) = (n*’x ' " ’)\T“"Z)
\’!;T;(/{”Zv) Z ‘6 "1

1
z,, are the roots of znemi(q'z>_1 =0

: and on the unit circle

'>\va (/\“Z>

(2)

The mean gqueue length E{x,ty] at an arbitrary

instant ty before the next sampling clock is the

““1rgt derivative of Gx(z,bty) with respect to 2z
the point z=1. It is (cf. /1/):
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n-4
E[Xlt\/] = ;T‘i’; N

(3)
By the aid of the mean queue length E[x,tv] the
mean waiting time w can be obtained. 1t is

-1
v k| S 5 (e )] @

The probabilities of state p(x,ty) at an arbi-
trary instant ty before the next sampling clock
are achieved by a serial expansion of the gener-
ating function Gx(z,ty) of equ.(2) and a coeffi-
cient comparison with its definition in equ.(1).
The result is according to /1/: :

b4 n Lo X-in-
N-n_ T8 e BT
(et)= o€ Y| 2087 Do R
p V) ;l‘*f“({_‘zv) 3:0( M:O na (X"JH ‘/U)l )
=4
' CBATERD o BT
e g%(%)/smg (x-bn) (54)
for bn $x < (b+1)n, b=0,1,2,..
and with
So =1 n-1
Sy = (2ot 2yt Zpt o * Lnoyg) = :LZ% g
- ] K B
\stz =Byt 2l e LTy = .t%() Zigliy (58)
: (14¢42)

Sn® ZolyZy o Zpy
and additionally ﬁ(‘...)zo for j¢i  (50)
N

In /1/, however, further results were derived,
e.g. an explicit formula for the waiting time

distribution function, but the above formulae
are sufficient for the next sections.

2.1.2. MODEL CORRESPONDING TO THE CENTRAL
PROCESSING UNIT (HODEL B)

The configuration of a model corresponding to
the central  processing unit is shown in Fig.?3
(Mogel B).

from periphery
(k) % sampling switch,

f’ o period T = c-h-

buffer
(infinite capacity)

usIRRRR

central service unit,

constant holding time h

Fig.%: Configuration of ¥Model B

The central service unit has a constant service
time h. Always after a fixed period of ¢ serv-
ice times (c=integral number 21) the samrling
switch is closed and a group of k=0,1,2,...,m
calls arrives from the periphery at the buffer
(clocked group arrivals The probability of k
arriving calls per sampling clock be r(k). It
is assumed in this Model B, that theé probabili-
ties r(k) are independent in successive instants
of the sampling clock. The calls waiting in the
buffer are served serially from the central
service unit with discipline first come, first
served.

The principle way of solution for this system
is similar as for Model A in section 2.1.1.
From the variety of results only the following
two are necessary for this paper.
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The mean queue length E[X,O] (including & calil
in the service unit) directly before the sam-
pling clock (t=0) is according to /1/:

-
B[x,0] = E:‘é ;;:117 (6)

m
where z, are the roots of 2825 r(x)zF=0
outside the unit circle. k=0

The mean waiting time w of all calls then is

(et /a/):
we Elxabhr (SR -k o)
where E[k]| = f;k«r(k) - mean of k  (8A)
ana Var[k] = %ﬁo(k{[k]‘f%{k}: variance of l(8B)

In equ.(7), Erx,01~h is the mean waiting time
of the first call of an arriving group, where-
as the second term results from fthe additional

waiting time of the other calls of the group.

2.2. MODEL OF A TWO-STAGE QUEUING SYSTEM WITH
SAMPIED PARALLEL INPUT QUEUES (MODEL C)
The model described in this section is a combi-~
nation of Model A and Model B of section 2.1,
It is named Model C. Model C corresponds to a
system with the basic structure of Fig.1 and it
is a simplified model of e.g. a common con-
trolled telephone or data switching system., The
configuration of Model C is shown in Fig.4.

"transfer (PSi)

3

5

B

9

Xg;
% primary storages

_sampling switches
(period T=c+h)

22,

secondary storage
(88)

CFrU

— 1

A . central service device
(holding time h)

Fig.4: Configuration of Model C (all storages
are assumed to have infinite capacity)

The primary storages (PSi, i=1,2,...,8) corre-
spond to different peripheral devices. The
secondary storage (SS5) and the central service
device correspond to the central processor unit
(CPU). The primary storages altogether are named
primary system, the secondary storage and the
central service unit form the secondary system.
Primary and secondary system form together the
general system.

The opersting mode of this system is the
following:

The callg arrive according to a Poisson-process
with the arrival rate Ay at the PSi and they
have to wait in the gqueue of PSi. Always after
a fixed time T all sampling switches are closed
simultaneously. When the sampling swilches are
closed, the waiting calls situated in the nj
transfer places of each P3i are transferred to
the 8S. It is assumed, that the calls of PS2
are filed into the SS behind the calls of P51
ebc. without delsy during one sawmpling instant.
The calls waiting in the S5 are served serially
from the central service device with discipline
first come, first served. The centrél service
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device has a constant service time h. The san-
pling period T is an integral multiple ¢ (c21)
of the holding time h.

The following sections of this paper are dealing
with this Model C.

3. ANALYTICAL TREATMENT OF MODEL C
3.1. EXACT SOLUTION FOR THE PRIMARY SYSTEM

With each sampling clock there are removed at

most ni calls from the primary storage PSi and

re transferred to the secondary storage S5S
(see Fig.4). Because the SS is assumed to have
an infinite number of waiting places, there ex-
ists never a blocking of this transfer from the
P3i to the S5, Therefore, the state of any P5i
is not influenced at all by the state of all
other primary storages or the secondary systen.
Hence, the structure and the input/output pro-
cess of a single PSi is identical with the con-
figuration of Model A of section 2.1.71. Thus,
81l characteristic traffic values of interest
may be obtained from Model A ( ¢f. section
2.1.1. and /1/).

%.2. EXACT SOLUTION FOR THE SECONDARY SYSTEM

The structure of the secondary system is identi-
cal with the structure of Model B (see Fig.4

and Fig.?). But there is quite a difference be-
tween the arrival procesg in the SS and the
arrival process in Model B. In Model B it was
assuned, that the probabilities r(k) for an ar-
rival of a group with k calls per sampling clock
are independent in successive sampling instants.
This condition is not fulfilled in the secondary
system for the groups of calls coming from the
primery system with each sampling clock. Let us
see this fact by an example:

The primary system shall consist of only one PS
with n transfer places. If directly before the
sampling clock there are less than n calls in
the PS, then all calls are transferred with the
sampling clock to the SS and the PS is empty
thereafter. Therefore, the size of the group
transferred with the succesgive sampling clock
depends only on the Poisson arrival process of
the PS. If exactly n calls are transferred with
a sampling clock, then more than O calls may be
left in the P3. Therefore, the size of the group
transferred with the successive sampling clock
depends not only on the Poisson arrival process
of the PS, but also on the state of the PS5 di-~
rectly after the sampling clock. Thus, the prob-
ability of the transferred group size depends on
the group size transferred with the previous
sampling clock.

Normally, multi-dimensional probabilities of
state must be used for the solution of Model C.
With the assumption, however, that each number
of transfer places ny is greater or equal to c,
importent characteristic traffic values can be
obtained by only one-dimensional probabilities
of state. The analysis of such systems with
csMin[ns] (where Min[n;] is the smallest of all
ni, i=1,2,...,8) is given in sections 3.2.1.
through %.2.%.

3.2.41. PROBABILITIES OF STATE

To find a solution for the secondary systenm,
first the state of the general system (primary
system + secondary system) is considered slways
directly after the sampling clock. For reasons
of a uniform nomenclature one can say equiva-~
lently, that the general system is considered at
the time T before the next sampling clock.

The probability of xg 5 or Xg 3 calls in the
general system at ti%élT befgfé+§he next sam-
pling clock i or i+1 shall be pg j(x,T) or

PG . 144(%,T), respectively (of. Fig.5)
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Fig.5: Imbedded Markov chain

The state xg at these instants forms an imbedded
Markov chain. The number of calls arriving at
the primary system during the time T shall be
ky. These ks arriving calls have to wait in the
primary system and they cannot be transferred

to the secondary system before clock i. Hence,
only those calls can be served by the service
unit during the time between clock i-1 and i,
which were already presenbt in the secondary sys-
tem directly after clock i-1.

With each sampling clock, ni2c calls can be
transferred at most from PSi to the S85. If
directly after clock i-1 there are xg ;£Min[n,]
calls in the general system, then all xg 3

calls must be situated in the secondary System
and the primary system must be empty. If di-
rectly after clock i-1 there are g i>Min[ni]

{ 11s in the genersl system, then al least
mln[ni] calls must be situated in the secondary
system.

The considerations above lead to the following
facts: :
If directly after clock i-41 there are xgﬁiéc
(c$Min[ni]) calls in the general system, then
all xg 4 calls are served until clock i. If
directly after clock i-1 there are xg j>c¢ calls
in the general system, then exactly ¢c’calls are
served until clock i. Therefore, the following
equation for the state of the general system
directly after the sampling clock holds true:

XG,i+ﬁ=MaX[KXG,i“C)’d]+ki (9

with '
~¢ for xg,2¢

X6i
Max[(xe),;—c) ,0] = { OC’

Equ.(9) is completely analog to an eguation,
which was obtained in /1/ for the state of the
Model A directly before the sampling clock

Ty=0). In this\equation of Model A, only the
number of transfer places n must be replaced Dby
e to get equ.(9). In equ.(9) the number ki of

1ls arriving at the primary system during the

“vime T depends on the total Poisson arrival
proc=ss with the arrival rate

A= (10)

for xg1¢c

Because of the analogy with Model A mentioned
above, the derivation of the generating function
Grg(z,T) of the probabilities of state g (x,T)
diTectly after the sampling clock in the case
of statistical equilibrium can be performed
completely analog to Model A. Thus, analogously
to equ,(?%, one gets for the generating function
Gxg(z,?) of the probabilities p;(x,T) in the
general system directly after the sampling clock
¢4
c-AT rﬂg(z"zv)
Gog (27) = =1 RpTi (e)
TTlt-z,) 2-€

v=4

~AT(-2)

1)

. - Al - .
where z,, are the roots of 2%-e AT Z)=O
inside and on the unit circle (with zg=1)

(Tn"equ. (277 t,=0, ngkc, Agk A leads to
equ.(11)) )
walogously to equ.(3), the expectation of the

“ umber of calls in the general system directly
after the sampling clock then is

fTe 7
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¢4 i
= 54 (AT ¢
EalxT] ;éq/%zv T ATQ) (12)

Finally, the probabilities pg(x,T) of the gene-
ral system directly after the sampling clock are
in analogy to equ.(54):

AT-c [Bloare one Ay
()= ATC | S g ATE
T e 2 e i)
bAT %18, i (AN
e E%(f} iyl(&bcym (13)

with befxd(b+1)c and additicnally equs.(5B)

and (5C) :
As already mentioned asbove, the primary systenm
must be empty, if directly after the sampling
clock there are x<Min[nij] calls in the secondary
system. So in this case the general system con-
tains also xg=x calls. Therefore, the probabili-
ties of state pg(x,T) of the secondary system
directly after the sampling clock sre in the
case of x<Min[ni]:

pS(X,T) = pG(X,T) for X<Min[ni] (14)

For the special case of x<c it follows from
equ.(14) and equ.(13) (with b=0):
AT-¢c c-¥
PxT) = e )" ey
G jiaoﬁzﬁ
(Si from equ.(5B))

for x<c  (15)

3.2.2. MEAN QUEUE LENGTH AND MEAN WAITING TIME

The mean number of calls EG[X,T] in the general
system directly after the sampling clock is
given by equ.(ﬂzg. On the other hand, the mean
queue length Fpilx,T] in a PSi directly after
the sampling clock is available from equ.(3) .
with ty=T. Then, the mean gueue length Eg[x,T]
in the secondary system directly after the sam-
pling clock is

By[x,7] = By[x,1] - ;gngi[x,T] 16y
=

The mean number £g of calls waiting in the sec-
ondary storage, averaged over the whole sampling
period T, is approached by the following consid-
erations: .
The state of the secondary system can change
only at integral multiples of the holding time
before or after the sampling clock. Therefore,
the probabilities of state and the mean queue
length are step functions of bvime between two
sampling instants ( cf. Fig.6)

)
mean queue e ) e
length m@wwe
A
t B TN
e | ! 1 | I
e ¢'h=T (¢-1)h  4h 210 h O
time Gy before
next sampling
clock
sampling ¢ sampling
clock clock

Fig.6: Mean queue lenglth in the secondary system

So the secondary system is considered now at
time instants ty=j-h (§=0,1,2,...,c) before the
next ssmpling clock. Since the last sampling
clock, ¢~j calls may be served at most until the
ingstant tv=J<h before the next sampling clock,



Then, for the probabilities of state pg(x,jh) of
the secondary system at the time ty=jh before
the next seampling clock the following equabion
holds true: . :

, gz
ps(»osah) = X:épSCX’T) i
' . - - 0,1,..,¢
ps(x‘gh) = pS(X+C~aﬂ) for %30 L1y

The probabilities on the right hand side of
equ,(17) are known from equ.(15) (up to
x+o_j<Min[ni]). i
If the secondary storage contains x>0 calls at
an arbitrary instant, then the service unit is
occupied and the secondary system contains x+1
calls. Therefore, the mean number of calls
Qg(3h) waiting in the secondary storage (85)
st an instant by=Jh before the next sampling
clock is

00

Qg(in) = Ez%XpS<X+4‘jh) (18)
e

The mean number of calls fig waiting in the S8,
averaged over a whole sampling interval T is

c
1 <& .
J=1
or with equ.(18)
Qg =52 2 #xpg(x+1, 3h) (19)
j::q X=" :

Substituting equ.(17) into equ.(19) leads after
several transformations to

C
i

T
og 6fl- Sligyiomon] @

Eg[x,T] is known from equ.(16), pg(x,T) is
known from equ.(15).

With the general equation Rg=Awg and with
equ.(20) the mean waliling tiie wg of all calls
in the secondary system is derived as

o,
s = g\: [FS{Y ;‘-]_ %_ j>”-:2 (j ~x2;0(3—><)P5 (X,ﬂ):l (21)

3.2.%. PROBABILITY OF WAITING

At first, the probability Wg(=0) is determined,
that a call arriving at the secondary systen
must not wait,.

‘Only the first call of an arriving group must
not wait, when the secondary system is eumply
directly before the sampling clock. The proba-
bility of an empty secondary system directly
before the sampling clock is obtained from
equ.(17) with J=0: c

Pg(0,0) = 2 pg(x.T) - (22)

If the secondary system is empty directly be-
fore the sampling clock i, then directly after
the previous sampling clock i-1 there were &c
calls in the secondary system. In this case, the
whole primary system was empty directly after
the previous sampling clock i-1 (cf. section
%.2.1). Then, the probability that a call is
transferred at all from the primary tc the sec-
ondary system with sampling clock 1 is because
of the Poisson arrival process

N ny

1 e

Hence, the probability that a group with at
least one call arrives with the sampling clock
and finds the secondary system empty, is

pg(0,0)-(1 - ™4
Because in this case only the first call of the
arriving group must not wait, )

pg(0,0):(1 - ey
calls arrive in the mean per ssmpling clock at

N
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-probability pp

the secondary system, which do not have to wailt.
Kltogether AT calls arrive per sampling clock in
the mean. Therefore, the provability Wg(=0) is

< e oo AT
Wy(e0)= ROHCT) (23)

‘The probability of waiting Wg(>0) then is

WS(>O) = 1 - WS(:O) (ou)
Bqus.(22) and (23) can be inserted into equ.(24),

3.3, RPPROXIMATE SOLUTIONS FOR THE SECONDARY
SYSTEM

3.3.1. APPROXTUMATION OF THE MEAN WAITING TIME,
WHEN THE NUMBER OF TRANSFER PLACES PER
PS IS SMALLER THAN c¢.

1f the number of transfer places n; per PS5 is
smaller than ¢, the caleculation me%hod shown in
section 3.2 for systems with njic is not appli-
cable. The reason is explained by an examnple.
The number of transfer places of all PSi shall
be uniformly n<c. Directly after a sampling
clock there shall be xg calls in the gensral
system, with nd(xg<c. Then, either all x, calls
may be situsted in the secondary system and the
primary system is empty, or less than xg but
more than or equal to n calls may be situated in
the secondary system and the rest is situated in
the primary system. The latter case occurs, if
e.g. directly before the sampling clock one P51
containg xg calls and all other PSi and the
secondary system are empty. Hence, for the de-
termination of the number of calls, served until
the next sampling clock, it is not sufficient to
know only the state of the general system direct-
1y after the sampling clock, but the states of
all PSi and the secondary system are used. This
requires the application of mulbti-dimensional
probabilities of state, as already mentioned in
section 3.2. :

For symmetrical systems (nj=n and Aj=A for
i=1,2,...,8), however, an approximate solution
for the mesn waiting time wg of all calls in the
secondary system was found. This method is based
on Model B and it is described in the following.

The absolute probabilities r(k), that k calls
arrive per sampling clock at the secondary sys-
tem, can be calculated by the aid of the proba-
bilities of state pp;(x,0) of the ISi directly
before the sampling Clock (c.f. equ.(54,B,C)with
ty=0). The probability, that from one PSi x<(n
calls are transferred, is identical with the

.{(x,0), that the PSi contains ex-
actly x calls'&irectly before the sampling clock.
The probability, that from one PS1i exactly n

. calls are transferred, is identical with the

probability, that the PSi contains more than or
equal to n calls directly before the sampling

clock, i.e. n-1
- z;prl(xxo) ¢
X=

Then, the probabilities r(k) of the global group
transferred from the whole primary systen to the
secondary system are obtained by a convolution
of the sbove probabilities. The limits for the
group size k are &
04k s > n.

=t
The first simple spproximation is, to assume the
probabilities r(k) as independent from each oth-
er in successive ssupling instants. Then, Nodel
B is applicable with

m o= Egjni = gn
i=1 :

and so the approximate mean waiting time wg is
obtained from equ.(?7). Simulation runs on Sigit-
al computers have shown, that this siwple ap-
proximation underestimstes the mean wailting tinme
wg in particular for a large offered traffic.
The reason for this underestimation can be ex-~
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plained qualitatively:

If the maximum cf n calls is transferred from

one PSi to the 85, the following two facts are

important:

~Firstly, the transferred group is relatively

Jlarge, so that directly before the next sam~

{ ing clock normally the secondary system con-
vainsg relatively many calls.

-Secondly, there is a certain probability, that
calls are left in the FSi and therefore a group
of at least one call 1s transferred with the
succeeding sampling clock. The waiting time of
the first call of this group is relatively
large because of the first fact.

In Model B, this correlation is neglected.

Now, the idea for a better approximation is to
increase the mean waiting time of the first call
of a group, arriving at the SS, by a factor Fg
against that one of Model B. Thus, from eqgu.(?)
it follows for the approximate mean waiting

time wg (cf. also remark below equ,(8)):

o A Var[K]. - e
\'\/s" Fs E[XIO]‘h+ '2“(‘*Em~+E[kJ“4)h (d;))
The factor ¥o takes into account the correlation
mentioned above. One measure for this correla-
tion is the probability, that at least one call
is left in the primary system directly after the
sampling clock, i.e. the primary system contains
at least one call at the time ty=T before the
ne~% sampling clock. Because of the assumption

¢ 1 symmetrical system, this probability is

1 - (pP(O,T))g .

pp(0,T) is the probability, that one PS contains -

0 calls directly after the sampling clock
(ef. equ.(5A,B.C) with ty=T).

Lots of simulation runs have proofed, that the
factor Fg may be assumed generally as

Fg = 1+ 1.9[? - (pp(0,1))8 ] (26)

In equ.(25), the factor Fg is inserted from
equ.(26). All other terms are calculated with
equs.(6) and (8A,B) of Model B (with m=gn).

The accuracy of this approximation is sufficient
for practical applications. In all cases,
proofed by a lot of simulation runs, the differ-
ence between the approximate values of equ.(25)
and the simulated values for wg was less

than 10%. .

Finally it should be noted, that the case of a
maximum group size m=gnsc 1is trivial, because in
this case always ‘the group of arriving calls is
served completely until the next sampling clock.
Therefore, the arriving groups always find an

€ .y secondary system and so equ.(7) of Model B
is applicable for wg with E{x,0] =0,

3.%.2, APPROXTMATION OF THE MBAN WAITING TIME,
WHEN THE CLOCK FERIOD IS NOT AN INTEGRAL
WOULTIPLE OF THE HOLDING TIME

If the sampling clock period T is not an inte-
gral multiple of the holding time h, the follow-
ing approximation for the mean waiting time wg
of all-calls in the secondary system is appli-~
cable: ) '

The sampling clock period shall be T=ch, where

¢ is a real valuve between the two successive in-
tegral values cy and cg. Then, the mean walting
Vimes wg ¢y and wg oo are calculated each ac-
cording to equ.(21) or equ.(25) once with c
and once with ¢y, respectively, without change
of all other parvameters. The mean walting time
wg of the real system then is obtained approxi-
mately by linear interpolation between Wg, cu
and WS,CO:

We = <C'Cu>ws,co + (c0~c)w (27)

S,cu

Simulation runs on digital computers have shown,
. S )

¥ t the approximate values of equ,(af) are

1. ner close to the simulated values (in most

cases <5% difference).
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3.4, MEAN WAITING TIME IN THE GENERAL SYSTEM

The mean wailting time of the calls in PSi shall
be wpj, which can be calculated from equ.(4).
Then, the mean waiting time wp of all calls in
the whole primary system is the weighted sum
A
Woy = > et W (28)
P b A TPi ,
The meen waiting time wg of all calls in the
general system is the sum of wp and wg

We = Wp + g ‘ ‘ (29)

wg is the waiting time, which a call has to wait
in the mean from its arrival at the primary
system until the beginning of its service in the
central service unit.

%.5. MODIFICATION OF MODEL C WITH CYCLICALLY
CLOSED SAMPLING SWITCHES. )

In Model C, the sampling switches of all PSi are
closed simultaneously ( ¢f. Fig.4). Another
operating mode of such a system may be, that
only one sampling switch is closed per sampling
instant in a ¢yclical manner,.

Then, again the characteristic traffic values
for each primary storage PSi can be obtained
from the results of Model A when taking into
consideration, that the time interval between
two successive sampling instants of the same
PSi is T=g-c-h.

For the mean waiting time wg of all calls in the
secondary system a similar approximation as in
section 5.%.1 is applicable for symmetrical sys-
tems (ni=n and A3="A for i=1,2,...,g), using
Model B as a basis. The absolute probabilitics
r(k), that k calls arrive per sampling clock at
the 55, depend on the probabilities of state of
only one PSi directly before the sampling clock
coordinated to this PSi. They are known by the
aid of equ.(54,B,C) with ty=0 and T=gch (cf.
also section 3.3.1). The limits for the group
size now are O£k <n.

Similar cosiderations as in section 3.%3.1, con=-
cerning the first call of an arriving group,
lead to the following formula for the approxi-
mate mean waiting time wg: ‘

v = oEpohe 4 (e[ -1)h  s0)

All terms on the right hand side of equ.(30),
exceplt the factor Fg, are calculated with
equs.(6) and (B8A,B) of Model B (with m=n).

Lots of simulation runs on digital computers
have proofed, that for the following different
cases the factor F, in equ.(30) may be assumed
as ‘

FC = 145.5(1“1)};(07‘1‘)) for c=1 for (BqA)
Fo = ﬂ+2.8(4~pP(O,T)) for c=2 <30 (31B)
Fo = 141.9(9-pp(0,1)) for c§3J (31C)
FC = © for g-c 230 (3%1D)

«

pp(0,T) is the probability, that a PS contains
O calls directly after the sampling clock co-
ordinated to this PS8 (c.f. equ.(5A,B,C) with
ty=T and T=g-c-h).

In all cases, proofed by a lot of simulation
runs, the difference between the approximatbe
values of equ.(30) and the simulated values for
wg was less than 10%.



4. EVALUATIONS AND NUMERICAYL RESUILTS

Fig.?7 shows the mean waiting time wp; of a pri-
mary storage PSi according to equ.(23

tion of the arrival rate Ay, The number of
transfer places nq is used as parameter.

30-

Fig.7: Mean waiting time wp; of a primary
storage PSi . i

- The mean waiting time wg of the secondary systen
depends on such a variety of parameters, that it

is impossible to draw only one chart of wg for
all parameter combinations. But by the aid of

only two charts, however, the exact mean waiting
time wg for systems with csMin{nji] can be obtained

numerically as described in the following.
Substituting equs.(14) and (16) into equ.(21),
one gets - : . _

- ) g_‘ '. .‘3:"‘ \ . e »

wg = %LEG{XIJ -2 (2 ineb) - 2 EPJX'”] 2)
S Y
GS

The term indicated with GS in equ.(32) depends
only on the parameters A and T=ch of the general
system. Fig.8 shows the numerical values of GS
as & function of A with parameter c.
Furthermore, for each PSi the mean queue length
Epi[x,7] directly after the sampling clock can
be calculated separately according to equ.(3)
with ty=T. Fig.9 shows the numerical values of
Epslx,17 as a function of A3 with parameter ng.
Thus, by the aid of Fig.8 end Fig.9 the mean
waiting time wg can be obtained numerically
according to equ.(%2).

The probability of waiting Wg(>0) in the sec-
ondary system according to equ.(24) is shown in
Pig.10 for systems with c<Min{n;] . It depends
orily on the parameters A and ¢ of the general
system.

Finelly, an ecxample for the approximate mean
waiting time wg in the secondary system of a
symmetrical system with nm<c and simultaneously
closed sampling switches is given in Fig.11,
according to equ.(25). Many lests have shown,
that the simple approwimation with Model B is
sufficient for practical applications in the
case of an offered traffic Ah<0.5 (cf. also
dashed line a in Fig.41). However, for an of-
fered traffic A'h¥0.5 the more accurate approx-
imation according to equ.(2%)should be applied
(cef. also solid line b in Fig.11).

as a func-
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5. CONCLUSION

4 two-stage queuing system is dealt with, which
corresponds to a simplified model of a central
controlled telephone or data switching system.
The characteristical operating mode of this
model is the clocked transfer of informations
from the periphery to the central unit.

In principle, this model is a combination of two
different single-stage models, which were ear-
lier dealt with independently from each other

in /1/. However, this two-stage model takes into
account the dependency of the state of the cen-
tral unit on the periphery. Exact solutiuns as
well as approximate solubtions are derived in
particular for the nmean waiting times.

Further investigations, to be published at some
fubture time, will concern with a modification

of the service process in the central service
unit. Different classes of informations with
constant, but different holding times will be
taken into account.
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