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A two-stage queuing system is dealt with, which corresponds
1o a simplified model of a real time computer system. The
primary system consisis of g parallel storages {input queues)
corresponding to different peripheral devices. The secondary
system consists of a buffer and a service unit corresponding to
the central processor unit. Always at fixed, equidistantly distri-
buted instants the input queues are inspected for waiting infor-
mations in order to transfer them to the central unit.

By analytical treatment of this model solutions for the proba-
silities of state, mean waiting time and probability of waiting
are obtained.

Finally, several numerical results are presented.

Es wird ein zweistufiges Wartesystem behandelt, welches einem
vereinfachten Modell eines Realzeitrechnersystems entspricht.
Das Primdrsystem besteht aus g parallelen Wartespeichern
( Eingangswarteschlangen), welche den verschiedenen periphe-
ren Gerdten entsprechen. Das der Zentraleinheit entsprechende
Sekunddrsystem besteht aus einem Pufferspeicher und einer
Bedienungseinheit. Die Eingangswarteschlangen werden jeweils
in Taktzeitpunkten mit konstantem Abstand nach wartenden
Anforderungen abgefragt, um diese in die Zentraleinheit zu
iibernehmen.
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Teletraffic Congress, Stockholm, June 13-20, 1973,
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Die analytische Behandlung dieses Modells fiihrt auf Lisungen
fiir die Zustandswahrscheinlichkeiten, mittlere Wartezeit und
Wartewahrscheinlichkeit. H

Schlieflich ist noch eine Reihe von numerischen Ergebnissen
angegeben.

1. Introduction

The structure of real time computer systems can be sub-
divided into two main functional parts, namely the periphery
and the central unit. The informations, generated in the
peripheral devices, must be transferred to the central unit,
where they are processed. On the other hand, instructions
generated in the central unit must be transferred to the
peripheral devices. In this paper, the transfer of informations
from the periphery to the central unit is considered.

In principle, two different modes arc possible for this transfer:
Firstly, the informations can be transferred to the central
unit directly after their generation in the periphery. But each
input/output operation requires a certain amount of orga-
nization time in the central unit (overhead) and the currently
processed program must be interrupted. Therefore, the dis-
advantage of this method is, that each randomly generated
information causes an interrupt in the central processor unit.
This would result in a relatively large amount of overhead
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and so the waiting times of the informations would be in-
creased in particular for a large offered traflic.

Sccondly, the informations may be buffered in the periphery
after their gencration. The central unit may inspect the peri-
phery for waiting informations in adequate time intervals.
This method is mostly used e.g. in modern computer con-
trolled telephone or data switching systems. The time interval
between two “inspection instants’ is constant in most of the
realized systems. Thus, the information transfer between the
periphery and the central processor unit (CPU) takes place
in fixed intervals of time, The basic structure of such a
“sampled queuing system™ is shown in Fig. 1. The clocked
information transfer between the periphery and the CPU is
indicated by a sampling switch (gate).

peripheral devices
of the common control.

information l sampling
transfer ( switch

cPU

Fig. 1. Basic structure of a sampled qucuing system.

In this paper in particular the waiting times of the infor-
mations in systems according to Fig. 1 are analyzed by the
aid of simplified mathematical models. For this analysis, two
single-stage modecls arc used as a basis, which were alrcady
dealt with by the author in [I]. One of these models cor-
responds to a peripheral device, the other one corresponds to
the CPU. In this paper, however, a two-stage model is dealt
with, which corresponds to the general system of Fig. 1 and
which takes into account the dependency of the state of the
CPU on the periphery.

2. Description of models

2.1 Single-stage models for sub-systems

Because the two single-stage models mentioned above are
used as a basis for the investigations in the further sections,
their structure and their main results are briefly described in
the following. Thier detailed analysis and further results can
be found in [1].

2.1.1 Model corresponding to a peripheral device (Model A)
The configuration of a model corresponding to a peripheral
device is-shown in Fig. 2 (Model A).

%H-:

) n transfer places

sampling switch
(clock period T)

= o] 2

io the CPU Fig. 2. Configuration of Model A.
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The calls arrive according to a Poisson-process with the
arrival rate 4. They have to wait in the queue in the order of
their arrival (probability of waiting = 1). Tt is assumed, that
there is an infinite number of waiting places, Always after a
fixed interval of time 7 the sampling switch is closed and the
waiting calls situated in the # “transfer places™ in front of
the queue are transferred c.g. to the buffer of a CPU. Tt is
assumed, that this transfer cannot be blocked.

The principle way of solution for this madel is the following
(cf. [1]:

The state x of the system is considered always at fixed instants
1 (0 < 1y < T before the next sampling clock, The state x
at these instants forms an imbedded Markov chain. Then, the
generating function Gx (z, t,) of the probabilities p (x, 1, of
state x at the instant 7, before the next sampling clock i
derived for the case of statistical equilibrium, The definition
of the generating function Gx (z, 1y) is

oy

Gx(z1,)= 3y p(x,1,)Z §))

x=0

The generating function Gx (z, ty) derived in [1]1is:

n-1
n—AT ﬂ(z-«zv)
GrE= .z"-v;‘oruhz)m1'emu“z) (2)
[ a-2)

where z, are the roots of z7e*T0~2 ~1=0 inside and on the
unit circle (note: zo=1 is always a root).

‘The mean queue length E [x, 1,] at an arbitrary instant fy

before the next sampling clock is the first derivative of
Gx (z, t,) with respect to z at the point z=1. 1t is (cf. [1Dh:

. "t (n=iTY=n
[, 0,]= Y i, (3
E[x,1,] PSP T g M, (3

v=1

By the aid of the mean queue length £ [x, tp] the mean walit-
ing time w can be obtained. It is

I | n 1 ‘
e | I

v=1

The probabilitics of state p (x, 1) at an arbitrary instant fy
before the next sampling clock are achieved by a serial ex-
pansion of the generating function Gx (z, tp) of equ. (2) and
a coefficient comparison with its definition in equ. (1}. The
result is according to [1]:
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and additionally

i(...):() for j<i (5C)

In [1], however, further results were derived, e.g. an explicit
formula for the waiting time distribution function, but the
above formulae are sufficient for the next sectione

2.1.2 Model corresponding te the -
{(Modcl B)

The configuration of a = corresponding to the central
processing unit is show i Fig. 3 (Model B).

from periphery

(k) i
sampling switch,

j/ period T« ¢k

o buffer

— | (infinite capacity)

central service unit,
constant holding time h

Fig. 3. Configuration of Model B.

The central service unit has a constant service time . Always
after a fixed period of ¢ service times (¢ = integral number =1
the sampling switch is closed and a groupof k=0,1,2, ..., m
calls arrives from the periphery at the buffer (clocked group
arrivals). The probability of & arriving calls per sampling
clock be r (k). Tt is assumed in this Model B, that the proba-
bilities r (k) are independent in successive instants of the
. 'mpling clock. The calls waiting in the buffer are served
~crially from the central service unit with discipline first come,
first served.
The principle way of solution for this system is similar as for
Model A in section 2.1.1. From the variety of results only the
following two are necessary for this paper.
The mean queue length E [x, 0] (including a call in the service
unit) directly’ before the sampling clock (t,=0) is according

to [1]:
m~ i 1

—— ©

wZe Zu—1

E[x,0]=

where z, are the roots of

25— Zm: r(k)z*=0

k=0
outside the unit circle.

The mean waiting time w of sl ealls then s (¢f. [1]):

I (Varfkt ‘
wes 1] x, 0] h+ ) ( kLK) [ k] 1) 1 (7}
where
ffk]=> k-r(ky=men ¢ (8A)

k=0

and

m
Var[k]= Y (k—E[k])?*-rtt) variance of k (8 B)
k=0
In equ. (7), Ex, 0] A i= i swan waiting time of the first
call of an arrivine croup, whereas the second term resulls
from the additional waiting time of the other calls of the

proup,

2.2 Model of a two-stage queuing system  with  sampled
parallel input queues ( Model C)

The model described in this section is a combination of
kaodel A and Model B of section 2.1. Tt is named Model C.
Madel C corresponds to a systemn with the basic structure of
Fig. I and it is a simplified model of a redl time computer
system. The configuration of Modecl C is shown in Fig. 4.
The primary storages (PSi, i=1,2,...,¢) correspond to
different peripheral devices. The sccondary storage (SS) and
the central service device correspond to the central processor
unit (CPU). The primary storages altogether are named
primary system, the secondary storage and the central service
unit form the sccondary system. Primary and secondary sys-
tem form together the general system.

The operating mode of this system is the following:

The calls arrive according to a Poisson-process with the
arrival rate 4; at the PSi and they have to wait in the queue
of PSi. Always after a fixed time 7 all samphng switches are
closed simultaneously. When the sampling switches are
closed, the waiting calls situated in the n; transfer places of
each PSi are transferred to the SS. It is assumed, that the
calls of PS2 are filed into the SS behind the calls of PS1 etc.
without delay during one sampling instant. The calls waiting

primary storages
(PSi)

"transfer *
" L
places .
sampling switches
(period T =c-h)

secondary storage
(S5)
CPU

central service device

(holding time )

Fig. 4. Configuration of Model C (all storages are assumed to have
infinite capacity).
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in the SS are served serially from the ventral service device
with discipline first come, first served, The central service
deviee has a constant service time /1. The sampling period 77
is an integral multiple ¢ (¢ 22 1) of the holding time /.

The following scctions of this paper are dealing with this
Model C.

3. Analytical treatment of madel C

3.1 Exact solution for the primary system

With each sampling clock there arc removed at most ng calls
from the primary storage PSi and are transferred to the
sccondary storage SS (sce Fig. 4). Because the SS is assumed
to have an infinitc number of waiting places, there cxists
never a blocking of this transfer from the PSi to the SS.
Therefore, the state of any PSi is not influenced at all by the
state of all other primary storages or the secondary system.
Hence, the structure and the input/output process of a single
PSi is identical with the configuration of Model A of section
2.1.1. Thus, all characteristic traffic values of interest may be
obtained from Model A (cf. section 2.1.1 and [1]).

3.2 Exact solution for the secondary system

The structure of the sccondary system is identical with the
structure of Model B (see Fig. 4 and Fig. 3). But there is
quite a difference between the arrival process in the SS and
the arrival process in Model B. In Model B it was assumed,
that the probabilities r (k) for an arrival of a group with k
calls per sampling clock are independent in successive sam-
pling instants. This condition is not fulfilled in the secondary
system for the groups of calls coming from the primary sys-
tem with each sampling clock. Let us sec this fact by an
example:

The primary system shall consist of only one PS with »
transfer places, i directly before the sampling clock there
are less than n calls in the PS, then all calls are transferred
with the sampling clock to the $S and the PS is empty there-
after. Therefore, the size of the group transferred with the
successive sampling clock depends only on the Poisson arrival
process of the PS. If exactly n calls are transferred with a
sampling clock, then more than 0 calls may be left in the PS.
Thercfore, the size of the group transferred with the successive
sampling clock depends not only on the Poisson arrival pro-
cess of the PS, but also on the state of the PS directly after
the sampling clock. Thus, the probability of the transferred
group size depends on the group size transferred with the
previous sampling clock.

Normally, multi-dimensional probabilities of state must be
used for the solution of Model C. With the assumption,
however, that each number of transfer places n; is greater or
cqual to ¢, important characteristic traffic values can be
obtained by only one-dimensional probabilitics of state. The
analysis of such systems with ¢ £ Min [m] (where Min [n]
is the smallest of all my, i=1,2,...,£) is given in sections
3.2.1 through 3.2.3.
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3.2.1 Probabilitics of state

To find a solution for the sccondary system, first the state of
the general system (primary system 4 secondary systomy s
considered always directly alter the sampling clock. For
reasons of a uniform nomenchiture one can say cquivalently,
that the general system is considered at the time 7 before the
next sampling clock.

The probability of xe,; of x¢, 1 calls in the general system
at time T before the next sampling clock i or i+ 1 shall be
pa.t (x, TYor pe it (x, T), respectively (cf. Fig. 5).

Xe X6, ied
pe (2 T K, pe et T
~ /
1 J 2 T 20080 1 ¢ ¢
ot [ 0 o]
sampling sompling
clock i 1 clock ¢

Fig. 5. Imbedded Markov chain.

The state x¢ at these instants forms an imbedded Markov
chain. The number of calls arriving at the primary system
during the time T shall be k. These ky arriving calls have to
wait in the primary system and they cannot be transferred to
the secondary system before clock i. Hence, only those calls
can be served by the service unit during the time between
clock i—1 and /, which were already present in the secondary
system directly after clock —1.

‘With each sampling clock, n; = ¢ calls can be transferred at

most from PSi to the SS. If directly after clock i~ 1 there are
xe,1 < Min [m] calls in the general system, then all x¢q
calls must be situated in the sccondary system and the primary
system must be empty. If directly after clock i~ 1 there are
x¢,1 > Min [n] calls in the general sjfs;!cm, then at least
Min [n] calls must be situated in the scc’:ondary system.
The considerations above lead to the following facts:

1f directly after clock i—1 there are x¢,; £ ¢ (¢ = Min [n])
calls in the gencral system, then all x¢;,; calls are served until
clock i. If directly after clock i—1 there are x¢,¢ > ¢ calls in
the general system, then exactly ¢ calls are served until
clock i. Therefore, the following equation for the state of the
general system directly after the sampling clock holds true:

Xg.i+1=Max[(xg,,— ) 0] +k; )
with
, (x; ,—¢ for x;,=z¢
Max [(x ‘"C,O — G.i Tl E
[( G.i ) ] {() for Xg. i <€

Equ. (9) is completely analog to an equation, which was
obtained in [1] for the state of the Model A directly before
the sampling clock (1, = 0). In this equation of Model A, only
the number of transfer places » must be replaced by ¢ to get
equ. (9). In equ. (9) the number A; of calls arriving at the
primary system during the time T depends on the total
Poisson arrival process with the arrival rate

4
A=Y A (10)

imeq



Because of the analogy with Model A mmiioncd above, the
derivation of the gencrating function G (2, T) of the proba-
bilitics of state pe; (x, T) directly after the sampling clock in
the case of statistical equilibrium can be performed com-
pletely analog to Model A, Thus, analogously to equ. (2),
one gets {for the generating function Gye (z, T) of the proba-
bilitics pe; (x, T in the general system directly after the sam-
pling clock

c-1

¢~ AT ) IV] (z=2

v 0 L AT (1 =2)
AT (1-2) (o

—

Gxg(z. T)=

i s

where z, are the roots of z¢—e 4T1-2) :O inside and on the
unit circle (with zo=1) (In equ. (2): =0, n# ¢, 1 4% A
Jeads to equ. (11)).
Analogously to equ. (3), the expectation of the number of
calls in the general system directly after the sampling clock
then is
o) (c=AT)Y —c
Ee[x.T]= ) :_z 2(AT)~c) (12)

v=1

Finally, the probabilities p¢ (x, T) of the general system
directly after the sampling clock are in analogy to equ. (§A):

AT—c Jr-ty e
pe(x, T)=7=5 I:Z (L’“MT Y (=S,
-zl &

v=1

( A,T)x Jje— x~be -
““““““““ hAT Z ( l) uSc*ﬂ

(13)

(x—bc—pu)!
with bc £ x < (b+1) c and additionally equs. (5B) and (5C).
As already mentioned above, the primary system must be
empty, if directly after the sampling clock there arc
x < Min [m] calls in the secondary system. So in this case
the general system contains also x¢ = x calls. Therefore, the
probabilitics of state pgs(x,T) of the secondary system
directly after the sampling clock are in the case of x < Min [n]:

ps(x, T)=pg(x,T) for x<Min[n] (14)
For the special case of x < ¢ it follows from equ. (14) and
equ. (13) (with 6=0):

AT—
ps(x,T)= —~—-——~C~ (—

TI (1-z,)

v=1

(S5; form equ. (§B))

(——AbT)x be— u:l

N *S,._, for x<c (15)

3.2.2 Mean queue length and mean waiting time

The mean number of calls E¢ [x, T] in the general system
directly after the sampling clock is given by equ. (12). On the
other hand, the mecan quecue length Ep;[x, T] in a PSi
directly after the sampling clock is available from equ. (3)
with 1,=7. Then, the mean queue length Eg [x, 7] in the
secondary system directly after the samplmg clock is

Es[x, T}=Eg[x, T]- Z Ep[x.T] (16)

mean queue
length

e b T (e~ )R Y h 0
time t, before
next sampling
clock sampling sampling
clock clock

Fig. 6. Mean queue length in the secondary system.

The mean number 5 of calls waiting in the s;cccmﬁdary
storage, averaged over the whole sampling period 7, is ap-
proached by the following considerations:

The state of the secondary system can change only at integral
multiples of the holding time before or after the sampling
clock. Therefore, the probabilities of state and the mean
queue length are step functions of time between two sampling
instants (cf. Fig. 6).

So the secondary system is considered now at time instants
th=j"h (j=0,1,2,...,¢) before the next sampling clock.
Since the last sampling clock, ¢ —j calls may be served at most
until the instant fy,=j-h before the next sampling clock.
Then, for the probabilities of state pg (x, ji) of the secondary
systern at the time 1, =jh before the next sampling clock the
following equation holds true:

c—-j
pS(O’jh):x‘S‘Op‘S(X’ T) |j=0,l,;.
ps(x, jh)y=ps(x+c—j, T) for x>0] (a7
The probabilities on the right hand side of equ. (17) are
known from equ. (15) (up to x+c—j < Min [m)).
If the secondary storage contains x > O calls at an arbitrary
instant, then the service unit is occupied and the secondary
system contains x+ 1 calls. Therefore, the mean number of
calls £ (jh) waiting in the secondary storage (SS) at an
instant 1y = h before the next sampling clock is

o

Qs ()= 3 xps(x-+1. jh) (18)

The mean number of calls {2 waiting in the SS, averaged
over a whole sampling interval T'is

e ‘
Qs=— 3 Qs(jh)
¢ =
or with equ. (18)

Qsm »»»»» Z Z xps(x+1,jh) (19)
Jj=1x=1
Substituting equ. (17) into equ. (19) leads after several trans-
formations to

Q= Eg[x, T]—~~ Z [1- Z (Jj—x)psix T)] (20)

Ey [x, T] is known from equ. (16), ps (x, T) is known from
equ. (15).
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“With the general equation Q¢=.1+ wg and with cqu. (20)
the mean waiting time wg of all calls in the secondary system
is derived as

| I 4|
\’\r‘s'::: 4/1 [",S L\’. T) e '(‘

¢ J-1
X1 (j B Zn (J=x)pslx, T)):l
STV AE

(21)

3.2.3 Probability of waiting

At first, the probability Wy (=0) is determined, that a call
arriving at the secondary system must not wait.

Only the first call of an arriving group must not wait, when
the secondary system is empty directly before the sampling
clock. The probability of an empty sccondary system directly
before the sampling clock is obtained from equ. (17) with
j=0:

Ps(0.0)= Y ps(x,T) (22)
x =0

If the secondary system is empty directly before the sampling
clock i, then directly after the previous sampling clock i—1
there were < ¢ calls in the secondary system. In this case, the
/hole primary system was empty directly after the previous
sampling clock i—1 (cf. section 3.2.1). Then, the probability
that a call is transferred at all from the primary to the
secondary system with sampling clock i is because of the
Poisson arrival process
1—e 1T,

Hence, the probability that a group with at least one call
arrives with the sampling clock and finds the secondary sys-
tem empty, is

ps(0,0)-(1—e™"").

Because in this case only the first call of the arriving group
must not wait,

ps(0,0)-(1—e ) 1

calls arrive in the mean per sampling clock at the secondary
system, which do not have to wait. Altogether AT calls arrive
per sampling clock in the mean. Therefore, the probability
Ws(=0)is

ps(0,0)-(1—e™*T)

Ws(=0)= .

(23)

The probability of waiting Ws (> 0) then is
Ws(>0)=1—Ws(=0) (24)
Equs. (22) and (23) can be inserted into cqu. (24).

3.3 Approximate solutions for the secondary system

3.3.1 Approximation of the mean waiting time, when the
number of transfer places per PS is smaller than ¢

1f the number of transfer places n; per PS is smaller than c,

the calculation method shown in section 3.2 for systems with

ny = ¢ is not applicable. The reason is explained by an

example. The number of transfer places of all PSi shall be

uniformly n < ¢. Directly after a sampling clock there shall
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. from the whole primary system to the

be ve calls in the general system, with # =2 xq < . Then,
cither all x¢ calls may be situated in the secondary system
and the primary system is empty, or less than xg but more
than or equal to n calls may be situated in the sccondary
system and the rest is situated in the primary system. The
fatter case occurs, if c.g. directly before the sampling clock
one PSi contains v calls and all other PSi and the secondary
system arc empty. Henee, for the determination of the number
of calls, served until the next sampling clock, it is not sufficient
to know only the state of the general system directly after the
sampling clock, but the states of all PSi and the sccondary
system are used. This requires the application of multi-
dimensional probabilitics of state, as already mentioned in
section 3.2,

For symmetrical systems (= n and 4y=4for i=1,2, ..., £),
however, an approximate solution for the mean waiting time
ws of all calls in the secondary system was found. This
method is based on Model B and it is described in the follow-
ing. -

The absolute probabilities r (k), that k calls arrive per sam-
pling clock at the secondary system, can be calculated by the
aid of the probabilities of state pp; (x, 0) of the PSi directly
before the sambling clock (c.f. equ. (5A, B, C) with #,=0).
The probability, that from one PSi x < n calls are transferred,
is identical with the probability pp; (x, 0), that the PSi con-
tains exactly x calls directly before the sampling clock. The
probability, that from one PSi exactly n calls are transferred,
is identical with the probability, that the PSi contains more
than or equal to n calls directly before the sampling clock, i.e.

n—1

1- Z pri(x,0).
x=0
Then, the probabilities 7 (k) of the global group transferred
ndary system are
obtained by a convolution of the above probabilitics. The
limits for the group size k are

M-

0sks=s
i

n;.

it

i

The first simple approximation is, to assume the probabilities
r (k) as independent from each other in successive sampling
instants. Then, Model B is applicable with

a
m=y m=gn
i=1

and so the approximate mean waiting time wg is obtained
from equ. (7). Simulation runs on digital computers have
shown, that this simple approximation underestimates the
mean waiting time wg in particular for a large offered traffic.
The reason for this underestimation can be explained quali-
tatively:

1f the maximum of » calls is transferred from one PSi to the
SS, the following two facts are important:

-~ Firstly, the transferred group is relatively large, so that
directly before the next sampling cloek normally the
secondary system contains relatively many calls.

e ——



# —Secondly, there is a certain probability, that calls are left
in the PSi and therefore a group of at least one call is
transferred with the succeeding sampling clock. The waiting
time of the first call of this group is relatively large because
of the first fact,

In model B, this correlation is neglected.

Now, the idea for a better approximation is to increase the
mean waiting time of the first call of a group, arriving at the
S8, by a factor Fy against that onc of Model B. Thus, from
equ. (7) it Tollows for the approximate mean waiting time wg
{cf. also remark below equ. (8)):
("Var [k
L E[k]
The factor Fy takes into account the correlation mentioned
above. One measure for this correlation is the probability,
that at least one call is left in the primary system directly
after the sampling clock, i.e. the primary system contains at
least one call at the time t, = T before the next sampling clock.

Because of the assumption of a symmetrical system, this
probability is

1—(pp(0, ).
pr (0, T) is the probability, that one PS contains 0 calls
directly after the sampling clock (cf. equ. (5A, B, C) with
1e=T).
Lots of simulation runs have proofed, that the factor £ may
be assumed generally as

Fs=1+1.9[1=(pp(0, T))"] (26)

ws—-:FS'E[x,O‘_]-h+é—- J-+E[k,]—~l)-h (25)

In equ. (25), the factor Fg is inserted from equ. (26). All
other terms are calculated with equs. (6) and (8A, B) of
Model B (with m=gn). The accuracy of this approximation
is sufficient for practical applications. In all cases, proofed by
a lot of simulation runs, the difference between the approxi-
mate values of equ. (25) and the simulated values for wg was
less than 10%,.

Finally it should be noted, that the case of a maximum group
size m=gn < ¢ is trivial, because in this case always the
group of arriving calls is served completely until the next
sampling clock. Therefore, the arriving groups always find
an empty secondary system and so equ. (7) of Model B is
applicable for wg with E [x, 0]=0.

3.3.2 Approximation of the mean waiting time, when the
clock period is not an integral multiple of the holding
time

If the sampling clock period T is not an integral multiple of

the holding time A, the following approximation for the mean

waiting time wg of all calls in the secondary system is appli-
cable:

The sampling clock period shall be T=ch, where ¢ is a real

value between the two successive integral values ¢y and co.

Then, the mean waiting times wg, cu and wg, co are calculated

each according to equ. (21) or equ. (25) once with ¢, and

once with cq, respectively, without change of all other para-
meters. The mean waiting time wg of the real system then is

obtained approximately by lincar interpolation between
W, en and wy oot

wg= (¢~ ¢,) Wy 0+ (Co— CIWg 1y (27)

Simulation runs on digital computers have shown, that the
approximate values of equ. (27) are rather close to the simiti=
Jated values (in most cases < 5%, difference).

3.4 Mean waiting time in the general system

The mean waiting time of the calls in PSi shall be wpy, which
can be calculated from equ. (4). Then, the mean waiting time
wp of all calls in the whole primary system is the weighted
sum

Wp = Z 7‘1%’” : (28)

The mean waiting time wg of all calls in the general system
is the sum of wp and wys

‘;'VG=WP+WS (29)

wg is the waiting time, which a call has to wait in the mean
from its arrival at the primary system until the beginning of
its service in the central service unit,

3.5 Modification of Model C with cyclically closed sampling
switches

In Model C, the sampling switches of all PSi are closed
simultancously (cf. Fig. 4). Another operating mode of such
a system may be, that only one sampling switch is closed per
sampling instant in a cyclical manner.

Then, again the characteristic traffic values for each primary
storage PSi can be obtained from the results of Model A
when taking into consideration, that the timg interval between
two successive sampling instants of the same PSiis T=g-c-h.

For the mean waiting time wg of all calls in the secondary
system a similar approximation as in section 3.3.1 is appli-
cable for symmetrical systems (n;=n and A=A for i=1,2,
..., £), using Model B as a basis. The absclute probabilities
r (k), that & calls arrive per sampling clock at the 88, depend
on the probabilities of state of only one PSi directly before the
sampling clock coordinated to this PSi. They are known by

" the aid of equ. (5A, B, C) with #,=0 and T=gch (cf. also

section 3.3.1). The limits for the group size now are 0 S k < n.
Similar considerations asin section 3.3.1, concerning the first
call of an arriving group, lead to the following formula for
the approximate mean waiting time wg:

'Var [k]

All terms on the right hand side of equ. (30), except the factor
Fe, are calculated with equs. (6) and (8A, B) of Model B
with m=n).

Lots of simulation runs on digital computers have proofed,
that for the following different cases the factor Fe in equ. (30)
may be assumed as
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Fe=1455(1~pp0, 7)) for e=1 lmr (31 A)
Fe=14+281=pp(0,T)) for c=2 =30 (31 B)
Fe=14+1.900-pp(0, 7)) for =3 ’p - (31 C)
Fe=1 for g c230  (31D)

pr (0, T) is the probability, that a PS contains 0 calls directly
after the sampling clock coordinated to this PS (c.f. equ.
A, B, Oywithrp=Tand T —g ¢ h).

In all cases, proofed by a lot of simulation runs, the differ-
ence between the approximate values of equ. (30) and the

simulated values for wg was less than 109,

4. Evaluations and numerical results

Fig. 7 shows the mecan waiting time wp; of a primary storage
PSi according to equ. (4) as a function of the arrival rate .
The number of transfer places »; is used as parameter.

3,0

ny

Fig. 7. Mean waiting time wpy of a primary storage PSi.

The mean waiting time wgs of the secondary system depends
on such a variety of parameters, that it is impossible to draw
only one chart of wg for all parameter combinations. But by
the aid of only two charts, however, the exact mean waiting
time wg for systems with ¢ £ Min [n] can be obtained nu-~
merically as described in the following. Substituting equs. (14)
and (16) into equ. (21), one gets

NP R =
wem | EalxT1=1 ¥ (J='F (=2 pe(x. 7))~
A c J=1\ x =0
k GS

— ;;1 Ep[x, T]] (32)

The term indicated with GS in equ. (32) depends only on the
parameters A and T'=ch of the general system. Fig. 8 shows
the numerical values of GS as a function of 4 with para-
meter c.

Furthermore, for each PSi the mean queue length Ep; [x, T}
directly after the sampling clock can be calculated separately
according to equ. (3) with t,=T. Fig. 9 shows the numerical
values of Epq [x, T'] as a function of A; with parameter n;.
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Fig. 8. Term GS of equ. (32) for determination of the mean waiting
time wg for systems with ¢ = Min [n].
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Fig. 9. Mean queue length Ep¢ [x, 7] of a primary storage PSi directly
after the sampling clock.
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Fig. 10. Probability of waiting Ws (> 0) in the secondary system for
systems with ¢ < Min [n].
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Fig. 11. Example for the mean waiting time wg in the secondary system
(with ¢ > Min [m]).

1: simulation values (95 % confidence interval)

dashed line a: approximation with Model B

solid iine b:  approximation according to equ. (25)

Thus, by the aid of Fig. 8 and Fig. 9 the mean waiting time
wy can be obtained numerically according to equ. (32),

The probability of waiting Wx (> 0y in the secondary system
according to equ. (24) is shown in Fig. 10 for systems with
¢ < Min [n. 1t depends only on the parameters /4 and ¢ of
the general system,

Finally, an cxample for the approximate mcan waiting time
we in the secondary system of a symmetrical system with
n < ¢ and simultancously closed sampling switches is given
in Fig. 11, according to cqu. (25). Many tests have shown,
that the simple approximation with Modell B is sufficient for
practical applications in the casc of an offered traffic A -h < 0.5
(cf. also dashed line a in Fig. 11). However, for an offered
traffic A + h 2 0.5 the more accurate approximation accord-
ing to equ. (25) should be apphed (cf. also solid line b in
Fig. 11).
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