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ABSTRACT

The paper presents an analysis procedure for
transit delay distributions of closed queuing
networks with preemptive or nonpreemptive priori-
ties. The procedure is developed in two steps: at
first, the decomposition of the priority queuing
network with P classes of priorities into P queu-
ing networks, one for each priority class, and,
secondly, the analysis of the transit delay
distribution function for a single-priority class
network. The first step is based on a decomposi-
tion technique for priority stations into load-
and queue length-equivalent single-class stations
with state-dependent service rates. In the second
step, such networks are analyzed by a first pas-
sage time method exactly as well as approximately
by network transformations. The procedure involves
several approximative assumptions which are vali-
dated by computer simulations.

1. INTRODUCTION
1.1 Problem

Transit delays are of primary interest for appli-
cations of interactive computer systems (terminal-
1/0), paged computer systems (disk-1/0), computer
communications networks (packet delays), .or sig-
nalling networks based on the common channel
interoffice signalling system (6all setup delays).
Modelling of such cases leads to closed or open
gueuing networks.

Queuing networks have received, therefore, much
attention in research during recent years. Most
research has been concentrated on average delays
of product-form gueuing networks [1,2], decompo=
sition and aggregation techniques [3,4,5] in
case of networks with a complex structure or
general service centers. More recently, first
approaches have been made towards multi-class
queuing networks with priorities f§,7,8,9,10].

Transit delay distributions have been analyzed
only recently in case of closed Markovian queu-
ing networks [11,12,13,14,15}.”he distribution of
transit delays allows a much deeper insight in-
tc the network's behaviour as, e.g., for the
analysis of the percentiles in case of terminal
response times, post-dialling call delays, dial-
tone delays, packet-acknowledgement delays, etc.
This analysis, however, is more difficult and
requires time-dependent processes even in the
‘stationary case.

Models of the real world of computer systems
and communications switching control lead often

to priority queuing networks which have to be
analyzed with respect to the average delays and
with respect to the distribution of transit
delays such as response times, cycle times, or
flow times.

An example of the class of models treated in this
paper is shown in Fig. 1.
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Fig. 1. Multi-Class Priority Queuing Network

The central server type model of Fig. 1 consists
of 3 Markovian service stations. There are P
classes of customers with populations My for class
r, r=1,2,..., P. The service rates {ir depend on
the station number i and on the priority class r.
Each class of customers is routed independently
according to a class-individual probabilistic rou-
ting matrice Qy = (qij,r), where dij,r denotes
the probability of a class-r customer being rou-
ted to station j after leaving station i. Within
each station or, at least within one of the
stations, customers are scheduled for service
according to a preemptive or nonpreemptive prio-
rity discipline. The queue discipline within

each station is FIFO for each class; other dis-
ciplines could be principally included, as well.

We are interested in the transit delay distribu-
tion of a priority r-test customer, i.e. the
distribution of the time elapsing betweeen two
successive passages of that r-test customer
through the control point A, also called the
cycle time of a class r-customer. Similar pro-
blems arise in the analysis of the transit de-
lay for the passages of an r-test customer be-
tween two arbitrary points within the network.

1.2 Outline of the Analysis

The analysis is based on some recent results for
both, the transit delay analysis for single-class
networks and decomposition technigues for multi-
class priority networks. The two solution steps
(1) and (2) are outlined in Chapter 2 and 3:
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(1) Decomposition of the P-class network into P
single-class networks for each of the priority
classes. This decomposition provides equiva-
lent service centers for each considered
priority class. The equivalent service centers
own a state-dependent service rate which re-
flects the influence of all other priority
class customers. This approximate decomposi-
tion method has been validated for average
gqueuing delays.

(2) Transit delay analysis of the equivalent class
r-network. The transit delay distribution
analysis rests on the method of first passage
times. The fate of a class r-customer is ex-
plicitly considered and described by backward-
type differential equations. This method
allows also for state-dependent service rates.

Note that the method of step 2 is principally also
applicable to solve the given problem of transfer
delays within multipriority networks. The state
description technique, however, requires multiple
variables per station so that the resulting sys-
tems / ~ differential equations are too complex to
solve

In case of more complex network structures, both
steps (1) and (2) can be combined with aggregation
nethods to replace a considered station's complete
environment by one composite server.

In the paper we develop both steps (1) and (2)
separately. Approximate methods will be vali-
dated by simuiation results.

The combination of both steps to the transit delay
analysis of priority class queuing networks will
be exemplified by some network examples in Chapter
4. Since the procedure involves several approxi-
native assumptions, the analytical results are
validated by computer simulations.

2. DECOMPOSITION OF PRIORITY QUEUING NETWORKS

2.1 Deccmposition Principle

The method we will apply to decompose the prio-
rity stations of a queuing network with two
Jriority classes is described comprehensively
in [81 anad {jO]. Hence, concerning this method,
ve cf ine ourselves t¢ a summary of the essen-
tials.

'he decomposition of a two-class priority gqueu-
ing model into two single-class gueuing models
iithout a priority discipline is best explained
y reference to Fig. 2, where:

L arrival rate

r
b service rate
Y number of class-r customers in the

system

1

1,2 class index; r = 1: high priority class
r = 2: low priority class

i set of positive integers

= equals by definition

le call these single-class queuing models "Virtual
jerver" models. This is due to the fact that each
‘lass is assumed to receive its service from a
ledicated Virtual Server, whose service time dis-
‘ribution function is chosen such, that the
'riority mechanism is appropriately taken into
lccount. Replacing the original server by these
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Decomposition of a priority queue into
Virtual Server models with state-depen-
dent reduced service rates

1l

Virtual Servers, a two-class priority gqueuing
network is transformed into a gueuing network
without a priocrity discipline.

An important feature of the Virtual Server models
presented in Fig. 2 are the state-dependent re-
duced service rates u;(xr) (r=1,2) defined by
Egs. (2.la-b):

HE(xy) = cp(xy) Hy, (2.1a)

cr(xr):= prob(class r-customer in service[
x class r-customers in system)
r

x, EN; r=1,2 (2.1b)

It has been proved in [9] that this choice of the
service rates provides an exact description of the
marginal distributions p,(x,) (r=1,2) of system
states in the priority gueuing models M/M/1/PRE
and M/M/1/NONPRE. Concerning the global behaviour
of traffic flow, our approach is still an approxi-
mation. Particularly, the output streams are in
general not Poisson processes.

We call our decomposition method the state-depend-
ent reduced occupancy approximation and refer to
it as to the sdroa

2.2 Test-Bed Examples for Decomposition

In this 'section we illustrate the application of
our decomposition method by means of two test-bed
gueuing networks.

First, we consider the cyclic gueuing model
*/M/1/PRE + */M/1/PRE (see Fig. 3a). Decomposi-
tion of the priority stations leads to two single-
class gueuing models depicted in Fig. 3b. In
accordance with Egs. (2.la-b), the service rates

U¥ (%) (i=1,2; r=1,2) are determined by the

following equations:

HEp = Hyy , i=1,2 (2.2a)

HIp(xi0) = cip(xig) iy , i=1,2 (2.2b)

where

Cip(X3p) = Prob(X;1=0{X;5=Xi7), %;5=0,1,...,My;
i=1,2. (2.2¢)

The random variable X;, denotes the number of
class-r customers at station i and My denotes the
network population of class r-customers.

In the present case the calculation of the unknown
reduction coefficients €;o(x.5) can be carried out
exactly by setting up the global balance equations
and solving them (see [7]). For instance let

3.4A-3-2
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Fig. 3. (a) Cyclic queuing model
*/M/1/PRE = </M/1/PRE

(b) Decomposition into two single-priori-
ty networks

Ml=M2=2
Hyg = 0.2, By, = 1.0,
H21:O.1, U.22=O.1.
Then we get

cyp(1) = 0.11475,

Cyo (1) = 0.50820,

i

cyp(2) = 0.07018,
cpp(2) = 0.09091.

It must be mentioned here that the exact values
for the coefficients ¢y9{xi7) lead to an exact
description of the marginal distribution DPiox;s)
of the cyclic queuing model ¢/M/1/PRE + */M/1/PRE.
For a proof see [10]. °F

Unfortunately, an exact calculation of the reduc-
tion coefficients is only possible for priority
networks of little complexity. If this reguirement
~~~~~~~~
In order to
sdroa
and refer to

approximation techniques (see [101).
distinguish this approach from the
we call it the modified s d r o a
it as to the ms dr o a

We have applied such an approximation technique to
decompose our second test-bed gqueuing network for
preemptive priorities with a structure as depicted
in Fig. 1. The procedure to calculate the reduc-
tion coefficients for this network type is de-
scribed in section 3.2 of [1OJ. Here, we give only
some numerical values for the reduction coeffi-
cients CiZ(xiz)‘

Let M1 = M2 =2, uij = 1.0 (i=1...3; r=1,2),
ql2,r = q13’r = 0.5 (r=1,2).
Then, c12(1) = 0.25609 c12(2) = 0.18085
c22(1) = 0.51291 c22(2) = 0.42324
c32(1) = 0.51291 c32(2) = 0.42324

'3.4A-3-3

Similar results have been obtained for nonpre-
emptive priorities, see [9]. The decomposition
principle has been validated by computer simu-~
lations for a wide parameter range which has
shown an acceptable accuracy.

3. TRANSIT DELAY ANALYSIS IN SINGLE-CLASS
MARKOVIAN NETWORKS

3.1 Transit Delay as First Passage Time Problen

We consider a class of Markovian queuing models
which can be discribed by a Markov chain with an
enumerable set of states and a continuous time
parameter. The behavior of the Markov chain can be
described by the well-known Chapman-Kolmogorov
relation from which two sets of differential equa-
tions for the transition probabilities can be
derived, the Kolmogorov forward equations and
backward equations [16}.

The waiting time or the response time of a cus-
tomer can be considered as "life times" T of one
or several tagged (test) customers within a pro-
perly defined set S of states. The life time
terminates when the test customer leaves S for
the first time entering a "taboo" set H = §; his
life time is equal to the "first passage time"

to H. The life time process can be considered as

a special process with "absorbing" states in H.
This modified process can be constructed from the
system state transition probabilities under the
condition that states in H are excluded. The state
of the modified process must be specified such
that all effects which may influence the life time
T of the test customer directly or indirectly are
reflected properly.

The general procedure of this life time process
analysis has been outlined in [15]. Here, we refer
cnly to the main results.

Let w(tfi) denote the conditional complementary
life time distribution function (df) where the
considered life time of a test customer has started
at initial state i. Then, the life time process is
described by the set of Kolmogorov backward-type
equations

d . .
EE—w(t|1) = -qiw(t|1) + .Z~qijw(t‘j) (3.1a)
J¥i

where

= i,7 3.1b)

9 .Z,qij +e, o, 1,3 €S, (
iti

Within Egs. (3.1a,b) gq.. denotes the instantaneous

rate of transitions from state i to state j in 5,
q; the rate for transitions from i to any othe{
state in S or H, and €; the life time terminating
rate from state i into H. These rates are found bY
considering the underlying life time process.

From Egs. (3.1a), a set of linear equations can D€
derived for the ordinary k-th moments of the con~
ditional life time mik>:

() L

imi - ij i (3.2)
4

g9

0) .
where m, =1, i,j €s, k € IN.

The total complementary life time df is comPosed
from the initial state distribution II(i) and the.
conditional life time df's w(t|i) according to

W(t) = L I(4) = wit]i) (3.37
i€s
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3.2 Exact Analysis

The exact analysis of the life time process will
be demonstrated for the example of a cycle time
analysis of a closed queuing network with two
stations, as shown in Fig. 3b, where the service
rate Wy (x;) of station i depends on the number of
customers X5 in that station, i = 1,2. The queue
discipline in each station is FIFO.

The exact result of the cycle time df for this
model is known only in the simpler case of con-
stant service rates, see [11,13,15].

Now we consider the case where the instantaneous
service rate of a server may depend on the actual
number of customers in that station. Combinatorial
methods for the cycle time analysis are not ade-
quate since in this case succeeding customers in
& queue behind the test customer may influence his
cycle time even if overtaking is not possible. The
state description has now to be augmented.

Let Z(t) = (i,j,k) define the state of cycle
time process, where

k indicates the station where the test
customer is currently located in

1 = number of customers in station 1 consist-
- ing of the test customer and his prede-
cessors in line (k = 1)

or
total number of customers in station 1
(k = 2)

j = total number of customers in station 2
(k = 1)
or

number of customers in station 2 consist-
ing of the test customer and his prede-
cessors in line (k = 2).

The state transition diagram is shown in Fig. 4
for the special case of M = 3 (extension to gen-
eral M is straightforward).

Fig. 4. State transition diagram for the cycle
time for a cyclic queuing system with two
stations and state-dependent service
rates.

The arrows at the left hand side indicate the ini-
tial states a test customer meets on the arrival
at station 1. The bold arrows at the lower right
indicate the termination of the cycle time, i.e.
the transitions into the absorbing space H.

The exact analysis of the cycle time df proceeds
as follows:
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- Definition of the set of M-(M+1) differential
equations, one for each state of S according
to Eq. (3.1).

- Calculation of the arrival state distribution
for the arrival of a test customer at station
1 according to [17,18]. ‘

- Numerical solution of the system of differen-
tial equations either in the time domain (e.g.
by a Runge-Kutta method) or in the Laplace-
domain (i.e., solving for the corresponding
eigenvalues) .

- Calculation of the complementary df of the
cycle time according to Egq. (3.3).

For larger populations M, larger queuing network
structures, or both, the exact solution of the df
requires an enormous amount of computing. Instead
of the full df, we may.be interested in the mo-
ments of lower order especially the second moment
m, or the coefficient of variation c (the first
moment is already known from the theory of product-
form queuing networks [1,2}).

The solution for the ordinary moments requires
only the solution of a set of linear equations
according to Eg. (3.2), one set for each order k,
k= 1,2,.... In the particular case of Fig. 4,
each set can be solved recursively: starting with
the right hand side column, all quantities are ob-
tained by proceeding bottom~up, column-by-column
from right to left.

From the lower conditional moments (or uncondi-
tional total moments), say k = 1,2 or k = 1,2, and
3, we can approximately construct the df. In
Section 2 we will mainly concentrate on the coef-
ficient of variation of cycle times only.

3.3 Approximate Analysis

To further reduce the computational amount,
several approximate methods can be applied. Two
different methods have been developed so far:

(a) Network transformations

(b) Independent flow time approximations

a) Network Transformations

Closed product-form queuing networks can be trans-
formed into a cyclic queuing network of two sta-
tions (as shown in Fig. 3b) consisting of a con-
sidered station and a "composite station" by use
of the so-called Norton Theorem for product-form
queuing networks [3,5]. This transformation how-
ever, is only exact with respect to the through-
put rate and state probabilities and, therefore,
for the average cycle time. The higher moments
and the df of the cycle time are only approxi-
mations.

This method has proved to be quite accurate for
the following cases, see [15].

- Aggregation of several tandem stations into
One composite station

- Aggregation of several parallel stations with
equal flow times into one composite station.

By this method, certain types of networks can be
structurally reduced step by step to facilitate
the numerical computations. However, subnets with
cyclic paths should not be aggregated into a
composite station; although the average time is
exact, the second moment can be quite underesti-
mated.

3.4A-34
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b) Independent Flow Time Approximation (IFTA)

This method is applied to the original network
structure. The flow times a test customer may
observe in each of the passed stations are analyzed
under an independently calculated arrival state
distribution. The total flow time can be found
by a summation of all component flow times, €.9.,
by convolutions of their respective df's.

B

First results of this method are quite encouraging
L19]. This method will be reported by a forth-
coming paper.

4. RESULTS AND VALIDATION
4.1 Test-Bed Networks

In the following a number of examples will be re-
ported to show how priorities influence the cycle
time in gueuing networks and how accurate the
analysis method works. The examples refer to three
test-bed networks:

Test-Bed Network 1: Cyclic queuing network with
two stations and two classes
of nonpreemptive priorities

(structure as in Fig. 3a).

Test-Bed Network 2: as 1, but with preemptive

priorities.

Test-Bed Network 3: Central server queuing network

model (CSM) with three stations
and two classes of preemptive
priorities (see Fig. 1).

4.2 Results
a) Results for Test-Bed Network 1

This model has been analyzed for a fixed population

M1 = M2 = 2. The service rates are:
“11 = 0.2 “12 variable
u21 = 0.1 u22 = 0.1

The results are given for the average cycle times
tCl and t and for the cycTe' time coefficients of
variation ¢,. and ¢, for high priority and low pri-
ority customers, réspectively (The average cycle
times are exact values). All results are compared
to simulations (given in brackets).

b) Results for Test-Bed Network 2

In case of preemptive priorities, class l-custom-
ers are not affected by class 2-customers. There-
fore, for class 1 the results of the single-class
nefwork applies which are known explicitly [11,13’
15).

Subsequently, we give the results for class 2-
customers for various populations. The service
rate parameters are as in a).

1 2

Yo o e €3

1.0 173.3 (173.4 % 2.27) .8468 (.7721 % .0149)
0.1 190.9 (188.8 % 1.84) .7585 (.7059 % .0176)
0.0l 435.8 (435.4 t 11.0) .6196 (.6113 % .0170)
0.001 3516. (3599. % 239.) .7076 (.7368 I .0607)
p2) M) =2, M, =5

Yo e )

1.0 355.9 (357.0 * 4.13) .6756 (.6005 %t .0118)
0.1 367.0 (367.1 F 5.98) .6212 (.5652 % .0066)
0.0l . 899.9 (902.7 * 17.3) .4532 (.4452 T .0l07)
0.001 8750. (B8423. T 459.) .4504 (.4314 % .0243)

3 M =5, M= 2

B2 Fe2 i)

1.0 1665. (1729. t 113.) .9584 (.8998 *t .0463)
0.1 1684. (1710. * 105.) .9436 (.8696 * .0355)
0.01 1896. (1928. £ 83.5) .8170 (.7885 t .0404)
0.001 4743. (4869. * 304.) .6151 (.5871 % .0677)
b4) M, = 5, M2=5

B e 2

1.0 3245. (3407. t 294.) .8079 (.6667 * .0295)
0.1 3257. (3345.  219.) .7991 (.6665 * .0351)
0.01  3436. (3408. % 171.) .6995 (.6470 L .0371)
0.001 10020 (9716. * 480.) .4428 (.4596 % .0532)

Table 2. Results for test-bed network 2

c) Results for Test-Bed Network 3

As in case b), the class l-customers are not af-
fected by class 2-customers. The results for the

u12 tC1 tc2 average cycle time are exactly known [1,2];
results for the cycle time coefficient of varia-
1.0 27.35 (27.41 T 0.15) 81.16 (81.71 % 0.88) tion have been validated in [15], so that we can
0.1 30.08 (30.08 t 0.11) 75.96 (76.27 * 0.63) concentrate on the low priority class only.
0.01 109.4 (109.4 t 1.13 . 411,
0.001 903.5 2902 9t 8 10; 22230 Egég44 I 18925 We note, that the cycle time analysis has been
: ), A . e N based on the additional approximation of network
0.0001 8806. (8802. T 90. 2 + . £
( 90.0) 20020 (20039 T 212.) transformation: both I/0-stations of the CSM fof
u c c class 2-customers have been aggregated to one COR™
12 1 2 posite server. We consider only those cycles
1.0 L6275 (.5846 * .0028) .7378 (.6434 * .o044)  °S-oreing at station 1.
0.1 L6072 (.5763 T .0023) .6628 (.6300 * .0048) The parameters of the CSM are as follows:
0.01 .8906 (.9111 = .0074) .6673 (.6266 * .0076) M o= 2 M =2 and 5
0.001 1.100 (1.097 ¥ .0060) .7033 (.6957 % .0057) 1 ' 2 : 1
0.0001 1.129 (1.127 * . . . + = = = = = riablé
( 0059) .7067 (.7038 .0046) Hiq Moy Hay Moo Hap 1, Mo va
Table 1. Results for test-bed network 1 q12,1 = q12,2 = 0.5
3.4A-35
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1 2

Mo e )

10. 4.549 (5.757 t 0.032) .669 (.7218 t .0078)
1.0 9.480 (10.76 * 0.132) .717 (.7277 ¥ .0099)
o.1 74.35 (73.07 T 2.025) .722 (.7254 t .0265)
0.01 737.0 (730.4 t 61.67) .707 (.7353 £ .1026)
c2) M1 = 2, M2 =5

o e °2

10. 6.680 (4.873 £ 0.090) .502 (.8804 * .0159)
1.0 18.70 (19.43 ¥ 0.153) .569 (.5969 * .0096)
o.1 185.1 (185.4 % 6.620) .460 (.4748 £ .0164)
0.01  1842. (1805. % 175.0) .447 (.4433 % ,0406)

Table 3. Results for test-bed network 3

4.3 Validation

The presented analysis method for transit delays
ip ~riority queuing networks rests on various
ap oximation hypothesises:

(1) decomposition of the priority network into
networks without priorities

(2) aggregation of subnets into composite
stations.

Approximation (1) has been carried out with re-
spect to state distributions; the application of
that principle to transit delay df's is one source
of error.

Approximation (2) has been applied to reduce the
complexity in the analysis. This method does work
under certain conditions as menticned in Section
3.3. A further reduction of errors will be obtain-
ed through the advanced analysis procedure IFTA.

For all these sources of errors, most analysis
results are within a 10 % range of the simula-
tion results which is good enough in most cases
of applications. Variations in the population
size, service rates, priority schedule, or net-
. work structure indicate that the analysis method
applies to a wider range of applications.

¢ LusiON

- This paper presents - for the first time - an
analysis method for transit delay distributions
of Markovian priority queuing networks. This pro-
blem could be solved exactly in principle using
Ehe_same method as for single-class networks, see
LlSj. To reduce the computational complexity, the
_ problem has been simplified by decomposition of
the multi-class priority network into equivalent
single-class networks and aggregation of-subnet-
works into composite server stations. The results
indicate that the method applies to a wider range
of parameters as population size, service rates,
priority schedule ,or network structure. The method
can be applied to quite realistic cases where
Priorities are used to meet specific real-time
percentile critericns as in case of dial-tone or
acknowledgement delays in telecommunication
systems, or in case of turn-around delays in in-
teractive computer systems.
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