
TCP Maintenance and Minor Extensions R. Scheffenegger
(tcpm) NetApp, Inc.
Internet-Draft M. Kuehlewind
Intended status: Experimental University of Stuttgart
Expires: April 17, 2013 B. Trammell
 ETH Zurich
 October 14, 2012

 Exposure of Time Intervals for the TCP Timestamp Option
 draft-trammell-tcpm-timestamp-interval-00.txt

Abstract

 The TCP Timestamp option would be useful for additional measurements
 if it could be assumed that the interval between ticks of the
 timestamp clock are regular, and if that interval were known. In
 practice, many implementations do use a timestamp clock source that
 has a regular interval. This draft specifies a mechanism for
 exposing the timestamp interval to a receiver, and discusses
 applications therefor.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 17, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Scheffenegger, et al. Expires April 17, 2013 [Page 1]

http://tools.ietf.org/pdf/bcp78
http://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
http://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Timestamp Intervals October 2012

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Timestamp interval exposure 3
 3.1 . Interval encoding requirements 4
 3.2 . Interval encoding specification 4
 3.3 . Timestamp Interval experimental TCP option 6
 3.4 . Interval export during TS negotiation 7
 4. Timestamp interval negotiation 7
 5. IANA Considerations . 7
 6. Security Considerations 7
 7. References . 7
 7.1 . Normative References 7
 7.2 . Informative References 8
 Appendix A . Detailed use cases for timestamp interval export . . 8
 A.1. Methodology for one-way delay variation measurement
 using known timestamp intervals 8
 Authors’ Addresses . 10

Scheffenegger, et al. Expires April 17, 2013 [Page 2]

Internet-Draft Timestamp Intervals October 2012

1. Introduction

 The Timestamp option originally introduced in [RFC1323] was designed
 to support only two very specific mechanisms, round trip time
 measurement (RTTM), and protection against wrapped sequence numbers
 (PAWS), assuming a particular TCP algorithm (Reno).

 While [RFC1323] specifies only that timestamps "must be at least
 approximately proportional to real time" to support RTTM, many
 implementations generate timestamp values from a regular timing
 source. Determining the real-time interval represented by a single
 tick makes additional measurements possible. In addition to easing
 passive measurements using the timestamp option, it also makes
 possible the measurement of inter-departure time; the comparison of
 inter-departure time to inter-arrival time can be used to one-way
 delay variation measurement, useful for congestion control algorithms
 as well in QoS applications [FIXME: others?]

 This document specifies a compact encoding for timestamp intervals
 which can be exported via multiple mechanisms, including an
 experimental TCP option, or the mechanism described in
 [I-D.scheffenegger-tcpm-timestamp-negotiation].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Terms defined in [RFC1323] are used in this document as defined
 there.

 This document defines the following additional term:

 Timestamp interval
 The interval between two ticks of the timestamp clock source
 running at a constant frequency. Note that the timestamp clock is
 not required to be identical with the TCP clock, even though most
 implementations use the same clock for practical purposes.

3. Timestamp interval exposure

 This section describes the requirements for interval encoding, then
 specifies an interval to meet these requirements based on a 16-bit
 reduced-precision encoding of a 42-bit fixed-point unsigned integer.

Scheffenegger, et al. Expires April 17, 2013 [Page 3]

http://tools.ietf.org/pdf/rfc1323
http://tools.ietf.org/pdf/rfc1323
http://tools.ietf.org/pdf/rfc2119
http://tools.ietf.org/pdf/rfc1323

Internet-Draft Timestamp Intervals October 2012

3.1 . Interval encoding requirements

 The choice of a timestamp interval is generally implementation-
 specific, and there are a small number of commonly chosen intervals.
 However, a general solution must support not only common cases, but
 uncommon ones, and provide future flexibility to allow an
 implementation to dynamically choose new timestamp intervals for new
 sockets, based on network conditions and specific requirements for
 timestamp measurements.

 There are some sensible bounds on the range of timestamp intervals
 that must be reasonably supported. The minimum inter-packet interval
 for 64-byte packets (i.e., back-to-back ACK segments) on a future 400
 Gigabit Ethernet would be about 1ns; smaller intervals need not be
 supported with current technology, even for applications for which a
 unique timestamp for every packet would be useful. On the other side
 of the scale, low-bandwidth, high-latency links may operate with
 timestamp intervals on the order of seconds.

 The precision required by timestamp interval export, on the other
 hand, is determined by the applications for which the information
 will be used and the precision of the underlying clock source. As
 many clock sources may provide less than maximum precision (due to
 e.g. interrupt jitter), there should be some way to represent
 variable precision. [FIXME: justify why 11 bits is enough here.]

 As a timestamp interval will need to be bound to a connection in-band
 at runtime, a space-efficient encoding is necessary.

 These requirements indicate a reduced-precision encoding of a fixed-
 point interval, expressed in seconds, as described in the next
 subsection.

3.2 . Interval encoding specification

 A 42-bit fixed-point unsigned integer with 4 bits before the decimal
 point and 38 bits after, expressed in seconds, is sufficient to
 encode an interval range from just under 16 seconds (0x3ff ffff ffff)
 down to 2^-38 s or 3.64 ps (0x000 0000 0001), meeting the range
 requirement. Sufficient precision for the applications envisioned by
 this document is provided by exporting just the 11 most significant
 bits of the interval value (here, the "value"), coupled with a 5-bit
 "scale" which locates the least significant bit of the value within
 the larger field: a scale of 31 places the value field between bits
 41 and 31 inclusive of the fixed-point integer for the largest
 intervals, while a scale of 0 places the value field between bits 10
 and 0 inclusive. By using a scale such that the most significant bit
 of the value is not 1, less than 11 bits of precision can be

Scheffenegger, et al. Expires April 17, 2013 [Page 4]

Internet-Draft Timestamp Intervals October 2012

 signaled, as well; implementations SHOULD NOT represent more
 precision in an exported timestamp interval Full precision export is
 available down to 2^-27 s (or 7.45 ns) with diminishing precision
 down to 3.64 ps. This arrangement therefore allows the
 representation of timestamp intervals over 13 orders of magnitude and
 11 bits of precision with only two octets. The details of this
 encoding are illustrated in Figure 1.

 MSb LSb
 4 3 3 2 1
 1 7 1 3 5 7 0
 +----+------+--------+--------+--------+-------+
 | int| frac | full value
 +----+------+--------+--------+--------+-------+
 / \
 +-+ \
 / \
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | scale | value | encoded interval
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 1 1 1 0
 5 1 0
 MSb LSb

 Figure 1: Timestamp interval encoding using scaled fixed-point
 integer

 This encoded 16-bit interval is then exported for a given connection
 as a standalone TCP option or as part of the extended timestamp
 negotiation described in the following subsections.

 A sender explicitly signals that it uses an irregular timestamp clock
 by sending 0 for both scale and value.

 For implementations that support only a single timestamp interval for
 all flows in all situations, the encoded interval can be implemented
 as a constant. Encodings for common timestamp intervals are given in
 Table 1.

Scheffenegger, et al. Expires April 17, 2013 [Page 5]

Internet-Draft Timestamp Intervals October 2012

 +----------+-----------+-------+-------+----------+
 | interval | frequency | scale | value | combined |
 +----------+-----------+-------+-------+----------+
 | 16 s | 0.06 Hz | 0x1f | 0x7ff | 0xffff |
 | 1 s | 1 Hz | 0x1c | 0x400 | 0xe400 |
 | 0.5 s | 2 Hz | 0x1b | 0x400 | 0xdc00 |
 | 100 ms | 10 Hz | 0x18 | 0x666 | 0xc666 |
 | 10 ms | 100 Hz | 0x15 | 0x51f | 0xad1f |
 | 4 ms | 250 Hz | 0x14 | 0x419 | 0xa419 |
 | 1 ms | 1 kHz | 0x12 | 0x418 | 0x9418 |
 | 200 us | 5 kHz | 0x0f | 0x68e | 0x7e8e |
 | 50 us | 20 kHz | 0x0d | 0x68e | 0x6e8e |
 | 1 us | 1 MHz | 0x08 | 0x432 | 0x4432 |
 | 60 ns | 16.7 MHz | 0x04 | 0x407 | 0x2407 |
 | none | -------- | 0x00 | 0x000 | 0x0000 |
 +----------+-----------+-------+-------+----------+

 Table 1: Encodings for common timestamp intervals at maximum
 precision

3.3 . Timestamp Interval experimental TCP option

 This section specifies an experimental TCP option, using arbitrarily
 chosen magic numbers as described in
 [I-D.ietf-tcpm-experimental-options], for exporting timestamp
 intervals. This option MAY appear in any TCP segment after the SYN
 segment to advertise the sender’s timestamp interval, encoded as in
 Section 3.2 above. If the receiver uses timestamp interval
 information, it stores the interval for the duration of the
 connection, or until a subsequent Timestamp Interval option is
 received.

 If a sender has previously sent a timestamp interval to a receiver,
 and changes the timestamp interval on the connection, it MUST send a
 new Timestamp Interval option.

 This option MUST NOT appear in a segment in which a TCP Timestamp
 option is also not present.

 +-+
 | Kind = 253 | Length = 8 | magic0 = 0x75ec |
 +-+
 | magic1 = 0xffee | encoded advertised interval |
 +-+

 Figure 2: Structure of Timestamp Interval Experimental TCP option for
 interval export

Scheffenegger, et al. Expires April 17, 2013 [Page 6]

Internet-Draft Timestamp Intervals October 2012

 [FIXME: specify how long after an advertisement of a new or changed
 interval the interval must be valid for the connection.]

3.4 . Interval export during TS negotiation

 [EDITOR’S NOTE: bind to new revision of the TS negotiation draft;
 requires TS negotiation that can flexibly add 16 bits of content to
 the negotiation handshake.]

4. Timestamp interval negotiation

 [EDITOR’S NOTE: describe here how a receiver could ask a sender for a
 specific TS rate: an option with two encoded intervals could be
 handled as consisting of an advertised interval (first interval) and
 a requested interval (second interval). A sender that gets an
 interval request must then send a ts interval option which advertises
 the closest interval it is willing to support. This mechanism could
 also be used to implicitly request that timestamps be turned on, if
 it is decided that 1323 could be updated to support mid-connection
 initialization of TS.]

5. IANA Considerations

 This document has no considerations for IANA.

6. Security Considerations

 [EDITOR’S NOTE: discuss implications of misuse -- what can I break by
 sending a bad interval?]

7. References

7.1 . Normative References

 [I-D.ietf-tcpm-experimental-options]
 Touch, J., "Shared Use of Experimental TCP Options",
 draft-ietf-tcpm-experimental-options-02 (work in
 progress), October 2012.

 [I-D.scheffenegger-tcpm-timestamp-negotiation]
 Scheffenegger, R. and M. Kuehlewind, "Additional
 negotiation in the TCP Timestamp Option field during the
 TCP handshake",
 draft-scheffenegger-tcpm-timestamp-negotiation-04 (work in

Scheffenegger, et al. Expires April 17, 2013 [Page 7]

http://tools.ietf.org/pdf/draft-ietf-tcpm-experimental-options-02
http://tools.ietf.org/pdf/draft-scheffenegger-tcpm-timestamp-negotiation-04

Internet-Draft Timestamp Intervals October 2012

 progress), July 2012.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323 , May 1992.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

7.2 . Informative References

 [Chirp] Kuehlewind, M. and B. Briscoe, "Chirping for Congestion
 Control - Implementation Feasibility", Nov 2010, < http://
 bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf >.

 [I-D.ietf-ledbat-congestion]
 Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)",
 draft-ietf-ledbat-congestion-10 (work in progress),
 September 2012.

Appendix A . Detailed use cases for timestamp interval export

 [FIXME: frontmatter]

A.1 . Methodology for one-way delay variation measurement using known
 timestamp intervals

 New congestion control algorithms are currently proposed, that react
 on the measured one-way delay variation (see
 [I-D.ietf-ledbat-congestion], [Chirp]). This control variable is
 updated after each received ACK

 C(t) = TSval(t) - TSecr(t)

 V(t) = C(t) - C(t-1)

 provided that the timestamp clocks at both ends are running at
 roughly the same rate. Without prior knowledge of the timestamp
 clock interval used by the partner, a sender can try to learn this
 interval by observing the exchanged segments for a duration of a few
 RTTs. However, such a scheme fails if the partner uses some form of
 implicit integrity check of the timestamp values, which would appear
 as either random scrambling of LSB bits in the timestamp, or give the
 impression of much shorter clock intervals than what is actually
 used. If the partner uses some form of segment counting as timestamp
 value, without any direct relationship to the wall-clock time, the
 above formula will fail to yield meaningful results. Finally the

Scheffenegger, et al. Expires April 17, 2013 [Page 8]

http://tools.ietf.org/pdf/rfc1323
http://tools.ietf.org/pdf/bcp14
http://tools.ietf.org/pdf/rfc2119
http://bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf
http://bobbriscoe.net/projects/netsvc_i-f/chirp_pfldnet10.pdf
http://tools.ietf.org/pdf/draft-ietf-ledbat-congestion-10

Internet-Draft Timestamp Intervals October 2012

 network conditions need to remain stable during any such training
 phase, so that the sender can arrive at reasonable estimates of the
 partners timestamp clock tick duration.

 This note addresses these concerns by providing a means by which both
 host are required to use a timestamp clock that is closely related to
 the wall-clock time, with known clock rate, and also provides means
 by which a host can signal the use of a few LSB bits for timestamp
 value integrity checks. To arrive at a valid one-way delay (OWD)
 variation, first the timestamp received from the partner has to be
 right-shifted by a known amount of bits as defined by the mask field.
 Next the local and remote timestamp values need to be normalized to a
 common base clock interval (typically, the local clock interval):

 remote interval
 C = (TSecr >> local mask) - (TSval >> remote mask) * ---------------
 t local interval

 V(t) = C(t) - C(t-1)

 The adjustment factor can be calculated once during the timestamp
 capability negotiation phase, and pure integer arithmetic can be used
 during per-segment processing:

 EXP.min = min(EXP.loc, EXP.rem)

 EXP.rem -= EXP.min

 EXP.loc -= EXP.min

 FRAC.rem = (0x800 | FRAC.rem) << EXP.rem

 FRAC.loc = (0x800 | FRAC.loc) << EXP.loc

 and assuming that the local clock tick duration is lower

 ADJ = FRAC.rem / FRAC.loc

 with ADJ being a integer variable. For higher precision, two
 appropriately calculated integers can be used.

 Any previously required training on the remote clock interval can be
 removed, resulting in a simpler and more dependable algorithm.
 Furthermore, transient network effects during the training phase
 which may result in a wrong inference of the remote clock interval
 are eliminated completely.

Scheffenegger, et al. Expires April 17, 2013 [Page 9]

Internet-Draft Timestamp Intervals October 2012

Authors’ Addresses

 Richard Scheffenegger
 NetApp, Inc.
 Am Euro Platz 2
 1120 Vienna
 Austria

 Phone: +43 1 3676811 3146
 Email: rs@netapp.com

 Mirja Kuehlewind
 University of Stuttgart
 Pfaffenwaldring 47
 70569 Stuttgart
 Germany

 Email: mirja.kuehlewind@ikr.uni-stuttgart.de

 Brian Trammell
 Swiss Federal Institute of Technology Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Phone: +41 44 632 70 13
 Email: trammell@tik.ee.ethz.ch

Scheffenegger, et al. Expires April 17, 2013 [Page 10]

