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The original version of this article unfortunately contained a mistake in the 
presentation of the formula on page 116. The corrections are given below: 

 

1) Instead of  “CWND =  
Tcurrent_RT

TARGET
 × CWND”,  

it should read  “CWND = (1 –
Tcurrent_RT

TARGET
) × CWND” 

2) The line above the formula “Thus β must be
Tcurrent_RT

TARGET
.” should read  

“Thus the congestion window must be reduced by 
Tcurrent_RT

TARGET
× CWND and 

β  must be 1 –
Tcurrent_RT

TARGET
.” 
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The original online version for this chapter can be found at 
http://dx.doi.org/10.1007/978-3-642-23541-2_13 
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Abstract. Low Extra Delay Background Transport (LEDBAT) is a
new, delay-based congestion control algorithm that is currently under
development in the IETF. LEDBAT has been proposed by BitTorrent
for time-insensitive background traffic that otherwise would disturb fore-
ground traffic like VoIP or video streaming. During previous evaluations
the so called late-comer advantage has been discovered which makes a
new starting LEDBAT flow predominant against already running LED-
BAT flows. In this paper we evaluate different decrease schemes which
have been proposed to solve this problem. We found that the proposed
solutions come with a lower utilization, sometimes increased completion
times and are much more sensitive to noise, which is contra-productive
for the considered traffic class. Furthermore, we propose extensions to
both evaluated schemes. We show that our approach can help to yield
more quickly to higher priority traffic. We argue that a fair and equal
share is not required for the specific traffic class LEDBAT is designed
for. But it is important to address different application requirements in
congestion control like LEDBAT as an approach for less-than-best effort
background traffic.

1 Introduction

A substantial portion of bandwidth in today’s Internet is used for background
and time-insensitive traffic (e.g. P2P Traffic [1]). This traffic should not impede
foreground and time-sensitive traffic.

A novel congestion control algorithm designed for less-than-best-effort traffic
is the Low Extra Delay Background Transport (LEDBAT) [2]. It was proposed by
BitTorrent in December 2008 and is now under development within an Internet
Engineering Task Force (IETF) working group. It is a delay-based approach that
can react earlier to congestion then loss-based schemes which are mostly used
today in today’s Internet for TCP traffic. In this paper, we regard two sorts of
traffic:

1. Less-than-best-effort, low priority traffic using LEDBAT congestion control,
e.g. automatic software Updates running in the background or Peer-to-Peer
file sharing

R. Lehnert (Ed.): EUNICE 2011, LNCS 6955, pp. 108–119, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Evaluation of Different Decrease Schemes for LEDBAT Congestion Control 109

2. Higher priority best-effort traffic using lost-based congestion control (or even
sending with a constant bit rate), e.g. web-browsing or Voice over IP using
UDP

According to [2], the LEDBAT congestion control seeks to:

1. utilize end-to-end available bandwidth, and maintain low queueing delay
when no other traffic is present,

2. add little to the queuing delay induced by concurrent TCP flows,
3. quickly yield to flows using standard TCP congestion control that share the

same bottleneck link.

With the current specification of LEDBAT there is a so-called “late-comer’s
advantage”, where a second, newly starting flow can starve the first, already
running one. This only happens when two or more LEDBAT flow compete on
the same link and no other higher priority traffic is present. Thus it is an issue of
intra-protocol fairness. Several mechanisms have been proposed to prevent this
effect e.g. a mandatory slow-start or multiplicative decrease. We argue however
that a high link utilization is actually more desirable for a lower priority traffic
class than fairness within that class. As LEDBAT is designed for background
traffic that will yield for higher priority traffic, LEDBAT should be able to utilize
the link as much as possible when no other traffic is present. Completing one
flow after another instead of transmitting all flows in parallel will, whilst being
unfair, minimize the mean completion time. When sending as much data as
possible en-block, computational power and hence energy consumption will be
minimized as well.

To support our hypothesis we evaluate different decrease schemes with regard
to completion time and utilization. We evaluated the proposed linear decrease
scheme, which is discussed in the ITEF, and a contra-proposal by Carofiglio et
al. [3] for using a multiplicative decrease. Moreover, we introduce new extensions
to either of the schemes. We implemented LEDBAT as TCP congestion control
in Linux using the TCP Timestamp Option for one-way delay measurements
and subsequently used this code within a simulation environment. Moreover, we
show that the decrease behavior is not only important to mitigate the effects of
the late-comer’s advantage but is also important when LEDBAT needs to yield
to higher priority traffic like standard TCP.

The remainder of this paper is structured as follows: Section 2 summarizes
related work. Section 3 is a general introduction into the LEDBAT algorithm
and different decrease schemes. In Section 4 we present our TCP implementation
in Linux. Section 5 shows our results regarding fairness and utilization.Section 6
gives concluding remarks.

2 Related Work

A comparison of LEDBAT with standard TCP as well as other less-than-best-
effort congestion control mechanism such as LP-TCP and TCP-NICE has al-
ready been performed by Rossi et al. [4] [5]. They also detected the late comer’s
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advantage [6]. Initially, the authors proposed TCP Slow-Start as a solution to
this problem. Slow-Start will usually overshoot and induce losses that cause all
competing flows to basically restart their transmission. When two LEDBAT flows
start at the same time, they will equally share the available capacity. But Slow-
Start overshoot will actually affect all competing flows on the link, LEDBAT
flows as well as higher priority standard TCP flows. This breaks one of the de-
sign goals of LEDBAT, as listed in 1. In fact, the current LEDBAT specification
leaves it to the implementor to use a specific start-up scheme, if necessary.

[3] proposed a multiplicative decrease scheme to achieve fairness. We argue
that equal sharing is a non-requirement for background traffic within its traffic
class. [7] argues as well that it is not the right metric for fairness to share the
available capacity equally between competing flows with different requirements.

Another study about parametrization is provided by [8]. In this paper we
did not look at any parametrization issues. This issues are widely discussed on
the IETF LEDBAT mailing list and mostly addressed in the working group
document.

3 LEDBAT

LEDBAT is a novel delay-based congestion control approach for low priority trans-
missions. It is under development within an IETF working group. It is based on
one-way delay measurements. When the measured one-way delay increases, LED-
BAT can react earlier to congestion than loss-based approaches, which are more
predominant in today’s Internet. By slowing down its transmission rate earlier it
will give the available bandwidth to presumed higher priority transmissions. Thus
LEDBAT is friendly to most of today’s higher priority TCP traffic.

Using timestamps, LEDBAT measures the queuing delay on a link. Assuming
all queues on the path are empty at some point of the transmission, the sender
will take the smallest delay measurement as the base delay.

base delay = min(base delay, current delay)

The base delay is the constant fraction of the time a packet needs from sender
to receiver and thus the minimum transmission time that can be observed. Any
additional, variable delays are presumed to be waiting times in network queues.
Therefore the actual queuing delay is calculated based on the current delay
measurement given by the receiver as following:

queuing delay = current delay − base delay

When the base delay changes during a transmission, e.g. because of re-routing,
LEDBAT will automatically update to the new base delay if it gets smaller.
To recognize a higher base delay a base delay history is kept which holds the
measured base delay of the last n minutes and will discard old values after n+1
minutes, thus adapting to the new base delay.

LEDBAT aims to keep the queuing delay low but not to be zero since optimal
resource utilization requires that there is always data to send. Therefore LEDBAT
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tries to achieve an extra delay of TARGET milliseconds. LEDBAT can determine
how far off target it is and then increases or decreases its sending rate. LEDBAT
is designed to not ramp up faster than TCP. Thus it will at maxium increase its
sending rate by one packet per round-trip time (RTT). LEDBAT can use a filter
to smooth or single out wrong delay measurements. But depending on the used
filter scheme and length, e.g. minimum or average of the last CURRENT FILTER
samples, the reaction to congestion might get delayed.

3.1 Late-Comer’s Advantage

Whenever a LEDBAT flow uses a previously unused path, it will immediately
measure the real base delay. Thus it will saturate the bottleneck link after a short
time by maintaining an extra delay of TARGET milliseconds. If now a second
flow arrives, it can only measure the actual base delay plus the extra delay of
the first flow. Wrongly, the second flow will take this value as its base delay.
While the latecomer will add its own target delay on top, the first flow measures
an increased delay and begins to lower its sending rate. In the worst case, the
second flow will add an additional TARGET millisecond of extra delay. As long
as the second flow is not able to measure the actual base delay, it will push away
the first flow completely. This effect is called the “late-comer’s advantage“.

A proposed way to mitigate this effect is to change the decrease behavior to
multiplicative decrease to empty the queue completely such that the second flow
can measure the real base delay [3].

3.2 Managing the Congestion Window

Linear Controller. The current draft version of LEDBAT uses the same linear
controller for an additive increase and additive decrease.

off target =
TARGET − queuing delay

TARGET

cwnd+ = GAIN ∗ off target

cwnd

The congestion window (CWND), which gives the number of packets that can
be transmitted in one RTT, is altered by the normalized off target parameter
that can be positive or negative and thus determines how the CWND grows or
shrinks. When GAIN is one, LEDBAT will at maximum speed up as quickly
as standard TCP because off target will always be smaller than 1 and reach its
maximum value when queuing delay is zero.

Unfortunately, this approach allows LEDBAT to decrease very slowly if e.g.
just one millisecond of extra delay above the TARGET is measured. To be
friendly to standard TCP traffic, LEDBAT should at least decrease as quickly
as standard TCP is increasing. The latest version of the LEDBAT draft in the
IEFT allows a different GAIN value for the decrease than for the increase. We
propose to use

GAIN = TARGET ∗ N
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Fig. 1. Two competing LEDBAT flows with linear decrease

if off target is negative (decrease). N would need to be the number of parallel
starting standard TCP flows. As this number is usually unknown, we assume in
most cases only one flow starting at the same time and set N to 1. Thus LEDBAT
would decrease the congestion window at least by one packet per RTT.

Multiplicative Decrease. [3] proposes to decrease the congestion window for
negative off target by multiplying it with a factor β such that 0 < β < 1:

CWND = β × CWND

The idea is that the multiplicative decrease allows the queues to drain and thus
enable a correct measurement of the base delay. If β is chosen to low it is under-
utilizing the link. If β is to large it doesn’t drain the queue. While [3] is searching
for a fixed value, β is actually depending on the chosen value of TARGET in
relation to the current RTT. This is because the CWND is depending on the
RTT as it gives the number of packets that can be sent during one RTT. Whereas
the TARGET gives the extra delay and thus determines the number of packets
that will be stored in the network queue that needs to be emptied at once (in
one RTT). Thus β must be TARGET

current RTT . For a negative off target value the
congestion window is then calculated as

CWND =
TARGET

current RTT
× CWND

current RTT ≈ 2 × base delay + TARGET

In our implementation we subtracted additional 3 packets after this calculation
to encounter measurement and computation inaccuracies. This value of 3 packets
is selected through simulative studies. With every multiplicative decrease scheme
we decrease only once per RTT as during the first RTT after the decrease all
delay measurements still reflect the situation before the decrease.

4 Linux Implementation

To provide a wide access to a less-than-best-effort congestion control scheme, we
decided to implement LEDBAT as a TCP congestion control module. The Linux
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kernel design provides an interface to extent the kernel functionality through
additional modules. There is a specific module interface for congestion control.
Thus our LEDBAT implementation follows the respective interface of the Linux
kernel. The resulting c-file can be included in any current Linux kernel version.
No further modifications were needed as TCP already provides an option to
transfer and echo time-stamps. Based on this given functionality we do not
calculate the delay at the receiver side, as specified in the LEDBAT draft, but
at the sender. With the TCP Timestamp Option the receiver reflects the time-
stamp TSsnd sent by the sender and adds an additional time-stamp TSrcv at
sent-out of the ACK. By subtracting the echoed time-stamp (TSsnd) from the
new time-stamp (TSrcv) we determine the one-way delay.

OWD = TSrcv − TSsnd

This delay includes the processing delay at the receiver, but as we assume this
processing delay to be constant it will not disturb our queuing delay estimation.
The clocks of sender and receiver do usually not operate on the same time
base. As we only use queuing delay, that means the variable part of the one-
way delay in relation to a certain base delay, the absolute value of base delay
in not important for us. Even if both timestamp have a different resolution,
this can be estimated by monitoring the first samples in relation to the own
clock. As we know the time-stamp resolution in our evaluation scenarios, we
did not implement a specific logic. In order to archive an precise enough delay
measurements to monitor the changes in on-way delay, we had to adjust the
kernels timer frequency from its default 250 HZ to 1000 HZ, giving us a 1 ms
resolution in the timestamps.

Furthermore, TCP will acknowledge at least every second data packet and
waits at most by default Linux configuration 100ms for an additional packet.
This is the delayed ACK mechanism of TCP. But whenever two packets are
acknowledged at once, only the timestamp of the first packet will be echoed.
Thus we have just half the number of measurement samples and some of them
will have artifical delays. If packets arrive continuousely, there is a constant
waiting time until the second packet arrives. This offset is not a problem. But
if the timer expires, there are high variations. With the linear decrease scheme
the impact of one wrong sample is quite low but with multiplicative decrease we
necessarily need noise filtering to cope with this effect. For our simulations the
open source character of Linux also allowed us to patch the kernel and disable
delayed acknowledgments at the receiver side.

5 Evaluation Results

5.1 Scenario

To evaluate the presented decrease schemes in a real-world scenario we first
set up a small testbed with the just described LEDBAT kernel module. All
presented results are extracted from simulations with the IKR SimLib [9] as
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Fig. 2. Two competing LEDBAT flows with different multiplicative decrease, base RTT
40ms

in the simulation delayed ACK could easily be deactivated. We used the IKR
SimLib together with the TCP implementation of the real Linux kernel code
provided by the Network Simulation Cradle [10] - a framework that makes kernel
code usable within a simulation environment. In our simulation scenarios we used
2-5 parallel flows with a bottleneck link capacity of 10Mbit/s and one-way delays
of 10, 19, 20 or 30ms. In every scenario each flow starts with an offset of 15 s to
the previous one. All flows in a scenario want to transit the same data size which
is either 30, 50, 100, 300, 500 or 1000MBytes. The bottleneck node maintains a
queue with a queue size that can hold 60 packets. For all simulations we used a
TARGET value of 25ms and a length CURRENT FILTER of 1 or 2, where 1
basically means no filtering at all.

5.2 Two Competing Flows

To illustrate the behavior of the different decrease schemes we present in detail
the scenarios where two LEDBAT flows compete with the same decrease mech-
anism. Figure 1 shows the linear decrease behavior. The first flow starts and
increases its rate slowly until the bottleneck link is filled and 25ms extra delay
is introduced. The increase gets slower as it gets closer to the 25ms target value.
After 15ms a second flow starts. This flow assumes the current delay as base
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Fig. 3. Two competing LEDBAT flows with different multiplicative decrease, base RTT
20ms

delay and starts increasing its rate as well. The first flows starts decreasing as
it senses more extra delay than the already introduced 25ms. It decreases only
slowly as only little extra delay is introduced by the second flow so far. Thus
the second flow, which never measures the correct base delay, adds an additional
delay on top of the extra delay of the first flow. However, when two flows start
at the same time or restart after the currently dominating flow finished, they
will share the capacity equally as long as they have the same TARGET value.

The upper and middle diagram in Figure 2 show the multiplicative decrease
behavior as proposed by [3] and explained in 3.2 with a fixed value for β of
0.6. We investigated two different variants. The first variant uses a simple noise
filter of length 2. It takes always the minimum of the last two measurement
samples of current delay. In the second variant the length is one, so there is no
noise filtering. But we deactivated delayed ACKs in our simulation. We labeled
those variants with MD-NF2 and MD-NF1. All multiplicative decrease schemes
aim to empty the queue when another LEDBAT is starting. Thus both flows
can measure the right base delay. Whenever some extra delay is introduced on
top of TARGET these schemes will decrease the windows and the link becomes
underutilized. This happens periodically even when no other flow is starting as
LEDBAT itself will exceed the TARGET for probing. When the second flow
starts it will quickly measure the correct base delay as the first one decreases.
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Fig. 4. Five competing LEDBAT flows with different multiplicative decrease, base RTT
40ms

Then both will increase in parallel and the decrease times get synchronized so
that both get the same share of the bandwidth. MD-NF2 does not synchronize
due to the noise filtering and thus does not perfectly divide the bandwidth but
approximately gives each flow an equal share.

The lower diagram in figure 2 shows our proposal with a dynamically adapted
decrease factor (MDvar), deactivated delayed ACK and no noise filter. As both
flows can have slightly different β values, they do not perfectly synchronize but
work in all kinds of scenarios independent of RTT and number of competing
flows as shown in Figure 2 (40ms RTT) and 3 (20ms RTT). Figure 4 shows
the MD-NF1 scheme with 5 successively starting flows with an offset of 15 sec-
onds. The first two do perfectly synchronize but all subsequent flows disturb the
others before an equilibrium can be reached. With MD-NF2 flows are again not
synchronized. In contrast the MDvar scheme shows that the flows always share
the link equally after a short time.

Looking at transmission times we note that in Figures 1 and 2, no mat-
ter which decrease scheme, the last transmission to finish did so after 171ms.
With the linear decrease version shown in Figure 1 the second flow finishes its
transmission ahead of the first flow after 106ms. In all scenarios with multiplica-
tive decrease in Figure 2 the first flow finishes after 134-158ms which is nearly
the same completion time than for the second flow (171ms - 15ms = 156ms).
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Fig. 5. Mean rate over flow size with 40ms base RTT at 10Mbit/s bottleneck link

Regarding bulk background traffic only the completion time of the whole trans-
fer is relevant, not the instantaneous rate. In case of linear decrease at least
one user will get a much better completion time whereas otherwise with the
multiplicative decrease schemes all users have to wait quite long.

5.3 Utilization vs. Fairness

We argue that in the cases where LEDBAT should be used, like software updates
in background, completion time and thus utilization is more important than an
equal share of the capacity. Figure 5 shows the mean sum rate over different
transfer sizes for each of the 2 to 5 parallel LEDBAT flows with a 15 s offset in
the start time. In each scenario all competing flows have a minimum RTT of
40ms on a common 10Mbit/s bottleneck link. We only compared the standard
LEDBAT with linear decrease and the MDvar scheme, as the other schemes
do not work correctly in all scenarios regarding the fair share, as to be seen in
Figure 3. The standard LEDBAT with linear decrease utilizes the link better
with large transfers as each time a flow starts or ends, the link will not be fully
utilized. With long transmissions these time periods in respect to the whole
transmission get smaller.

We argue that the linear decrease scheme is more appropriate to LEDBAT
traffic as completion time and utilization is most important. However, for back-
ground traffic, like automatic software updates, the completion time is not even
important but it is important to not disturb other traffic. If we can utilize the
link as much as possible when it is empty, we will prevent blocking any capacity
for higher priority traffic that might arrive later-on. Moreover, the linear decrease
scheme is less sensitive to noise and easier to implement.

5.4 Decrease Behavior with Competing Standard TCP Flows

Figure 5.3 shows one scenario that we found where LEDBAT with linear decrease
is not friendly to standard TCP cross traffic. It is LEDBAT’s most important
design goal to yield quickly to higher priority TCP traffic, as described in 1. In
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Fig. 6. LEDBAT flow standard linear decrease (upper) or with min. linear decrease of
1 packet per RTT (lower) and standard TCP cross traffic at 20Mbit/s bottleneck link
and queue size of 60 packets.

this scenario there is a bottleneck link of 20Mbit/s and still the same queue size
of 60 packets. To reach the TARGET of 25ms the queue needs to be filled with
42 packets. 20ms after the LEDBAT flow started, a standard TCP flow starts
as well. After some RTTs LEDBAT started to decrease its sending rate. But
it is only decreasing very slowly as it can at maximum sense another 11ms of
extra delay before the queue overflows. Unfortunately in this scenario, whenever
the standard TCP fills up the queue and loss occurs, this loss only hits the
standard TCP flow itself as it sends the data in bursts at the beginning of each
RTT in Slow Start [11]. In this scenario the ratio between the TARGET and
the maximum queue is very unfavorable. Moreover, the burst-wise transmission
precludes LEDBAT from falling back into standard TCP behavior as it would
do when loss occurs. We evaluated the same scenario with our changed approach
where LEDBAT will decrease its rate at least by one packet per RTT. In Figure 6
we can see LEDBAT is yielding again to the TCP flow. In both of these scenarios
delayed ACKs are not deactivated. With our proposal also the increase is slower
than in Figure 5.3 as it decreases (more strongly) from time to time because of
noise from delayed ACKs. An appropriate noise filter can help this problem, and
thus we conclude a larger GAIN value for the decrease will help LEDBAT to
reach its goals. An even larger decrease might be needed if multiple TCP flows
simultaneously are sending as their sending rate will sum up to a larger increase
than one packet per RTT.

6 Conclusion and Outlook

From our experiments we can see that while the standard linear decrease mecha-
nism of LEDBAT always privileges the flow which started last, it is able to fully
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utilize the link in stable state. Moreover, we recommend a larger GAIN for the
decrease case to yield more quickly to competing higher priority standard TCP
traffic. The latest version of the LEDBAT draft allows a higher GAIN for the
decrease but it does not specify a certain value. We made a proposal to achieve a
minimum decrease of one packet per RTT. Multiplicative decrease schemes, even
our optimized proposal, in contrast, underutilize the link due to the periodical
events where the queue is emptied. Given that LEDBAT is designed for lower-
than-best-effort traffic, there is no demand for fairness but high link utilization
and block-wise transfers will help to minimize the mean completion time.

LEDBAT will reset base delay periodically when one or more LEDBAT flows
maintain a constant extra delay on the link. Depending on the length of the base
history filter the capacity share may change. If only some data are left to finish
the transmission, a flow could actively reset base delay. Of course, this will only
cause an effect if just LEDBAT flows are on the link and thus will not disturb
higher priority traffic.
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