
Scalable Increase Adaptive Decrease:

Congestion Control supporting

Low Latency and High Speed

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Mirja Kühlewind

geb. in Berlin

Hauptberichter: Prof. Dr.-Ing. Andreas Kirstädter

Mitberichter: Prof. Dr.-Ing. Jörg Ott

(Technische Universität München)

Tag der Einreichung: 8. Dezember 2014

Tag der mündlichen Prüfung: 5. Oktober 2015

Institut für Kommunikationsnetze und Rechnersysteme

der Universität Stuttgart

2016





Abstract

Congestion control in the Internet has been an open research issue for more than two decades.
A large number of proposals already exist that especially address the scalability problem of
traditional congestion control in high-speed networks. However, more and more applications
with narrow latency requirements are emerging which are not well addressed by existing pro-
posals. In this work, we present TCP SIAD, a new congestion control scheme supporting both
high-speed networks and low latency, based on a new design principle called Scalable Increase
Adaptive Decrease (SIAD). More precisely, our algorithm aims to provide high utilization un-
der various network conditions, and therefore allows operators to configure small buffers for
low latency support. We designed TCP SIAD based on a new approach that aims for a fixed
feedback rate independent of the available bandwidth and provides full scalability. Further, our
approach introduces a configuration knob for the induced feedback rate and thereby controls
the aggressiveness. This can be used by a higher-layer control loop to impact capacity shar-
ing, e.g., for applications that need a minimum rate. Increasing the aggressiveness can lead to
higher throughput but also induces more congestion experienced by the transmission as well
as competing traffic. However, we argue that fairness cannot be addressed by congestion con-
trol, that only influences the instantaneous share for each flow, and therefore do not aim for
TCP-friendliness. Instead, fairness must be policed on a per-user basis over longer time scales
supported by a configurable aggressiveness of the used congestion control scheme as provided
by TCP SIAD.

We evaluate TCP SIAD’s scalability, adaptivity, capacity sharing, and convergence properties
against well-known high-speed congestion control schemes, such as Scalable TCP and High
Speed TCP, as well as H-TCP that among other goals targets small buffers. We show that only
TCP SIAD is able to utilize the bottleneck with arbitrary buffer sizes while avoiding to unneces-
sarily buffer packets in network queues. Further, only TCP SIAD and Scalable TCP implement
a fixed feedback rate independent of the link speed, where Scalable TCP reaches this on the
cost of inducing a standing queue and high loss rate. Moreover, we demonstrate the capacity
sharing properties of SIAD depending on the configured feedback rate. Further, due to a new
Fast Increase phase TCP SIAD can quickly allocate newly available capacity and converges rea-
sonably fast. In addition, TCP SIAD provides a much higher resilience to non-congestion losses
than all other schemes in test. We conclude that TCP SIAD fulfills the stated requirements and
shows high robustness to perform further testing in the Internet.

iii



iv Abstract



Kurzfassung

Die Entwicklung von Verfahren zur Überlastkontrolle (Congestion Control) im Internet ist ein
aktives Forschungsfeld seit über 20 Jahren. Viele der vorgeschlagenen Verfahren adressieren da-
bei im Speziellen Netze mit hohen Übertragungsgeschwindigkeiten, da traditionelle Verfahren
mit einem immer weiter steigenden Verzögerungs-Bandbreiten-Produkt nicht skalieren. Heut-
zutage gibt es jedoch auch immer mehr Anwendungen, die nicht (nur) hohe Anforderungen an
die verfügbare Bandbreite stellen, sondern vor allem auch eine geringe Ende-zu-Ende Verzöge-
rung benötigen. In dieser Arbeit wird ein neues Congestion-Control-Verfahren vorgestellt, das
beide Anforderungen adressiert: Skalierbarkeit in Netzen mit hohen Übertragungsgeschwin-
digkeiten (high speed) und Unterstützung von Diensten mit speziellen Anforderungen an die
Ende-zu-Ende Verzögerung (low latency). Das Verfahren basiert auf dem Prinzip Scalable In-

crease Adaptive Decrease und heißt daher TCP SIAD. Dieser Algorithmus erreicht hohe Link-
auslastungen in verschiedensten Netzszenarien; auch im Falle von sehr kleinen Paket-Puffern
vor dem Übertragungsengpass (Adaptive Decrease). Dies erlaubt dem Netzbetreiber, durch die
Konfiguration kleiner Puffergrößen, die Ende-zu-Ende Verzögerung zu verringern, um somit
z.B. interaktive Dienste besser zu unterstützen. TCP SIAD basiert zudem auf einem neuen An-
satz, der, unabhängig von der aktuell verfügbaren Bandbreite, die Feedback-Rate des Conge-
stion Control Verfahrens konstant halt (Scalable Increase). Somit skaliert TCP SIAD mit der
verfügbaren Bandbreite eines Links, während traditionelle Verfahren bei höherer Bandbreite
weniger häufig Feedback bekommen und somit nur sehr langsam auf Veränderungen reagie-
ren können. Gleichzeitig erlaubt dieser Ansatz einen Konfigurationsparameter einzuführen, der
die Aggressivität des Congestion Control Verfahrens steuert. Dieser Parameter kann von ei-
ner Anwendung verwendet werden, um die Bandbreitenaufteilung zwischen konkurrierenden
Flüssen zu beeinflussen, und somit, falls zwingend notwendig für diesen Dienst, auch (kurzzei-
tig) einen höheren Anteil der verfügbaren Ressourcen zu bekommen. TCP SIAD ist absichtlich
nicht auf TCP-Friendliness ausgelegt, da Fairness nicht instantan und auf Fluss-Ebene durchge-
setzt werden sollte, sondern über eine längere Zeitspanne auf Nutzer-Ebene. Dies kann jedoch
ein Congestion Control Verfahren, das die momentane Senderate für nur einen Fluss steuert,
nicht leisten, sondern muss vom Netzbetreiber auf andere Art und Weise umsetzt werden, z.B.
durch Limitierungen pro Nutzer am Netzrand.

In dieser Arbeit wird die Skalierbarkeit, Adaptierbarkeit, erreichte Bandbreitenaufteilung und
mögliche Konvergenz (scalability, adaptivity, capacity sharing, and convergence) von TCP
SIAD bewertet und jeweils mit bekannten high speed-Verfahren vergleichen - wie Salable TCP,
High Speed TCP und H-TCP, wobei H-TCP das einzige Verfahren ist, das für Szenarien mit klei-
nen Puffern am Engpass im Netz entwickelt worden ist. Es wird gezeigt, dass nur TCP SIAD in

v



vi Kurzfassung

der Lage ist, einen Link unter verschiedensten Puffer-Konfigurationen auszulasten und gleich-
zeitig zu vermeiden, dass bei großen Puffern dauerhaft Pakete in der Warteschlange sind, so dass
keine unnötig große Ende-zu-Ende Verzögerung entsteht (standing queue). H-TCP erreicht dies
Ziel nicht, da die Größe des Reduktionsfaktors (zur Reduzierung der Senderate bei Überlast) bei
H-TCP beschränkt ist. TCP SIAD und Scalable TCP implementieren beide eine feste Feedback-
Rate, die unabhängig von der verfügbaren Bandbreite ist. Jedoch implementiert Scalable TCP
eine feste, sehr hohe Rate, die in der Regel den Puffer am Engpass im Netz permanent voll hält
und zudem eine hohe Verlustrate impliziert. Zusätzlich wird in dieser Arbeit aufgezeigt, dass
TCP SIAD in der Lage ist, durch eine konfigurierbare Aggressivität (der Senderatenerhöhung)
verschiedene Bandbreitenaufteilungen zu erreichen; mit konkurrierenden Flüssen, die entweder
den gleichen oder sogar einen anderen Algorithmus verwenden. Durch die Einführung der Fast

Increase Phase kann TCP SIAD neu-verfügbare (auch sehr hohe) Bandbreiten schnell belegen
und konvergiert zügig. Zudem ist TCP SIAD sehr robust bei hohen (nicht durch Überlast verur-
sachten) Verlusten. Im Gegensatz zu allen anderen Verfahren, die untersucht wurden, kann TCP
SIAD einen Link in einer solchen Situation weiterhin sehr hoch auslasten. Zusammenfassend
erreicht TCP SIAD als einziges Verfahren alle gestellten Anforderungen und zeigt eine sehr
hohe Robustheit.



Contents

Abstract iii

Kurzfassung v

Contents vii

List of Figures x

List of Tables xiv

List of Acronyms xvii

1 Introduction 1

1.1 Motivation based on Current Research Challenges . . . . . . . . . . . . . . . . 2
1.1.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Low Latency Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Per-User Congestion Policing . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Congestion Control Requirements . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Limitations of Current Congestion Control . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Congestion Feedback Rate depends on Available Bandwidth . . . . . . 7
1.3.2 Bottleneck Link Utilization depends on Buffer Size . . . . . . . . . . . 8

1.4 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Internet Congestion Control in TCP 13

2.1 Classification of Congestion Control Schemes . . . . . . . . . . . . . . . . . . 15
2.2 End-to-End Binary-Feedback Best-Effort Congestion Control . . . . . . . . . . 18

2.2.1 TCP Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1.1 Slow Start and Congestion Avoidance . . . . . . . . . . . . 20
2.2.1.2 Fast Retransmit and Fast Recovery . . . . . . . . . . . . . . 22

2.2.2 Overview of Congestion Control Schemes . . . . . . . . . . . . . . . . 23
2.2.2.1 Low Latency (and Delay-based) Congestion Control . . . . . 24
2.2.2.2 High-Speed (and Loss-based) Congestion Control . . . . . . 31

2.2.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Network-supported Congestion Avoidance . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Active Queue Management (AQM) . . . . . . . . . . . . . . . . . . . 43

vii



viii CONTENTS

2.3.2 Explicit Congestion Notification (ECN) . . . . . . . . . . . . . . . . . 45
2.3.3 Services Differentiation to Support Low Latency . . . . . . . . . . . . 46
2.3.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 TCP Congestion Control Implementation in Linux . . . . . . . . . . . . . . . . 47
2.5 TCP Congestion Control Performance Evaluation . . . . . . . . . . . . . . . . 49

2.5.1 Event-driven Network Simulation Integrating Virtual Machines . . . . 50
2.5.2 TCP Evaluation Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.2.1 Traffic Generation . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.2.2 Topologies and Tests . . . . . . . . . . . . . . . . . . . . . 52

2.5.3 Goals and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm 61

3.1 Design Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Scalable Increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Linear Increment Threshold and Trend . . . . . . . . . . . . . . . . . 70
3.2.3 Fast Increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.4 Adaptive Decrease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.5 Additional Decrease . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.1 Maintaining State Information . . . . . . . . . . . . . . . . . . . . . . 76
3.3.2 Delay Estimation and Filtering . . . . . . . . . . . . . . . . . . . . . . 78
3.3.3 Linear Increase Calculation . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.1 Degrees of Freedom in Design . . . . . . . . . . . . . . . . . . . . . . 82
3.4.2 Implementation Complexity . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.3 Buffer Sizing and Configuration . . . . . . . . . . . . . . . . . . . . . 85

4 Evaluation 87

4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.1 Simulation Scenario and Traffic Generation . . . . . . . . . . . . . . . 89
4.1.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Stability and Convergence of Individual Algorithm Components . . . . . . . . 93
4.2.1 Fixed Feedback Rate and Convergence with the Use of Scalable Increase 95
4.2.2 Queue Development and Convergence with the Use of Adaptive Decrease100
4.2.3 Fixed Feedback Rate, Queue Development, and Convergence with the

Use of Scalable Increase and Adaptive Decrease . . . . . . . . . . . . 102
4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Adaptivity and Scalability based on Single-Flow Behavior . . . . . . . . . . . 104
4.3.1 Statistical Evaluation in Steady State . . . . . . . . . . . . . . . . . . 105
4.3.2 Assessment of the Vulnerability to Delay Estimation Errors . . . . . . 110
4.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Capacity Sharing with Multiple Competing Flows . . . . . . . . . . . . . . . . 115
4.4.1 Statistical Evaluation with two Competing Flows . . . . . . . . . . . . 116
4.4.2 Intra-Protocol Evaluation incl. different Round-Trip Time (RTT) Flows

or Multiple Bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS ix

4.4.3 Inter-protocol Evaluation with Competing Non-SIAD flows . . . . . . 123
4.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Convergence and Responsiveness to Starting Traffic . . . . . . . . . . . . . . . 126
4.5.1 Transient Behavior due to Rate Changes or Constant Bit Rate (CBR)

Cross Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.2 Evaluation of Convergence Times with Adaptive Cross Traffic . . . . . 130
4.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 Robustness in High-Congestion Traffic Scenarios . . . . . . . . . . . . . . . . 132
4.6.1 Impact of High Loss Rates . . . . . . . . . . . . . . . . . . . . . . . . 132
4.6.2 Influence of the use of AQM schemes . . . . . . . . . . . . . . . . . . 135
4.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Summary and Conclusion 141

A Source Code 145

A.1 tcp_siad.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2 Patches for sysctl parameters and socket option . . . . . . . . . . . . . . . . . 154
A.3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B Overview of Evaluation Scenarios, Parameters, and Metrics 177

C Further Results 179

C.1 Individual Algorithm Components: SIAD_trend_fastinc . . . . . . . . . . . . . 179
C.2 Single Flow and Two Flows Behavior . . . . . . . . . . . . . . . . . . . . . . 180

C.2.1 One of four Competing Flows crossing Multiple Bottlenecks . . . . . . 181
C.2.2 Two Competing Flows with different RTTs of 100 ms and 200 ms . . . 184
C.2.3 Statistiacl Evaluation of Scenario with 10 TCP SIAD Flows . . . . . . 185

C.3 Capacity Sharing with Non-SIAD Flows . . . . . . . . . . . . . . . . . . . . . 187
C.4 Two Flow Traces and Loss Rates with Starting CBR Traffic . . . . . . . . . . . 189
C.5 Evaluation of Convergence Time . . . . . . . . . . . . . . . . . . . . . . . . . 193
C.6 Short Flow Cross Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.6.1 Example Traces with the Use of Different AQM schemes . . . . . . . . 198

Bibliography 202



x CONTENTS



List of Figures

1.1 Re-Feedback Principle of the Congestion Exposure (ConEx) signaling protocol. 5
1.2 Queue sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Vector diagram for two users of AIMD, AIAD, MIAD, and MIMD. . . . . . . 19
2.2 Congestion window over time. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Hamiliton-Delay (HD): per-packet back-off probability function. . . . . . . . . 29
2.4 TCP Illinois: schematic curves for α and β over da. . . . . . . . . . . . . . . . 36
2.5 Random Early Detection (RED) principle and drop probability. . . . . . . . . . 44
2.6 The ECN feedback scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Architecture of VMSimInt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Dumbbell topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.9 Parking lot topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.10 Topology with two flows (TCP and CBR). . . . . . . . . . . . . . . . . . . . . 55

3.1 The Scalable Increase Adaptive Decrease (SIAD) scheme. . . . . . . . . . . . 61
3.2 Example behavior of TCP SIAD. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Congestion window evolution under periodic feedback. . . . . . . . . . . . . . 82

4.1 Simulation setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Two competing SI_only flows. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Two competing Fixed_Increase flows with 0.5·BDP of buffering. . . . . . . . . 98
4.4 Two competing SI_trend flows. . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5 Two competing SI_trend_fastIncrease flows. . . . . . . . . . . . . . . . . . . . 99
4.6 Two competing AD_only flows. . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.7 Two competing Fixed_Decrease flows. . . . . . . . . . . . . . . . . . . . . . . 101
4.8 Two competing SIAD_only flows. . . . . . . . . . . . . . . . . . . . . . . . . 102
4.9 Two competing SAID_addDecrease flows. . . . . . . . . . . . . . . . . . . . . 103
4.10 Two competing SIAD_trend flows. . . . . . . . . . . . . . . . . . . . . . . . . 104
4.11 Congestion window and queue length over time for a single flow. . . . . . . . . 106
4.12 Congestion window and queue length over time for a single TCP SIAD flow. . 107
4.13 Single flow at 10 Mbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.14 Single flow with queue size of 0.5·BDP . . . . . . . . . . . . . . . . . . . . . 109
4.15 Single flow with changing RTTs. . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.16 Congestion window and queue length over time with per-packet rates between

10 Mbit/s and 30 Mbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.17 Congestion window and queue length over time with per-packet RTT variations

between 100 ms and 103 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



xii LIST OF FIGURES

4.18 Link utilization with additional per-packet delay between 1 ms and up to 5 ms
and a base RTT of 100 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.19 One TCP SIAD flow with CBR cross traffic. . . . . . . . . . . . . . . . . . . . 114
4.20 One TCP SIAD flow w/ and w/o TCP Timestamp Option (TSOpt). . . . . . . . 114
4.21 Two flows on 20 Mbit/s link with and without the use of delayed ACKs. . . . . 116
4.22 Two TCP SIAD flows with and without TCP Timestamp Option (TSOpt). . . . 117
4.23 Two flows on 20 Mbit/s link. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.24 Two flows with 0.5·BDP of buffering. . . . . . . . . . . . . . . . . . . . . . . 119
4.25 Two TCP SIAD flows on 20 Mbit/s link and with 0.5·BDP of buffering. . . . . 120
4.26 10 TCP SIAD flows on 100 Mbit/s link and with 0.1·BDP of buffering. . . . . . 123
4.27 One TCP SIAD flow competing with one TCP NewReno flow on 10 Mbit/s link

with 1·BDP of buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.28 One TCP SIAD flow competing with one TCP Cubic flow on 10 Mbit/s link

with 1·BDP of buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.29 One TCP SIAD flow with different NumRT T configurations and rate changes. . 127
4.30 One Flow on 10 Mbit/s link with 7 Mbit/s CBR traffic till 30 s and from at 60 s on.128
4.31 One flow on 100 Mbit/s link with 75 Mbit/s CBR traffic till 30 s and from 60 s on.129
4.32 Convergence time of two flows on 20 Mbit/s link with different start times. . . . 131
4.33 Average link utilization of one flow on 10 Mbit/s link and 0.5·BDP of buffering

with random loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.34 One flow on 10 Mbit/s link and 0.5·BDP of buffering with 0.1% additional ran-

dom loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.35 One TCP SIAD (NumRT T = 20) flow on 10 Mbit/s bottleneck link with different

Active Queue Management (AQM) schemes. . . . . . . . . . . . . . . . . . . 137

C.1 Two competing SIAD_trend_fastinc flows with different start times. . . . . . . 179
C.2 Single flow at 20 Mbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.3 Single flow with queue size of 1.0*Bandwidth-Delay-Product (BDP) . . . . . . 180
C.4 Two flows with queue size of 1.0*BDP . . . . . . . . . . . . . . . . . . . . . . 181
C.5 Four TCP SIAD flows on 10 Mbit/s link and 0.5*BDP buffering with one flow

crossing multiple bottlenecks. . . . . . . . . . . . . . . . . . . . . . . . . . . 182
C.6 Four TCP SIAD flows on 20 Mbit/s link and 0.5*BDP buffering with one flow

crossing multiple bottlenecks. . . . . . . . . . . . . . . . . . . . . . . . . . . 183
C.7 Two flows on 20 Mbit/s link and 1.0*BDP buffering with different RTTs of

100 ms and 200 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
C.8 Two TCP SIAD flows on 20 Mbit/s link and 1.0*BDP buffering with different

RTTs of 100 ms and 200 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.9 Two flows at link rate 10 Mbit/s with 7 Mbit/s CBR traffic; off at 30 s on at 60 s. 189
C.10 Two flows at link rate 100,Mbit/s with 75 Mbit/s CBR traffic; off at 30 s, on at

60 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
C.11 Average, minimum, and maximum convergence time of two flows with different

start times on 20 Mbit/s link. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
C.12 Example traces of two converging flows on 20 Mbit/s link and 0.5*BDP buffering.194
C.13 Example traces of two converging flows on 100 Mbit/s link and 0.3*BDP buffer-

ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.14 Average, minimum, and maximum convergence time of two flows on 20 Mbit/s

link with different start times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



LIST OF FIGURES xiii

C.15 One long-living flow with short flow cross traffic on 10 Mbit/s link and 1.0*BDP
buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.16 One long-living flow with short flow cross traffic on 10 Mbit/s link and 0.5*BDP
buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

C.17 TCP Reno flow on 10 Mbit/s bottleneck link with different AQM schemes. . . . 198
C.18 TCP Cubic flow on 10 Mbit/s bottleneck link with different AQM schemes. . . 199
C.19 H-TCP flow on 10 Mbit/s bottleneck link with different AQM schemes. . . . . 200
C.20 Two TCP SIAD flows (NumRT T = 20) on 10 Mbit/s bottleneck link with differ-

ent AQM schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



xiv LIST OF FIGURES



List of Tables

2.1 Parameter value of basic simulation scenarios as given in [63] to set the band-
width (BW), the One-Way-Delay (OWD), and base RTT (BS) for the access
links and the central link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Mean loss event distance and standard deviation in seconds with buffer size of
0.5·BDP and NumRT T = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Sharing ratio of two TCP SIAD flows on 20 Mbit/s link with 0.5·BDP of buffering.121
4.3 Sharing ratio of two TCP SIAD flows on 100 Mbit/s link with 0.1·BDP of

buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4 Two flows with different RTTs (100 ms and 200 ms) on 20 Mbit/s link. . . . . . 122
4.5 Flow 0 experiencing multiple bottlenecks with each having a link bandwidth of

10 Mbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.6 Loss rate when CBR traffic starts on 100 Mbit/s link. . . . . . . . . . . . . . . 130
4.7 Link utilization and loss rate for one flow and short flow cross traffic on 10 Mbit/s

link using different buffer configurations. . . . . . . . . . . . . . . . . . . . . 133
4.8 RED parameterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.9 One flow on 10 Mbit/ link with use of AQM. . . . . . . . . . . . . . . . . . . . 138

B.1 Overview of evaluation scenarios and metrics. . . . . . . . . . . . . . . . . . . 177
B.2 Overview of evaluation network parameters and number of greedy flows per

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.1 Flow 0 experiencing multiple bottlenecks with each having a link bandwidth of
20 Mbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.2 Mean rates of 10 TCP SIAD flows with NumRT T = 20. . . . . . . . . . . . . . 185
C.3 Average queue fill level (q), average link utilization (u), and average loss rate

(l) of 10 competing TCP SIAD flows with NumRT T = 20. . . . . . . . . . . . 186
C.4 Mean loss distance and standard deviation [s] of 10 competing TCP SIAD flows

with NumRT T = 20 and 0.3*BDP of buffering. . . . . . . . . . . . . . . . . . 186
C.5 TCP NewReno cross traffic with delayed ACKs. . . . . . . . . . . . . . . . . . 187
C.6 TCP NewReno cross traffic without delayed ACKs. . . . . . . . . . . . . . . . 188
C.7 TCP Cubic cross traffic with delayed ACKs. . . . . . . . . . . . . . . . . . . . 188
C.8 Loss rate when CBR traffic starts on 10 Mbit/s link. . . . . . . . . . . . . . . . 191
C.9 Number of losses when CBR traffic starts on 10 Mbit/s link. . . . . . . . . . . 192
C.10 Number of losses when CBR traffic starts on 100 Mbit/s link. . . . . . . . . . . 193
C.11 Link utilization and loss rate with one flow and short flow cross traffic using

TCP Cubic on 10 Mbit/s link. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

xv



xvi LIST OF TABLES



List of Acronyms

ABC Appropriate Byte Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ACK Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

AIMD Additive Increase Multiplicative Decrease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

AQM Active Queue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

BDP Bandwidth-Delay-Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CBR Constant Bit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

cwnd Congestion Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

CoDel Controlled Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

DCTCP Data Center TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ECN Explicit Congestion Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

EWMA Exponential Weighted Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

FIFO First In First Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

IAT Inter Arrival Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

IETF Internet Engineering Task Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IW Initial Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

MIMD Multiplicative Increase Multiplicative Decrease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

MPLS Multi-Protocol Label Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

OWD One-Way-Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

PIE Proportional Integral Controller Enhanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

PRR Proportional Rate Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

RED Random Early Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

rmcat RTP Media Congestion Avoidance Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

RTO Retransmission Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

RTT Round-Trip Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

RTTM Round-Trip Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xvii



xviii LIST OF ACRONYMS

SACK Selective Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

SEQ Sequence Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

TCP Transmission Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

TFRC TCP-Friendly Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

TSOpt TCP Timestamp Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

UDP User Datagram Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

QoE Quality of Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

QoS Quality of Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

VM Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



1 Introduction

Congestion control has been an important part of the Internet since the late 1980s. It was intro-
duced after a series of congestion collapses. During these events the communication network
settles into an overloaded state where goodput degrades more and more. Congestion control
provides a control loop which decreases the sending rate in presence of congestion. As a large
amount of the Internet traffic (in terms of volume) uses the Transmission Control Protocol (TCP)
where congestion control is inherently implemented, today’s congestion control does a good job
in avoiding a congestion collapse.

But in general an efficient congestion control scheme should

1. avoid a congestion collapse, as well as

2. be able to utilize the bottleneck link independent of the network configuration, and

3. support different application layer requirements.

While congestion avoidance is essentially provided by the control loop that reduces its sending
rate based on some kind of congestion feedback, in the last 20-25 years various congestion
control schemes have been proposed to either cope with certain link characteristics or specific
application requirements. Even though a large variety of proposals for congestion control exists,
which to some extent are even implemented, most often only the default configuration of the
operating system is used. E.g. in 2011 about 16-25% of webservers still used the traditional
Additive Increase Multiplicative Decrease (AIMD), up to 19% Compound TCP, the default
algorithm in Windows, and more than 44% TCP Cubic or BIC, the default in Linux [149].
Many of the proposed schemes do not see wide deployment because it is not straight forward
when to use which scheme. Unfortunately application designers often do not know the network
conditions under which there application is used later on and system administrators do not know
the application requirements.

Therefore, we aim to design a new congestion control scheme, named TCP Scalable Increase
Adaptive Decrease (SIAD), that addresses both of these general requirements listed above by

(a) utilizing the bottleneck link independent of the configured buffer size to better support low
latency services, as well as scaling with the Bandwidth-Delay-Product (BDP) of the net-
work path used by introducing a Fast Increase phase when network conditions are changing,
and

1



2 Chapter 1. Introduction

(b) providing a configuration interface to the application layer that determines the aggressive-
ness of the congestion control scheme and thereby the instantaneous share of the bottleneck
capacity of the bottleneck link depending on its current requirements.

Further, to be able to compete with existing loss-based congestion control schemes in the Inter-
net, our algorithm design must react on loss-based congestion feedback.

In the following section we describe three arising challenges to the current Internet that provide
the motivation for the particular design of our proposed novel congestion control scheme, which
can be summarized by

Scalability in high BDP networks

A large set of congestion control schemes have been proposed to scale better with high
BDP networks. Even though most of them scale better than traditional congestion control
approaches, they still have a dependency on the BDP and therefore do not fully solve the
scalability problem.

Support for low latency services in the Internet

More and more applications with narrow latency requirements are emerging which are not
addressed well by existing proposals. While end-to-end latency is influenced by various
factors, congestion control should aim to minimize queuing delay as far as possible while
maintaining high utilization.

Per-user fairness based on congestion policing

We relax the requirement to be TCP-friendly following the argumentation that fairness
does not depend on the instantaneous rate but on the usage over time and therefore should
be enforced on a per-user (and not per-flow) basis [25]. As congestion control determines
the instantaneous sending rate of single flows, fairness must be addressed by a different
mechanism, e.g. by congestion-based policing.

Based on this analysis we derive more detailed general requirements for congestion control.
Subsequently, we list concrete problems and limitations of current congestion control proposals.
Finally, we specify the design goals of TCP SIAD to be used to evaluate our proposal against
other existing proposals with respect to these goals.

1.1 Motivation based on Current Research Challenges

Scalability is a known problem of traditional congestion control schemes and in fact is already
addressed by a large set of congestion control proposals targeting high-speed networks. In
contrast we additionally aim to provide better support for applications and services that require
low latency as well as to design a congestion control scheme that is suitable to assist deployment
of per-user congestion policing in the future Internet.



1.1 Motivation based on Current Research Challenges 3

1.1.1 Scalability

The classical AIMD [67, 34]-based TCP congestion control does not scale well with high BDP
paths, as their congestion feedback rate often depends on the BDP of the network path used.
AIMD-based schemes increase their sending rate stepwise until the network is overloaded (for
a short period of time) to probe for available capacity. If congestion is subsequently detected
the AIMD scheme decreases its sending rate and starts probing again. AIMD schemes conse-
quently induce self-congestion with a certain rate in steady state, when the network conditions
do not change. The self-induced congestion provides the needed feedback as input for the con-
gestion control loop to either increase or decrease the sending rate. This feedback rate usually
decreases indirectly proportional to an increase in the congestion window and therefore the
BDP. This means the larger the path bandwidth or end-to-end delay, the slower the congestion
control reacts to changing network conditions as congestion feedback is received less often.
This implicates two problems:

1. Congestion control potentially takes a long time to utilize newly available bandwidth
when, e.g., a competing flow stops sending. As an example, to raise the sending rate from
5 Gbit/s to 10 Gbit/s with an Round-Trip Time (RTT) of 100 ms and 1500 byte pack-
ets, TCP NewReno [10] takes more than an hour, as further explained in Section 1.3.1.
During this period the network resources are not utilized efficiently and a transmission
consequently takes longer than needed.

2. For high bandwidth or high delay links, such a congestion control scheme is rate-limited
by the theoretical limits of the network bit error rate. The throughput dependent on the
loss probability p and the RTT can be given for TCP NewReno, as derived by [106, 113],
by

B(p) =
1

RT T

√

3

2p
.

This equation is also explained in more detail in Section 2.2.1. This means when a flow
fully utilizes a certain link with capacity B, it induces periodic congestion events with a
rate p. But when the bit error rate on the link is larger than this loss probability, respec-
tively, the throughput is limited and the link cannot be fully utilized.

There are many congestion control proposals for high-speed or large-delay networks targeting
this problem. These usually scale much better than the traditional TCP NewReno but they
often still depend on the BDP of the bottleneck link. We aim to design a congestion control
scheme where the feedback rate is independent of the network path characteristics. Moreover,
congestion control should be able to quickly adapt to changing network conditions. Therefore,
the congestion control scheme must be able to distinguish between the stable operation state
and a situation where the network or traffic conditions are changing, in order to quickly grab
newly available capacity.

1.1.2 Low Latency Support

Today’s Internet is mainly optimized for high throughput and low loss rates, in order to utilize
network resources most efficiently. This strategy implies large enough network buffers to (a)



4 Chapter 1. Introduction

absorb small data bursts and (b) provide sufficient space for TCP congestion control to work
efficiently. Unfortunately, loss-based congestion control always fills these buffers in order to
induce loss as feedback signal. Therefore, large buffers provide a relevant source of additional
latency on the end-to-end path. In the worst case, with full synchronization of flows or multi-
plexing of a small number of flows, current loss-based congestion control algorithms require a
buffer space of one BDP to be able to utilize the bottleneck link [14]. Note that different flows
have different end-to-end delays and therefore the buffer needs to be dimensioned to the largest
expected delay to guarantee full utilization. In fact, this network configuration is optimized for
the transmission of large amounts of data where only the completion time is relevant for the
user’s Quality of Experience (QoE), but not for latency-sensitive services.

Today, more and more applications are emerging with narrow latency requirements or hard
completion deadlines like real-time video conferencing or interactive cloud services. Typically,
these kinds of services implement a lot of additional logic in the application layer to overcome
current networking performance limitations with respect to latency. The experienced latency
adds up different components, where delay induced by the network is one large component
which is completely out of control of the application itself. Even if the congestion control
algorithm of the host that operates the latency-sensitive application aims to keep the network
buffers on the transmission path shallow, competing loss-based cross traffic fills these buffers
and thereby induces high queuing delay for all flows competing on this bottleneck link.

While end-to-end congestion control cannot change the buffer configuration, it should at least
be designed to

(a) avoid a standing queue by emptying large buffers at congestion event and

(b) keep the link utilization high even if very small buffers are configured.

This allows network operators to configure small buffers, thus avoid large queuing delay and
thereby better support low latency services while still maintaining link utilization high.

1.1.3 Per-User Congestion Policing

Many congestion control proposals are quite complex because they are designed to be “TCP-
friendly” [47], at least under certain network conditions as, e.g., low speed. TCP-friendliness
means that a flow competing with a classical AIMD-based congestion control schemes such as
NewReno [10] achieves equal rate sharing under the same network conditions. This require-
ment might prohibit the usage of this scheme for certain services, e.g., streaming that needs
a certain minimum sending rate to work, no matter how many competing flows currently use
the bottleneck link. But note, as congestion control in TCP usually is a sender-only algo-
rithm, it can easily be changed and therefore it is basically largely deployed on a cooperative
but voluntary basis. In fact, congestion control schemes implementing different levels of ag-
gressiveness are already in use today [149]. This means two flows competing on the same
bottleneck link do not share the capacity equally but depending on their aggressiveness. Un-
der game-theoretical consideration assuming uncooperative and selfish users which only aim to
maximize their own utility, network-based regulation is needed to avoid “The Tragedy of the



1.1 Motivation based on Current Research Challenges 5

Figure 1.1: Re-Feedback Principle of the Congestion Exposure (ConEx) signaling protocol.

Commons” [60]. Therefore, it has been proposed to use congestion as measure for the price of
link usage [100, 133, 37, 53, 82].

In this case the network operator needs to implement a protection mechanism to avoid service
degradation for all users imposed by single misbehaving users in case of congestion. Today this
is mostly done by greatly over-provisioning in the core network and limitation of the access
network capacity and thereby largely avoiding congestion at points where different users are
competing. With increasing access network capabilities, e.g., due to fiber-optic technology, this
might not be sufficient anymore.

Note that service degradation can only occur if a certain network link is overloaded and there-
fore congestion in form of loss or delay occurs which affects all parties that use the link. In a
congestion situation the available resources need to be shared in a fair manner. Thereby fairness
should be regarded at a per-user (and not per-flow) basis [25]. This means fairness depends not
only on the instantaneous rate of one flow (as with TCP-friendliness) but also on each user’s
usage over time. Of course this kind of fairness definition also allows grabbing a larger share
than others but only for a limited time.

Such a definition of fairness cannot be addressed solely by the congestion control. Further, re-
source allocation is influenced by economic and policy implications [20] and therefore should
be managed by the network operator (at network ingress). However, only if resources are sparse
and therefore congestion occurs, policing is needed. Congestion policing based on the Conges-
tion Exposure (ConEx) protocol [28] has been proposed to implement per-user fairness. The
principle of ConEx-based policing is displayed in Figure 1.1. A congestion-controlled flow
sends data over a given network path to the receiver. Subsequently, a TCP receiver provides
feedback about the congestion level as input for congestion control to the sender and the sender’s
congestion control algorithm reduces its sending rate in the presence of congestion. Now the
ConEx protocol additionally signals this congestion level back into the network. Based on this
information a network operator can police its users by, e.g., providing the same congestion
allowance to all users and starting to drop packets once this allowance is exhausted.

When policing is done based on the amount of congestion that the flows of one user cause,
the sender needs a way to control the congestion rate and thereby the aggressiveness of the
congestion control scheme. We leave the implementation of congestion policing to others.



6 Chapter 1. Introduction

But to make congestion policing feasible, congestion control should provide an upper layer
configuration interface to influence the amount of congestion caused by one transmission and
thereby the share of capacity over time.

1.2 Congestion Control Requirements

General requirements for the design of Internet congestion control derived from the research
challenges explained above can be summarized as the following (already published by the au-
thor of this thesis in [86]): These requirements differ from what can usually be found in the
literature which can be summarized as efficiency, fairness, convergence, and robustness (see
Section 2.5.3). We especially do not target fairness as this should not be addressed on an in-
stantaneous per-flow basis by congestion control but instead on a longer time scale and per
user. Further, we do not only require efficiency but more specifically scalability with as well as
adaptivity to changing network situations.

Scalability Congestion control should be able to quickly adjust to new network conditions
even in high-speed networks, by quickly utilizing available bandwidth as well as quickly
yielding capacity for new flows. To achieve this, a congestion control scheme needs to get
frequent network feedback to be able to detect changing network conditions early. The
feedback rate is controlled by the probing frequency of the congestion control scheme.
Unfortunately, most current congestion control schemes to not correctly scale their prob-
ing frequency with the bandwidth. While it is desirable to always have the same probing
frequency, with today’s congestion control feedback is usually received less often when
the bandwidth increases.

Adaptivity Congestion control should adapt its decrease and increase behavior to the network
conditions to be able to efficiently utilize every link independently of the provided buffer
size. Therefore, congestion control should adapt its decrease factor to the buffer size of
the bottleneck link queue such that there are always enough packets to keep the link full.
Moreover, the buffer should be emptied after every decrease completely as any additional
packets in the queue only increase the end-to-end delay by building a standing queue and
therefore decrease performance. If a decrease was too strong, e.g., due to an incorrect
buffer size estimation, the increase behavior of a congestion control scheme could partly
compensate this underutilization by increasing more aggressively afterwards.

Capacity Sharing Congestion control schemes must be able to share the available bandwidth
with different congestion control schemes, at least as long as both schemes react to the
same congestion feedback signal(s). As loss is the most dominant congestion signal to-
day, congestion control should always be able to compete with other flows that rely only
on loss-based feedback. The congestion control schemes used today are constrained by
the aim to achieve TCP-friendliness. This is only possible if all competing schemes im-
plement about the same increase and decrease behavior. But in fact equal per-flow shar-
ing is not desirable [25]. What is needed is to guarantee that every flow can at least
grab some of the capacity. One approach to control the share of the network capacity,
that a transmission allocates, could be realized by providing a configuration interface for



1.3 Limitations of Current Congestion Control 7

the higher-layer to dynamically change the aggressiveness dependent on the application
requirements. Moreover, this provides a simple way to implement a relative prioritiza-
tion among a single user’s flows. Ideally, one finds one solution that fits all higher-layer
service requirements providing a simple interface.

Convergence Congestion control should quickly converge to a stable state with or without
competing flows regardless of the congestion control scheme used. The congestion con-
trol start-up phase is designed to start carefully but then quickly achieve the maximum
sending rate. If the bottleneck capacity is already fully utilized by other flows, this start-
up phase might end early and it can take a long time to converge. Ideally, a starting flow
finds an empty queue which can be filled to achieve a certain sending rate before impos-
ing a congestion signal to all competing flows and then starting the convergence phase.
Even though an empty queue is preferable, loss-based congestion control needs to fill the
buffers frequently to get a congestion feedback signal from the network. This means the
buffer is overloaded over and over for short periods of time. Therefore, congestion control
should at least make sure that the buffer frequently runs empty to give starting flows the
chance to grab capacity quickly. Moreover, congestion control should not unnecessarily
overload the network and avoid large overshoots 1

1.3 Limitations of Current Congestion Control

This section explains in detail limitations of traditional and partly currently used, mostly AIMD-
based congestion control. With AIMD the sending rate is increased linearly with a certain
increase step per RTT until congestion occurs, as explained further in Section 2.2. When a
congestion notification is received, the sending rate is decreased multiplicatively by a certain
factor. In the traditional congestion control such as TCP NewReno, both the increase step per
RTT as well as the decrease factor are fixed values. A fixed increase rate leads to scalability
problems in high-speed networks as it makes the congestion feedback rate dependent on the
currently available bandwidth. The fixed decrease factor most often leads to either a standing
queue or link underutilization depending on the network buffer configuration and cross traffic.
Both problems are explained in detail next.

A large set of congestion control proposals exist where the increase rate or decrease factor
is adapted dynamically. Most of these proposals, however, only care about a more adaptive
increase behavior, while the decrease behavior, which is more important for low latency support
and link utilization, is at best only partly addressed. The attempts of various congestion control
proposals are discussed in detail in Section 2.2.2.

1.3.1 Congestion Feedback Rate depends on Available Bandwidth

Due to the scalability problem of AIMD-based TCP congestion control, the congestion feedback
rate usually depends on network conditions such as the total link capacity of the bottleneck and

1While in fact one congestion feedback signal is sufficient as input for the control loop to trigger a decrease
in sending rate, an aggressive congestion control scheme, that can quickly allocate new capacity, might induce
several losses in the phase where the link is overloaded due to probing. This effect is called overshoot.



8 Chapter 1. Introduction

the number and aggressiveness of cross traffic flows. For AIMD schemes the congestion period
T [83] is calculated by

T =
(1−β )Wmax

α

where α is the number of increases in packets per RTT and β the multiplicative decrease factor
when congestion occurs. It can be seen that T depends on Wmax, the maximum congestion
window at the current share of capacity. In contrast for Multiplicative Increase Multiplicative
Decrease (MIMD) schemes T [83] can be calculated by

T =
−log(β )

log(1+α)

and therefore is independent of the network conditions. Unfortunately, MIMD-based schemes
do not converge without any influence of randomness, e.g., introduced due to processing delays
in other layers or dynamics of cross traffic, as further explained in Section 2.2.

This is not only a problem for scalability as capacity increases (mainly on access links), but
also for the deployment of congestion policing. Assume one end host always uses the same
congestion control algorithm with the same aggressiveness, e.g. TCP NewReno, and always
sends over the same bottleneck link with the same RTT. As long as this one end host sends only
one flow and is alone on the bottleneck link, it induces congestion with a certain rate. In case of
TCP NewReno the sending rate increases by one packet per RTT. Therefore, exactly one packet
is lost whenever a congestion events occurs and the capacity is exceeded for one RTT until the
congestion feedback is received at the sender.

Now assume a second flow competes for the bandwidth on the same bottleneck link using the
same congestion control with the same RTT. In stable state both flows share the available
capacity equally. In case of TCP NewReno in total at every synchronized congestion event
two packets are lost, as both flows together have a common increase rate of two packets per
RTT. In most cases each flow sees one of the losses and reduces its sending rate respectively.
Thereby the total loss rate is already doubled, as there is now more congestion, but still a single
flow sees only one loss per congestion event, as they still increase their sending rate with the
same aggressiveness than before of in this case one packet per RTT. Unfortunately, as each
flow now only gets half of the bottleneck capacity, the congestion frequency is doubled as well.
Therefore, in the end the total congestion rate is four times as large as before and the congestion
rate as recognized by each single flow has doubled. This is especially a problem for congestion
policing as a policer must be configured to allow for a certain congestion rate per user.

1.3.2 Bottleneck Link Utilization depends on Buffer Size

Congestion control schemes with a fixed decrease factor need a certain amount of buffering in
the network to be able to fully utilize a link. E.g. TCP Reno halves its sending rate in case
of congestion and therefore needs one BDP of buffering to have enough packets in the queue
to balance out the decreases sending rate (until the RTT is halved as well as soon as the queue
is empty). This is because loss-based congestion control completely fills the buffer (or at least
fill to a certain level, where the queue starts notifying for congestion) and therefore introduces



1.3 Limitations of Current Congestion Control 9

(a) Standing queue. (b) Link underultilization.

Figure 1.2: Queue sizing.

queuing delay to each packet traversing the queue. Note that a given link has a certain end-to-
end delay, but per-packet RTT varies based on the queuing delay. In TCP congestion control the
sending rate is often maintained as the number of packets that are allowed to be in flight during
one RTT, the so-called congestion window. Therefore, the same number of packets can in fact
lead to different sending rates depending on the current RTT. When a congestion notification is
received, the sender reduces its sending rate and therefore the queue starts shrinking. In the case
of TCP NewReno the congestion window is halved. At this point of time the queue is full (in
the worst case) and with one additional BDP of buffering the RTT doubles when the congestion
signal occurs. Now as the congestion window is halved and actually half of the packets in flight
sit in the queue (one additional BDP), the queue is emptied within the next RTT. At the same
time the RTT itself reduces to half the maximum value and thereby half the number of packets
in flight is still able to fully utilize the link. This means a certain minimum amount of buffer in
the network is needed to overcome this phase where the sending rate is low depending on how
much the sender decreases its sending rate.

However, if the network buffer is too large, a standing queue develops. This means that even
though the congestion control scheme reduces its sending rate, the buffer never becomes com-
pletely empty. This permanently introduces an additional delay that degrades performance with-
out helping utilization. This case is sketched in Figure 1.2a. In contrast if the buffer is too small,
the buffer will be completely emptied after a window reduction which causes a period where
no packets are available to fill the link, as shown in Figure 1.2b, and therefore leads to link
underutilization.

Therefore, optimal buffer sizing depends on the decrease behavior of the respective congestion
control scheme, which is usually unknown by the network operator in the Internet. While
synchronized flows with a decrease factor of 0.5 need one BDP = RT T ∗C of buffer on a link
with capacity C, it has been shown that a buffer of

B =
RT T ·C√

n

is sufficient for highly aggregated links with n flows due to multiplexing and consequently
desynchronization [14]. Still as the number of flows varies, buffers usually are over-dimensioned
to guarantee full link utilization in any case. This causes a standing queue and might cause per-
formance degradation for latency-sensitive applications. In fact the network operator is not able
to configure the queue ’perfectly’ as neither the current number of flows nor the congestion con-
trol scheme used by each single flow are easily known. In line with the end-to-end arguments



10 Chapter 1. Introduction

in system design [126] it is more desirable to adapt the decrease behavior of the congestion
control algorithm to buffer size of the network router in front of the bottleneck link. This allows
network operators to simply configure smaller queues without worrying about underutilization
and consequently better support low latency services.

1.4 Design Goals

Based on the analysis of current research challenges as well as shortcomings of current conges-
tion control proposals, we state the following explicit design goals. We use these design goals
to evaluate the general suitability of our proposal to address the presented research challenges
as well as in comparison with existing congestion control proposals. While existing proposals
are able to address single goals equally well or better than our proposal, none of the current
proposal was designed to address all goals listed below.

High Link Utilization The proposed congestion control scheme should always be able to uti-
lize the bottleneck link independent of network buffer size, especially if the buffers are
configured small to better support low-latency requirements. Therefore, the proposed
scheme needs to estimate the current buffer size dynamically and adapt its (decrease)
behavior such that the available capacity can always be used efficiently.

Minimized Average Queuing Delay The proposed congestion control scheme should drain
the queue at every decrease to avoid a standing queue and consequently minimize the
average end-to-end delay. When the buffer size cannot be estimated correctly, the scheme
could potentially further decrease to probe when the queue runs empty. As additional de-
lay caused by a standing queue does not increase link utilization, the available resources
are most efficiently used when queuing delay is minimized.

Fixed Feedback Rate The proposed congestion control scheme should induce a fixed feed-
back rate when self-congested. To reach this goal while the decrease rate is calculated
dynamically, the increase rate needs to be calculated dynamically as well. Only if the
feedback rate is independent of the available bandwidth, the congestion control is fully
scalable.

Quick Capacity Allocation The proposed congestion control scheme should be able to quickly
allocate newly available bandwidth if the network conditions have changed when, e.g., a
competing flow stops sending. Especially in high-speed networks, the scheme needs
to distinguish between stable and changing network conditions in order to increase the
sending rate differently in each case and provide better scalability and fast convergence
in these scenarios.

Configurable Aggressiveness The proposed congestion control scheme should further provide
a configuration interface to influence the capacity sharing when competing with other
traffic.



1.5 Outline 11

1.5 Outline

In this thesis we present and evaluate Scalable Increase Adaptive Decrease (SIAD), a new TCP
congestion control scheme. TCP SIAD aims to support both, high speed and low latency to
address requirements of today’s and future communication networks as well as of new emerging
latency-sensitive service. More precisely, our algorithm provides high utilization under various
networking conditions by adapting the decrease behavior based on an estimate of each flow’s
share of packets in the bottleneck queue. This allows operators to configure small buffers for
low latency support while maintaining high link utilization. Moreover, we designed the increase
behavior of TCP SIAD based on a completely novel approach called Scalable Increase that
aims for a fixed feedback rate independent of the available bandwidth and is therefore fully
scalable for high-speed networks. Based on this approach, we moreover introduce an additional
configuration parameter that can be used by a higher-layer control loop to influence each flow’s
capacity share at the cost of higher congestion. This interface can be used for applications such
as streaming that need a minimum sending rate to provide any useful service. This interface
supports the deployment of congestion policing in the future Internet.

Further, we define a Fast Increase phase which is entered when changing network situations
are detected. In Fast Increase our proposed congestion control scheme increases more quickly
than in steady state behavior. We assume in Fast Increase that new capacity is available and
therefore that the new capacity limit is unknown. A similar consideration was the basis for TCP
Cubic’s increase curve, which is the default algorithm in Linux. In this work we introduce Fast
Increase as a general concept that is beneficial to implement for any future congestion control
scheme addressing high-speed networks. Note that Fast Increase as implemented in TCP SIAD
allocates new available capacity much faster than TCP Cubic, as we will show in our evaluation.

In the next chapter we provide the necessary background on congestion control in TCP, eval-
uation of TCP protocol mechanisms, as well as the implementation of congestion control in
Linux. Additionally, we discuss the state of the art in end-to-end binary-feedback best-effort
congestion control as used in TCP and show that none of the current proposals to address all
of our design goals. Based on a detailed description of selected proposals, we further point out
similarities and differences to our design approach. Chapter 3 details the design of our TCP
SIAD algorithm, lays out reasoning for the design decisions leading to it, and presents an im-
plementation thereof in the Linux kernel. Chapter 4 presents a full evaluation of TCP SIAD,
based on this implementation, including a comparison to other state of the art congestion con-
trol schemes. We show that TCP SIAD can achieve our design goals on high link utilization,
low average queuing delay as well as a fixed feedback rate in a single flow scenario, in contrast
to all other schemes we evaluate. Further, we demonstrate the feasibility to influence capac-
ity sharing using TCP SIAD’s configuration parameter. Moreover, we additionally show that
it is also possible to achieve equal sharing with traditional congestion control schemes, if the
respective network conditions are known. Finally, we demonstrate the robustness of TCP SIAD
in various Internet scenarios, e.g. in a scenario with multiple bottlenecks or short flows of cross
traffic. We show that TCP SIAD is very robust to high loss/congestion rates induced by either
bursty cross traffic or lower layer bit error than all other scheme we evaluate. As a drawback
TCP SIAD might induce higher oscillations itself due to Fast Increase. Note, there is a known
trade-off between higher responsiveness and therefore faster convergence at the cost of worse
smoothness and therefore larger oscillations of the sending rate. We can conclude that TCP



12 Chapter 1. Introduction

SIAD fulfills the stated requirements and shows high robustness to perform further testing in
the Internet.



2 Internet Congestion Control in TCP

Network congestion occurs when the aggregated traffic demand is higher than the capacity of a
network resource and therefore the network is overloaded. In packet-switched networks as the
Internet, each network node maintains a buffer to, first of all, handle effects of statistical multi-
plexing and, moreover, to be able to compensate short periods of overload. When the incoming
traffic load exceeds the capacity of the out-going link, packets are stored in the buffer. This,
of course, induces additional delay in the end-to-end transmission. When the load increases
further, the buffer overflows and packets get dropped. Both, queuing delay and packet loss,
decrease the network performance and are known effects of network congestion.

If a reliable transport is used, lost data is retransmitted. Unfortunately, in case of losses due to
network overload, retransmissions might even cause an increase in network load. This behavior
can bring a network into a state where the network load is high but the throughput gets lower
and lower until no useful communication is possible anymore. This state is known as congestion
collapse. Due to a series of congestion collapses in the Internet in the late 1980s, congestion
control was introduced. The main task of congestion control is to determine the sending rate
of an end-to-end transmission and thereby avoid a congestion collapse. Additionally, conges-
tion control should allow efficient utilization of the available capacity of a given end-to-end
network path. Further, goals are often stated as, e.g., fast convergence when competing with
intra-protocol traffic, minimizing the amplitude of oscillations, high responsiveness when new
resources become available, and a fair coexistence with inter-protocol cross traffic [101]. Goals
and metric for performance evaluation are more explicitly explained in Section 2.5.3.

Since this series of congestion collapses, congestion control is implemented as an essential
part of the Transmission Control Protocol (TCP) [119]. TCP is a reliable transport protocol
that is widely used in the Internet. Reliability is implemented by sending an Acknowledg-
ment (ACK) on the reception of a data segment and retransmitting (potentially) lost data when
no new acknowledgment is received. For this purpose a data segment can be identified by a Se-
quence Number (SEQ). Each new payload byte increases the SEQ by one. The ACK contains,
moreover, an acknowledgment number that announces the next in-order SEQ expected by the
receiver. To reduce signaling overhead, a TCP receiver might not acknowledge each received
segment separately but multiple at once. A TCP receiver should at least acknowledge every sec-
ond packet and delay an acknowledgement not more that 500 ms [10, 23]. Duplicated ACKs are
triggered at the receiver by the arrival of out-of-order data segments and thereby do not acknowl-
edge new data but repeat the previous acknowledgment number. When the missing data is re-
ceived, a cumulative acknowledgment is sent that acknowledges all (now) in-order segments re-
ceived. Additionally, TCP often implements Selective Acknowledgment (SACK) [104], where,
in case of duplicated ACKs, the received sequence number ranges are announced to the sender.

13



14 Chapter 2. Internet Congestion Control in TCP

Therefore, when more than one packet was lost, the sender does not have to wait until an ac-
cumulated ACK announces the next hole in the sequence number space, but can retransmit lost
packets immediately.

When a loss is detected, TCP congestion control [10] becomes active and usually reduces the
sending rate. The sending rate is most often determined by a (sliding-) window. Based on the
packet conservation principle [67], new packets are only sent into the network when an old
packets have exited. This leads to TCP implementations that are mostly self-clocked and take
actions only when an ACK is received. When no ACKs are received at all for a certain time
larger than at least one RTT, the Retransmission Time-Out (RTO) is triggered and the sending
rate is reduced to a minimum value. The current sending window is the minimum of the receive
window and the congestion window where the receive window is announced by the receiver
to not overload the receiver buffer. As long as flow control does not become active and not
signal a smaller receive window to not overload the receiver, the sending window equals the
congestion window. The congestion window is estimated by the congestion control algorithm
based on implicit or explicit network feedback. Inherently, the congestion control mechanism
of a TCP sender assumes that loss occurs to due network congestion and therefore reacts each
time congestion is notified. Note, congestion control usually at most reduces once per RTT as
the congestion feedback has a signaling delay of one RTT. Unfortunately, congestion is not the
only reason for the occurrence of loss. Packets can be dropped for various reasons by different
nodes on the network path, e.g., due to bit errors.

To determine, e.g., a large enough value for the RTO, the RTT needs to be measured by the TCP
sender. The Round-Trip Time Measurement (RTTM) mechanism in TCP either needs to store
the sent-out time stamp and SEQ of all or a sample of packets or can use the TCP Timestamp
Option (TSOpt) [68]. With TSOpt the sender adds the current time stamp to each packet and
the receiver reflects this time stamp in the respective ACK. By subtracting the reflected time
stamp from the current system time the RTT can be measured for each received ACK holding
a valid TSOpt. Note that in case of delayed or duplicated ACKs, the time stamp of the first
unacknowledged packet is reflected which might inflate the RTT measurement artificially but
guarantees a large enough RTO.

In the next section we first give an overview of classification principles for congestion control.
Based on this overview we narrow down our scope to mechanisms and approaches that are
relevant for our proposal. In Section 2.2 we introduce congestion control algorithms with a
focus on end-to-end binary-feedback congestion control for best-effort services implemented
in TCP. We discuss general principles as well as survey a set of specific loss-based, delay-
based, and hybrid proposals. Thereby proposals that explicitly address high-speed networks or
requirements of latency-sensitive services are of our main interest.

[125] distinguishes two approaches to handle congestion, congestion control including recov-
ery as a reactive approach when a network overload had happened and congestion avoidance to
proactively handle in advance. Thereby congestion avoidance mechanisms for packet schedul-
ing and buffer management in the network (network algorithms) provide feedback to the con-
gestion control of the sending end host to perform respective rate adjustments (source algo-
rithms) [92]. Both algorithms together provide a control loop for network congestion. There-
fore, in Section 2.3 we also discuss network-supported congestion avoidance introducing basic
mechanism of Active Queue Management (AQM). Moreover, approaches based on service dif-



2.1 Classification of Congestion Control Schemes 15

ferentiation for low latency support are presented. These approaches could be used in addition
to our congestion control proposal to quickly deploy smaller buffers and therefore low latency
support in the Internet. Finally, Section 2.4 and 2.5 provide background knowledge on TCP
congestion control implementation in Linux as kernel module and the used network simulation
tool as well as scenarios and metrics for TCP performance evaluation.

2.1 Classification of Congestion Control Schemes

Congestion control can be classified based on very different criteria. For TCP congestion control
we only focus on unicast approaches in contrast to multicast congestion control, as classified
by [147, 56]. Multicast proposals face very different problems and therefore are not considered
here [22, 54]. We discuss classification based four criteria which often can be found in literature:

- the type of feedback which the rate adjustment is based on,

- the way the send-out behavior and therefore the sending rate is determined,

- deployability, and

- based on which optimization criteria a certain scheme is designed.

Network feedback

Most often congestion control schemes are categorized by the type of feedback that is used for
congestion notification. E.g. mechanisms can be separated into delay-based and loss-based.
Delay measurements provide an early congestion feedback as the queue fills when the link
is fully utilized and thereby additional delay is induced before loss occurs. Delay-based ap-
proaches often try to limit the queuing delay or, respectively, the number of packets in the
queue, and thereby inherently induce only low queuing delay. Unfortunately, those approaches
are not able to co-exist with loss-based mechanisms, as the delay signal triggers a reduction
in sending rate before loss occurs and there this congestion signal is received earlier than the
feedback for loss-based approaches [61].

Of course, hybrid approaches exist which use both signals. For most of these approaches, loss
is the predominant congestion signal which is used to decide when the sending rate should be
reduced while delay measurements influence by how much it is reduced. Alternatively, with
a focus on delay-sensitive applications, proposals exist that are loss-based if loss-based cross
traffic is detected and delay-based otherwise to maintain low queuing delay [29, 94, 107].

Both signals, loss and delay, are implicit congestion signals that occur inevitably when a buffer
overflow in an overloaded network happens. In contrast Explicit Congestion Notification (ECN)
allows a congested network node to explicitly signal congestion before a buffer overflows [120].
Loss and ECN are binary feedback signals that only announce if congestion occurred or not.
An estimation of the queuing delay can provide more fine-grained information based on the



16 Chapter 2. Internet Congestion Control in TCP

resolution of the measurement approach. Note that loss, ECN feedback as well as delay mea-
surements do not provide any information on the link state when the bottleneck link is not fully
utilized yet.

While implicit signals as well as ECN in TCP can be used as input signal for pure end-to-end

congestion control, there is also a set of proposals which are network-supported. Network-
supported approaches (such as XCP [78] and RCP [39]), in contrast, often provide a more
detailed feedback directly from the congested network element such as the available capacity,
the number and rate of competing flows, or a fair-share target rate.

Send-out Behavior

As described above, the sending rate in TCP is foremost window-based. This means only
when some space was previously freed in the sending window, a new packet can be sent out.
Therefore, all actions taken by the congestion control mechanism are clocked by the arrival of
ACKs that indicate the receipt of a packet at the receiver and signals additionally if there is
congestion or not. In rate-based approaches, in contrast, the sending rate is controlled directly
and the sent-out time of each packet is triggered by timers.

Furthermore, [56] distinguishes between probe-based and model-based approaches. A probe-
based approach adjusts its sending rate directly based on the feedback provided by the receiver,
while otherwise a model of the TCP behavior is used to determine the sending rate. An exam-
ple for such a scheme is TCP-Friendly Rate Control (TFRC), where the equation-based model

of [113] is used to calculate the sending rate based on the average experienced loss rate. Alter-
natively, economic models could be used as proposed by Kelly et al. [80, 53].

Deployability

Congestion control adjusts the sending rate which is inherently determined by the sender. Thus,
in principle, congestion control could be deployed by sender-side only mechanisms. This is
only possible if some kind of network feedback is provided either by the congested network
node directly or through the receiver. TCP inherently provides feedback on packet loss and
delay due to the way reliability is implemented. Therefore, most often TCP congestion control
schemes can be deployed by sender-side changes only. Sometimes it is beneficial to take the
control decision on the receiver-side, as the receiver might have more information on, e.g., the
network conditions of its access link. In this case some kind of signaling is needed to constrain
the sending rate of the sender. In TCP this could be done by exploiting the receive window
announcement which is supposed to be used for flow control.

If a congestion control scheme requires any kind of network support, at least the bottleneck
network node needs to support the respective signaling. In the Internet any node could be the
bottleneck which makes deployment of such mechanisms hard. If it cannot be guaranteed that
the bottleneck node supports the respective mechanism, there must at least be a fallback end-to-
end scheme. If the bottleneck is even the element that makes the control decision, all senders
that cross the bottleneck link must comply which is even harder to ensure.



2.1 Classification of Congestion Control Schemes 17

Optimization Criteria

Various congestion control schemes have been proposed to improve performance aspects of
specific network or traffic characteristics. Many proposals are targeted at high-speed/high-BDP

networks. Another group of proposals focuses on lossy links with potentially variable bit rates

such as in some wireless networks or on high delay links, e.g., in satellite communication.
Regarding the traffic characteristics, TCP congestion control schemes are foremost with long-
lived flows, as the congestion control algorithm mostly influences the steady state behavior, and
therefore are often also optimized for these kind of traffic scenarios. However, there are also
schemes that are especially designed to cope with Internet traffic that consists of a mix of long
(elephants), short (mice) and application-limited flows [58].

Further, many congestion control schemes target best-effort services where the traffic is elastic

and therefore the goal is to adapt the sending rate on the network conditions while always
utilizing all available capacity. Services that use this kind of congestion control are often in-
sensitive to delay variations. In contrast, there are also services with real-time requirements
like, e.g., Voice over IP. These service might send (bursts of) Constant Bit Rate (CBR) cross
traffic [132] instead. Further, while best-effort services using TCP usually try to grab as much
capacity as currently possible, there are also scavenger protocols for background transfers that
only try to grab capacity when no foreground traffic is present.

Moreover, many proposed congestion control schemes are designed to provide fair capacity
sharing with flows using the same algorithm (intra-protocol fairness) as well as using other
(usually TCP NewReno-like) schemes (inter-protocol fairness). TCP-friendliness [47] thereby
means that a flow competing with a classical TCP congestion control would achieve an equal
capacity sharing; at least under certain network conditions as, e.g., low speed and the same end-
to-end delay. Fairness is often defined by the Jain’s fairness index [71] which is maximized
when all competing flows (at the same bottleneck) have the same rate (see Section 2.5.3). Min-

max fairness [21] is achieved if the rate of a flow cannot be increased without decreasing the rate
of an equal or smaller rate flow and therefore it additionally takes the existence of rate-limited
flows into account such that it utilizes all available capacity and thereby potentially allows a
higher share of the capacity for non-rate-limited flows. Proportional fair [79] scheduling, as
often used in mobile network, aims to maximize the total throughput and thereby to optimize
spectral efficiency while maintaining a certain minimum share for each user. While the men-
tioned fairness criteria are focused on rate sharing, fairness could also be defined based on other
Quality of Service (QoS) metrics such as latency.

Further, congestion control can be regarded as an optimization problem proposing a game-
theoretic approach to reach the Nash equilibrium where each player maximizes its capacity
share while minimizing the cost in form of congestion [77, 99].

According to [125, 7] the main research challenges for Internet congestion control can be sum-
marized as “interoperability, robustness, stability, convergence, implementation complexity and

fairness” [125] as well as fairness issues regarding non-TCP-friendly and short-flow traffic, the
increasing amount of different and potential variable link characteristics, and changing traffic
dynamics. Additionally, the bufferbloat [52] problem, where excessive buffering induces high
delays that degrade the QoE of interactive and real-time services, need to be addressed com-
monly by congestion control in the end system and congestion avoidance in the network. Note



18 Chapter 2. Internet Congestion Control in TCP

that [7] concludes “there is no single congestion control approach for TCP that can universally

be applied to all network environments” and “there are not yet the well-defined and broadly-

accepted criteria to serve as good baseline for appropriately selecting a congestion control

algorithm”.

2.2 End-to-End Binary-Feedback Best-Effort Congestion Control

As this work targets TCP congestion control, we limit our scope to sender-side, window-based,
end-to-end, and binary feedback approaches for best-effort services..

[126] argues that the end-to-end principle is the main reason for scalability. In end-to-end
congestion control there is always one RTT feedback delay of the control loop. To preserve
stability and avoid oscillations the control frequency should be equal or lower than the feedback
frequency [70]. Therefore, any reaction should only be taken on a per-RTT base while feedback
is received most often once per ACK, thus several times per RTT.

Further, [34] names distributedness and a minimal amount of feedback important characteris-
tics to avoid complexity and signaling overhead. Loss only gives a binary feedback signal that
indicates if the network is congested or not. Binary-feedback congestion control usually imple-
ments a reactive control loop where the sending rate is decreased when congestion occurs or
increased in the absence of congestion. Often only local information extracted from the feed-
back signal of one single flow is used, and the control loop is memoryless, which means that
any control decision is only based on the current state and not the history [98].

Most binary-feedback congestion control schemes can be described based on the Chui-Jain

model [34] of linear control algorithms as reaction to a synchronous binary signal, which is
usually loss or can also be an ECN signal. The feedback signal y(t) therefore reflects the load
level over an interval t, which is binary (can either be 1 or 0) and synchronous (all users receive
the same signal in the respective feedback interval). x(t) is the resulting rate of one user in time
slot t. The increase and decrease functions are described by

x(t +1) =

{

βIx(t)+αI if y(t) = 0

βDx(t)+αD if y(t) = 1
(2.1)

where αI ≥ 0, αD ≤ 0, βI ≥ 1, and 0 < βD ≤ 1. This general description results in four classes
of control functions:

- Multiplicative Increase Multiplicative Decrease (MIMD)
with αI = 0, αD = 0, βI > 1, and 0 < βD < 1

- Additive Increase Additive Decrease (AIAD)
with αI > 0, αD < 0, βI = 1, and βD = 1

- Additive Increase Multiplicative Decrease (AIMD)
with αI > 0, αD = 0, βI = 1, and 0 < βD < 1



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 19

Figure 2.1: Vector diagram for two users of AIMD, AIAD, MIAD, and MIMD.

- Multiplicative Increase Additive Decrease (MIAD)
with αI = 0, αD < 0, βI > 1, and βD = 1

To understand the behavior of these groups of algorithms the trajectories of rate adjustments can
be represented as an n-dimensional vector diagram, where n is the number of competing users.
Figure 2.1 shows the respective diagrams for two competing users. The fairness line indicates
all points of equal sharing and the efficiency lines all points where the network resources are
used efficiently. Therefore, their intersection represents the optimum. While all schemes can
utilize network resources efficiently, only AIMD converges to equal sharing. In contrast MIMD
and AIAD maintain a given sharing ratio. MIAD always converges to a situation where only
one user gets all resources. Therefore, to achieve equal capacity sharing the decrease should
be multiplicative and the increase should have an additive component [34]. The respective
increase and decrease factors can be chosen to maintain a trade-off between responsiveness
and smoothness. [55] additionally investigates Multiplicative Additive Increase Multiplicative

Decrease (MAIMD) schemes, where only aD = 0. This superclass of stable algorithms also
converges to fairness and provides efficiency.

Moreover, AIMD can be generalized to a class of so-called binomial congestion control algo-
rithms [19]

x(t +1) =

{

x(t)+α/x(t)k if y(t) = 0

x(t)−βx(t)l if y(t) = 1
(2.2)

Note that it must hold that k+ l = 1 and l ≤ 1 to be TCP-friendly [19]. But if l can be chosen
smaller than 1, the congestion response is smoother and therefore might be better applicable
for streaming or even real-time media. [98] shows that only AIMD in the group of binomial
algorithms provides monotonic convergence to fairness and additionally has the lowest packets
loss rate. They propose to adapt the increase value α such that a constant packet loss rate can
be achieved independent of the number of competing flows.



20 Chapter 2. Internet Congestion Control in TCP

2.2.1 TCP Congestion Control

Most TCP congestion control schemes and implementations include the use of four algorithms
called Slow-Start (SS), Congestion Avoidance (CA), Fast Retransmit, and Fast Recovery. The
first three of these algorithms were defined early on with the introduction of TCP Tahoe conges-
tion control (in the 4.3BSD-Tahoe kernel) in 1988 [67]. Fast Recovery was added later on with
TCP Reno [138, 11, 10] to more quickly recover from short-term, mostly self-induced conges-
tion and to allow for sending new data already during Fast Recovery. TCP NewReno [48, 49, 65]
specifies another modification that improves the retransmission behavior in Fast Recovery.

In Figure 2.2 the evolution of the Congestion Window (cwnd) over time of an AIMD-based TCP
congestion control scheme is shown. cwnd maintains the number of packets that are allowed to
be in-flight during one RTT and thereby determines the sending rate (as long as the connection
is not receive-window-limited). While cwnd could also be counted in number of bytes, in
this thesis we always use the congestion window in number of packets. This is also how it is
implemented in the current Linux kernel. Note, if all packets are of equal size, this is equivalent.
In greedy connections, where always enough data are available to send, all packets are usually
full-sized (based on the Maximum Segment Size (MSS) of the lower layer). Further, note that
the cwnd can also be larger than the number of packets in-flight when the sending rate of the
connection is, e.g., application-limited. We call the amount of data that has been sent but not yet
cumulatively acknowledged flight size [10]. A TCP sender sends out new packets as a reaction
to a received ACK as long as the flight size is smaller than the congestion window.

Figure 2.2 shows the typical saw-tooth behavior of TCP congestion control. At the beginning
the Slow Start algorithm is used to careful start sending but then quickly allocate capacity.
Afterwards the connection is in Congestion Avoidance phase where an AIMD scheme is used
to periodically probe for available resources. By this principle TCP congestion control is able
to adapt to changing network situation, e.g., due to starting or stopping flows. Both algorithms,
Slow Start and Congestion Avoidance, are explained in more detail in the next section.

This probing scheme frequently overloads the network link and therefore induces congestion
that is used as a input signal to trigger a reduction in sending rate. Due to the end-to-end feed-
back delay, congestion remains on the link for (at least) one RTT. Based on the aggressiveness
of the increase behavior and the AQM in the network node (see Section 2.3.1), one or more
packets can get lost (or ECN-marked) during this interval. E.g. with DropTail and a loss-based
scheme with an increase rate of 1 packet per RTT exactly one packet usually gets lost. We
define all losses or congestion notifications that occur in the same RTT as one congestion event,
similar to the definition in [83]. The period between two congestion events is called congestion

epoch, as also introduced by [148] as illustrated in Figure 2.2. The decrease behavior of TCP
congestion control as well as its recovery mechanism are explained in section 2.2.1.2.

2.2.1.1 Slow Start and Congestion Avoidance

When a TCP flow starts a transmission there is no knowledge about the available bandwidth
and the current traffic situation on a link. Therefore, to not overload the link, TCP usually starts
sending with a small rate and then tries to increase its sending rate step-wise in each RTT. Just



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 21

Figure 2.2: Congestion window over time.

recently, TCP’s Initial Window (IW) was increased to be 10 packets [35]. Slow Start is the
most commonly used start-up algorithm and aims to quickly allocate the available bandwidth.
Therefore, Slow Start exponentially increases its sending rate by doubling the cwnd in each
RTT. This can be described by a multiplicative increase, thus using βI = 2 and αI = 0 as in
Eq. 2.1.

Slow Start is ended when a congestion notification occurs or the Slow Start threshold ssthresh

is reached. At the beginning of a connection most often ssthresh is set to the maximum possi-
ble value (depending on the implementation) resulting in an overshoot and potentially a large
number of losses. If information on a previous connection to the same endpoint (with the same
IP address) is available, this information can optionally be used to initialize ssthresh to a lower
value. Further, on during the transmission, ssthresh is set to f lightsize/2 (or a minimum value
of 2 full-sized packets) whenever a congestion event occurs.

In Congestion Avoidance most often the AIMD scheme is applied. TCP Tahoe and Reno both
increase the congestion window linearly by one packet per RTT, thus using βI = 0 and αI = 1
in Eq. 2.1.

As TCP is ACK-clocked, any calculation is performed on a per-ACK basis. Assuming that each
packet triggers an ACK, the respective increase behavior is usually implemented the following
way.
In Slow Start

cwnd← cwnd +1 [per ACK] (2.3)

implements the multiplicative, exponential increase.
In Congestion Avoidance

cwnd← cwnd +
α

cwnd
[per ACK] (2.4)

with α = 1 approximates the additive, linear increase of one packet per RTT. Note that the RTT
can grow during Congestion Avoidance due to an increase in queuing delays. As cwnd gives
the number of packets per RTT, the increase is not completely linear in Congestion Avoidance.

At the beginning of a connection, TCP sends IW number of packets back to back and sub-
sequently waits about one RTT until the first ACK is received. Note that most TCP stacks ac-
knowledge only every second packet (delayed ACKs) and therefore additionally have a heuristic



22 Chapter 2. Internet Congestion Control in TCP

to detect that the sending flow is in Slow Start and therefore acknowledge each packet separately
during this phase to not slow down the sender unnecessarily. In Slow Start whenever an ACK
is received by the sender, it increases its cwnd by one and thereby sends out two new packets
back to back. Therefore, as long as the link capacity is not fully utilized, packets are not spread
equally over one whole RTT but mostly bundled ’at the beginning’ of one RTT. To not overload
the buffer with one of these bursts and consequently get a congestion notification even though
the link is not fully utilized yet, Slow Start requires about 1

2 BDP of buffer [67] and of course at
least sufficient buffer to store IW number of packets. Note, only if a single flow (without cross
traffic) is fully utilizing the bottleneck link (later in the connection after Slow Start in Conges-
tion Avoidance), all packets and thereby also all ACKs are spread equally over one RTT. When
cross traffic is involved, packets can be clustered.

Additionally, Appropriate Byte Counting (ABC) [9] was proposed to increase the congestion
window according to the number of newly acknowledged bytes. This method ensures that cwnd

is increased by (at maximum) one full packet per RTT even when delayed ACKs are used and
thereby also protects against ACK Division attacks where additional ACKs are sent by the
receiver that do not acknowledge any new data but artificially inflate the sender’s congestion
window (if increased per ACK and not based on the number of newly acknowledged bytes).
Unfortunately, in implementations where cwnd is maintained in packets, ABC increases too
slowly if not full-sized packets are sent (for any reason) while the cwnd is still decreased by one
for each packet that is sent out. Note that ABC is not available anymore in the current Linux
kernel version.

A TCP connection falls back into Slow Start by setting cwnd to IW when the connection was
idle for more than one retransmission timeout because at this point of time for sure any infor-
mation on the bottleneck link of the network path is outdated.

2.2.1.2 Fast Retransmit and Fast Recovery

Initially in TCP Tahoe, any congestion notification would reset the congestion window to the
minimum value. This means the connection falls back to Slow Start until ssthresh is reached.
In general congestion is assumed either based on the detection of packet loss or due to an
ECN signal received by the sender. Loss, however, is estimated based on the RTO, or, if Fast
Retransmit is used, based on (initially four and now) three incoming duplicate ACKs. Therefore,
Fast Retransmit immediately performs the retransmission without waiting for the RTO to expire.
To further speed up this recovery process a TCP receiver sends an immediate ACK (without
further delays) when an out-of-order segment is received or a segment fills a gap in the sequence
number space.

With the introduction of TCP Reno, Fast Recovery was added which is entered after Fast Re-
transmit on the reception of duplicate ACKs. Fast Recovery handles the send-out of new data
until a non-duplicate ACK is received. As a duplicate ACK can only be generated when a
packet was received, it is known that one packet has left the network. This means the number of
packets in flight is decreased and a new packet could be sent out. The flight size is not decreased
as this packet has not been explicitly acknowledged yet, therefore the cwnd must be artificially
inflated during Fast Recovery to potentially sent out new data on the reception of a duplicated



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 23

ACK. Note that in the Linux implementation the number of packets in flight is differently calcu-
lated than the flight size as defined in RFC 5681 [10] as SACK’ed and lost segments are already
taken into account.

At the end of recovery when previously lost and now retransmitted data (or in case of ECN the
first packet send after the receipt of the congestion notification) finally got acknowledged, cwnd

is set to ssthresh and therefore halved as well. To not reduce the congestion window in one
step and thereby not being able to send any new packets for half an RTT, Rate-Halving [105]
can be used to reduce cwnd step-wise during Fast Recovery sending out new data only for
every second acknowledgment. The current Linux implementation uses Proportional Rate Re-
duction (PRR) [103] instead of Fast Recovery and Rate-Halving. While Rate-Halving might
decrease the congestion window as well as the Slow Start threshold to an even lower value
than f lightsize/2 when multiple packets got lost, PRR adjusts the congestion window such that
always the targeted value is reached at the end of this recovery phase.

Therefore, the decrease function can be derived from Eq. 2.1 to

cwnd← cwnd−β · cwnd [on congestion event] (2.5)

with β = 0.5 for TCP NewReno as well as many other schemes. Note that even when multiple
packets got lost or multiple congestion notifications where received, the congestion window is
reduced only once per RTT.

Based on the described increase and decrease behavior the throughput of TCP NewReno in
steady state according to [106] and [113] is given by

B(p) =
1

RT T

√

3

2p
(2.6)

where p is the loss rate. Or more generalized for any arbitrary AIMD scheme according to [46,
51]

B(p) =
1

RT T

√

α(2−β )

2β

1

p
. (2.7)

Therefore, to achieve TCP-friendliness, which means equally sharing when competing with
TCP NewReno flows, the following relation needs to be true:

α =
3β

2−β
(2.8)

Note that this configuration only reaches equal sharing if the competing flows have the same
end-to-end delay. If the competing flows do not operate based on the same RTT, not even
competing TCP NewReno flows share the bottleneck link equally and therefore do not achieve
RTT-fairness, which is the usual case in the Internet.

2.2.2 Overview of Congestion Control Schemes

In this section we introduce algorithms that either are designed based on (at least partly) sim-
ilar goals or implement mechanisms that can be used to fulfill the design goals as stated in
Section 1.4.



24 Chapter 2. Internet Congestion Control in TCP

We summarize for each approach intended design goal(s) as well the algorithm itself. Addition-
ally, we briefly discuss the relation to our design goals and summarize with a discussion at the
end.

We divided the algorithms into two classes based on our main goals, support of low latency
and high speed. Even though delay-based approaches are usually not explicitly targeted for low
latency support, they often inherently induce only low additionally queuing delay, and therefore
are surveyed in the next section. Afterwards we discuss schemes explicitly target for high-
speed networks which are most often loss-based and may or may not use delay measurements
additionally.

The goal of delay-based approaches most often is reducing packet loss and thereby achieve
higher link utilization. This is usually reached by defining a maximum delay threshold and
thereby avoiding queue overflows. Additionally, many delay-based approaches also avoid large
rate oscillation (as AIMD does). Unfortunately, these approaches are usually not able to co-
exist with loss-based mechanisms. An increase in delay triggers the reduction earlier than for a
loss-based flow that only reduces its sending rate when the delay is maximum, consequently the
queue overflows and loss occurs. In a situation where a delay-based flow is competing against
a loss-based flow, the purely delay-based congestion control performs several reductions while
the queuing delay further increases due to the loss-based flow. Therefore, in fact reacting to
an earlier congestion signal, finally leads to starvation. This means delay-based approaches are
hard to deploy in the public Internet.

To be able to compete with existing loss-based congestion control in the Internet, we premise
that our algorithm design must react on loss-based congestion feedback. Even though we do not
evaluate our proposal in comparison to delay-based schemes, hybrid schemes, as our proposal,
usually estimate the current queue length based on delay measurements. This technique was
first introduced and utilized by delay-based schemes, as presented in the next section.

Moreover, while loss can be assumed in many cases to be a consequence of congestion, delay
measurements are very blurred. First of all, there might be multiple queues on the end-to-end
transmission path that can introduce delay. Moreover, there are other mechanisms on the lower
layers or in the end-host that add delay, e.g., due to the interrupt handling at receiver side, error
protection mechanisms on the lower layer, or access control. Often not only the current delay
needs to be measured but also changes in delay or the basic transmission delay without queuing
delay. This base delay is often assumed as the minimum that can be seen during the connection.
Unfortunately the base delay must not be constant over the whole transmission time, e.g., when
the routing is changed. All mechanisms that are either purely delay-based or hybrid by at least
using the delay signal in some way, must address these issues.

2.2.2.1 Low Latency (and Delay-based) Congestion Control

Next, we mainly survey selected delay-based approaches starting with TCP Vegas, one of the
most well-known loss-based schemes which is based on Jain’s delay-based CARD [69] and
Wang/Crowcroft’s DUAL [143]. TCP Vegas is part of mainline Linux kernel and also imple-
mented in FreeBSD but not widely used [149] as it cannot co-exists with the pre-dominate
loss-based schemes in the Internet. As FAST TCP is a delay-based approach targeted for long



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 25

distance and therefore high latency links, it has recently been picked up by Akamai [110] with
the acquisition of FastSoft.

Moreover, there are approaches that focus on the effect that delay-based congestion control re-
acts earlier than loss-based. Thereby they provide specific congestion control for background
traffic that goes “out of the way” in the presence of foreground traffic. These approaches are
called scavenger protocols such as TCP Nice, TCP-LP and LEDBAT. Further, TCP Rapid be-
longs to this group as it uses packet inter-arrival times to estimate the currently available band-
width. TCP-LP is available in Linux but hardly used [149]. LEDBAT was proposed by BitTor-
rent and consequently is implemented in BitTorrent’s Delivery Network Accelerator (DNA), as
the only congestion control scheme, and as an experimental option in uTorrent [131]. Further,
LEDBAT is implement in Windows as well as iOS for downloads of software updates.

The FreeBSD kernel further implements Hamilton-Delay (HD) congestion control, CAIA-
Hamilton-Delay (CHD) congestion control, and CAIA Delay-Gradient (CDG) congestion con-
trol. These delay-based congestion control schemes are proposed with the goal to co-exist with
loss based traffic by the maintainers of the FreeBSD network stack.

Finally, we introduce Data Center TCP (DCTCP), an ECN-based protocol specially designed
for low latency support in data centers. DCTCP was developed by Microsoft and therefore is
implemented in Windows for the use in data centers, when very low RTTs can be detected only.

TCP Vegas

TCP Vegas was designed to provide higher link utilization than TCP Tahoe or Reno by avoiding
oscillations.

Therefore, TCP Vegas [24] uses an linear increase/decrease mode in Congestion Avoidance. It
calculates the current throughput based on the current congestion window and currently mea-
sured RTT.

Actual (throughput) =
cwnd

RT T
(2.9)

Further, it compares the actual throughput to an expected throughput which is calculated based
on the base RTT that can be measured when the link is not congested.

Expected (throughput) =
cwnd

RT Tmin
(2.10)

Therefore, the difference of the actual throughput and the expected throughput gives an estimate
of the current number of packets that this flow is maintaining in the queue.

Di f f = Expected−Actual (2.11)

If the difference Di f f of the actual throughput and the expected throughput is smaller than a
threshold α , the congestion windows is linearly increased by one packet over the next RTT. If
Di f f is larger than a second threshold β , it respectively is decreased by one packet over the
next RTT.

cwnd←
{

cwnd +1 if Di f f < α

cwnd−1 if Di f f > β
(2.12)



26 Chapter 2. Internet Congestion Control in TCP

where α = 2 and β = 4. To also use delay-based feedback during Slow Start, TCP Vegas only
increases exponentially during every second RTT to avoid bursts and thereby delay variations.
If the difference of the actual throughput to the expected throughput in the RTT where the
congestion window stays constant is larger than a third threshold γ , TCP Vegas leaves Slow
Start.

TCP Vegas therefore provides the basis, by estimating the number of packets in the queue, for
many loss-based as well as hybrid schemes including TCP SIAD.

FAST TCP

FAST TCP [74], based on TCP Vegas, aims to improve convergence speed in high-speed/long-
latency networks by adapting its increase rate based on how far the current queuing delay is
away from the target.

FAST TCP periodically updates the congestion window every second RTT based on the mea-
sured average RTT of the last RTT

cwnd← min
{

2cwnd,(1− γ)cwnd + γ
(RT Tmin

RT T
cwnd +α(cwnd,qdelay)

)}

(2.13)

where γ ∈ (0,1] and α(w,q) is a function of the current congestion window and queuing delay
qdelay=RT T−baseRT T . baseRT T is the RTT of a path if there is no queuing delay. baseRTT

can only be measured when all queues on the path are empty. Usually the measured minimum
RTT RT Tmin is assumed to be this base line.

α(w,q) =

{

aw if q = 0

α otherwise
(2.14)

where α is the number of packets that one flow wants to maintain in the queue similar as used in
TCP Vegas, and a is a multiplicative increase factor when the queue is empty. This congestion
window change is performed over one RTT while in the second RTT the window stays constant
and thereby a new average RTT can be measured.

Therefore, TCP FAST was one of the first approaches where the increase rate was adapted
dynamically based on the network feedback. TCP SIAD also adapts the increase factor dynam-
ically but only from one congestion epoch to the next and not within one congestion epoch as
FAST TCP (except in Fast Increase). This is not necessary as TCP SIAD additionally aims to
not underutilize the link when a decrease is performed.

TCP Nice

TCP Nice [141] is designed for background transfers, thus to minimize the interference on
foreground traffic, but still to be able to utilize the available spare network capacity efficiently.



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 27

With TCP Nice congestion is detected when more than a fraction f of packets measures a
higher queuing delay than a threshold t. Therefore, for each incoming ACK it is checked if the
currently measured RTT is larger than RT Tmin +(RT Tmin +RT Tmax) · t, or respectively

RT Tcurr > (1− t) ·RTTmin + t ·RTTmax (2.15)

where RT Tcurr is the currently measured RTT of this sample and RT Tmax an estimate of the
RTT when the bottleneck queue was full. If this is true for more than f · cwnd samples during
one RTT, the congestion window is halved. Otherwise TCP Vegas’ Congestion Avoidance is
performed. This means TCP Nice decreases the congestion window multiplicatively in the
presented of cross traffic to faster release the capacity. Note that TCP Nice even allows a
congestion window smaller than one packet.

TCP Nice re-introduces the multiplicative decrease also for delay-based schemes, acknowledg-
ing that quickly releasing capacity to other flows is important for convergence.

TCP Low Priority (TCP-LP)

In contrast to TCP Nice, TCP-LP [91] is based on per-packet estimates di of the One-Way-
Delay (OWD) using the TCP Timestamp Option (TSOpt).

TCP-LP calculates the smoothed OWD by

sdi = (1− γ)sdi−1+ γdi (2.16)

where γ is the smoothing factor, and an early congestion notification is assumed if

sdi > dmin +(dmax−dmin)δ . (2.17)

With the receipt of the initial early congestion notification, TCP-LP halves the congestion win-
dow and enters an inference phase for one RTT. During this phase the congestion window is not
increased, and when another early congestion notification is received, the congestion window
is set to 1 to quickly yield for high priority traffic. Otherwise TCP-LP restarts increasing the
window by one packet per RTT.

Therefore, TCP-LP still implements an AIMD scheme but is not based on loss but on an early
congestion notification estimated by OWD measurements.

Low Extra Delay BAckground Transport (LEDBAT)

LEDBAT [131] is another algorithm for background traffic which has be proposed by BitTorrent
for peer-to-peer file sharing over User Datagram Protocol (UDP) and is also based on OWD
measurements.

LEDBAT defines a TARGET value of not more than 100 ms for the maximum queuing delay
and adjusts its window based on the difference from the currently measured queuing delay to
the target:

o f f _target =
TARGET −qdelay

TARGET
(2.18)



28 Chapter 2. Internet Congestion Control in TCP

cwnd+= GAIN ·o f f _target · bytes_newly_acked ·MSS

cwnd
(2.19)

where GAIN can be used to speed up the adaptation. LEDBAT does not increase by more
than ALLOW ED_INCREASE packets per RTT though, where ALLOW ED_INCREASE should
be 1 to remain TCP-friendly. Further, it adapts its window based on the number of newly
acknowledged bytes, as ABC would do. The queuing delay qdelay is calculated based on
a filtered value of the current OWD and the base delay which is the minimum measurement
sample seen over the last BASE_HISTORY = 10 minutes. LEBDAT assumes, as TCP Nice,
one measurement sample per ACK but of the OWD and not the RTT. When loss or ECN
marks occur, LEDBAT halves its congestion window. Therefore, if TARGET is larger than
the maximum waiting time of the queue, LEDBAT basically falls back to TCP NewReno but
increases even slower when a queue builds up.

By filtering the delay measurements and updating the base delay, LEDBAT addresses measure-
ment errors due to additionally delays in other layers or changes in the end-to-end delay, e.g.,
because of route changes. Further, LEDBAT discussed additionally algorithms to handle the
different clock offset and skew of the sender and receiver. This is important to address for any
delay-based or hybrid scheme.

Competitive and Considerate Congestion Control Protocol (4CP)

Competitive and Considerate Congestion Control Protocol (4CP) [97] is also designed for file
transfers realizing a low-priority service.

CP4 maintains a virtual window win that can also become negative but is bounded between
−minbnd and maxcwnd.

win← wnd +
1

cwnd
[per ACK] (2.20)

win← wnd− 1

tarp · cwnd
[on congestion event] (2.21)

where tarp← tarp+ a · g(tarp)−cwnd

cwnd
is a target loss probability (tarp) and per default g() is

the loss equation for TCP NewReno that can be derived from Eq. 2.6. The actual congestion
window cwnd is equal to win as long as it is larger than a minimum value mincwnd.

cwnd← max(wnd,mincwnd) (2.22)

TCP RAPID

TCP RAPID [84] congestion control uses chirping for estimating the available capacity by
sending all data continuously in so-called chirps of N = 30 packets. Chirping was initially
proposed for the pathChirp bandwidth estimation tool [123] based on measurements of the
inter-arrival time of packets. With RAPID congestion control the rates of the packets within a
chirp are selected in such a way that the average rate converges towards the currently estimated
available bandwidth. This means TCP RAPID utilizes only the newly measured spare capacity



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 29

Figure 2.3: Hamiliton-Delay (HD): per-packet back-off probability function.

on a network link and therefore makes TCP RAPID a scavenger protocol. TCP RAPID is not
ACK-clocked but needs to send packets at specific points of time. Therefore, it is more complex
to implement in Linux [87].

If ACK-clocking is not required, bandwidth estimation as proposed by pathChirp and imple-
mented by TCP RAPID could be used in high-speed network to quickly grab new capacity.
Note, as multiple flows might be competing for the same resource, a congestion control scheme
should not try to grab all estimated available capacity at once.

Hamiliton-Delay (HD), CAIA-Hamilton-Delay (CHD), and CAIA Delay-Gradient (CDG)

While delay-based congestion control schemes usually cannot co-exist with loss-based ap-
proaches, there are also attempts to design a class of delay-based AIMD [94] algorithms that
can co-exist with traditional loss-based congestion control but still maintain low queuing delay
otherwise. Therefore, Hamilton-Delay (HD) congestion control[30, 29] bases its probabilis-
tic decrease function on a delay target value that can be dynamically adapted. More precisely
the delay target is increased if loss-based cross traffic is detected and decreased to a minimum
otherwise. Therefore, on each ACK, HD compares a random number X (between 0 and 1) to
the current back-off probability g(qi), as shown in Figure 2.3, where qi is the current queuing
delay and δth is a threshold delay value. If the X is larger, HD halves its congestion window or,
otherwise, increases by one packet per RTT.

CAIA-Hamilton-Delay (CHD) [62] additionally aims to cope with non-congestion packet losses
as well as to improve the co-existence with loss-based cross traffic by introducing a shadow
window. CAIA Delay-Gradient (CDG) [64], moreover, improves the robustness to noise in the
delay measurements by using a delay gradient instead of the target delay threshold. This delay
gradient is based on the differences in delay seen for the minimum and maximum delay in last
and the previous RTTs.



30 Chapter 2. Internet Congestion Control in TCP

The proposed delay-based AIMD schemes only modify the decrease behavior to induce low
additional queuing delay in the absence of loss-based traffic. However, TCP SIAD also aims
to improve the increase behavior to be used in high-speed networks. Further, we aim to allow
operators to configure small queues without an decrease in utilization to permanently have low
queuing delay and not only in absence of other traffic.

Relentless TCP

Relentless TCP [102] is designed to provide both scalability and high utilization with small
buffers. Still similar to TCP NewReno, it simply increases by one packet per ACK, but de-
creases by one for each loss (separately within one congestion event). This approach keeps link
utilization high (and the buffer completely filled but also induces a fixed and very high loss rate
and therefore does not allow standard TCP to compete at all. Therefore, Relentless TCP is not
applicable to the Internet.

Data Center TCP (DCTCP)

Data Center TCP (DCTCP) consists mainly of two parts, an ECN-based congestion control
scheme in the end-host and an AQM scheme in the bottleneck network node that keeps queuing
delay and delay variance very low. Therefore, DCTCP implements three changes:

1. a specific Random Early Detection (RED) configuration in the network nodes,

2. a different decrease function as reaction to congestion in the sender, and

3. a more accurate congestion feedback mechanism from the receiver to the sender.

As DCTCP implies changes in both end-hosts and the bottleneck network node, it was devel-
oped for operation in data centers only.

The AQM scheme for DCTCP operation is in principle simple: if the current instant queue is
larger than a certain threshold K, every arriving packet is ECN-marked. This mechanism can be
implemented as a specific parameterization of RED [50] where Min_T hresh = Max_T hresh =
K and w = 1 (see Section 2.3.1).

Further, a DCTCP sender updates the congestion window cwnd according to the following
equation on congestion notification

cwnd← (1−α/2) · cwnd (2.23)

where α is the moving average of the fraction of marked packets in the last RTT.

α ← (1−g) ·α +g ·F (2.24)

where F is the fraction of the ECN-marked packets in the last RTT and g is a weighting factor
that is recommended to be 1/24 [8]. This congestion control algorithm allows the sender to



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 31

gently reduce the congestion window depending on the extent of congestion and at maximum
halving the window as TCP NewReno would do.

With the ECN feedback algorithm as described in Section 2.3.2 only one congestion feedback
signal can be sent per RTT. This is appropriate for conventional TCP congestion control which
reacts only once per RTT but not for DCTCP where the reduction depends on the number of
markings per congestion event. Therefore, DCTCP aims to get exactly one ECN-Echo for each
congestion-marked packet. However, to be able to use delayed acknowledgements, Alizadeh et
al. define in [8] a two state machine for handling ECN feedback.

DCTCP is one of the few algorithms that is explicitly designed for low latency support, which
is one of our main design goals, but cannot be deployed in the public Internet.

2.2.2.2 High-Speed (and Loss-based) Congestion Control

All algorithms presented in this section are mainly motivated by the scalability problem in high-
speed or long-latency networks of the traditional TCP congestion control as TCP NewReno.
This is one common goals with the approach presented in this work. Some of the algorithms
discussed below also share other goals but cannot fulfill completely all goals as listed in Sec-
tion 1.4.

Note that Scalable TCP, High Speed TCP, TCP BIC, TCP Cubic, TCP Illinois, H-TCP, TCP
Westwood, and YeAH-TCP are available in the mainline of the Linux kernel. Except for TCP
Cubic which is the default configuration for Linux, none of the schemes see strong usage [149].
We compare TCP SIAD to Scalable TCP, TCP High Speed TCP, TCP Cubic, TCP Illinois, and
H-TCP in our evaluation. TCP Cubic is also implemented in FreeBSD and Compound TCP is
the default algorithm in Windows [1, 95].

Scalable TCP

Scalable TCP [81] uses a straight-forward approach to provide high utilization in high BDP
networks by using a MIMD scheme with α = 0.01 and β = 0.125.

cwnd = cwnd +0.01 (2.25)

cwnd = cwnd−0.125 · cwnd (2.26)

Note, MIMD schemes do not converge under synchronization or without any randomness and,
even worse, also not in case of RTT-unfairness [34].

Scalable TCP provides a constant feedback rate and therefore is highly scalable, but might
not converge and, as it has been explained in Section 4, usually induces a very high loss rate.
Further, Scalable TCP does often cause a standing queue due to the fixed, small decrease factor.



32 Chapter 2. Internet Congestion Control in TCP

High Speed TCP

High Speed TCP [43] is an alternative approach to Scalable TCP targeted for high-speed net-
works.

To achieve scalability at high speed but also stay TCP-friendly at low speed, it uses two oper-
ation modes: If the window is smaller than Low_Window = 38 packets it operates similar to
TCP NewReno, while above Low_Window the increase and decrease factors α and β are no
longer fixed but functions over the window size α(cwnd) and β (cwnd).

cwnd = cwnd +
α(cwnd)

cwnd
[per ACK] (2.27)

cwnd = (1−β (cwnd)) · cwnd [on congestion event] (2.28)

According to equation 2.6 TCP NewReno operates with a window size of Low_Window = 38
at a loss/congestion feedback rate of Low_p = 10−3. In the high-speed mode, High Speed
TCP aspires a loss rate of High_P = 10−7 at a window size of High_Window = 83000. By
calculating a linear slope between these two points in log scale, High Speed TCP implements a
response function of

cwnd =
( p

Low_P

)S

·Low_Window (2.29)

with S =
log(High_Window)−log(Low_Window)

log(High_P)−log(Low_P) in high-speed mode. To calculate the decrease factor

β , a desired decrease factor High_Decrease= 0.1 is specified for a window size of High_Window

packets.

β (cwnd) = (High_Decrease−0.5)
log(cwnd)− log(Low_Window)

log(High_Window)− log(Low_Window)
+0.5 (2.30)

This adaption of the decrease factor enables High Speed TCP to utilize the link with smaller
and smaller buffers the larger the BDP gets. Subsequently, the increase factor is calculated to
stay TCP-friendly according to Eq. 2.7 by

α(cwnd) = cwnd2 · p(cwnd)
2β (cwnd)

2−β (cwnd)
(2.31)

where p(cwnd) is given by the envisioned response function of cwnd = 0.12/p0.835 for High_Window

and High_P as

p(cwnd) =
0.078

cwnd1.2
. (2.32)

In the Linux kernel implementation α(cwnd) and β (cwnd) have been discretized to pre-compute
a table as given in appendix B of RFC3649 [43].

High Speed TCP defines two modes based on fixed thresholds. The principle of using different
modes to cope with high-speed networks had been adopted by various proposals. In contrast to
High Speed TCP, we aim to distinguish between steady state and situations where the network
conditions are changing and therefore would need to dynamically adapt any thresholds.



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 33

TCP BIC

TCP BIC [148] considers not only TCP-friendliness and bandwidth scalability, but also RTT-
fairness.

TCP BIC has two modes for the increase, namely binary search increase and additive increase,
combined with a multiplicative decrease with β = 0.125 similar to Scalable TCP. In binary
search increase the window size at the time of a congestion notification is stored as the maxi-
mum window cwndmax. The window after the reduction is stored as the minimum window and
a target value cwndtarget is calculated as the midpoint between minimum and maximum. This
binary search increase is combined with an additive increase strategy as the window is increased
to the target in maximum steps of Smax = 32 for TCP-friendliness. When the target is reached,
the current target is used as the new minimum and a new target is again calculated the midpoint
between this new minimum and the maximum. This is repeated until the difference is no larger
than the minimum increment threshold Smin = 0.01. Therefore, as long as the congestion win-
dow is smaller than cwndmax and the distance of the target to cwndmax is larger than Smin the
following increase is performed

cwnd = cwnd +
min(cwndtarget − cwnd,Smax)

cwnd
per ACK (2.33)

This means this increase strategy initially increases linearly and reduces the increase as it gets
closer to the saturation point Wmax. As the number of losses depends on the increase rate, this
binary increase strategy reduces packet loss compared to other high-speed approaches. If the
window is larger or equal to cwndmax, there is no new target value. In this case the increase rate
is set to α = 1 packet per RTT and α is increased by 1 every RTT up to α = Smax. Therefore,
TCP BIC probes more carefully around the saturation point with a low increase rate to avoid
large number of losses but then increases the increase rate until it reaches a linear increase rate
of Smax. Moreover, if the new maximum after a window reduction is smaller than the previous
maximum, TCP BIC sets the new maximum to cwndmax = (cwndprev_max− cwndmin)/2. This
strategy is called Fast Convergence, as in this case a new flow usually grabs some capacity and
TCP BIC aims to yield some space.

In fact TCP BIC implements two modes, the binary increase and a fast mode when the target is
unknown following a similar idea as in Slow Start. This approach goes in-line with our design
goal to quickly grab newly available capacity. Further, TCP BIC treats the case separately when
less capacity gets available in Fast Convergence.

TCP Cubic

TCP Cubic [59] is “designed to simplify and enhance the window control of BIC” [122] by
using a cubical window growth function

cwnd =C(t−K)3 + cwndmax (2.34)

where C = 0.4 is a scaling factor, t is the elapsed time from the last window reduction and
K = 3

√

cwndmaxβ/C with decrease factor of β = 0.8. On congestion, the congestion window is
still decreased multiplicatively but respectively with a decrease factor of β = 0.8.

cwnd = β · cwnd = 0.8 · cwnd [on congestion event] (2.35)



34 Chapter 2. Internet Congestion Control in TCP

This configuration is TCP-friendly if the packet loss rate is larger than 0.000144. Based on this,
the increase factor α is calculated dynamically at arrival of each ACK. In the Linux code the
minimum increase is set to 1/100 packet per RTT, similar to Smin = 0.01, the maximum increase
is limited to 1 packet per ACK (as in Slow Start), and β is 717/1024 ∼ 0.7.

TCP Cubic retains the idea of using cwndmax as the expected saturation point, but combines an
increase behavior similar to TCP BIC’s binary increase and fast increase above cwndmax to one
increase function.

TCP Africa

TCP Africa [83] addresses the problem that most high-speed proposals have an increased ag-
gressiveness in high-speed domains to allocate new capacity quickly which can also lead to
poor fairness with, e.g., TCP Reno in these kind of network scenarios. Note that is similar to
the idea as proposed by Adaptive Reno (ARENO) [134].

Therefore, TCP Africa introduces two modes, the fast mode and the slow mode. In slow mode
TCP Africa slows down the increase rate when the path gets closer to the saturation point as
queuing delay increases. Based on a threshold α that gives the number of packets that can be
accepted to be queued at the bottleneck, TCP Africa switches from fast mode to slow mode.
Therefore, as long as

cwnd · (RTTavg−RT Tmin)

RT Tavg
< α (2.36)

where RT Tavg is an exponentially smoothed RTT estimate and RT Tmin the minimum RTT ob-
served so far on the path, TCP Africa stays in fast mode and increases its window by

cwnd = cwnd +
f ast_increase(cwnd)

cwnd
(2.37)

Note, it is proposed to use the same increase function for f ast_increase(W) as used in High
Speed TCP (see equation 2.31). In slow mode the same increase function than for TCP Reno is
used, namely

cwnd = cwnd +
1

cwnd
(2.38)

to provide fairness to TCP Reno-like flows. α is proposed to be 1.65.

TCP Africa is a hybrid congestion control scheme that reduces its window based on loss but
also uses a measurement of the queuing delay to estimate the number of packets in the queue.
While in TCP SIAD we aim to use the same estimate to adapt the decrease factor such that we
can provide high link utilization with small queues, TCP Africa introduces a threshold based on
the queue length to adapt the increase behavior and thereby improve TCP-friendliness.

Compound TCP

Similar to TCP Africa, Compound TCP [139] also uses delay information to improve fairness,
even though the approach is quite different. Instead of switching between modes, Compound



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 35

TCP adds, in Congestion Avoidance only, an additional so-called Delay Window dwnd to the
congestion window cwnd. The delay window provides a higher increase in sending rate when
the link is underutilized and thus the bottleneck queue is empty. When the delay increases,
dwnd becomes zero and Compound TCP increases with the same increase rate than TCP Reno
of 1 packet per RTT.

Therefore, Compound TCP has an effective sending window of

win = min(cwnd +dwnd,awnd) (2.39)

where awnd is the advertised window from the receiver. Consequently the increase function
must be

cwnd = cwnd +
α

cwnd +dwnd
[per ACK]. (2.40)

Additionally dwnd is updated once every RTT by

dwnd(t +1) =











dwnd(t)+(α ·win(t)k−1) if di f f < λ

(dwnd(t)−ζ ·di f f ) if di f f ≥ λ

(win(t) · (1−β )− cwnd/2) if loss is detected

(2.41)

where di f f is estimated in an identical way as done by TCP Vegas and given in equation 2.11
and λ is a threshold configured to 30 packets. α , β , and k are parameters that tune the overall
increase as well as decrease behavior and are set to α = 1/8, β = 1/2, and k = 0.75 to achieve
comparable scalability to HSTCP. ζ defines how quickly dwnd decreases to zero when the delay
increases. Note that dwnd cannot become negative and is additionally set to zero when cwnd is
smaller than 41 packets.

TCP Illinois

TCP Illinois [96] aims to quickly allocate bandwidth when the queue is empty and thus the
queuing delay is below a certain thresholds.

Therefore, TCP Illinois adapts the increase and decrease factors α and β once per RTT in
Congestion Avoidance by the following functions, as also shown in Figure 2.4

α = f1(da) =

{

αmax if da ≤ d1
κ1

κ2+da
otherwise

(2.42)

β = f2(da) =











βmin if da ≤ d1

κ3 +κ4 ·da if d2 < da < d3

βmax otherwise

(2.43)

where da = Ta−Tmin is the current average queuing delay. Ta is the average RTT measured over
the last RTT and Tmin is the minimum RTT ever seen. With a maximum average queuing delay
dm = Tmax−Tmin, αmin = f1(dm) and consequently

κ1 =
(dm−d1)αminαmax

αmax−αmin
(2.44)



36 Chapter 2. Internet Congestion Control in TCP

Figure 2.4: TCP Illinois: schematic curves for α and β over da.

κ2 =
(dm−d1)αmin

αmax−αmin

−d1 (2.45)

κ3 =
βmind3−βmaxd2

d3−d2
(2.46)

κ4 =
βmax−βmin

d3−d2
(2.47)

where αmin = 0.1, αmax = 10, βmax = 1/2, βmin = 1/8 and di = ηi ·dm with η1 = 0.01, η2 = 0.1
and η3 = 0.8. Moreover, α is only calculated dynamically when the delay estimate stays above
the threshold for at least 5 samples. Note every ACK provides a new sample. And if the
congestion window is smaller than 10 packets, constant values are used, namely α = 1 and
β = 1/2.

Similar to our approach TCP Illinois calculates the increase and decrease factors dynamically,
even though targeting different goals. While TCP Illinois calculates both values once per RTT,
we envision to re-calculate both parameters only once per congestion epoch. Moreover, when-
ever a congestion event occurs due to a buffer overflow and thus dm is reached, βmax is used in
TCP Illinois, that means the window is halved. Therefore, in steady state operation the dynamic
calculation of the decrease factor β does not have any influence.

H-TCP

As introduced in the previous section, there is also class of delay-based AIMD algorithms that
aim to co-exist with loss-based traffic while otherwise maintaining low queuing delay. In both
cases, when congestion is detected by loss or by an increase in delay, AIMD reduces its sending
rate multiplicatively by a factor β :

cwnd = β · cwnd [on congestion event] (2.48)



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 37

Note that β in this case is 1− β from equation 2.5. To not underutilize the link, when the
sending rate is reduced early due to a delay-based congestion indication, it is also proposed to
adapt β based on the current estimation of the queue delay [135, 94], similar as derived by TCP
Vegas in 2.11, TCP Africa in 2.36 and Compound TCP (see Eq. 2.36).

β =
RT Tmin

RTT (t)
(2.49)

This approach for calculating the decrease factor was further used by H-TCP [93]. H-TCP
restricted β to be in the range of [0.3, 0.5]. Therefore, one H-TCP flow cannot utilize the link
when the buffer is smaller than 0.6·BDP. Further, H-TCP resets β to 0.5 if the throughput of
the flow changes more than 20% from one congestion event to the next. This provides faster
convergence when the network conditions have changed, e.g., due to a new starting flow.

For the increase behavior H-TCP aims to address scalability in high-speed and long-distance
networks by switching between a high-speed and low-speed mode similar to HSTCP. While
HSTCP only changes the increase factor α , H-TCP has additionally to maintain a certain rela-
tionship between α and β to provide fairness to TCP Reno-like flows. Therefore, on each ACK,
α is calculated by

α =

{

1 ∆≤ ∆L

1+10(∆−∆L)+(∆−∆L

2 )2 ∆ > ∆L
(2.50)

and then set to

α = 2(1−β )α (2.51)

where ∆ is the time since the last congestion event and ∆L is a threshold to switch between
high and low speed mode. In the Linux implementation ∆L is set to the minimum time period
that the internal clock provides and thereby is also used for TSOpt. Additionally, in the Linux
implementation α can optionally be scaled with the minimum RTT to achieve RTT-fairness.
H-TCP is in the kernel mainline since version 2.6.13.

However, while H-TCP already implements a decrease behavior fitting our design goals, it
addresses scalability by the same approach as High Speed TCP that still has a dependency on
the available bandwidth. Further, H-TCP addresses only smaller buffers by allowing a decrease
factor between 0.3 and 0.5 but still causes a standing queue in case of large buffers where the
decrease factor would need to be larger than 0.5 in order to empty the queue before the sending
rate is increased again.

TCP Westwood

TCP Westwood (TCPW) [31] aims to improve congestion control for wireless scenarios where
losses does not only occur because of congestion but also link layer errors. Therefore, it uses a
bandwidth estimate based on the ACK reception rate and the acknowledged amount of data. A
bandwidth estimate sample bk is calculated at the arrival time tk of each ACK acknowledging
dk bytes of data by

bk = dk/δk (2.52)



38 Chapter 2. Internet Congestion Control in TCP

where δk = tk− tk−1 and tk−1 is the arrival time of the previous ACK. Further, these samples are
low-pass filtered using the Tustin approximation as explained in detail in [31] to filter noise and
delays by delayed ACKs. Additionally a mechanism to determine the number of acknowledged
packets is proposed to correctly handle delayed and accumulated ACKs. Finally this bandwidth
estimate B is used to set the congestion window after a congestion notification by

cwnd = (B ·RTTmin)/seg_size (2.53)

where seg_size is number of payload bits and RTTmin is the smallest RTT seen during the con-
nection. The increase in Congestion Avoidance and Slow Start is the same than used by TCP
NewReno.

Similar to H-TCP and also SIAD, TCPW aims to reduce the queuing delay. While TCPW uses
a bandwidth estimate based on the ACK inter-arrival time, TCP SIAD directly uses the ratio of
the maximum and minimum RTT.

YeAH-TCP

YeAH-TCP [17] names as one design goal the ability to achieve high utilization with small link
buffers.

To reach this goals, YeAH-TCP implements the same loss-based decrease behavior than TCP
Westwood [31]. Further, for the increase behavior YeAH-TCP implements a “Fast” and a
“Slow” mode, similar to TCP Africa. In Fast mode the increase behaves like Scalable TCP
and in Slow mode like TCP Reno. YeAH-TCP is in Fast mode if the estimated number of pack-
ets in the bottleneck queue q is smaller than Qmax and the ratio between the queuing delay and
the propagation delay L is smaller than 1/ϕ with

qdelay = RT Tmincurr−RT Tmin (2.54)

where RT Tmincurr is the minimum estimated in the current window of cwnd packets and RT Tmin

is the total minimum thus the base RTT and

L =
qdelay

RT Tmin
(2.55)

q =
qdelay

RT Tmincurr

cwnd. (2.56)

Qmax and ϕ are tunable parameters where Qmax is the maximum number of packets that single
flow is allowed to buffer and 1/ϕ is the maximum congestion level. Further, when YeAH-TCP
is in Slow mode a precautionary decongestion algorithm is used that reduces the congestion
window by q and sets ssthresh to cwnd/2 when q > Qmax to keep the queue small. Note YeAH-
TCP restricts the decrease to be in the range of [0.125, 0.5]·cwnd. Further, this algorithm is only
used when not competing with greedy loss-based flows. Therefore, YeAH-TCP additionally
proposes a detection mechanism to fall back to TCP NewReno’s increase bahavior that is based
on counting the numbers of RTTs that YeAH-TCP stays in one or the other of the two modes.

This means YeAH-TCP does not only aim for high utilization with small buffers but also tries
to keep the queuing delay low when not competing with loss-based traffic. We do not explicitly



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 39

target a different behavior if alone on the link as we, instead, aim to enable the use of small
buffers everywhere in the Internet that, even when fully filled, induce only small additional
queuing delay.

TCP Fusion

TCP Fusion [76] aims to adapt the decrease such that the link stays utilized even with small
buffer sizes. But at the same time it aims to stay TCP-friendly.

Therefore, it implements the same decrease behavior as TCPW-RE (TCP Westwood Rate Es-
timation) [142], and as also used by H-TCP, but limits the decrease to not more than half the
window to ensure to get an equal share of the capacity when competing with TCP Reno-like
cross traffic.

cwnd← max(
RT Tmin

RT T
cwnd,

cwnd

2
) [on congestion event] (2.57)

For the increase it also calculates the difference Di f f of the actual throughput and the expected
throughput as given in Eq. 2.11 and a virtual congestion window of

cwnd←











cwnd + Winc

cwnd
if Di f f < α

cwnd + −di f f+α
cwnd

if Di f f > 3 ·α
cwnd otherwise

(2.58)

Additionally TCP Fusion calculates an equivalent congestion window for TCP Reno cwndReno.
It only uses the congestion window calculation described above if the caculated congestion
window value is larger than cwndReno, otherwise cwnd = cwndReno.

As we also target small buffers, TCP SIAD uses the same decrease function but without any
restriction. However, we do not aim for TCP-friendliness in general.

Adaptive Congestion Control Protocol (ACP)

Adaptive Congestion Control Protocol (ACP) [75] introduces a congestion control policy which
is named Adaptive Increase Adaptive Decrease scheme.

ACP decreases the congestion window by the estimated queue fill of a flow, in case of a con-
gestion notification based on loss, and increases based on a “fairness ratio” metric for fast
convergence to the equal sharing equilibrium. Therefore, it calculates the queue growth by

ζ T =
PT

T +δ td
δ td (2.59)

where T is the control interval, PT the number of packets sent during T and δ td the increase in
delay. Based on this, a fairness ratio can be estimated by

F =
ζ t

c

δ · cwnd
. (2.60)



40 Chapter 2. Internet Congestion Control in TCP

Therefore, ACP measures changes in fairness during a period tc = 200ms assuming that re-
sources where shared fairly at the beginning of the measurement period. Based on F and
Φ = goodput− throughput(=−Di f f ), as used by TCP Vegas, ACP implements three increase
states, fast probing, humble increase, and fairness claiming:

cwnd(t + tc)











cwnd(t)+α⌊ t−t0
tc
⌋ if Φ≥ 0

cwnd(t)+α if Φ < 0,F ≥ 1

cwnd(t)+α +κ(1−F)2 if Φ < 0,0≤ F < 1

(2.61)

where t0 is the arrival time of the last congestion notification, α = 1 gives an increase factor
similar to TCP Reno, and κ = 25 provides fast convergence such that κ(1−F)2 = 1 when
F = 0.8. Further, ACP implements an early control state to additionally decrease if the current
queue length ζ (t) is larger than γ+cwnd(t) or a competing flow performed a window reduction.
This is estimated if the goodput-throughput difference φ over the control period tc is positive
while Φ < 0. In early control state or based on a congestion notification, the congestion window
is decrease by

cwnd← cwnd(t)−ζ (t) (2.62)

ACP decreases its sending not only in case of congestion notified by loss but also based on
an early notification based on delay. While ACP uses this technique to address fairness, we
introduce a similar idea to ensure that the queue is fully emptied once each congestion epoch
(as far as possible by the reduction of one single flow).

E-TCP

[57] proposes a congestion controller that also aims for small buffer support and is derived
from the analysis of the evolution model of the Internet; therefore called E-TCP. To address
scalability E-TCP defines a minimum feedback rate. The congestion control is realized by a
multiplicative increase similar to Scalable TCP, but with an increase rate of α = 0.04

cwnd = cwnd +
1

25
(2.63)

and the respective decrease function to not go below a given feedback rate p0 = 0.01

cwnd = cwnd− cwnd

25 · (2+0.01 · cwnd)
(2.64)

While E-TCP resolves the scalability problem by enforcing a minimum fixed feedback rate, the
approach taken by TCP SIAD is completely different as it additionally allows for controlling
the aggressiveness, e.g., as needed for congestion policing.

MulTCP

MulTCP [38] implements weighted proportional fairness by letting the user set a weight for a
certain connection. Thereby MulTCP allows the user to open just one connection that allocates



2.2 End-to-End Binary-Feedback Best-Effort Congestion Control 41

the same share of the available capacity as otherwise N simultaneous connections would do.
This is implemented by adjusting the aggressiveness of TCP Reno by N:

cwnd← cwnd +
N

cwnd
[per ACK] (2.65)

cwnd← N−0.5

N
cwnd [on loss] (2.66)

Note that MulTCP decreases the sending rate for each lost packet as it assumes exactly one loss
for each of the virtual N TCP flows as congestion notification.

MulTCP was proposed in combination with pricing based on the respective weight and duration
of a connection to maximize the total utility of the network. As we envision a per-user conges-
tion policing in the Internet, we also aim for a configuration possibility. However we do not
want to relate the aggressiveness directly to a corresponding number of TCP NewReno flows.

2.2.3 Summary and Discussion

Scalable TCP provides a feedback independent of the available bandwidth, as required by our
design goals, but on the cost of a large overshoot due to the multiplicative increase behavior.
Therefore, we do not follow the MIMD design scheme due to potentially high loss rates as well
as the convergence problem of MIMD. Instead, we oriented our design on some mechanisms
used by TCP BIC/Cubic as well as the decrease behavior of H-TCP.

H-TCP re-calculates the decrease factor for each congestion event based on RTT measurements
and thereby an estimate of the number of packet in the queue. This estimation was first intro-
duced by TCP Vegas and is used by various delay-based as well as hybrid schemes. By using
the same decrease but a different increase pattern than H-TCP, we do not need to restrict the
decrease range. Therefore, we cannot only cope with smaller buffers but also minimize standing
queues in case of large buffers.

Additionally, we aim to empty the queue once in each congestion epoch. That also means that
TCP SIAD should be able to measure the base/minimum RTT after every decrease. Therefore,
we do not further address the problem of base RTT updates, e.g., due to an increased end-to-end
delay after a routing change, as proposed by LEDBAT.

By calculating the increase such that a constant feedback rate is achieved, we inherently need
to use the maximum congestion window cwndmax before a window reduction as a target value,
similar as TCP BIC and TCP Cubic. We use linear increase below this target and an exponential
increase above the target to quickly grab new capacity, similar to TCP BIC.

Similar to TCP Illinois and APC, we need to calculate both the increase rate and the decrease
factor dynamically. However the design goals and as such the approach taken are very differ-
ent. While TCP Illinois and APC recalculate the increase rate and decrease factor once per
RTT or at least several times in each congestion epoch, we aim to only update based on a
congestion notification. Further, TCP Illinois and APC aim to speed up the increase during one
congestion epoch while staying TCP-friendliness in congestion situations. In contrast we aim to



42 Chapter 2. Internet Congestion Control in TCP

permanently adapt to certain network situations, mainly the available bandwidth and buffer size.
Subsequently if the network conditions are not changing we maintain the congestion control in
steady state such that the link is always utilized.

We explicitly would like to design an algorithm that introduces a configuration interface to con-
trol the aggressiveness, similar to MulTCP, as this is required for the deployment of congestion
policing in the future Internet. Other than MulTCP, we do not base our algorithm design on TCP
NewReno. Our design goal for a fixed feedback rate instead leads to a novel and completely
different approach. Moreover, we explicitly do not target TCP-friendliness. Therefore, we did
not pick up the idea of, e.g., TCP Africa and TCP Fusion to implement a slow mode when the
sending rate comes closer to the expected saturation point.

DCTCP is explicitly target for low latency support, similar to our design goals. DCTCP adapts
the decrease factor based on the number of ECN marks seen within one RTT. Therefore,
DCTCP requires not only changes to the congestion control algorithm of the sender but also
need a more accurate ECN feedback from the receiver and a specific configuration of at least
the bottleneck network node. This means it can currently only be applied in a controlled envi-
ronment like a data center and not used in the Internet. As DCTCP still seems to introduce an
interesting approach, we contribute to standardization of a more accurate ECN feedback proto-
col in the Internet Engineering Task Force (IETF) [88, 26] as a first step for the deployment of
DCTCP-like congestion control in the future Internet.

2.3 Network-supported Congestion Avoidance

While congestion control aims to recover from congestion, congestion avoidance “allows the
network to operate in the region of low delay and high throughput” [72]. Therefore, a conges-
tion avoidance scheme consists of two parts: a feedback mechanism in the network performing
congestion detection, feedback filtering, and feedback selection plus a control mechanism in
the end host implementing signal filtering, a decision function, and the increase/decrease algo-
rithm [72]. To achieve efficiency as well as fairness both mechanisms have to work appropri-
ately together. A large set of increase/decrease algorithms have already been discussed above.
This section therefore focuses on network-based feedback mechanisms.

Note that a control loop where a rate controller in the bottleneck signals the respective feedback
information to the end system that consequently adapts its sending rate can also be regarded
by a control theoretical approach. [32] investigates the closed-loop congestion control problem
in packet networks assuming per connection-queuing and feedback information on the current
queue occupancy. This model could be applied to, e.g., Multi-Protocol Label Switching (MPLS)
networks, if resource demands are known and the underlying traffic is not congestion controlled
itself, but is not applicable to pure Internet Protocol (IP) network with binary feedback only.

Feedback could be provided by, e.g., signaling messages between the router and the source, end-
to-end probes by the source, or in-band information in forward or backward direction of the TCP
connection. In the Internet usually congestion is implicitly signaled by dropping packets in the
bottleneck router queue due to overflow or by using AQM or explicitly by marking packets in



2.3 Network-supported Congestion Avoidance 43

the IP header. Further, First In First Out (FIFO)-based queue management is most often used.
With a simple DropTail queue, packets get dropped passively as the queue overflows.

In contrast, AQM aims to avoid queue overflows by signaling congestion early, as further ex-
plained in the next section. As TCP congestion control operates most often based on loss as
an implicit congestion signal, various AQM schemes have been proposed to drop a small num-
ber of packets before a router queue overflows. Additionally, instead of dropping packets an
explicit signal could be used. Based on the proposal of an one bit feedback in packets in for-
ward direction of [121], ECN [120] is standardized for TCP. ECN can be negotiated in the TCP
handshake and subsequently used during the rest of the TCP connection, as further explained in
Section 2.3.2.

2.3.1 Active Queue Management (AQM)

AQM signals congestion before the queue overflows. By this, spare capacity in the queue is
provided that can be used by small traffic bursts and, as such, burst losses can be avoided.
Additionally, AQM avoids global synchronization of competing flows [50]. Therefore, if not
all flows reduce their congestion window at the same time, the number of packets that are
needed in the queue to keep the link utilization high can be reduced. Similar to congestion
control, various algorithm for AQM have been proposed such as RED [50] including various
modification as Adaptive RED [45], Dynamic RED [16], and Stabilized RED [112] as well as
BLUE [40], PURPLE [116], Random Exponential Marking (REM) [15], Adaptive Virtualized
Queue (AVQ) [90], and more recently Controlling Delay (CoDel) [109] and PIE [114] that both
are especially targeted to control the average queuing delay.

We explain the RED algorithm in detail to exemplarily illustrate the operation of AQM. RED
probabilistically decides about the dropping or marking of arriving packets based on the av-
erage queue occupancy. The average queue occupancy is calculated based on an Exponential
Weighted Moving Average (EWMA) of the instantaneous queue length q with the weighting
factor w, thereby realizing a low pass filter to allow for short bursts.

q̃← (1−w) · q̃+w ·q (2.67)

When the average queue occupancy is below a minimum threshold (Min_T hresh), no arriving
packets are marked. Above this threshold arriving packets are marked with a certain probability
linearly reaching up to a maximum marking probability (Max_Prob) at the maximum threshold
(Max_T hresh) and a probability of 1 above, as displayed in Figure 2.5. As the right param-
eterization of RED depends on the network configuration such as the bottleneck link rate as
well as the traffic load, number of flows, and sending behavior of each single flow, it is usually
impossible to configure RED optimally. Therefore, a default configuration has been proposed
that is claimed to be suitable for many Internet scenarios by setting w to 0.002, Max_Prob to
0.1, Min_T hresh to 1

4 and Max_T hresh to 3
4 of the queue size [42].

In the recent years new AQM schemes have been proposed to minimize queuing delays and
thereby better support services that require low latency. Further, an IETF AQM working group
currently exists that works on algorithms for queue management as well as recommendations
for their usage and evaluation. This working group has been founded based on input from the



44 Chapter 2. Internet Congestion Control in TCP

Figure 2.5: Random Early Detection (RED) principle and drop probability.

Bufferbloat project [52, 2] that aims to reduce latency in the Internet originating from large
buffers in the network or end-hosts. While large buffers alone are not the problem, flows using
loss-based congestion control always fills these buffers and thereby maximize the queuing delay.

Especially two new AQM schemes, namely Controlled Delay (CoDel) [109] and Proportional
Integral Controller Enhanced (PIE) [114], have recently been proposed that try to keep the
queuing delay below a desired value target value.

CoDel [109] monitors the delay for each packet in the queue by adding a time stamp at enqueue
and evaluating the queuing delay at dequeue. If the minimum queuing delay of all packets
within a certain time interval of length interval is larger than the given target delay target,
CoDel assumes persistent congestion and drops a packet. As long as the queue delay is above
target, CoDel stays in dropping state and calculates the time for the next drop next_drop based
on the time of the last drop t and the number of drops performed so far count (within the last
interval milliseconds) using the following control law

drop_next = t +
interval√

count
. (2.68)

interval is proposed to be set by default to 100 ms and target to a fixed value of 5 ms. Note, in
the provided pseudo code and Linux implementation, the number of drops count of the last 16 ·
interval milliseconds (instead of just one interval) is used when the dropping state is entered.

PIE [114], however, estimates the current queuing delay based on the (exponentially smoothed)
departure rate and the current queue length, where the departure rate itself is estimated based
amount of data that has left the queue within a certain measurement interval. On enqueue PIE
drops the packet with a drop probability p that is periodically calculated based on the queuing
delay estimate est_del as well as the target value target_del by

p = p+α · (est_del− target_del)+β · (est_del− est_del_old). (2.69)

where α is 0.25 Hz and β is 2.5 Hz (as these multiplications can be implemented by shift op-
erations). Therefore, p depends on the actual deviation from the target value (multiplied by



2.3 Network-supported Congestion Avoidance 45

Figure 2.6: The ECN feedback scheme.

α) and a trend of the delay development over time (multiplied by β ). It is recommended to
update the drop probability as well as the queue delay estimate every 30 ms where the previous
delay estimate is stored in est_del_old. The target value target_del is by default set to 20 ms.
Moreover, PIE implements a burst tolerance of 100 ms before starting dropping.

In Section 4 we evaluate the interaction of TCP SIAD and different AQM schemes based on
RED, CoDel and PIE. While RED is already implemented in most available network routers,
CoDel and PIE are new schemes that are expected to reach deployment in future networks.

2.3.2 Explicit Congestion Notification (ECN)

ECN [120] is a TCP/IP mechanism in the Internet that allows network nodes to mark packets
instead of (early) dropping them. In the TCP handshake an ECN sender can negotiate for ECN
support with the receiver, as specified in RFC3168 [120]. If the receiver is ECN-capable, a
sender can mark each IP packet as ECN-capable transport (ECT) by setting one of the two IP
ECN bits. Setting one or the other bit leads to two flags, the ECT(0) or ECT(1), which are
used with ECN-Nonce to provide an integrity mechanism. When an IP packet is marked as
ECT(0) or ECT(1), a network node can mark this packet as Congestion Experienced (CE) by
also setting the other IP bit. A network node uses an AQM mechanism like, e.g., RED to mark
packets before the queue overflows.

When an ECN receiver sees a CE flag, it sets the ECN-Echo bit in the TCP header of the ACK.
The ECE bit is then set in all subsequent ACKs until a packet with the Congestion Window
Reduced (CWR) bit set in the TCP header is received from the original sender to acknowledge
the ECE. Therefore, for one received CE a whole RTT of ECE marked ACKs is sent. During
this period additional received CE marks have no influence and cannot be recognized by the
sender. The sender sets the CWR bit on reception of the first ECE bit after reducing the sending
rate/congestion window as shown in Figure 2.6. The sender does not reduce the congestion
window more than once per RTT. ECN-Nonce [137] uses one more TCP bit to signal a one-bit
Nonce Sum (NS), which counts the number of ECT(1) flags received. The sender can use this
information for integrity checking and thus detect when congestion information was not fed
back correctly.

Currently within the IETF TCP Maintenance and Minor Extensions (tcpm) working group a
more accurate ECN feedback is under standardization that aims to not only feed back one signal



46 Chapter 2. Internet Congestion Control in TCP

per RTT but a more fine-grained congestion feedback signal [88, 26]. This information can be
used by future congestion control schemes such as DCTCP.

Further, to better support low latency requirements immediate ECN feedback without any
smoothing delay would be needed [27]. E.g. RED calculates the drop probability based on the
smoothed average queue length to allow for short traffic bursts that induce congestion for time
period smaller than the feedback delay. This helps to keep link utilization high in case of short
bursts as congestion control can anyway only react on a RTT basis. Otherwise in case of per-
sistent congestion the feedback signal is delayed and therefore induces congestion longer than
necessary. Moreover, as today ECN is defined as a “drop equivalent” and therefore provides
only small performance gains in networks optimized for low loss rates, it has consequently not
seen wide deployment. With a change in semantics, ECN could be used as an enabler for new
low latency services when implementing a different response to congestion in future congestion
control schemes.

2.3.3 Services Differentiation to Support Low Latency

While all flows traversing the same bottleneck queue experience the same queuing delay and
loss rates, different QoS can be implemented by separating flows or groups or flows into differ-
ent queues. In this case an additional scheduling mechanisms is needed to decide which queue
should be served in which order. One simple example for a scheduling algorithm is Round
Robin serving all queues in circular order.

Several proposals exist that aim provide better low latency support by offering a separate
low latency service next to the currently available low-loss Best-Effort service in the Inter-
net [41, 117]. These proposals are based on the assumption that most applications require either
low latency or low loss. Therefore, each of the two networking services provide only benefits
for a certain application class (in contrast to absolute priorities as used by Differentiated Ser-
vices (DiffServ) [108]). While the current Best-Effort service can provide low loss rates but
potentially imposes high (queuing) delays, a low-latency service focuses on small additional
queuing delays but potentially impose high loss rates. Therefore, a sending entity can decide
between the trade-off of these to QoS parameters and mark each data packet respectively. Then
the network node before the bottleneck link will treat both classes differently.

There are several proposals for such a service differentiation. Alternative Best Effort (ABE) [66],
Best Effort Differentiated Services (BEDS) [41], and Rate-Delay network services (RD) [117]
are three examples. The latter two assort all packets into two different queues, one for each
service. Both queues are configured differently in terms of maximum queue size and AQM
parameters. While in the proposed mechanisms the queue set-up can be quite simple, the chal-
lenges lie in scheduling mechanism to dequeue the packets. Often high additional complexity
is introduced to address how to avoid unfairness between the two services and how to handle
unresponsive flows.



2.4 TCP Congestion Control Implementation in Linux 47

2.3.4 Summary and Discussion

Congestion control in the end host always interacts with the congestion avoidance in the net-
work. If the mechanisms that are used in the network would be known (to the end host), con-
gestion control could be further optimized. However, in our case where we aim to deploy a
end-host-based mechanism in the Internet, the developed schemes must be able to cope with
various congestion avoidance schemes in the network and the respective feedback mechanisms.
In the evaluation we will therefore investigate TCP SIAD’s behavior while using different AQM
schemes and parameterizations in the bottleneck queue.

2.4 TCP Congestion Control Implementation in Linux

In Linux TCP congestion control is implemented in the network stack of the kernel [128, 144,
124] providing five congestion states [130]:

TCP_CA_Open A connection is in TCP_CA_Open state if no congestion is sensed.

TCP_CA_CWR When local congestion is signaled by the network interface device driver or
congestion feedback is received based on ECN signaling, TCP_CA_CWR is entered.

TCP_CA_Disorder When the first duplicated ACK is received, TCP_CA_Disorder is entered.
If the next ACK acknowledges new data, TCP_CA_Disorder is left and we go back to
TCP_CA_Open.

TCP_CA_Recovery Else if a second duplicated ACK is received, TCP_CA_Recovery is en-
tered. When entering recovery state, a new Slow Start threshold ssthresh is requested
from the congestion control algorithm. During recovery the congestion window is (step-
wise) reduced to ssthresh.

TCP_CA_Loss The TCP_CA_Loss state is entered when congestion is detected due to an
RTO. In this case all data in flight are assumed to be lost and the congestion window is
reset to a minimum value.

Any congestion state is left when the last byte that was sent before entering this state is ac-
knowledged by the ACK number; thus, one RTT after the reception of the congestion signal.

New congestion control schemes can be implemented as a kernel module [118]. Modules are
parts of the kernel code that can dynamically be loaded during run time without rebooting the
system. Components like drivers which are needed depending on the hardware and potentially
should be updated from time to time are often implementable as kernel modules as well. Since
2005 it is possible to implement congestion avoidance algorithm as Linux kernel modules using
the following structure [36]. This struct is defined in the Linux kernel in /include/net/tcp.h,
shown as in version 3.5.7 which we used for our implementation.



48 Chapter 2. Internet Congestion Control in TCP

1 struct tcp_congestion_ops {

2 struct list_head list;

3 unsigned long flags;

4

5 /∗ i n i t i a l i z e p r i v a t e d a ta ( o p t i o n a l ) ∗ /

6 void (*init)(struct sock *sk);

7 /∗ c l e a n u p p r i v a t e d a ta ( o p t i o n a l ) ∗ /

8 void (*release)(struct sock *sk);

9

10 /∗ r e t u r n slow s t a r t t h r e s h o l d ( r e q u i r e d ) ∗ /

11 u32 (*ssthresh)(struct sock *sk);

12 /∗ l o wer bound f o r c o n g e s t i o n window ( o p t i o n a l ) ∗ /

13 u32 (*min_cwnd)(const struct sock *sk);

14 /∗ do new cwnd c a l c u l a t i o n ( r e q u i r e d ) ∗ /

15 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);

16 /∗ c a l l b e f o r e ch a n g in g c a _ s t a t e ( o p t i o n a l ) ∗ /

17 void (*set_state)(struct sock *sk, u8 new_state);

18 /∗ c a l l when cwnd e v e n t o c c u r s ( o p t i o n a l ) ∗ /

19 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);

20 /∗ new v a l u e o f cwnd a f t e r l o s s ( o p t i o n a l ) ∗ /

21 u32 (*undo_cwnd)(struct sock *sk);

22 /∗ hook f o r p a c k e t ack a c c o u n t i n g ( o p t i o n a l ) ∗ /

23 void (*pkts_acked)(struct sock *sk, u32 num_acked,

24 s32 rtt_us);

25 /∗ g e t i n f o f o r i n e t _ d i a g ( o p t i o n a l ) ∗ /

26 void (*get_info)(struct sock *sk, u32 ext,

27 struct sk_buff *skb);

28

29 char name[TCP_CA_NAME_MAX];

30 struct module *owner;

31 };

If all mandatory methods are implemented and if a new scheme is configured to be used, the
respective congestion control code is called during TCP processing, as explained next. Thereby
information on the current TCP state is provided to the congestion control module that can be
used within the algorithm.

- init() is called when a new socket is created and the connection was successfully
established after TCP’s 3-way handshake. It can also be called when the connection was
idle for a long time.

- release() is called before a socket is closed to, e.g, release any memory that was
allocated beyond the reserved congestion control space.

- ssthresh() is called once when a congestion state is entered. This method is manda-
tory and implements the decrease behavior.

- min_cwnd() is called to request the minimal allowed congestion window.

- set_state() is called before any congestion state is changed.

- cong_avoid() is called for each ACK in a non-congestion state. This method is
mandatory and implements the increase behavior.



2.5 TCP Congestion Control Performance Evaluation 49

- cwnd_event() is called when any of the below listed congestion events occurs. The
input parameter ev can be used to identify which event had happened.

- undo_cwnd() is called when the congestion window was reduced previously due to
wrong congestion detection based on a transient situation, e.g. reodering. A larger con-
gestion window should be returned to restore the situation before the window reduction.

- pkts_acked() is called for each ACK.

- get_info() is a monitoring hook.

Note that all methods have a pointer to the socket memory as input parameter. This pointer
can be used to retrieve the TCP socket memory that stores the TCP connection state such as
the current congestion window snd_cwnd, the Slow Start threshold snd_ssthresh and a
counter snd_cwnd_cnt to increase the congestion window. Moreover, there are 64 Bytes of
memory space allocated that can be used by the congestion control module to store own state
by declaring a struct which has the same name than the congestion control module.

Seven events are defined, as shown below, that are signaled in cwnd_event().

1 /∗ E v e n t s p a ssed t o c o n g e s t i o n c o n t r o l i n t e r f a c e ∗ /

2 enum tcp_ca_event {

3 CA_EVENT_TX_START, /∗ f i r s t t r a n s m i t

4 ∗ when no p a c k e t s i n f l i g h t ∗ /

5 CA_EVENT_CWND_RESTART, /∗ c o n g e s t i o n window r e s t a r t ∗ /

6 CA_EVENT_COMPLETE_CWR, /∗ end o f c o n g e s t i o n r e c o v e r y ∗ /

7 CA_EVENT_FRTO, /∗ f a s t r e c o v e r y t i m e o u t ∗ /

8 CA_EVENT_LOSS, /∗ l o s s t i m e o u t ∗ /

9 CA_EVENT_FAST_ACK, /∗ i n seq u en ce ack ∗ /

10 CA_EVENT_SLOW_ACK, /∗ o t h e r ack ∗ /

11 };

This background information is needed to understand various implementation details of TCP
SIAD as described later on in Section 3.3 as well as specific effects of this implementation that
can be seen in the evaluation. Background information on approaches for evaluating conges-
tion control are explained as discussed (regarding the applicability for TCP SIAD) in the next
section.

2.5 TCP Congestion Control Performance Evaluation

Due to the complexity and rapid development of protocol and control mechanisms in TCP,
abstract models of the TCP behavior often do not reflect the characteristics of real systems well
enough. In addition, when evaluating TCP mechanisms like congestion control, it is important
to use recent TCP implementations, because changes as, e.g., using an initial TCP congestion
window of 10 packets [35]or PRR [103] strongly influences the congestion control behavior.
Therefore, our evaluation is based on IKR SimLib [3], a freely available library for event-driven
(network) simulation written in Java, together with the VMSimInt extension [146], an approach



50 Chapter 2. Internet Congestion Control in TCP

for packet-level simulations which is based on the integration of Virtual Machines (VMs) into
the simulation environment. In the following section the IKR SimLib with VMSimInt extension
is briefly described.

Two IETF working groups, namely the AQM and the RTP Media Congestion Avoidance Tech-
niques (rmcat) working group, currently define evaluation criteria and guidelines as well as
evaluation test cases for AQM and, respectively, congestion control for real-time media. This
is still work in progress and is currently focused on simple initial scenarios where the avail-
able bandwidth, the end-to-end delay or the number of competing flows is varied or changed
within a simulation run [89, 136, 127]. While congestion is often self-induced by congestion
control, [150] additionally performs evaluations based on an artificial loss model. More com-
plicated models of rate and delay variations, e.g., for evaluating performance over 3G wireless
link [33] can be found in the literature. Section 2.5.2 introduces the reader to evaluation sce-
narios and tests cases as proposed by the TCP Evaluation Suite [13, 63]. The TCP Evaluation
Suite is target for initial evaluation of new TCP extensions as congestion control in comparison
with existing schemes as well as exploring if a new proposal is safe for further experimentation
on the Internet. Therefore, this is most relevant for the evaluation of TCP SIAD.

Finally, we discuss goals and metrics for congestion control evaluation as they can be found
in the literature on congestion control analysis as well as are used by existing proposals for
evaluation.

2.5.1 Event-driven Network Simulation Integrating Virtual Machines

Network or transport protocols as well as extensions to existing protocols such as TCP con-
gestion control are often evaluated by simulation. Other than measurements in testbeds or
emulation, simulation provides a controlled environment without any external influence and
consequently delivers fully reproducible results. This allows a fair comparison to existing ap-
proaches and a detailed evaluation of the microscopic behavior of the proposed algorithm. The
IKR SimLib [3] with VMSimInt extension [146] provides a network simulation tool that inte-
grates real kernel code in a simulated network. Therefore, in this work the IKR SImLib is used
as it makes it possible to use the TCP SIAD Linux congestion control kernel module implemen-
tation in simulations.

Compared to emulation-based approaches which connect real computer systems or several VMs
on one computer to a simulated network, VMSimInt provides full isolation from the host sys-
tem. The time perceived by a kernel running in a VM is controlled by the simulation framework
and completely independent of the host time. As the simulated time does not proceed while the
VM’s processor is operating, the performance of the host computer or the virtualization tool
does not influence the simulation results.

The VMSimInt integrates QEMU [6] virtual machines in a simulated network. Therefore, the
VMSimInt architecture consist of the components as shown in Figure 2.7, namely a QEMU
adapter, the QEMU itself which has been extended to work within the simulation and of course
the simulation tool. The QEMU adapter wraps the QEMU process for use in the simulation
program and provides the respective interfaces to, e.g., exchange Ethernet frames or send other
control commands. Further, it is responsible for the synchronization of the QEMU with the



2.5 TCP Congestion Control Performance Evaluation 51

Figure 2.7: Architecture of VMSimInt.

simulation clock of the calendar in the event-driven simulation program. The extended QEMU
runs the virtual machines and thereby intercepts all input and output processing and redirects
everything to the QEMU adapter (instead of to the host system as QEMU would normally
do). Each virtual machine executes unmodified operating system code in a separate process.
Moreover, a helper relay program inside each VM allows the simulation environment to access
the socket Application Programming Interface (API) of a VM and thereby to generate TCP
traffic or configure TCP sockets (by setting sysctl or socket options). During simulation,
packets sent by any VM are not forwarded to the host’s network but are handled and forwarded
within the simulated network, which is modeled in the simulation environment. This allows
the use of the real Linux network stack in simulation generating packets with dummy payload
(provided by the simulator itself) and real TCP/IP and Ethernet headers added by the Linux
kernel. The respective QEMU adapter interface can be used to open greedy connections as well
as on/off traffic generated by a static traffic model (with artificial Inter Arrival Time (IAT) and
flow size distributions) or based on trace files.

2.5.2 TCP Evaluation Suite

The TCP Evaluation Suite [13, 63] proposes an initial set of scenarios for evaluation of TCP
extensions in simulation or testbeds. These scenarios and respective tests are targeted to provide
a basis for initial evaluation and thereby easy comparison to other schemes as well as to provide



52 Chapter 2. Internet Congestion Control in TCP

good confidence that the proposed TCP extension is safe for experimentation in the Internet.
Therefore, most of the described tests use traffic generated based on measured Internet traffic
traces as further explained in the next section. Only few tests examine simple scenarios with a
limited number of greedy sources. But these kinds of tests are also needed to fully evaluate the
microscopic behavior of a proposed algorithm and thereby cover various extreme cases. Note
that this is not the intention of the proposed TCP Evaluation Suite, so we evaluate a large set of
additional scenarios in chapter 4.

2.5.2.1 Traffic Generation

In [13] it is proposed to model sessions of individual users with Poisson-distributed inter-arrival
times. One session can consist of one or multiple greedy or non-greedy TCP flows separated
by “think” times where both, think times and burst sizes, have heavy-tailed distributions which
potentially can be determined based on empirical studies. This approach allows modeling of
interactive as well as greedy traffic of different application types but does not represent any user
reaction if, e.g., heavy congestion occurs and a user might cancel a transmission manually.

Tmix [145] is a well-known TCP traffic generator (used in ns-2/3 [4, 5] or the GENI testbed [140])
that provides a connection vector with request size (of the request message that is sent to the
server), response size (of the reply message from the server), and think time between the two
and therefore can implement the above specified behavior. For Tmix there exist a set of nine ex-
ample traces [111] applicable for the dumbbell topology proposed by the TCP evaluation suite
and further described below. It is proposed to scale and shuffle (within certain bins) the given
arrival times to vary the load in different scenarios and therefore to be able to better cope with
the non-stationarity of these traces.

2.5.2.2 Topologies and Tests

Most tests are run based on a dumbbell topology, as further described next. Further, a parking
lot topology, as described afterwards and shown in Figure 2.9, is proposed for the evaluation
of scenarios with multiple bottlenecks. Finally, a set of additional tests are described to access
transient effects such as convergence of two greedy flows.

Dumbbell Model

The dumbbell scenario described in the TCP Evaluation suite consists of nine hosts and two
routers connected by a central link that usually is the bottleneck as displayed in Figure 2.8. The
access links have different delays to achieve a realistic distribution of flows with different RTTs
(and an average RTT of 100 ms) on the bottleneck link. The proposed delay values are shown
in Figure 2.8.

Based on this dumbbell topology a set of basic scenarios is defined in [13, 63] as given in Ta-
ble 2.1. For each scenarios three load levels for the bottleneck link should be tested, namely
moderate (60%), high (85%), and overload (110%) [63], based on scaling of traffic traces as



2.5 TCP Congestion Control Performance Evaluation 53

Figure 2.8: Dumbbell topology.

introduced above. Note that the overload case is not steady as the number of active flow contin-
uously increases over the simulation time and therefore the congestion level increases as well
and more and more congestion will be seen. All flows in the tests use the TCP extension under
evaluation. The buffer size (BS) of the DropTail bottleneck queue is most often configured to
induce 100 ms of queuing delay or as denoted below. For the access link scenario also different
AQM mechanisms such as RED should be used.

All simulations run for at least 100 s but the statistical evaluation does not include a warm up
phase of a given length depending on the traffic characteristics and load. It is proposed to
collect statistics on the aggregated link utilization, the average packet drop rate, and the average
queuing delay. Further, metrics based on end-to-end or per-flow measurements as well as for
the evaluation of stability properties could be regarded.

Moreover, the access link scenario should be used with 85% offered load for evaluation of the
delay-throughput trade-off that many congestion control schemes have. Therefore, tests with
buffer sizes of 10%, 20%, 50%, 100%, and 200% of the base BDP for a 100 ms base RTT
flow are envisioned. The average delay and throughput can be illustrated in a delay/throughput
graph.

Table 2.1: Parameter value of basic simulation scenarios as given in [63] to set the bandwidth
(BW), the One-Way-Delay (OWD), and base RTT (BS) for the access links and the central link.

Scenario Link BW OWD BS

Access Link central 100 Mbps 2 ms 100 ms
access 100 Mbps (see Fig.)

Data Center central 1 Gbps 0 10 ms
access (1,2,4) 1 Gbps 10 µs
access (3,5,6) 1 Gbps 100 µs

Trans-Oceanic central 1 Gbps 65 ms 100 ms
Link access 1 Gbps (see Fig.)

Geostationary central (downlink) 40 Mbps 300 ms 100 ms
Satellite central (uplink) 4 Mbps 300 ms 1000 ms

access 100 Mbps (see Fig.)
Wireless central 100 Mbps 2 ms

LAN access (right) ∼6 Mbps by CSMA model
Dial-up Link central 64 kbps 5 ms 1250 ms



54 Chapter 2. Internet Congestion Control in TCP

Figure 2.9: Parking lot topology.

To evaluate the impact of a new TCP extension on existing TCP traffic, the access link scenario,
but with rates of 56 kbps, 10 Mbps, and 1 Gbps, is used. In this case, each node will send each
flow in the respective trace file twice (at the same time). One of the flows is using TCP NewReno
with SACK (and without ECN), and the other one is using the TCP extension under evaluation.
In this scenario two offered loads of 50% and 100% should be tested. The throughput and loss
ratios between both traffic classes should be measured.

Multiple Bottlenecks Model

A “parking lot” topology with three hops is proposed to evaluate the influence of one flow
traversing multiple bottlenecks as shown in Figure 2.9. In this scenario all bottleneck links have
a transmission rate of 100 Mbps and the access links a rate of 1 Gbps. All flows should have the
same base RTT of 30 ms which, e.g., can be achieved by a symmetric scenario with multiple
links that induce 10 ms delay as in Figure 2.9 or an asymmetric scenario with, e.g., only a few
links with 30 ms delay.

Traffic should be generated based on the traffic traces resulting in test with 30%, 40%, and 50%
offered load per source.

The ratio of the average throughput of single bottleneck flows to the average throughput of
multiple bottleneck flows as well as the packet drop rates on the bottleneck links should be
evaluated.

Transient Effects

The following in [13, 63] proposed three tests of the TCP evaluation suite evaluate how quickly
existing flows can release bandwidth to new starting flows as well as how quickly existing flows
can grab newly available bandwidth.

The first test assumes a topology with two sending and two receiving nodes as shown in Fig-
ure 2.10. The first sender has a greedy TCP flow while the other sender sends Constant Bit
Rate (CBR) traffic. The bottleneck link has a rate of 100 Mbps and the bottleneck queue a size
of 120% of the base BDP of an 100 ms flow. The cases where the CBR traffic starts sending



2.5 TCP Congestion Control Performance Evaluation 55

Figure 2.10: Topology with two flows (TCP and CBR).

with 75 Mbps and stops again as well as where the CBR traffic increases its rate in 30 steps of
2.5 Mbps from 0 to 75 Mbps at 1 s intervals should be tested.

In the case of the stopping CBR flow, the time of the greedy TCP flow to reach 60%, 80%, and
90% of the available bandwidth should be measured. Otherwise with starting CBR traffic the
influence on the drop rate of the CBR cross traffic is of interest.

The second test evaluates two greedy flows between two senders and two receivers (as above)
but with 10% cross traffic load generated by trace-based connections between three additional
senders and receivers as in the Access Link scenario above but with a bottleneck bandwidth
of 56 kbps, 10 Mbps, and 1 Gbps. The second greedy flows starts later when the first flow is
already in equilibrium. Either both flows have a base RTT of 80 ms or one of the flows has
an base RTT of 30 ms while the other has 120 ms. In this test the second flow has Slow Start
disabled by setting the Slow Start threshold to the initial window.

The time until 1500 · 10n bytes arrive should be monitored to evaluate how quickly an existing
flow can release capacity for different values of n.

The third test uses the same scenario with two greedy flow and cross traffic as above but with
different buffer sizes between 25% and 200% of the base BDP of an 100 ms flow. While the
first flow starts at the beginning of the test, the second flow starts randomly within the first 10%
of the test duration. To evaluate intra-protocol fairness, both flows have the same RTT of either
10 ms, 20 ms, 40 ms, 80 ms, or 160 ms. Or the first flows has an RTT of 160 ms while the second
has an RTT from the list above to evaluate RTT fairness.

The average throughput values of both flows should be compared.

2.5.3 Goals and Metrics

To evaluate and compare proposed algorithms certain goals need to be defined, as well as tests
and metrics to verify if a goal could be reached. In this section, we discuss goals and metrics that
are generally used to evaluate congestion control algorithms in literature. We do not consider
any user-based metrics like, e.g., the QoE of a certain application as we only use very simple
traffic models, as described above, which do not fully reflect a realistic application behavior
that, e.g., could be mapped to an utility function.



56 Chapter 2. Internet Congestion Control in TCP

Efficiency

One of the goals of congestion control is using the available network resources efficiently. This
includes that congestion control also aims to avoid the state of overload as this decreases per-
formance as well. Therefore, there is a desired load level Xgoal which operates the network “at
the knee” [34] at high utilization but avoids overload. Efficiency can be reached if the total
resource allocation X(t) = ∑xi(t) of all flows i is close to Xgoal . Overload (X(t)> Xgoal) and
underload (X(t) < Xgoal) should both be avoided. Note that efficiency can be reached in dif-
ferent operating points, e.g., when only one user allocates all resources the network is utilized
efficiently. Therefore, often global efficiency is desired where the performance (e.g. maximum
throughput and minimum loss) of the total system is the highest [72]. A certain distribution of
the resources is the desired goal when regarding fairness, which is discussed next.

To measure the efficiency of the utilization of the available link capacity, throughput is usually
regarded. Throughput can be measured on a per-flow basis or over an aggregated number of
flows, e.g. at a certain observation point. Throughput is defined as the amount of data that was
transmitted over a certain time. The maximum throughput that can be reached is limited by
the capacity that the smallest link on a path, the bottleneck, can transmit. Additionally, in TCP
we distinguish between goodput and throughput [44]. While throughput simply considers each
byte that was transmitted over a link, goodput considers only unique data (no retransmissions).
As TCP retransmits lost data, goodput is lower than (or equal to) throughput. Normally the
goodput is harder to measure, as some state and protocol information might be needed to detect
the respective overhead.

The packet loss rate can be used as another metric additionally to throughput to assess effi-
ciency. The packet loss rate as well as the ECN marking rate can either be measured at a certain
observation point or on a per-flow basis as losses and marks can occur at multiple points on a
network path. The packet loss rate can be assessed as the mean of One-way-Packet-Loss [12]
sample values that can be either one or zero at a certain point of time. With respect to congestion
control often not only the total packet loss/mark rate is of interest but also the congestion event

rate [44], where all lost packets during one RTT are consider to be part of one congestion event
as most congestion control scheme react only once per RTT to congestion. The congestion
event rate differs from the packet loss/mark rate when multiple losses (or congestion marks)
occur within one RTT.

Depending on the application design, the packet loss rate might not provide a direct relation to
the application performance. E.g. when only the total transfer time is important, only additional
delays induced by retransmissions might influence the user’s experience. Moreover, certain
applications can, e.g., handle a high loss rate but might be limited by the number of subsequent
losses that occur in a burst. Therefore, to obtain application performance additional One-way
Loss Pattern Sample Metrics [85] can be defined. As we do not evaluate our congestion control
proposal with respect to the usage with a certain application but with respect to efficient usage
of network resources, we only focus on the total packet loss rate and the congestion event rate.

Many congestion control schemes implement a trade-off between (high) throughput and (low)
delay. Therefore, the per-packet queuing delay induced by the allocation of buffer space should
also be regarded when evaluating efficiency in the usage of network resources. The queuing
delay is the time one packet spends in the queue from the point of time at enqueue to the



2.5 TCP Congestion Control Performance Evaluation 57

point of time at dequeue or the sum of these queuing delays when multiple bottlenecks are on
a network path. Therefore, the queuing delay can be directly derived from the queue size at
enqueue if the capacity of the associated link is constant. Of course, it is desirable to minimize
the queuing delay. For a certain flow or observation point, the average as well as minimum,
maximum, and variation in queuing delay (jitter) might be of interest. In scenarios where the
bottleneck is always fully utilized, the variation in queuing delay directly translates in to the
size of oscillation by which the sending oscillates between the minimum and maximum, which
influences stability and convergence as discussed further below.

Fairness

Fairness assesses the sharing of the network resources between multiple simultaneously com-
peting users. The maximum fairness criterion as defined by Jain’s Fairness Index [71] is usually
used which is defined as

F(x) =
(∑xi)

2

n∑(xi)2
(2.70)

where n is the number of competing flows and xi is the rate of the ith flow. Therefore, the
fairness F(x) is maximized if xi(t) = x j(t)∀i, j sharing the same bottleneck, that means when
the resources are shared equally.

Fairness can be evaluated in scenarios where all competing flows use the same congestion con-
trol algorithm or, respectively, different ones. The first case is often called intra-protocol fair-

ness in contrast to inter-protocol fairness. Only TCP-friendliness is usually regarded in terms
of inter-protocol fairness when competing with TCP NewReno-like congestion control.

It should be mentioned that TCP NewReno does not provide an equal resource sharing and
therefore is not (self-)fair as defined above when flows with different end-to-end delay are
competing with each other. If fairness can also be achieved in scenarios with flows that operate
on a different base delay, this is called RTT fairness.

Convergence

Congestion control is required to converge to a steady state from any starting state under stable
network conditions. The steady state does not need to be a single operation point but can
also be an equilibrium state where the congestion window oscillates around the optimal point
with bounded variations [34]. The steady-state performance can be regarded in terms of link
utilization, throughput, RTT as well as capacity sharing/fairness [125]. If a congestion control
scheme is not stable, e.g. in terms of load, the total network load slowly either increases to
infinity of decreases to zero [72].

Convergence is usually evaluated based on speed and variance. Therefore, the responsiveness

is defined as the time to reach the equilibrium or steady operating point and the smoothness

describes the size of the oscillation [34]. Ideally both, the response time and the oscillation size
should be minimized. There is a trade-off between responsiveness and smoothness as larger
oscillation usually allows for faster adaption to new network conditions [44].



58 Chapter 2. Internet Congestion Control in TCP

When the convergence is regarded with respect to link load, the smoothness S can be defined by

S =
Lmax−Lmin

C
(2.71)

where Lmax and Lmin are the maximum and respectively minimum load when a certain target
has been reached before and C is the link capacity. For n users that use the same AIMD with
increase factor α and decrease factor β , S is given by

S =
nα−βC

C
=

nα

c
−β (2.72)

as derived in [55]. For the responsiveness R to reach the target load, two cases must be consid-
ered, as either the network can already be fully loaded (e.g. when a new flow is starting) or the
network is currently underloaded (e.g. a flow just stopped). This leads to responsiveness

R =

{

⌈C−L(0)
nα ⌉ if L(0)≤C

⌈logβ
C

L(0)⌉ if L(0)>C
(2.73)

where L(0) is the load level at the starting point [55]. Note that the absolute response time
depends on the RTT as α is the increase per RTT.

Robustness

A congestion control scheme that is considered for deployment in the Internet must operate
robustly in a wide range of scenarios. While convergence is usually shown in static scenarios,
robustness must be demonstrated for different offered loads, link speeds, packet sizes, RTTs,
congestion levels as well as in challenging environments, e.g. corrupted packets, reordering or
variable bandwidth and delay due to route changes or specific lower layer mechanisms [125,
44]. Especially congestion control schemes that rely on delay measurements must be robust to
measurement errors due to other protocol mechanisms that can further delay the signal or clock
synchronization difficulties. Therefore, the robustness can be assessed by evaluating how many
and which scenarios the proposed scheme is able to reach, e.g., the target load.

With respect to robustness also deployability and implementation complexity should be dis-
cussed. End-to-end congestion control that should be deployable in the Internet, must be im-
plementable with sender-only changes and work with a binary feedback that is based on loss
or ECN, or sampled delay measurements if the receiver supports TSOpt. Moreover, the im-
plementation complexity does confine the deployability when, e.g., certain mathematical oper-
ations must be supported or a certain amount of state information must be stored. In general,
it always should be a goal to design an algorithm as simple as possible [72], as this can help
to avoid implementation errors that can influence the stability in (unevaluated) border cases.
A more simple approach should be preferred as long as a more complex approach does not
provide significant performance improvements. As complexity is hard to measure, at least the
implementation complexity should be discussed compared to other approaches. Additionally,
the interoperability with other approaches that potentially have other optimization goals must
be shown if deployment in the Internet is envisioned [125].



2.5 TCP Congestion Control Performance Evaluation 59

2.5.4 Summary and Discussion

As already stated above we use the IKR SimLib with VMSimInt extension for evaluation. This
setup provides a controlled simulation environment that allows us to generate reproducible re-
sults without influence of outer factors such as processing delays. Further, it allows us to inte-
grate our Linux implementation and thereby provides a realistic environment for investigation.

While the TCP Evaluation Suite proposes a set of initial scenarios mainly for comparison with
existing schemes, we focus on a larger set of simple scenarios to first of all evaluate the mi-
croscopic behavior of our proposed algorithm. We further evaluate extreme and corner cases
to investigate isolated effects of our algorithm. Thereby, we can provide confidence that TCP
SIAD is robust to be used in the Internet. As further explained in Section 4 we orient a few of
our parameter choices on the TCP Evaluation Suite. However, we did not use any traffic traces
to re-play Internet traffic. The existing traffic traces cannot be used to generate a certain traffic
load in steady state as this kind of traffic mix usually takes a long time to reach steady state.
Further, due to the Internet-typical traffic mix with a heavy-tail distribution of flow sizes, the
traces include mostly small flows. These flows usually do not or only for a short time leave
Slow Start and, as we did not change the Slow Start behavior, this does not target our evalua-
tion. Instead, we consider scenarios with one long-living flow in a traffic mix with short flows
to explicitly evaluate the influence of short traffic peaks.

Based on the selected set of scenarios and test cases we evaluate our algorithm with respect
to the requirements as stated in Section 1.2, namely scalability, adaptivity, capacity sharing,
and convergence. These requirements are slightly different than the ones listed in the previ-
ous section. While convergence is a classical requirement for congestion control, we evaluate
efficiency with a focus on scalability and adaptivity as both features are explicitly addressed
by our design goals. As explained in the introduction, we do not target equal sharing between
competing flows. However, we aim to support a configurable capacity sharing. Note that due
to RTT differences and other influences of randomness, equally sharing is anyway only rarely
reached in the Internet. Finally, we also evaluate general robustness for the use in the Internet
in high congestion scenarios and TCP SIAD’s vulnerability to delay estimation errors.



60 Chapter 2. Internet Congestion Control in TCP



3 TCP Scalable Increase Adaptive

Decrease (SIAD) Algorithm

In this chapter we describe the proposed congestion control algorithm in detail and provide
reasoning why we choose specific design approaches. We further explain the implementation
as Linux kernel module that is used for the simulative evaluation in the following chapter. We
can conclude from the previous section that none of the discussed existing schemes can ful-
fill all the design goals as listed in Section 1.4. Therefore, we propose TCP Scalable Increase

Adaptive Decrease (SIAD), which addresses all goals and is designed based on a fully new ap-
proach called Scalable Increase that aims for a fixed congestion feedback rate independent of
the available network bandwidth. This means, TCP SIAD solves the scalability problem as it
scales in any future network, which can only be provided as well by Scalable TCP. However,
Scalable TCP is based on a completely different approach and therefore scales at the cost of
inducing a high congestion rate. Further, TCP SIAD addresses the problem of today’s Internet
to sufficiently support services that require low latency. H-TCP is an existing approach that
implements the same decrease function as TCP SIAD to better adapt to small queues. Unfor-
tunately, it does not address the standing queue problem with large buffers as TCP SIAD does.
We designed TCP SIAD without requiring TCP-friendliness, as fairness should be addressed
on a per-user, not per-flow basis, and therefore by mechanisms other than congestion control.
This is an important aspect which evolved over the recent years. Instead TCP SIAD provides
a configuration possibility to the application to influence the aggressiveness and therefore the
instantaneous capacity sharing between flows.

(a) SIAD e.g. with 1 BDP buffer. (b) SIAD with smaller buffer.

Figure 3.1: The Scalable Increase Adaptive Decrease (SIAD) scheme.

The proposed algorithm design is named TCP SIAD as composed out of two basic components
which are called Scalable Increase and Adaptive Decrease. TCP SIAD uses a linear increase

61



62 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

Figure 3.2: Example behavior of TCP SIAD.

of α packets per RTT and a multiplicative decrease with factor β when congestion occurs.
Therefore, it (still) implements the AIMD scheme as introduced in Section 2.2. In contrast to
traditional AIMD-based proposals, α and β are not fixed but re-calculated for each congestion
epoch. While Scalable Increase aims to receive the congestion feedback with a constant fre-
quency independent of the link capacity, Adaptive Decrease aims to empty the queue exactly,
without causing underutilization or a standing queue.

Figure 3.1a shows that TCP SIAD with one BDP of buffering in the network and an appropri-
ately configured feedback rate can behave similar to TCP NewReno. If in the same scenario the
buffer size is now reduced, Adaptive Decrease calculates a smaller decrease factor to keep link
utilization high. Additionally, Scalable Increase calculates a smaller increase rate to maintain
the same congestion feedback frequency than before as exemplary shown in Figure 3.1b.

Additional to this basic principle of SIAD, we introduce three extensions which we briefly
introduce next and are schematically shown in Fig. 3.2.

Additional Decrease One or more Additional Decreases can be performed during a congestion
epoch (not only on congestion notification). The Additional Decrease aims to empty the
queue completely at least once in a congestion epoch in case the regular decrease was not
able to, e.g., due to competing traffic or measurement errors.

Fast Increase In Congestion Avoidance we introduce two phases, Linear Increment and Fast

Increase. When the congestion window grows above the Linear Increment threshold
incthresh, which is also a target value for the α calculation of Scalable Increase, TCP
SIAD enters the Fast Increase phase. In this situation TCP SIAD does not have a target
value for the congestion window anymore as potentially new capacity is available. TCP
SIAD now slowly increases the increase rate to quickly allocate newly available band-
width.

Trend The calculation of the target value, namely the Linear Increment threshold incthresh,
depends on the maximum value of the congestion window before the decrease as well
as on the history of these maximum values. By this approach we introduce a trend that
influences the increase factor α in dynamic scenarios and thereby improves convergence.



3.1 Design Approaches 63

Note, Additional Decrease might decrease more than needed to empty the queue but this ensures
that the queue becomes empty. Fortunately, whenever TCP SIAD has decreased more than
needed and therefore underutilizes the link, the Scalable Increase scheme calculates an even
larger increase factor to reach the target value in time to maintain the configured length of a
congestion epoch. Therefore, underutilization usually only occurs for a short time and can be
partly compensated by Scalable Increase compared to schemes with a fixed increase rate.

In the following section we discuss the design approaches taken for the presented components
as well as give the reasoning our design decisions. Afterwards, in Section 3.2, we describe
the complete algorithm in detail. In Section 3.3 we explain implementation details for the
integration as Linux kernel module and highlight important effects for the interpretation of the
evaluation results in the next chapter. Finally, we summarize this chapter as well as discuss
implementation complexity and further degrees of freedom in our design decisions.

3.1 Design Approaches

As mentioned already in the previous chapters, we decided to design a congestion control
scheme that is reacting to loss (or an explicit congestion signal as ECN) as this is the pre-
mier congestion feedback signal in the current Internet. Therefore, to be able to co-exist with
existing Internet traffic, we need to react to the same feedback signal. In contrast, delay-based
approaches usually react to an earlier congestion signal, namely increasing delay when the
queue builds up, and as such are not able to allocate capacity when competing with loss-based
traffic. By using delay measurement to adapt the decrease factor, TCP SIAD uses delay as a
secondary congestion signal. Therefore, TCP SIAD is a hybrid scheme.

Further, to frequently probe for newly available capacity and at the same time being able to
quickly yield capacity to, e.g., newly starting flows, TCP SIAD is designed based on the AIMD
scheme. Therefore, TCP SIAD does not converge to a single steady state but operates in an
equilibrium state between a minimum and maximum congestion window value as long as the
network conditions are stable.

Scalable Increase in Linear Increment phase

One of our design goals is that the period between two congestion events should be constant,
and therefore independent of the current link capacity or number of competing flows. This
means that in steady state the time period after a window reduction until the same window size
as before the congestion event is reached again should be equal in every congestion epoch. As
the decrease is multiplicative, and the decrease factor can even change from congestion epoch to
congestion epoch, the absolute number of packets by which the window is reduced depends on
the current maximum window and thereby the available capacity. To still maintain the same time
period for each congestion epoch, the increase factor has to be adapted dynamically after each
window reduction. We call this approach Scalable Increase as it fully resolves the scalability
problem due to providing a fixed feedback rate by dynamic adaptation of the increase rate based
on the size of the antecedent decrease.



64 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

In this section we discuss two questions regarding the detailed design of the Scalable Increase:

1. What is the right time period for one congestion epoch?

2. How should the increase curve to reach the target value look like?

We address the first question by introducing a configuration parameter. This parameter gives
either directly the absolute desired time period or alternatively the number of RTTs for one
congestion epoch. This allows the most flexibility for many usage scenarios. Further, the
smaller the feedback period is, the smaller is the time to detect that new capacity is available.
Therefore, the configured time for a congestion epoch will also influence the responsiveness of
the congestion control.

In the Internet it often makes sense to configure the congestion feedback rate dependent on the
current RTT. E.g., when communicating with a cache that is only a few milliseconds away,
the feedback rate should be higher than when communicating from Europe with a server in
the USA. In contrast in more homogeneous scenarios, e.g. as a data center, it might be more
sensible to configure the feedback rate based on a fixed time interval as it is important to adapt
within a certain time range. Note that if the congestion epoch is configured in RTTs, and not
as a fixed time, in a scenario as shown in Figure 3.1b the congestion epoch gets smaller, as the
average RTT decreases if the maximum buffer size is smaller.

In fact, Scalable Increase provides exactly the configured feedback rate if there is just one flow
on the bottleneck link and thus congestion is only induced by itself. When competing with other
flows, these flows might impose additional congestion with a higher frequency. In this case the
configured rate cannot be reached anymore, but instead the share of the capacity between the
competing flows is determined by the ratio of the configured feedback rates. This means the
configuration interface could be used by a higher-layer control loop in the application to impact
the capacity share between competing flows (on the cost of higher congestion) and therefore to
better cope with the requirements of the specific application; potentially at the cost of higher
congestion.

For the configuration parameter, in most cases, or at least at the beginning of a connection,
a default value can be used. Additionally, some applications might implement a respective
mechanism to control the aggressiveness dynamically during a transmission. This is further
discussed in Section 3.4.3 However, a detailed study of such a higher-layer control loop is not
part of this work as it strongly depends on the specific application.

Regarding the second question, we decided to increase the congestion window linearly during
one congestion epoch in the Linear Increment phase. Alternatively, e.g., one could increase
based on a concave curve as TCP Cubic or convex as H-TCP.

TCP Cubic decided for a concave increase behavior as this quickly reallocates bandwidth after
the decrease. As TCP SIAD always tries to keep the link fully utilized even after a window
reduction, there is no need to increase quickly afterwards.

A convex behavior, instead, keeps the queue at a lower fill level for a longer time during each
congestion epoch and therefore reduces the average queuing delay. This goes in-line with our



3.1 Design Approaches 65

design goals. Unfortunately, to generate a loss-(/ECN-) based feedback signal we need to fill the
queue respectively and therefore ramp up even more quickly afterwards in case of the convex
increase behavior. This causes a larger overshoot for each congestion event, meaning a convex
increase behavior induces several losses within the one RTT where the queue is overloaded.
However, one loss in fact is sufficient to notify the sender’s congestion control algorithm.

A more complex approach would be, e.g., to first increase very slowly, then ramp up quickly to
a point just below the Linear Increment Threshold, and finally again increase slowly to the final
value. This could potentially fulfill both staying as long as possible at a low queue fill level and
avoiding a large overshoot. We assume that network operators will configure smaller buffers in
future, which also means smaller sawtoothing in case of TCP SIAD. Therefore, the average the
queuing delay might still not be much smaller than when using a linear increase instead. In fact,
if the queue is small, the shape of the increase curve no longer has a big influence on the average
queuing delay. To maintain the trade-off between low average delay and a small overshoot as
well as in the favor of simplicity, we decided to stay with the linear increase behavior.

Adaptive Decrease

To maintain high utilization the congestion control scheme must always maintain a high enough
sending rate to fill the bottleneck link, even after a decrease. In the best case, the congestion
window should only be reduced to exactly the sending rate at which the buffer gets empty and
therefore can drain to zero over the next RTT while the link stays full. Of course, network
operators cannot adapt their buffering to the decrease behavior and BDP of each and every
single flow sharing the current bottleneck. Therefore, the congestion control algorithm in the
end host should adapt its decrease behavior to the available buffer to avoid underutilization as
well as a standing queue.

As soon as the bottleneck queue fills, end-to-end delay and thus RTT increases. In contrast,
the minimum RTT RT Tmin can be observed only when the queue is empty. This means until
the buffer starts filling the measured RTT stays constant even though the congestion window is
growing (disregarding short term bursts as, e.g., can be observed in Slow Start). The queuing
delay, itself, can be calculated by subtracting the minimum from the currently measured RTT.
If the sender is not limited elsewise, the congestion window indicates the current number of
packets in flight; which are the packets on the link as well as in the buffer. Therefore, the ratio
of the queuing delay qdelay to the current RTT RT T (t) equals the ratio of the number of packets
in the queue q to the current congestion window value (assuming a single bottleneck queue).

qdelay

RT T (t)
=

RT T (t)−RTTmin

RTT (t)
=

q

cwnd
(3.1)

This relation was also used by TCP Vegas, TCP Africa and Compound TCP (see Eg. 2.36) to
estimate the number of back-logged packets in the queue q and, in their cases, compare it with
a threshold.

q =
RT T (t)−RTTmin

RTT (t)
· cwnd (3.2)

TCP SIAD instead uses this information to calculate a proper decrease factor. H-TCP [93]
was the first proposal that uses this estimate to dynamically calculate the decrease factor on



66 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

congestion notification. In case of loss-based congestion control, the end-to-end delay reaches
its maximum when the queue overflows and subsequently the congestion control algorithm in
the end host is notified that the link is congested. Therefore, the new congestion window should
be

cwnd← cwnd−qmax = (1− RT Tmax−RT Tmin

RT Tmax

) · cwnd =
RT Tmin

RT Tmax

· cwnd (3.3)

where RT Tmax is the measured RTT when the queue is full. Note that H-TCP [93] only allows
a decrease of 0.3 ·cwnd up to 0.5 ·cwnd and therefore only adapts to smaller buffers/buffer fill
levels (than one BDP) but might still cause a standing queue for large buffers. In TCP SIAD,
we do not restrict the decrease at all, as a decease that is too large is partly compensated by
Scalable Increase and a decrease that is too small by the Additional Decrease approach. The
decrease factor could, e.g., be wrongly estimated due to measurement errors or the influence of
competing cross traffic on the bottleneck link as further explained below.

Additional Decrease

In fact, Eq. 3.2 only gives the queue length when the flow is alone on the bottleneck link.
However, if cross traffic is sharing the bottleneck link, only the share of the queue of this flow
is estimated. This is because Eq. 3.2 relates to the congestion window of this flow which also
(just) reflects the current bandwidth share of this flow. This means using the decrease function
as given above in Eq. 3.3 only empties the queue if either the flow is alone on the link or all
competing flows on the bottleneck are synchronized. All flows being synchronized means that
they all get a congestion notification in the same RTT and consequently perform their window
reduction within the same RTT. That often does not happen in reality, e.g., because of the
influence of delayed ACKs, as later shown in evaluation. Still, this case needs to be considered,
especially if mechanisms to compensate for delayed ACKs are used, as with TCP SIAD.

Unfortunately, at least for larger aggregates, flows are usually not fully synchronized. There-
fore, the correct decrease factor to empty the queue but not underutilize the link depends on
the number of synchronized flows and the total queue length, which are both unknown to a
single flow. TCP SIAD still performs the Adaptive Decrease on congestion notification as de-
scribed above. But if the queue does not empty because all flows were not synchronized, TCP
SIAD performs one or more Additional Decreases. More precisely, an Additional Decrease is
performed when the minimum RTT cannot be measured after a regular, adaptive decrease.

For the concrete implementation of Additional Decrease two questions have to be addressed:

1. How many additional decreases can be allowed per congestion epoch?

2. How large should each additional decrease be?

We can only perform one additional decrease per RTT as the resultant changes in queuing delay
can only be measured with a feedback delay of one RTT. Therefore, the maximum number of
decreases that could be performed depends on the configured congestion feedback frequency.
As Scalable Increase still aims to maintain the respective feedback frequency, the increase rate



3.1 Design Approaches 67

is recalculated after each Additional Decrease. This means there must be at least one RTT left
to reach the respective target value.

Moreover, in general we only allow an increase rate that at maximum doubles the congestion
window, as in Slow Start. If the newly calculated increase rate per RTT becomes larger than the
current congestion window value, no additional decreases are performed anymore. This usually
only happens if the currently congestion window is already very small and/or only a few RTTs
are left to reach the target value. We also do not perform any further decreases if the congestion
window is set to the minimum value by Additional Decrease. In these cases, if the queue is still
not empty and the minimum delay still cannot be measured, this single flow cannot reduce the
queuing delay any further.

As in case of Additional Decrease the currently measured delay is still larger than the minimum
delay, we can still apply the decrease function as in Eq. 3.3. But this again only reduces by the
share of this flow in the queue and might not empty the queue completely. To decrease by the
correct amount we would need to know the total current queue length and how many flows are
reducing their sending rate synchronized and by how much. One could estimate the total queue
length based on the bottleneck rate C that could be derived from the ACK inter-arrival time and
RTT measurements by

qtotal =
RT Tmax−RT Tmin

C
. (3.4)

Decreasing by this amount would empty the queue but in many cases also underutilize the link
as we do not know what the competing traffic is doing. Further, an estimation based on the
ACK inter-arrival time might not be very accurate. Therefore, we will first apply Eq. 3.3 for
each additional decrease and then additionally decrease such that we can reach the minimum
congestion window with the maximum number of decreases that are possible with the current
configuration. E.g., if the configured number of RTTs for a congestion event is 20, we can at
maximum perform 19 additional decreases and for the first additional decrease reduces at least
additionally by 1/19 of the current congestion window.

Moreover, we have to at least decrease by the new α number of packets, as this is the number
of increases that we will perform during the next RTT. During this RTT we would like to keep
the queue empty to be able to measure the minimum RTT correctly. Note that while one flow
performs additional decreases, other competing flows might still increase their rate. Therefore,
it can be hard to measure the minimum correctly. In the worst case, Additional Decrease reduces
the congestion window to the minimum allowed congestion window value (over several steps).
This is not a problem with respect to the desired capacity sharing, as the increase is even faster
after these Additional Decreases due to the Scalable Increase that still maintains the same time
between congestion two congestion events. Finally, it could even be the case that we cannot
measure the minimum RTT at all due to competing traffic that always keeps the queue full or at
least not long enough to be sure that the queue is empty.

To summarize, we basically have two cases: If the buffer size is larger than one BDP, we
additionally decrease by α; if buffer size is smaller, the decrease depends on the configured
time for a congestion epoch. Further, we have also considered different decrease schemes, e.g.
halving. As there is always a tradeoff between decreasing too much and thereby underutilizing
the link and decreasing too few and thereby causing several decreases in a row that cause a
larger increase rate later, we found this a good compromise.



68 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

Further, note that Additional Decrease also helps to adapt quickly to changes in the non-queuing
base delay. Note, if the end-to-end delay decreases this is measured and updated automatically,
but not if it increases. By ensuring that the queue gets empty to the extent possible we are also
able to measure the minimum RTT in every congestion epoch. If the base delay has increased
in the mean but we can measure the same delay within subsequent RTTs, even though we were
already increasing our sending rate, we assume that the queue is empty and update our minimum
RTT value. Therefore, we can also quickly adapt to increases in the minimum RTT, e.g. due to
route changes, while most delay-based scheme have to implement separate mechanism to trace
such changes, as e.g. explained in Sec 2.2.2.1 for LEDBAT.

Fast Increase above Linear Increment Threshold

During a transmission, congestion control has to handle two cases: either the network conditions
are stable (all competing flows have converged to their steady state and maintain current link
utilization) or the network conditions are changing (e.g. due to starting or stopping flows) and
all competing flows have to converge to a new equilibrium. To be able to detect these changes,
the AIMD scheme frequently probes for new capacity and frequently reduces the sending rate
to provide space in the queue for new staring flows.

While in steady state the target rate at which overload is expected is known, it is hard to de-
termine how much and how quickly the rate should be increased to allocate newly available
capacity. Therefore, TCP SIAD maintains two different increase phases, Linear Increment and
Fast Increase. In Linear Increment, TCP SIAD increases the sending rate linearly to the tar-
get value as discussed above. During transmission start-up or above the target value, or more
precisely above the Linear Increment threshold, when new bandwidth becomes available, no
target is known. Therefore, TCP SIAD increases the sending rate faster in Fast Increase to be
able to quickly allocate new bandwidth and consequently quickly converges, even in high-speed
networks. TCP Cubic also addresses this problem by implementing a cubic curve that increases
the sending rate carefully around the target but more aggressively afterwards. However, as we
show in Chapter 4 the implementation as in TCP Cubic spends a long time probing around the
target before allocating new capacity in high-speed networks.

We designed the increase behavior in Fast Increase to be similar to traditional Slow Start. In
the actual start-up phase we set our increase rate to the current congestion window, and double
both the congestion window as well as the increase rate once per RTT. When we enter Fast
Increase, TCP SIAD implements the same behavior of increasing the increase rate but starts
with the smallest possible initial increase rate to carefully probe around the target.

Increasing the increase rate in Fast Increase might cause a large overshoot when the maximum
capacity is reached and therefore causes several unnecessary packet losses at once. There is
a general trade-off between responsiveness/convergence speed and smoothness of the oscilla-
tion/size of the overshoot as discussed in Section 2.5.3. We handle this trade-off by limiting the
maximum sending rate in Fast Increase to not increase the congestion window more than 1.5
times in one RTT.

The second case where flows need to converge but the capacity is currently fully utilized, e.g., in
case of new starting flows, the convergence time is not only be determined by the increase rate



3.1 Design Approaches 69

but also by how quickly the already running flows can release capacity. Unfortunately, when
the buffer size is small, the adaptive, multiplicative decrease factor is small as well. We do
not further address this aspect by a separate mechanism as a potentially larger decrease would
make our algorithm sensitive to short traffic bursts of flows that start in TCP Slow Start and
therefore push away long-lasting flows but do not exist long enough to use the freed capacity.
Further, note that only decreasing more does not help the problem, as Scalable Increase will
subsequently calculate a higher increase factor to reach the target value in the configured time.
Therefore, implementing a larger decrease, if e.g. the target value could not be reached before
congestion occurred, only causes link underutilization but does not help convergence. Instead,
one would need to also adapt the target value, similar as to proposed trend calculation that is
described next. We did not further investigate a respective mechanism to address this case for
the sake of simplicity and it is more important for us that the link stays utilized as long as we
have a mechanism that ensure convergence as the trend calculation that is described next.

Trend Calculation for Convergence

AIMD was shown to be able to converge to equal capacity sharing for competing flows with the
same aggressiveness from any starting point. This is because, even though it implements the
same increase rate for all flows, the multiplicative decrease leads to a smaller decrease regarding
the total number of packets for the flow(s) with the currently smaller sending rate. If now all
flows use the same increase rate, the smaller rate flows end up at a higher congestion window
at the next congestion event than at the previous congestion event. With Scalable Increase,
unfortunately, the flow with the smaller decrease also calculates a smaller increase because it
targets the same maximum congestion window value as before. Therefore, Scalable Increase in
fact revokes this convergence principle.

Consider two competing flows using the basic SIAD scheme, configured to achieve the same
congestion feedback rate, but for some reason they currently send with different rates. Adaptive
Decrease calculates the same multiplicative decrease factor for both flows as based on the same
measured RTT values. The same decrease factor leads to a larger absolute decrease for the flow
with the higher rate, similar to the multiplicative decrease behavior of TCP NewReno with a
fixed decrease factor. But at the same time the flow with the higher rate also chooses a larger
linear increase factor to reach the previous maximum congestion window in the same time as the
competing flow (with the lower rate). Therefore, both flows get the next congestion notification
when reaching the same window size as before.

To reach convergence, the flow with the lower rate needs to increase more quickly than the flow
with the higher rate. Choosing the increase rate indirectly proportional to the sending rate is not
a good idea either, as this means that the flow with the large sending rate increases more slowly
and therefore this does not scale well with high-speed, large-BDP networks.

To address this convergence problem, TCP SIAD additionally calculates a trend. We in fact try
to detect when the network situation is stable or not by comparing the maximum congestion
window value at the previous congestion event to the current congestion window value at the
current congestion event. If the congestion window at the previous congestion event was higher,
we increase slightly slower, as we expect cross traffic tries to allocate capacity. If the window
was smaller, we increase faster to grab new capacity.



70 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

For the trend calculation we only consider the congestion window value of the previous con-
gestion event. The trend could also be calculated over a longer history. This might smooth
oscillation but potentially also slows down convergence. Again, that is a tradeoff between re-
sponsiveness and smoothness, so we decided to only take the most recent history into account.

Another extension would be to observe the development of the trend of time and respectively
weaken or amplifying the trend even more. In the sake of simplicity we did not further evaluate
this approach.

3.2 Algorithm Design

As already described above, Scalable Increase and Adaptive Decrease re-calculate the increase
rate of α packets per RTT and, respectively, the decrease factor β for each congestion epoch on
congestion notification. Moreover, α is re-calculated after an Additional Decrease and dynam-
ically adapted in Fast Increase.

3.2.1 Scalable Increase

To implement a constant feedback frequency, the linear increase factor α needs to be recalcu-
lated after every decrease. α gives the number of packets that the congestion window can be
increased per RTT. Therefore, α is simply calculated by dividing the total number of pack-
ets to reach the target congestion window value by the desired/configured number of RTTs of
one congestion epoch. Further, the total number of increases in packets during one congestion
epoch can be calculated based on the congestion window after the congestion window reduction
that is set to ssthresh and the desired target value incthresh that should be reached at the end
of the congestion epoch. The number of RTTs during one congestion epoch is configured by
the configuration parameter NumRT T or, alternatively, estimated based on a configured absolute
time interval and the expected average RTT for the next congestion epoch. With ssthresh be-
ing the congestion window after the window reduction and incthresh the target value, Scalable
Increase calculates the increase α of packets per RTT as

α =
incthresh− ssthresh

NumRT T
, 1 < α < ssthresh

In the next congestion epoch we linearly increase by the standard Additive Increase function

cwnd← cwnd +
α

cwnd
[per ACK].

We limit α to a minimum increase of 1 packet per RTT as TCP Reno in Congestion Avoidance
and allow at maximum an exponential increase as in Slow Start.

3.2.2 Linear Increment Threshold and Trend

Before determining the new α value, we have update the Linear Increment threshold appropri-
ately. Therefore, we calculate incthresh based on trend by

incthresh = cwndmax + trend, incthresh≥ ssthresh



3.2 Algorithm Design 71

where cwndmax is the estimated congestion window when the congestion occurred as described
further below in Sec. 3.2.4. Note, trend can be positive or negative but incthresh cannot get
smaller than the congestion window after the decrease ssthresh. trend is calculated by

trend = cwndmax− prev_cwndmax

where prev_cwndmax is the estimated maximum congestion window at the previous congestion
event.

3.2.3 Fast Increase

If in Congestion Avoidance, the congestion window grows above incthresh, TCP SIAD enters
Fast Increase phase. In Fast Increase there is no target value as new capacity has probably
become available. To quickly speed up, we adjust the increase step size α dynamically over time
within the congestion epoch. As soon as the current congestion window reaches the incthresh

in Linear Increment, we reset α to 1. Above incthresh (and below the Slow Start threshold
ssthresh) we double the increase step size α per RTT. This means we adapt α by

α ← α +
α

cwnd
[per ACK], α ≤ cwnd

2

which in fact would be an increase by 1 for each congestion window increase. In Fast Increase
when cwnd is above incthresh, we limit α to cwnd

2 . This means we can only increase the
congestion window by a factor of 1.5 per RTT. This avoids too large oscillations and therefore
achieves a more stable behavior.

On initialization, incthresh, α as well as cwndmax are set to the initial congestion window value.
This initial setting leads to an exponential increase as in Slow Start.

When the Slow Start threshold ssthresh is passed and there is no incthresh (that is larger than
ssthresh), we reset α to 1 and enter Fast Increase directly. If there is an incthresh value that is
larger than ssthresh, we recalculate α as in Eq. 3.2.1 and enter Linear Increment.

3.2.4 Adaptive Decrease

As the congestion feedback has a delay of one RTT, the congestion window is further increased
during that time period until the congestion notification is received. This means, we need to
consider the congestion window value cwndmax that was used one RTT ago at the time where
the congestion actually occurred. Therefore, cwndmax is calculated based on the current con-
gestion window value cwnd (before the decrease) minus the number of increases that were
performed during the last RTT. In Linear Increment, the number of increases is usually α . But



72 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

as we change the α in Fast Increase, we have to consider several different cases leading to the
following adaptation

cwndmax = cwnd−































cwnd
2 if α ≤ cwnd ∨ cwnd ≤ ssthresh

cwnd
3 if cwnd > incthresh∧α = cwnd

2
incthresh−ssthresh

NumRT T
if cwnd ≥ incthresh∧α = 1

α
2 if cwnd > incthresh

α otherwise.

As mentioned above for the regular case in Linear Increment we can reduce the current window
value simply by α (see bottom line). If we are in Slow Start or (far enough) above the Linear
Increment threshold, we reduce the current window usually by α/2 as the increase rate was
doubled during the last RTT. Further, if the Linear Increment threshold was just surpassed and
α has been reset to 1, we still have to apply the increase value that was used before in Linear
Increment and can be recalculated based on Linear Increment threshold incthresh and Slow
Start threshold ssthresh. For simplification, we neglect the rare case where Slow Start threshold
was just surpassed. However, we also have to consider the case when the maximum increase
rate of α was reached. In Fast Increase this is α = cwnd

2 , and therefore we reduce the congestion
window by one third in this case. Otherwise the maximum value is reached if α = cwnd. In
this case we have to half, respectively.

We do not apply this adjustment right after a decrease if the congestion window has not been
increased yet. According to the function given above this would wrongly lead to window halv-
ing, even though our increase rate is only α packets per RTT, as the congestion window still
equals ssthresh. In fact, as we did not increase at all yet, no adjustment is needed. This case can
actually occur if congestion is still signaled but the congestion state is already left (e.g. due to
distributed losses over a whole RTT). For simplification we decrease by α as soon as the con-
gestion window has been increased once. This can lead to a larger adjustment than needed but
usually this is not a problem because it is better to be conservative when receiving a congestion
notification in first RTT after decrease.

Adaptive Decrease aims to exactly empty the queue without causing underutilization or a stand-
ing queue. Therefore, the decrease factor β is calculated based on RTT measurements of the
minimum and current RTT, RT Tmin and RT Tcurr, as already explained above in Section 3.1, as

β =
RT Tmin

RT Tcurr

(3.5)

and the congestion window is decreased by

cwnd = β · cwndmax−1 [on congestion event] (3.6)

We additionally decrease by one, as it is important for us to empty the queue completely. Addi-
tionally, the congestion window is cropped to a minimum value of MIN_CWND = 2. Further,
RTTcurr is filtered to remove single outliers by using the minimum of the last two RTT measure-
ment samples before the congestion event. Note the RTT at the moment when the congestion
notification is reached corresponds to the current queue length. In case of loss (without AQM),
the queue is filled to the maximum in this case. Further, note, if no valid RTT information are



3.2 Algorithm Design 73

available, e.g., if the congestion notification is received right after congestion start, the conges-
tion is halved.

H-TCP [93] only allows a decrease of 0.3 up to 0.5 ·cwnd and therefore might still cause a
standing queue for large buffers. In TCP SIAD, however, we do not restrict the decrease factor,
as a too large decrease is partly compensated by Scalable Increase and a too small decrease by
Additional Decrease as explained next.

3.2.5 Additional Decrease

Unfortunately, the above described decrease behavior only drains the queue if all competing
flows are synchronized, which means they must perform their decrease in the same RTT. As
TCP SIAD aims to empty the queue within every congestion epoch, TCP SIAD performs an
additional decrease in the Linear Increment phase if it cannot measure the minimum RTT about
one RTT after the first regular, adaptive decrease. More explicitly, if we cannot observe either an
RTT measurement that is equal to or smaller than the total minimum delay RT Tmin or the same
delay samples in subsequent RTTs, we perform an additional decrease. Note if the (minimum)
RTT stays constant even though the sending rate was increased, this indicated that the queue is
empty.

Additional Decrease is performed immediately within the current congestion epoch without
further congestion notification. We decrease the congestion window first to

cwnd =
RT Tmin

RT Tcurr
ssthresh−1

as the current RTT is still larger than the minimum and therefore this approach leads to the at
the least needed reduction. Note that we use ssthresh here as this is the congestion window
value about one RTT ago, which corresponds to our current RTT measurement. Moreover, we
afterwards also decrease the congestion window the following

cwnd← cwnd−max(red,αnew)

where red is a reduction factor that depends on the remaining number of RTT in this congestion
epoch and αnew is the new α that we would need apply after the reduction. red is calculated such
that congestion window can be reduced to its minimum value within at maximum NumRT T −1
RTTs if further Additional Decreases would be applied.

red = cwnd · 1

NumRT T −dec_cnt
,

where dec_cnt is the number of Additional Decreases already performed during this congestion
epoch (including the current one). Further, we have to at least decrease by αnew number of
packets

αnew =
incthresh− cwnd

NumRTT −dec_cnt−1

as this is the number of increases that we will perform during the next RTT and we would like
to keep the queue empty during this RTT to be able to measure the minimum RTT correctly.



74 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

Note that while one flow performs Additional Decreases, other competing flows might still
increase their rate. Therefore, it can be hard to measure the minimum correctly. Further, note,
we perform at maximum NumRT T −1 Additional Decreases and also stop when the congestion
window is decreased down to MIN_CWND as this is the maximum one flow can contribute to
keep the delay low.

Of course, Scalable Increase still aims to reach incthresh within the remaining RTTs. Therefore,
a larger increase factor is recalculated after each Additional decrease. Only if red is larger than
αnew, we have to calculate α again by

α =
incthresh− cwnd

NumRTT −dec_cnt

otherwise we set α = αnew. Note, even if α is larger than the current value cwnd, we at maxi-
mum double the congestion window per RTT (until a large enough cwnd value is reached and
α is smaller again). Therefore, we also do not performed any further Additionally Decreases if
the new α is larger than the new congestion window value. Finally, we set ssthresh to cwnd−1.

To estimate the right value for the minimum RTT we store both an absolute minimum RT Tmin

and the current minimum RT Tmin_curr that we have seen so far in this congestion epoch. If
the same RT Tmin_curr value can be measured over several RTTs, even though we have increase
the congestion window in the meantime, we can assume that the queue was empty and update
RTTmin to RTTmin_curr. Otherwise if the queue would not have been empty, the delay should im-
mediately increase with every increase in sending rate. As TCP SIAD aims to empty the queue
in every congestion epoch, we should also be able to update the minimum in every congestion
epoch, e.g., if the base delay has increased due to routing changes.

Moreover, we remember the last three values of the minimum RTT at decrease. If we observe
that these values are monotonic increasing, we assume an estimation error, e.g., when the queue
was not emptied completely but no increase in delay was observed, e.g., due to a too low time
stamp resolution. If this is the case, we reset the minimum to the oldest, stored minimum value.
With this mechanism, we are still not able to decrease the queue completely when estimation
error occur but at least we can avoid an growing standing queue due to an growing, wrong
minimum RTT estimation.

3.3 Implementation

We implemented TCP SIAD in the TCP stack of the Linux kernel version 3.5.7 as congestion
control kernel module as explained in Sec. 2.4. The complete source code can be found in
Appendix A. More precisely, we implemented the following four methods:

void tcp_siad_init(struct sock *sk)

This method is used to initialize our congestion control state; mainly the increase rate to
behave similar to Slow Start at connection start-up.



3.3 Implementation 75

void tcp_siad_cwnd_event(struct sock *sk, enum tcp_ca_event event)

This method is used to reset the state before the next increase period when the congestion
state is left. Therefore, we only take action if the CA_EVENT_COMPLETE_CWR event is
passed.

void tcp_siad_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)

Whenever an ACK is received, this method is called and performs the following steps:

1. estimate the current delay sample and potentially reset the minimum delay,

2. filter the current delay by taking the minimum of the current and the previous sam-
ple, and

3. increase or decrease (in case of Additional Decrease) the congestion window.

u32 tcp_siad_ssthresh(struct sock *sk)

When the congestion recovery state is entered, this method is called and performs the
following steps:

1. estimate the maximum congestion window cwndmax when congestion occurred,

2. calculate the new Slow Start threshold ssthresh, and

3. calculate a new Linear Increment threshold incthresh and a new increase per RTT
α .

This method returns the new Slow Start threshold ssthresh.

This means tcp_siad_cong_avoid() and tcp_siad_ssthresh() implement the in-
crease and, respectively, decrease behavior of TCP SIAD as described above. Note that the
current congestion window snd_cwnd as well as the Slow Start threshold snd_ssthresh,
can be derived from the socket memory which is passed to each of method (as the input pa-
rameter sk). When a congestion event occurs, tcp_siad_ssthresh() is called to set a
new Slow Start threshold ssthresh. Subsequently, the congestion window is reduced stepwise
to this new Slow Start threshold until the status reset in tcp_siad_cwnd_event() and the
congestion event is over. In the kernel version used, the PRR [103] algorithm is implemented
which guarantees that the congestion window is set to exactly the calculated value of ssthresh

at the end of the recovery phase (about one RTT after the first congestion notification).

When loading kernel modules default parameters can be passed. Our implementation has two
parameters, namely

- num_rtt which maintains the desired number of RTTs between two congestion events (if
the resulting time interval is larger than the configured number of milliseconds num_ms)
and

- num_ms which maintains the desired milliseconds between two congestion events (if
larger than the resulting time interval for the configured number of RTTs num_rtt).

If these parameters are not initialized at module loading time, they are set to 20 and 0, re-
spectively. Therefore, the length of a congestion epoch is by default targeted to be 20 RTTs.



76 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

Additionally, the congestion epoch length can be influenced after loading by the kernel param-
eter setting using two new sysctl interfaces which can be accessed using the following param-
eters: net.ipv4.tcp_siad_num_rtt and net.ipv4.tcp_siad_num_ms. These sysctl settings are only
considered at connection set-up. To influence the congestion epoch during the transmission, a
new TCP socket option called TCP_SIAD_NUM_RTT is available. With this socket option the
configuration can basically be changed with every ACK (in Congestion Avoidance). Only if
this option is reset to zero, the congestion epoch length is updated at the next congestion event
based on the default values, as only at this point an average RTT value can easily be estimated.
Further, at the beginning of a connection num_rtt or, if configured, net.ipv4.tcp_siad_num_rtt is
always used as no average RTT for a congestion epoch could be estimated yet to use the value
provide by num_ms or net.ipv4.tcp_siad_num_ms. The patches that implement this new sysctl
parameters and socket option are shown in the appendix A.2.

In the following sections we show in detail which state information need to be maintained,
as well as how the per-packet delay is estimated and minimum delay is updated. Further, we
explain implementation specific details on the increase and decrease process.

3.3.1 Maintaining State Information

Listing 3.1 shows the c struct used by the TCP SIAD implementation to access the reserved
memory space for the congestion control module. This struct holds all state information needed
for SIAD processing, using the available 64 Bytes/512 bits that are allocated for the congestion
control state for each socket (anyway).

Listing 3.1: SIAD struct.

1 struct siad {

2 int config_num_rtt; / / c o n f i g u r e d Num_RTT by TCP_SIAD_NUM_RTT

3 u32 default_num_rtt; / / d e f a u l t Num_RTT v a l u e

4 u32 default_num_ms; / / d e f a u l t Num_ms v a l u e

5 u32 curr_num_rtt; / / c u r r e n t c a l c u l a t e d Num_RTT

6

7 u32 increase; / / = a lp h a ∗ c u r r _ n u m _ r t t

8 u32 prev_max_cwnd; / / e s t i m a t e d maximum cwnd

9 u32 incthresh; / / L i n e a r I n c r e m e n t t h r e s h o l d

10

11 u32 prior_snd_una; / / ACK number o f p r e v i o u s ACK

12

13 u32 prev_delay; / / d e l a y v a l u e o f p r e v i o u s sample

14 u32 curr_delay; / / f i l t e r e d c u r r e n t d e l a y v a l u e

15 u32 min_delay; / / a b s o l u t e minimum d e l a y

16 u32 curr_min_delay; / / minimum d e l a y s i n c e l a s t c o n g e s t i o n e v e n t

17 u32 dec_cnt; / / number o f a d d i t i o n a l d e c r e a s e s

18 u8 min_delay_seen; / / s t a t e v a r i a b l e

19 u8 increase_performed; / / s t a t e v a r i a b l e

20 u16 prev_min_delay1, / / p r e v i o u s min _ d e la y v a l u e s i f

21 prev_min_delay2, / / mo n o to n o u s ly i n c r e a s i n g v a l u e s

22 prev_min_delay3; / / due t o measurement e r r o r s

23 };



3.3 Implementation 77

config_num_rtt must be the first element in this struct as we directly overwrite this part
of the memory space when the TCP_SIAD_NUM_RTT socket option is set and SIAD is con-
figured to be used. If config_num_rtt is set (larger than zero), curr_num_rtt is equal
to config_num_rtt. Otherwise we directly set curr_num_rtt to default_num_rtt
or a respectively calculated value based on default_num_ms and an average RTT for the last
congestion epoch, if larger than default_num_rtt. Both default values default_num_rtt
and default_num_ms are set at connection set-up to either the module default values num_rtt

and num_ms or based on the sysctl parameter values if configured. This means if the socket
option is not set but default_num_ms is larger than zero, curr_num_rtt will be dynam-
ically calculated at each congestion epoch. Note default_num_rtt cannot be smaller than
2.

We do not store the actual value of α directly but a variable increase. In Linear Increment
increase matches the number of packets between incthresh and ssthresh. Therefore, α is

α =
increase

curr_num_rtt
. (3.7)

This means curr_num_rtt determines the resolution of α which is sensible as we always
want to increase by a full number of packets (increase = incthresh - ssthresh) per con-
gestion epoch. When increasing on ACK receipt by α/cwnd, we perform the respective cal-
culation based on increase, curr_num_rtt, and the current congestion window value
cwnd for each increase as further explained below in Section 3.3.3 Thereby α is automati-
cally adapted in case curr_num_rtt changes. As a side remark, if curr_num_rtt could
be restricted to a power of two, the implementation complexity could be largely reduced to a
shift operator of increase. On initialization in tcp_siad_init() we set increase to
snd_cwnd·curr_num_rtt and incthresh to snd_cwnd to a achieve an increase be-
havior similar to Slow Start as shown in Appendix A.1.

Further, we need to store the maximum estimated congestion window at the congestion event
cwndmax in prev_max_cwnd to be used as prev_cwndmax for the trend calculation at the next
congestion event. prev_max_cwnd is set to snd_cwnd at connection initialization.

To compensate for delayed ACKs we estimate the number of acknowledged packets as de-
scribed in Section 3.3.3 below. Therefore, we remember the acknowledgement number of the
previously received ACK prior_snd_una in Congestion Avoidance. prior_snd_una is
initialized as well as reset after recovery to snd_una, a variable in the TCP socket memory
indicating the first unacknowledged byte.

prev_delay is the unfiltered delay sample of the previous ACK. The minimum between this
value and the current delay sample is the current (filtered) delay curr_delay that is used for
the decrease calculation. Note that TSOpt provides one RTT sample per ACK. If TSOpt is not
supported, Linux will sample RTT measurements which leads to a certain inaccuracy but still
allows TCP SIAD to work.

min_delay is the minimum delay of the total connection (not only this congestion epoch).
Note that min_delay is updated if either a smaller sample was recognized or the delay
stays constant for several RTTs. In contrast curr_min_delay is the minimum delay that
was observed within this congestion epoch and will be reset after every congestion event.



78 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

min_delay_seen is a state variable to decide if Additional Decrease should be performed.
min_delay_seen is set to zero after every decrease. Only if min_delay is updated
by a new minimum value or if the same curr_min_delay value was observed in sub-
sequent RTTs within one congestion epoch, min_delay_seen is set to one. Otherwise
if min_delay_seen is still zero about one RTT after the decrease, Additional Decreased
is performed. To avoid timer handling, we compare the RTT when the congestion window
reaches ssthresh+α +1, which is about one RTT after the window reduction, to the so far seen
curr_min_delay value and respectively set min_delay_seen. As soon as the congestion
window grows by one more packet (ssthresh+α +2) we decide about performing Additional
Decrease based on the state of min_delay_seen.

Further, we need to remember the number of additional decreases which have been performed
already during the current congestion epoch dec_cnt to recalculate α or limit the maximum
number of additional decreases. To avoid unnecessary window halving if another congestion
notification is received right after a congestion event, we require the congestion window to be in-
creased at least once first. This state information is stored in increase_performed. More-
over, the last three samples of the minimum RTT estimate are stored in prev_min_delay1,
prev_min_delay2, and prev_min_delay3 as the value needs to be reset if a monotonous
increase is detected. Otherwise these values are set to zero as on initialization.

We initialize curr_delay, dec_cnt, min_delay_seen, and increase_performed
to zero and set initially min_delay, curr_min_delay, as well as curr_delay to the
maximum value INT_MAX, which is the maximum value of an unsigned 32 bit variable. Of
course curr_min_delay, dec_cnt, min_delay_seen, and increase_performed
have to be reset to either INT_MAX or zero after each recovery phase. The initialization method
tcp_siad_init(..) as well as tcp_siad_cwnd_event(..) perform these actions
as shown in Appendix A.

3.3.2 Delay Estimation and Filtering

tcp_siad_cong_avoid() is called for each ACK that is received in Congestion Avoidance
and for each call we retrieve one RTT measurement sample. Note the larger the increase step
size α and/or the smaller the congestion window, the fewer samples are available to observe
the minimum RTT. However, only if TSOpt is used, a new RTT measurement can be accessed
for each ACK. With TSOpt the ACK reflects a time stamp that was added to the data packet it
acknowledges. By comparing this time stamp to the current system, the RTT can be estimated.
Note that this estimation can include additional processing delays, e.g., if delayed ACKs are
used or a duplicated ACK is received, the time stamp of the first packet is reflected. In case
of delayed ACK if no second packet is received that could trigger the ACK, a timer is used to
delay the ACK not more than 100 ms. This can lead to a single samples that indicates a too high
RTT. Therefore, we always used for the current RTT measurement RT Tcurr the minimum of the
last two samples to filter out single outliers that might be caused by the used feedback strategy.
If TSOpt, however, is not available, we used the smoothed RTT (SRTT) provided by the Linux
TCP implementation, e.g., for RTO. SRTT is calculated by a EWMA as

SRTT ← (1−α) ·SRTT +α ·R′ (3.8)



3.3 Implementation 79

where R′ is the current sample and α a weighting factor of 1
8 [115].

To decide if Additional Decrease should be performed, we check if the minimum RTT could
be observed after the window reduction. If we measure the same or a smaller value as stored
in min_delay during the subsequent RTT, we do not have to perform Additional Decrease.
Further, if the delay did not increase during this first RTT after the end of recovery phase, even
though we have increased the sending rate, we also do not perform Additional Decrease but
update our minimum delay value. To avoid timer handling in our implementation we simply
check if curr_min_delay or a smaller value could be observed again as soon as the con-
gestion window has grown above snd_ssthresh+(increase/curr_num_rtt). Only if
curr_min_delay could not be observed again and the congestion window grows larger than
snd_ssthresh+(increase/curr_num_rtt)+2, we perform an additional decrease.

Listing 3.2: Minimum delay estimation.

1 if (siad->min_delay == INT_MAX || delay <= siad->min_delay ) {

2 / / i n i t i a l i z e t o t a l min d e l a y or s e t t o s m a l l e r v a l u e

3 siad->min_delay = delay;

4 siad->min_delay_seen = 1;

5 siad->curr_min_delay = delay;

6 } else if (delay <= siad->curr_min_delay) {

7 / / u p d a te c u r r e n t minimum

8 siad->curr_min_delay = delay;

9 if (tp->snd_cwnd > tp->snd_ssthresh +

10 (siad->increase/siad->curr_num_rtt) + 2) {

11 / / r e s e t as same minimum o ver s e v e r a l RTTs

12 siad->min_delay = delay;

13 siad->min_delay_seen = 1;

14 }

15 }

3.3.3 Linear Increase Calculation

Listing 3.3 shows the implementation of the increase function in tcp_cong.c as used by,
e.g., TCP Reno. In this implementation snd_cwnd_cnt is increased by one for each ACK
or the congestion window is increased by one if snd_cwnd_cnt has grown larger than the
current congestion window value snd_cwnd. Note the congestion window is only increased
if not application-limited (if smaller than snd_cwnd_clamp). Therefore, it is only increased if
there is enough data in the socket buffer to fill the congestion window. If the congestion window
is increased, snd_cwnd_cnt is reset to zero.

Listing 3.3: Increase behavior as implemented in tcp_cong.c.

1 if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {

2 if (tp->snd_cwnd < tp->snd_cwnd_clamp)

3 tp->snd_cwnd++;

4 tp->snd_cwnd_cnt = 0;

5 } else {

6 tp->snd_cwnd_cnt++;

7 }



80 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

However, this implementation does only increase by one for each ACK triggers an increase in
congestion window and does not use the acknowledged bytes to estimated how much pack-
ets where acknowledged by this ACK. Therefore, with delayed ACKs this implementation in-
creases slower than defined in the originally TCP Reno increase algorithm. If only one ac-
knowledgement is sent for two packets, this implementation increases the congestion window
by half a packet per RTT or, more exactly, it increases by one packet every two RTTs as the
window can only be increased by full packets. As with this implementation the window is only
increased every second RTT, this actually leads to de-synchronization of competing TCP flows.
This is because the congestion window increase itself often leads to loss of one packet, as after
a window increase two packets will be sent at once: one for the received ACK and one for the
increase itself. If only one flow increase in one RTT, only this one flows sees a loss in this RTT.
Consequently, it reduces its congestion window and the congestion situation is already resolved
before the competing flow increases its window the next time in the subsequent RTT.

To achieve the desired congestion epoch length in TCP SIAD, we, however, need to take the
number of acknowledged packets into account. Note that while the congestion window is main-
tained in the Linux kernel in number of packets, a (delayed) ACK only provides the current
acknowledgement number. Based on the previous and current acknowledgement number the
number of acknowledged bytes can be calculated. Therefore, we store the previous acknowl-
edgement number in prior_snd_una. prior_snd_una is updated with every ACK even
if no increase is performed, e.g., due to Additional Decrease or if the transmission is application-
limited. To estimate the number of acknowledged packets acked_pkts, however, we assume
that full-sized packets were originally sent.

Listing 3.4: Estimation of the number of acknowledged packets.

1 u32 bytes_acked = ack - siad->prior_snd_una;

2 siad->prior_snd_una = ack;

3 u32 acked_pkts = bytes_acked / tp->mss_cache;

4 if (bytes_acked % tp->mss_cache || acked_pkts == 0)

5 acked_pkts++;

Consequently, we do not increase snd_cwnd_cnt by one for each ACK, but by the estimated
number of acknowledged packets acked_pkts. Further, we always account all acknowledged
packet while in the implementation in Listing 3.3) an ACK that actually leads to an congestion
window increase is (wrongly) not accounted at all. Therefore, snd_cwnd_cnt is increased
before the if condition is entered, as shown below. The value next that snd_cwnd_cnt
must reach to trigger a congestion window increase is dynamically calculated based on increase
as our increase rate is not fixed (other than with TCP New Reno). The congestion window can
be increased by more than one packet at once, e.g., if delayed ACKs are used where each ACK
acknowledges several packets and TCP SIAD increases its sending rate with the maximum al-
lowed increase rate as in Slow Start. Note even if the congestion window cannot be increased
by the calculated number of packets n, e.g., due to application limitation, snd_cwnd_cnt is
reduced by the desired increase n·next.

Further, in tcp_siad_cong_avoid() in Fast Increase or Slow Start the increase rate is
increased by one for each increase in congestion window. Note when entering Fast Increase
the increase rate is reset to one and when leaving Slow Start α has to be recalculated if a valid
Linear Increment threshold is given. Otherwise Fast Increase is entered directly. If Additional



3.4 Summary and Discussion 81

Decrease is triggered, no increase processing is performed in tcp_siad_cong_avoid()

as it can be seen in Appendix A.

Listing 3.5: Increase behavior as implemented in TCP SIAD.

1 tp->snd_cwnd_cnt += acked_pkts; / / co mp en sa te f o r d e l a y e d ACKs

2 u32 next = max(1, tp->snd_cwnd * siad->curr_num_rtt / siad->increase);

3 if (tp->snd_cwnd_cnt >= next) {

4 int n = tp->snd_cwnd_cnt / next;

5 if (tp->snd_cwnd < tp->snd_cwnd_clamp)

6 tp->snd_cwnd += min(acked_pkts,

7 min(n, tp->snd_cwnd_clamp - tp->snd_cwnd));

8 tp->snd_cwnd_cnt -= n * next;

9 }

The implementation of tcp_siad_ssthresh() is also shown in Appendix A. It imple-
ments, straight forward, the α calculation and the decrease as well as, if applicable, updates
curr_num_rtt or resets curr_min_delay.

3.4 Summary and Discussion

TCP SIAD is designed to support high-speed networks as well as low latency requirements of
emerging services based on the design goals as stated in Section 1.4. Therefore, five algorithms
have be implemented, namely Scalable Increase, Adaptive Decrease, Fast Increase, Additional
Decrease, and Trend calculation.

While Scalable Increase addresses the design goal of providing a fixed and configurable feed-
back rate and thereby provides scalability, Adaptive Decrease is designed to maintain high link
utilization, even with smaller buffers. The average throughput of these two algorithms in isola-
tion in steady state can be derived based on the response function for AIMD algorithm following
the same approach as in [106]. Figure 3.3 illustrates the congestion window evolution of one
TCP SIAD flow in steady state. Similar as every AIMD scheme it induces periodic network
feedback (based on loss or ECN marks) that will trigger a window reduction at the end of each
congestion epoch (assuming no additional source of irritation). Each congestion epoch therefore
delivers (cwndmin ·NumRTT )+

1
2(cwndmax− cwndmin) ·NumRTT ) packets. Further, assuming a

constant probability p that a congestion event occurs in steady state, it follows

(cwndmin ·NumRTT )+
1

2
(cwndmax− cwndmin) ·NumRTT ) =

1

p
. (3.9)

With cwndmin = βcwndmax TCP SIAD achieves an average throughput B(p) in packets per RTT
of

B(p)[pkt/RTT ] =
2

(β +1)p
. (3.10)

Note, the scalability problem of TCP NewReno is based in its response function
√

2
3p

where

the feedback rate becomes lower with the square of the bandwidth. As also explicitly desired
by, e.g,.E-TCP [57] and Relentless TCP [102], scalability requires a response function that is
proportional to 1

p
. TCP SIAD therefore provides scalability and also is capable to provide high



82 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

Figure 3.3: Congestion window evolution under periodic feedback.

throughput with small buffers; using a completely different approach than E-TCP or Relentless
TCP.

For support of the low latency requirement of emerging services, operators must maintain low
queue fill levels in the Internet. To still achieve high link utilization, congestion control needs
to implement a smaller decrease factor than usually used today. To avoid a standing queue at
the same time, the decrease factor needs to be calculated adaptively as by Adaptive Decrease in
TCP SIAD. While Adaptive Decrease only empties the queue in the rare case where all com-
peting flows are synchronized, Additional Decrease aims to empty the queue at every decrease.
Therefore, only the implementation of both Adaptive Decrease and Additional Decrease avoids
a standing queue that minimizes the average queuing delay.

Additionally, Fast Increase partly compensates eventual too large decreases. However, in gen-
eral Fast Increase provides a fast allocation of newly available resources as needed in high-speed
networks. We believe that any efficient high-speed scheme must be able to distinguish between
stable state and changing network conditions and therefore needs to implement a separate Fast
Increase phase.

Finally, Trend calculation supports convergence with Scalable Increase which, of course, is a
general requirement for congestion control. In the following chapter, we further evaluate in
simulations the convergence properties of each of the algorithms as used in TCP SIAD sep-
arately and in different combinations to obtain further insight on interactions of the different
components.

To elaborate the space for further research and development based on TCP SIAD, in the fol-
lowing we summarize degrees of freedom in TCP SIAD’s design as already laid-out above in
Section 3.1. Subsequently we discuss implementation complexity and provide guidance for
buffer sizing and parameterization with use of TCP SIAD.

3.4.1 Degrees of Freedom in Design

Even though TCP SIAD as previously presented is composed in this way to address the given
design goals, each of the five introduced algorithms provides some degrees of freedom in its
design as summarized next.



3.4 Summary and Discussion 83

Length and strength of Trend In Trend calculation the length of the history that is taken into
account as well as the strength of the trend itself can be varied to influence the conver-
gence properties of TCP SIAD. Therefore, we also tested cases where the last two maxi-
mum congestion window values are taken into account or where the trend is only half as
strong as in the proposed implementation. In general we found that the trend calculation
influences the trade-off between convergence time and oscillation size. While the current
Trend calculation can be slow in a scenario where a second flow starts while a first flow
is already fully utilizing the link, faster approaches induced higher oscillations. As we
do not explicitly target fast convergence in such a scenario as a required improvement to
current state-of-the art mechanisms, we decided to not further optimize Trend calculation
for this case. Moreover, we experimented with random (small) offsets added to the cal-
culated Trend. This addition still provides convergence and is potentially more stable but
also slower. Therefore, we chose the described setting as a good compromise.

Decrease size of Additional Decrease Additional Decrease aims to empty the queue. Deter-
mining the optimal decrease size requires knowing the number of synchronized compet-
ing flows. This is nearly impossible for a distributed approach as end-to-end conges-
tion control. Therefore, different decrease strategies can be implemented for Additional
Decrease. We decided to require that it must be possible to empty the buffer with the
maximum number of Additional Decreases. Instead, one could, e.g., also try to mini-
mize the number of Additional Decreases by estimating the total queue size (e.g., based
on packet inter-arrival times). However, such a strategy might lead more often to link
underutilization if other decreases are performed synchronously. Therefore, the design
of Additional Decrease needs to maintain a trade-off between low average queuing delay
and link utilization.

Minimum increase rate TCP SIAD implements a lower and upper limit for the minimum and,
respectively, maximum increase rate per RTT. Both influence the convergence time as
well as stability regarding oscillation size and frequency. We chose a minimum increase
of one packet per RTT, similar to the increase rate of TCP NewReno. However, we
expect future network configurations (regarding buffer size and feedback rate) that lead
to an increase rate of more than one packet per RTT, e.g. 40 packets of buffering with a
NumRT T configuration of 20 would lead to an increase rate of two packets per RTT. On a
100 Mbit/s link 40 packets of buffering is equal to about 5 ms of maximum queuing delay.
Note, whenever NumRT T is too large or the buffer share too small, all competing flows
increase their sending rate with the same (minimum) increase rate and therefore share
resources equally among each other and also with TCP NewReno-like traffic.
Further, an increase rate of one packet per RTT is the minimum granularity of change that
results in noticeable action. Only if the congestion window is increased by a full packet,
more packets are actually sent out. This minimum sending rate therefore guarantees that
in each control interval of our control loop a change in the input signal is applied and
therefore a resulting change in the network output response would be measurable. We
also tested a smaller minimum increase rate of 1/NumRT T per RTT according to the
minimum resolution in our implementation. Thereby, we could achieve a finer grained
capacity sharing but this also leads to longer periods in de-converged states. Therefore,
we chose one packet per RTT is a reasonable minimum rate that helps smoothness and
convergence.



84 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

Increase rate in Fast Increase In Fast Increase we increase the increase rate. We decided to
double the increase per RTT as we can replicate the Slow Start behavior with this increase
function. While doubling the congestion window in Slow Start, we only allow a maxi-
mum increase rate of 1.5·cwnd in Fast Increase. Simulative evaluation still showed fast
convergence but lower oscillation for this maximum increase rate than when doubling. In
any case, the maximum increase rate should be a multiplicative of the current congestion
window cwnd to address scalability.

RTT estimation Adaptive Decrease calculates the decrease factor based on the current RTT
and base RTT. To filter out single outliers we use the minimum of the last two sam-
ples (before the congestion notification was received). However, RTT measurements are
known to be error-prone due to noise on the end-to-end path (e.g. additional process-
ing delays). If the underlying network induces high additional delay variations, a more
sophisticated filter could be used. However, in case of only small variations TCP SIAD
would either perform a slightly too large or too small decrease. Both cases are not prob-
lematic for the operation of TCP SIAD due to the addition of Fast Increase and Additional
Decrease. Therefore, we argue that a simple minimum filter over the last two samples is
sufficient for most Internet usage scenarios.
In high-speed networks the limited resolution of TSOpt can be too low to recognize small
queuing delays and Additional Decrease might not be performed. While the timestamp
resolution might improve in the future, an alternative would be to signal explicitly when
the queue is empty. Both approaches negotiating the time stamp resolution [129] and
changing the semantic of ECN [27] to signal further information are under consideration
in standardization in the IETF.

3.4.2 Implementation Complexity

We have implemented TCP SIAD as Linux congestion control module. As TCP SIAD is still
an AIMD scheme, this does not require any further modifications in the kernel. Only if the
application also wants to use the introduced sysctls, namely net.ipv4.tcp_siad_num_rtt and
net.ipv4.tcp_siad_num_ms, or the socket option TCP_SIAD_NUM_RTT, additionally kernel
modifications are needed.

All computations are performed on ACK reception (or very rarely on time-outs). However,
only a few ACKs actually trigger a congestion event. If a congestion notification is received,
we re-calculate α and β . In this case, the sending rate will be reduced anyway and therefore
processing time is not critical. Usually, we perform 2-3 multiplications and 2-3 divisions in
tcp_siad_ssthresh(...) (or less otherwise). In Linear Increment and Fast Increase
we perform 2-3 divisions and 1-3 multiplications. If instead Additional Decrease is performed,
we have 2-6 divisions and 3-4 multiplications. However, this happens only a few times per
congestion epoch, if at all, and again the sending rate is reduced in this case anyway.

As we decided to store increase instead of α , as explained above, we have to calculate
α = increase ·NumRTT for each ACK. If further computational optimization is needed, the
number of divisions and multiplications could be reduced by only allowing powers of 2 for
NumRTT as the calculation of α accounts for most of the operations. However, similar as



3.4 Summary and Discussion 85

TCP NewReno, we anyway have to calculate α/cwnd for each ACK which cannot be further
optimized.

In comparison TCP Cubic performs 5-6 multiplications and 2-4 divisions per ACK in Conges-
tion Avoidance and 1-3 multiplications and 1-2 divisions in tcp_siad_ssthresh(...).
Thus, the implementation of TCP SIAD is not more complex than of existing and deployed
congestion control schemes and we therefore do not expect performance limitations due to pro-
cessing overhead.

3.4.3 Buffer Sizing and Configuration

Finally, for the application of TCP SIAD in the future Internet there are two question on param-
eterization that need to be answered:

1. How to configure the network buffer size?

2. How to choose the right feedback rate?

While the parameter that influences the feedback rate, namely NumRT T or Numms, is under con-
trol of the end-system that implements TCP SIAD, the buffer size is a configuration parameter
that is set by the operator. Therefore, TCP SIAD is designed to work well with arbitrary buffer
size, However, there are limits on minimum buffer size (that are valid for any congestion con-
trol). The configuration of the buffer size is to some extent independent of congestion control.
The network buffer is needed to handle the simultaneous arrival of multiple packets in a mul-
tiplexed network. Therefore, the minimum buffer size depends on the multiplexing factor. In
addition to avoid early window reductions for small flows, the buffer must cover at least the
initial congestion window that was recently increased to 10 packets [35]. To avoid an early
termination of Slow Start, 1

2 ·BDP of buffering would be needed [67]. However, if Slow Start is
left early, TCP SIAD enters Fast Increase at the end of the first congestion epoch and therefore
can allocate the remaining capacity relatively quickly. Especially for short flows it would still
be beneficial to implement larger buffers but configure a shallow ECN marking threshold. By
smoothing the feedback signal either in the network or in the end-host, a starting flow could
stay longer in Slow Start without causing loss. However, if the maximum buffer size is large,
this could also cause a high maximum end-to-end delay. Therefore, a network operator has
to base its decision on the buffer configuration on the type of service (s)he wants to provide.
When in future networks smaller buffers are configured to support emerging low latency ser-
vices, TCP SIAD implementing an adaptive decrease and fast increase behavior will help to
keep link utilization high.

When using TCP SIAD, NumRT T can be set dynamically during a transmission by a higher-layer
control loop to better cope with the requirements of a specific application. However, we expect
that in most cases, and always at the beginning of a connection, a default value is used. This
default value should be derived from typical Internet usage scenarios, e.g., with respect to the
congestion feedback rate that TCP NewReno or TCP Cubic induces if maintaining, e.g., half the
share of the current access link capacity. If then one TCP SIAD would compete on the access
link with one TCP NewReno or TCP Cubic, they would share the available resources about



86 Chapter 3. TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm

equally. Moreover, the default value should not be chosen too large, if high responsiveness is
desired. As NumRT T determines length of a congestion epoch, it also influences strongly the
maximum time needed to detect spare capacity.

Additionally, some applications might implement a mechanism to control the aggressiveness
dynamically, e.g., for real-time video where the service needs a certain minimum rate to work
at all. In this case the aggressiveness can be increased, at least for a certain time (until the con-
gestion allowance at the policer, as described in the introduction in Section 1.1.3, is consumed)
to grab a larger share than reached by the default parameterization. Note, if NumRT T is selected
too large and the bottleneck buffer is small, TCP SIAD operates at the minimum increase rate
of 1 packet per RTT and therefore changes in NumRT T do not have any effect on the capacity
sharing until NumRT T is small enough again.

To maintain stability the higher-layer control loop needs to work with a lower control frequency
than the control frequency of the congestion control algorithm itself which is determined by the
feedback frequency based on NumRTT and therefore known by the application. A development
of a higher-layer control loop is out of scope for this work as this would need to be integrated
into the application processing and based on specific application requirements.

Note there is currently no mechanism that keeps single flows from using a more aggressive con-
gestion control and thereby push away other traffic. In fact, TCP Cubic is already more aggres-
sive than TCP NewReno and is the default configuration in Linux. Further, many applications
open several simultaneous connections to achieve higher throughput. Also, competing TCP
NewReno flows operating on different end-to-end delay cannot share the available resources
equally. In Chapter 4 we show that equal sharing between competing TCP SIAD flows can be
achieved, however, we do not expect that equal sharing is desired anymore in future as long as
every flow is able to grab sufficient capacity to fulfill the application’s requirements. Therefore,
fairness should not be based on the instantaneous share of a single flow but by on a per-user
basis over longer time scales. Such a definition of fairness, however, cannot be addressed solely
by the congestion control in a highly distributed system such as the Internet but must to be ad-
dressed in the future Internet by (ingress) policing, e.g., based on the induced congestion rate
(see introduction). Therefore, we argue that it is important to have a configuration possibility
in congestion control as implemented by TCP SIAD providing the basis for the deployment of
per-user congestion policing.



4 Evaluation

In this section we present an evaluation of TCP SIAD based on simulations integrating the
Linux kernel and our Linux implementation of TCP SIAD, as described in the previous chap-
ter. The simulations performed are aligned with the requirements as stated in the introduction in
section 1.2: scalability, adaptivity, capacity sharing, and convergence. Further, we assess the ro-
bustness of TCP SIAD to (non-congestion) loss and dynamic network conditions. Even though
this was not explicitly stated as a requirement for congestion control design, this is important
for future deployment in the Internet.

In the following section we describe the used simulation setup and scenarios. For most simu-
lations we use a simple dumbbell scenario and configure different conditions at the bottleneck
link and queue, as they can be found in real networks, such as different link speed, queue size,
or dynamics in speed and delay. Further, we can impact the traffic load by using different traffic
models and vary the number of concurrent flows. Additionally, we evaluate one scenario with
multiple bottlenecks. Further, we introduce and discuss the used metrics for evaluation of the
stated requirements and design goals, as listed in section 1.4.

As a first stage of evaluation, we investigate the different components of TCP SIAD independent
of each other or in combinations of two or three of them. We assess the contribution of each
component to reach the desired design goals, and foremost discuss the influence on convergence
of each component. This is important as the Scalable Increase approach itself does not provide
convergence anymore. Further, the resulting capacity sharing of the combination of the five
introduced algorithms cannot be assessed easily analytically, and therefore it is important to
first understand the influence of each single component.

Section 4.3 focuses on single flow behavior and compares the steady state behavior of TCP
SIAD to other state-of-the-art high-speed congestion control proposals. The evaluation of this
static, single flow scenario provides initial insights on adaptivity and scalability properties of
TCP SIAD. We show that TCP SIAD always reaches high link utilization and avoids a standing
queue as well as induces a fixed feedback rate independent of the bottleneck bandwidth and
therefore achieves the respective design goals in these first scenarios. Further, we assess the
ability of a single TCP SIAD flow to handle delay variations or rate variations at the bottleneck
link to evaluate the influence of these network effects independent of other traffic dynamics.

In Section 4.4, we demonstrate the viability of the SIAD principle in multiple flow scenarios
and TCP SIAD’s impact on capacity sharing depending on the configured feedback rate. We
evaluate scenarios with competing flows that either implement the same or a different conges-
tion control scheme and either operate based on the same or different network conditions, such

87



88 Chapter 4. Evaluation

as different end-to-end delays or a different number of bottlenecks that need to be passed by one
of the flows in test. We demonstrate that the configuration of different NumRT T values impacts
capacity sharing as desired.

Subsequently, we assess the convergence properties of TCP SIAD in Section 4.5. There are
basically two cases for evaluation, either where the available bandwidth increases or decreases
due to changes in the network (e.g. re-routing) or dynamics in the traffic load by stopping
or starting flows with adaptive or constant bandwidth allocation. Further, it is of interest to
investigate the responsiveness of an existing flow in steady state, if a new flow starts. This means
the bottleneck link is already under full load and the convergence time is strongly influenced by
the ability of the first flow to release capacity. This scenario is not covered by one of our design
goals but provides insights on TCP SIAD’s behavior in comparison to the other schemes in test.

To prove the applicability of using TCP SIAD in the Internet we also show TCP SIAD’s robust-
ness in high congestion or high loss scenarios in Section 4.6 where TCP SIAD always reaches
a high link utilization.

All in all, we show that only TCP SIAD is able to fulfill all design goals achieving high utiliza-
tion with arbitrary buffer sizes and always avoiding a standing queue. Further, only TCP SIAD
and Scalable TCP implement a fixed feedback rate independent of the link speed while Scal-
able TCP reaches this on the cost of inducing a standing queue and high loss rate. Moreover, we
demonstrate the capacity sharing properties of SIAD depending on the configured feedback rate
and show that TCP SIAD allocates newly available capacity quickly and converges reasonably
fast. In addition, TCP SIAD provides a much higher resilience to non-congestion losses than
all other schemes in test.

4.1 Simulation Setup

Our evaluation is based on simulations. We used the event-driven network simulator IKR Sim-
Lib [3] together with the IKR VMSimInt [146] extension which provides integration of virtual
machines into the simulated network. Therefore, we can run unmodified Linux kernel code
in simulation and apply our TCP SIAD Linux implementation. This setup provides realistic
TCP behavior and a proof of concept of implementation feasibility. Further, we can compare
TCP SIAD to the existing implementations of other schemes in Linux. Moreover, by using a
simulated network instead of a real test-bed, we are able to fully control the network conditions
and therefore eliminate unwanted sources of disturbance. Therefore, a controlled, simulated
network environment provides best conditions for a detailed evaluation of the microscopic al-
gorithm behavior and to show the robustness in a large set of well-defined (extreme) scenarios.
IKR VMSimInt provides comparable results to the ns-3 simulation environment, a well-known
network simulator for TCP evaluations, [146] and additionally allows an easy use of unmodified
and recent kernel code.

We mostly use the default Linux configuration with Selective Acknowledgment (SACK) and
TSOpt enabled. Note, in the used kernel version 3.5.7 an initial congestion window of 10 pack-
ets is implemented which of course as well is used for TCP SIAD. However, we implemented
two new sysctl parameters (additionally to the two to configure NumRT T and Numms) to dis-



4.1 Simulation Setup 89

Figure 4.1: Simulation setup.

able delayed ACKs and set the Slow Start threshold as needed for certain evaluation scenarios.
The respective source code for these Linux patches is shown in Appendix A.2. Moreover, to
avoiding window limitation due to memory restrictions we explicitly set the respective sysctl
parameters based on the configured memory for the virtual machine. The memory of the virtual
machine is always set to 32 ·max(q,BDP) ·n+24MB where q is maximum buffer size and n is
the expected maximum number of flows. This configuration is chosen to provide enough space
for the dummy data in user and in kernel space as well as for the operating system itself. Sub-
sequently net.core.wmem_max and net.core.rmem_max are set to 16 ·max(q,BDP).
For net.ipv4.tcp_rmem and net.ipv4.tcp_wmem we set the minimum, the default,
and the maximum value to 16 ·max(q,BDP) as well. And for net.ipv4.tcp_mem we set
the minimum and default to 16 ·max(q,BDP) but the maximum to 16 ·max(q,BDP) · n. Note,
memory limitations can lead to slightly different behavior in similar scenarios as, e.g., early end
of quick ACK phase at receiver side in Slow Start. However, those small variations in Slow
Start do not invalidate our statistical evaluation.

4.1.1 Simulation Scenario and Traffic Generation

In all simulations we used a dumbbell topology as shown in Figure 4.1. In most scenarios we
only used one or two sender/receiver host pairs where each sender and each receiver operates
an own kernel images. Therefore, we can configure the congestion control scheme used on a
per sender basis.

Only in the case of CBR traffic, the scenario is slightly different as we have one sender-receiver
pair that does not generate TCP traffic but sends messages with a fixed rate.

Otherwise, each of the senders opens one or more connections to the respective receiver and
sends dummy data. In our simulation the receiver does not send any payload data but only
control data as ACKs. The dummy data is generated in the simulation tool and passed to a
relay program in the virtual machine as described in Section 2.5.1. In the simple case we model
a data-unlimited (greedy) source where there is always enough data available to fill the link.



90 Chapter 4. Evaluation

Additionally, we can start and stop the data input for each connection at a certain time in the
simulation. Note, if we stop a TCP connection, all data that is already in the VM waiting
for processing is still sent before the connection is terminated. The length of the additional
transmission time depends on the buffer configuration of the virtual machine. However, in our
evaluation it either doesn’t matter when exactly a transmission is terminated or the results are
compared based on the same conditions for all schemes in test. Further, note that the conver-
gence times we observed are in the order of seconds while the additional transmission time in
our setup is a couple of RTTs.

To simulate short traffic bursts we generate data bursts based on configurable distributions of
the burst size and the IAT. In this case we can either open an own TCP connection for each data
burst or send all data over the same connection. If we open one connection per traffic burst, we
always start the connection in Slow Start. In the latter case we only slow-start if the idle time
between two bursts is large enough. In contrast if the IAT is too short, the traffic queues up
and is sent successively. However, if the IAT is large enough both options implement the same
behavior which is the case for all our simulations in Section 4.6.

Finally, all traffic passes a central bottleneck link. This link is modeled by a queue that can
implement different AQM schemes, a rate limitation, and a link delay. The central link on
the backward path is identically modeled and configured. As the traffic load is always smaller
than on the forward path, this setup guarantees that the backwards path never is the bottleneck.
If not stated differently, we use a DropTail scheme with a configurable maximum queue size
and a link delay of 50 ms resulting in 100 ms base RTT (transmission time without queuing
delay). The queue size is always represented as a multiple of the base BDP (when the queue is
empty). We chose this delay configuration because typical RTTs in the Internet are between a
few milliseconds to about 200 ms. We additionally performed further simulations with smaller
RTT which are not shown in this report as it is sufficient to either vary the rate or the delay to
demonstrate certain effects that occur with different link BDPs. Therefore, we decided to use a
fixed RTT of 100 ms except for simulations where competing flows have different base RTTs.

Each sender is connected to the bottleneck link by an access link with a bandwidth limitation of
100 times the bottleneck bandwidth. Modeling the access link speed enables packet interleaving
between traffic of different senders. There is no speed limitation on the receiver’s access link
as the sending rate and send-out timing is determined by the incoming traffic. Further, we can
configure an additionally link delays on the access link. If set, the corresponding sender and
receiver access link delays are always configured with the same additional delay value for both
links. However, the access delay is always zero except for the simulation setup in Section 4.4.2
where the bottleneck link delay is set to zero instead.

As a basis for our evaluation we monitor the congestion window at each sender for each con-
nection tracing each change at packet arrival or transmission. Further, we trace the queue length
for each incoming packet and track if the packet is forwarded or dropped at the bottleneck. Ad-
ditionally, we measure the throughput at receiver side with a resolution of 2·RTT. If not stated
differently all simulations ran for 600 seconds. For statistical evaluations the first 20 seconds
were not considered, as we only evaluate steady state behavior. In scenarios with long con-
vergence times, we ensured that the simulation ran long enough to achieve convergence. This
start-up phase has been chosen deliberately long as we have to ensure that it is long enough to
exclude Slow Start and the initial convergence phase.



4.1 Simulation Setup 91

4.1.2 Metrics

We define the following metrics which are calculated based on the trace data output of each
simulation. As these metrics directly refer to our design goals, they are listed in the same
order as the respective design goals in Section 1.4 that aim for the implementation of high link
utilization, minimized average queuing delay, a fixed feedback rate, quick capacity allocation,
and a configurable aggressiveness.

Average link utilization The average link utilization is calculated based on the time that the
link was occupied in relation to the time that the link was not occupied. A basic require-
ment for congestion control is efficiency; therefore we have an explicit design goal on
high throughput. Only if the link utilization is close to 100 %, the throughput is maxi-
mized.

Average loss rate The average loss rate is calculated based on the number of bytes that were
dropped at the queue in relation to the total number of bytes that were received at the
queue. To finally assess high throughput one must not only consider link utilization but
has to also assess the (average) loss as dropped packets will keep link utilization high but
do not provide any useful communication. Note, that we also require a certain feedback
rate where the feedback is provided by loss signals. While it is in general desirable to
minimize the loss rate, we explicitly have a design goal that requires a certain (minimum)
loss rate, as further detailed below.

Minimum and average queue fill fraction The minimum and average queue fill fraction is
the minimum or average queue size in bytes normalized by the maximum configured
queue size in bytes. The average queue size is calculated based on samples of the current
queue length multiplied by the elapsed time since the last update and is updated with ev-
ery en- or de-queue. The average queue length is compared in different scenarios and for
different congestion control schemes to assess the influence of the used congestion con-
trol scheme on low latency services. We explicitly stated a design goal of minimizing the
average queuing delay. Therefore, we do not explicitly evaluate the jitter that is induced
which often is also important for low latency services. However, for all loss-based con-
gestion control schemes the maximum queuing delay is determined by the queue length
and therefore only the average can be influenced. The minimum queuing delay is used to
rate if a standing queue was induced. If the minimum is never zero, there is a standing
queue.

Average loss event distance and standard deviation The loss event distance is the time be-
tween the last loss of the previous congestion event and the first loss of the current con-
gestion event where all losses that occur within 2·RTT are accounted for the same con-
gestion event. The loss event distance can be estimated for only one flow or an aggregate
of flows at one bottleneck queue. The loss event distance correlates to the feedback rate
(in case of loss-based congestion control) which we aim to be constant (as configured)
independent of the available bandwidth. We evaluate this metric in simple scenarios with
different BDPs.

Average, minimum, and maximum convergence time We define the convergence time as the
time that is elapsed until a flow reaches a given sending rate. This metric is also derived



92 Chapter 4. Evaluation

based on periodic sample rate values and therefore its resolution is limited by the sample
interval. For convergence between two competing flows we regard the time until 80% or
95% of the equal sharing sending rate is reached. Based on the convergence time we will
evaluate how quickly a flow can grab available bandwidth, as stated in our design goals.
Further, the convergence time in a scenario with multiple competing flows also allows
us to assess the ability of a flow to release capacity to other starting flows. To quickly
converge in such a situation is not an explicit design goal, as already explained in the
previous chapter, however, for comparison with existing proposals we also evaluate these
kind of scenarios.

Average sending rate The average sending rate is the mean value of rate values samples that
are calculated based on the number of received bytes in a fixed time internal. The average
sending rate can be measured on a per flow basis or for a traffic aggregate at one point on
the path. In addition, we calculate the ratio between two average sending rates to evaluate
which capacity sharing is achieved. While we often state the average sending rate for
various scenarios, we are mostly interested in the ratio between two (or multiple) flows
as this assesses the achieved capacity sharing in certain scenarios.

Jain’s Fairness Index As introduced in Section 2.5.3, Jain’s fairness index is a measure for the
equal distribution of a certain resource. For those scenarios where equal sharing is desired
we calculate Jain’s fairness index based on the average sending rate of a flow or a group
of flows. If we assess equal capacity sharing of different groups of flows, we calculate
the mean of the average sending rates of all flows in the group. Mostly we show that the
aggressiveness configuration parameter can be tuned in different scenarios to achieve a
high value of Jain’s Fairness index and therefore demonstrate the ability of TCP SIAD to
influence capacity sharing as stated in our design goals.

Average oscillation size and standard deviation For the oscillation size we isolate the min-
ima and maxima from the congestion window trace. Subsequently we calculate the size
of each decrease and each increase period by subtracting each minimum from the pre-
vious and subsequent maximum. This metric does not directly relate to a certain design
goals but is used to assess smoothness and responsiveness in scenarios where multiple
flows share a bottleneck. While smoothness might provide higher stability, a reasonable
high responsiveness is needed to quickly reach convergence and allocate newly available
bandwidth. We only discuss the oscillation in comparison to other schemes in test and
in relation to additional metrics. E.g., a larger oscillation size is (only) bad if also the
utilization is lower and/or the loss rate is higher than for the scheme in comparison.

Additional to the statistical metrics, we show congestion window and queue length traces over
time to demonstrate the different characteristics of the congestion control schemes in evaluation.

Table B.1 in the Appendix B gives an overview about where which metrics are used to evaluate
which requirement. In addition, Table B.2 summarizes the network and traffic parameters used
in the discussed evaluation scenarios. These tables do not include Section 4.2 as this section is
not part of the actual evaluation of the TCP SIAD algorithm but discusses an initial, preliminary
assessment to provide a basic understanding of the characteristics of the individual algorithm
components introduced in the previous chapter.



4.2 Stability and Convergence of Individual Algorithm Components 93

4.2 Stability and Convergence of Individual Algorithm Components

This section provides an independent, preliminary assessment of characteristics of the indi-
vidual algorithms, namely Scalable Increase, Adaptive Decrease, Additional Decrease, Fast
Increase, and the use of Trend. Based on the implementation of TCP SIAD as described in the
previous section, we extracted or replaced the code elements of the individual algorithms or a
combination of two or three of them and derived different implementation variants as described
below. These variants are not supposed to be used as a stand-alone congestion control scheme
but are only used for the evaluation in this section to assess a) if the respective (stand-alone)
algorithm can achieve the desired design goal that it is aiming for and b) to demonstrate its con-
vergence and capacity sharing properties. As convergence and the achieved capacity sharing
ratio of one or more flows using the total TCP SIAD scheme cannot be easily assessed analyt-
ically the preliminary evaluation in the section helps to better understand the evaluation results
of TCP SIAD on convergence and capacity sharing as presented in Sections 4.4 and 4.5.

More explicitly, we demonstrate the following observations in this section:

Scalable Increase

1. Flows using Scalable Increase induce the same loss event distance on different band-
width links and therefore Scalable Increase provides a fixed feedback rate indepen-
dent of the link capacity (scalability).

2. The sharing ratio of the link capacity of two competing flows using Scalable Increase
in convergence state is random and therefore Scalable Increase does not converge to
equal sharing.

Adaptive Decrease

Two competing and synchronized flows using Adaptive Decrease always just empty the
queue on decrease on network paths with different queue sizes (adaptivity).

Additional Decrease

Two competing flows using Adaptive Decrease and Additional Decrease can also empty
the queue even when the flows are not synchronized.

Trend

The introduction of Trend calculation re-introduces convergence to equal capacity sharing
of two competing flows that use Scalable Increase.

We evaluate Fast Increase only in combination with Trend calculation. Without Trend when
two competing flows operate in a stable state, Fast Increase has no influence and therefore these
combinations are not demonstrated in this section. However, the Trend calculation introduces
additional dynamics. In this case we demonstrate the influence of Fast Increase on the con-
vergence speed. We do not demonstrate in this section the ability of Fast Increase to provide
fast bandwidth allocation in situations with changing network conditions where the available
bandwidth increases abruptly due to, e.g., route changes or stopping traffic. We further evaluate
these kind of scenarios in Section 4.5 as this can nicely be demonstrated for the total TCP SIAD
scheme and therefore does not need to be evaluated separately in this section.



94 Chapter 4. Evaluation

We implemented and evaluate the following variants. The source code of all implemented
variants can be found in Appendix A.3.

- SI_only: This variant only implements Scalable Increase with a minimum increase rate
of 1 packet per RTT and a fixed decrease factor of 0.5.

- Fixed_Increase: To evaluate capacity sharing with different increases rates, we also im-
plemented a variant with a (configurable) fixed increase rate and a (non-configurable)
fixed decrease factor of 0.5.

- SI_trend: This variant implements the Trend calculation additionally to Scalable Increase
as in SI_only.

- SI_trend_fastIncrease: This variant implements Scalable Increase, Trend, as well as
Fast Increase. As increase factor can grow quite large with the use of Fast Increase, we
also need to adapt the congestion window based on the most recently used increase factor
before applying Adaptive Decrease. Note, we do not implement this additional adaptation
with any other variant evaluated in this section for the sake of simplicity.

- AD_only: This variant only implements Adaptive Decrease with a minimum congestion
window of MIN_CWND= 2 and a fixed increase rate of 1 packet per RTT. If a congestion
notification is received in Slow Start, this implementation still halves the window (as the
increase rate was doubled in the last RTT of feedback delay).

- Fixed_Decrease: To evaluate an alternative decrease behavior as it could be used if the
total queue size would be known, we implemented a variant with a fixed subtractive de-
crease of a configurable number of packets and a (non-configurable) fixed increase rate
of 1 packet per RTT.

- SIAD_only: This variant performs Scalable Increase and Adaptive Decrease but with-
out any additional mechanisms as Fast Increase, Trend, and Additional Decrease. As
in AD_only we halve the congestion window in Slow Start before the regular, adaptive
decrease is applied.

- SIAD_addDecrease: For this variant Scalable Increase and Adaptive Decrease, as ex-
plained above, together with Additional Decrease is implemented.

- SIAD_trend: This variant implements Scalable Increase and Adaptive Decrease as well
as the Trend calculation; but neither Additional Decrease, nor Fast Increase.

Note, for all implemented variants that use Adaptive Decrease we always use the total minimum
delay seen during the connection and never update to a larger value. This is a simplification that
can be done in simulations as we know that the base delay does not change and therefore gives
always the correct value. Furthermore, the delay used to calculate the decrease factor is the
minimum of the last two samples before the congestion notification was received to filter single
outliers.

To avoid the need to estimate the number of acknowledged packets we deactivated delayed ACK
for the simulations in this section. This allows the implemented variants to achieve the desired
increase rate and a minimum increase rate of 1 packet per RTT without additional complexity.



4.2 Stability and Convergence of Individual Algorithm Components 95

For all simulations in this section, to avoid unnecessary complexity, we used one simple scenario
with four hosts and in total two TCP connections that have always enough data to send (greedy)
as described above in 4.1. There are either two competing flows that start simultaneously or
the second flow starts with a defined delay of some milliseconds compared to the first flow.
Further, we always use a (symmetric) OWD of 50 ms. If not stated differently, we use a basic
configuration of 10 Mbit/s link speed for the bottleneck and a buffer size of 0.5·BDP which are
62500 Bytes and therefore about 41 full-sized packets (of 1514 Bytes incl. Ethernet header).
Note, as we always have data to send in these simulations we only have full sized data packets.
If not noted differently, we configured a NumRT T value of 20, if applicable (that means for
Scalable Increase variants only). In addition, we show one simulation where NumRT T = 30
to demonstrate that different feedback rates can be configured with Scalable Increase and one
simulation where the two flows use different NumRT T values

4.2.1 Fixed Feedback Rate and Convergence with the Use of Scalable Increase

In this section we evaluate the four variants that only modify the increase behavior but halve
the congestion window on loss: SI_only, Fixed_Increase, SI_trend, and SI_trend_fastIncrease.
We demonstrate the ability of Scalable Increase to induce a fixed feedback rate independent
of the link bandwidth and show various scenarios where two competing flows converge to dif-
ferent capacity sharing ratios with and without the use of the Trend calculation. Further, we
demonstrate the behavior of two competing flows with a fixed, non-adaptive increase rate. This
implementation does not aim for a fixed feedback rate, but the achieved capacity sharing ratio of
two competing flows operating with different fixed aggressiveness can be derived analytically.
Therefore, this behavior provides the theoretical basis for our design goal that aims to provide
a configurable aggressiveness that can be used to influence the capacity sharing.

Scalable Increase

Figure 4.2 shows traces of the congestion window over time of the two competing flows, in
this case for the SI_only variant. In Figure 4.2a both flows start simultaneously. Even though
they are configured with the same NumRT T value of 20, they do not converge to equal share.
This is because SI will calculate different effective increase rates for both flows to maintain the
same length of the congestion epoch and therefore reach the same target value as before in the
configured time frame. The initial target value that determines the sharing ratio depends on the
capacity sharing in the start-up phase. In fact we can achieve a random sharing just dependent
on the start time of the second flow. E.g., Figure 4.2b shows a scenario where the second flow
starts 4 seconds after the first. In this case the second flow obtains the larger share as the queue
was nearly empty at starting time and therefore the second flow could grab a larger share due to
increasing aggressively in Slow Start.

In Figures 4.2c and 4.2d, again the second flow gets the smaller share starting at 5 and 6 seconds.
In case of the latter, the convergence period (until a stable state is reached) is quite long as the
queue was already nearly filled by the first flow when the second flow was starting. Initially
they converge to a certain share (until about 20 seconds) because of the implemented minimum
increase rate of 1 packet per RTT.



96 Chapter 4. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(a) Both flows start simultaneously.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(b) Second flow starts at 4 seconds.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(c) Second flow starts at 5 seconds.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(d) Second flow starts at 6 seconds.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(e) Scenario with higher rate of 20 Mbit/s.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(f) Two flows with NumRTT = 30.

Figure 4.2: Two competing SI_only flows.

Moreover, this trace shows one more effect: at about 30 seconds only one of the flows randomly
gets a congestion notification and therefore the sharing changes. Taking a closer look at both
figures it seems that the flows actually converge. This is only because of the computational
inaccuracy that results from the fact that we only send out full packets and therefore can also
only increase the sending rate by full packets. Still both flows never completely converge to
equal sharing when running longer simulations.



4.2 Stability and Convergence of Individual Algorithm Components 97

Figure 4.2e illustrates the desired property of Scalable Increase to implement a fixed but con-
figurable feedback rate (see design goals in Section 1.4). The congestion epoch time stays con-
stant (as configured) even though the bottleneck rate is increased (from previously 10 Mbit/s) to
20 Mbit/s. Or, if the configuration is changed to NumRT T = 30, the congestion epoch increases
respectively, as shown in Figure 4.2f.

Note that if we use different NumRT T values for both flows, this leads to a situation where the
flow with the larger value reduces its sending rate more and more until the minimum sending
rate of 1 packet per RTT is reached. This is because the flow with the larger NumRT T value does
not only calculate a smaller increase rate but also adapts its target to a lower value each time
a congestion event occurs and the target was not reached yet. In the given setup, this happens
every congestion epoch as the smallest configured values dominates the feedback frequency.
This leads to a smaller and smaller target value and therefore smaller and smaller rate calculation
in each congestion epoch until the minimum is reached.

This behavior can also be found in our final TCP SIAD approach but in combination with Trend
and Fast Increase, the flow with the smaller share does not stay at the minimum rate but tries
to grab additional capacity from time to time. Moreover, Additional Decrease also helps the
flows with the larger share to release capacity quickly. Due to this interaction of the different
mechanisms it is hard to calculate a resulting sharing ratio but we will show that the capacity
sharing can still be influenced by the configuration parameter NumRT T as desired.

Fixed Increase

Additionally, we demonstrate how a certain sharing ratio is reached if different fixed increase
rates are used by the competing flows. Therefore, we evaluate the Fixed_Increase variant.
Figure 4.3a shows two flows, one with an increase rate of 1 packet per RTT (similar as TCP
NewReno) and the other one with a rate of 2 packets per RTT. While the flow with the smaller
increase rate reaches an average rate of 3.28 Mbit/s, the other flow gets about twice the capacity
with 6.36 Mbit/s. Note in this case the link could not be fully utilized due to the buffer con-
figuration of 0.5·BDP and the fixed decrease factor of 0.5. In Figure 4.3b we see two flows
with the same increase rate as above of 1 and 2 packets per RTT but on a 20 Mbit/s link. The
sharing ratio stays about the same with 6.51 Mbit/s and 12.78 Mbit/s, respectively. A different
ratio is reached in Figure 4.3c where the two flows are configured with an increase rate of 1 and
3 packets per RTT, resulting in 2.64 Mbit/s and 7.02 Mbit/s. One of the flows gets about two
times the share than the other as it can be calculated by resolving the TCP response function as
given in Eq. 2.7 to the loss probability

p =
1

RT T 2

α(2−β )

2β ·B2 (4.1)

Both competing flows, of course, have the same loss distance but the number of losses per
congestion event depends on the increase rate per RTT, therefore

α1 ·
α1(2−β )

2β ·B2
1

!
= α2 ·

α2(2−β )

2β ·B2
2

(4.2)



98 Chapter 4. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(a) Two flows with increase rate of 1 and 2 packets
per RTT on 10 Mbit/s.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(b) Two flows with increase rate of 1 and 2 packets
per RTT on 20 Mbit/s.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(c) Two flows with increase rate of 1 and 3 packets
per RTT on 10 Mbit/s.

Figure 4.3: Two competing Fixed_Increase flows with 0.5·BDP of buffering.

resulting in

α1

α2

!
=

B1

B2
. (4.3)

This demonstrates the capability to achieve certain capacity sharing ratio between competing
flows that use different increase rates as a basis for our design goal to provide a respective
configuration parameter to influence the capacity sharing.

Scalable Increase and Trend

To achieve convergence that is not reached in the SI_only case we evaluate the variant SI_trend
that additionally implements the trend calculation to adapt the target value. Figure 4.4 shows
two scenarios with different start times. It can be seen that both flows converge quickly in both
cases, when they start simultaneously. Even when the second flow starts 6 seconds later which
was the worst case in the sample scenario shown above for SI_only convergence is reached after
about 15 s.



4.2 Stability and Convergence of Individual Algorithm Components 99

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(a) Both flows start simultaneously.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(b) Second flow starts at 6 seconds.

Figure 4.4: Two competing SI_trend flows.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

(a) Both flows start simultaneously.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60

cw
nd

 [p
kt

s]

time [s]

NumRTT = 20
NumRTT = 40

(b) Different NumRTT values.

Figure 4.5: Two competing SI_trend_fastIncrease flows.

Unfortunately, if we take a look at the SI_trend_fastIncrease variant where trend and Fast In-
crease is implemented, convergence is worse. In Figure 4.5a first both flows converge quickly
but then seem to de-converge again. Note that only 60 s of simulation time are shown here.
Later on the flows will converge again. In fact over a longer simulation time of 580 s both
flows share the link about equally with a rate of 4.96 Mbit/s and 4.6 Mbit/s. This means alter-
nating one or the other flow has a slightly larger share for a period of several seconds. This
effect occurs mainly because Fast Increase will introduce higher dynamics which disturbs the
convergence state. Further, with the use of Fast Increase we also need to adapt the congestion
window correctly based on the current increase rate before decreasing. This actually stabilizes
the behavior but also leads to longer convergence periods when both flows do not share the link
equally.

Figure 4.5b shows two flows with different NumRT T values of 20 and 40. Fast Increase intro-
duces more dynamics but not enough to really influence the achieved capacity sharing ratio.
Therefore, with this implementation and the use of different NumRT T values, one of the flows
always operates at the minimum increase of 1 packet per RTT while the other (with the smaller
NumRTT value) operates at the configured rate. This means using a different NumRT T than 40



100 Chapter 4. Evaluation

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(a) Two flows with buffer of 0.5·BDP.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(b) Second flow starts at 5 seconds.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(c) Two flows with buffer of 1·BDP.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(d) Two flows with buffer of 1.5·BDP.

Figure 4.6: Two competing AD_only flows.

(that is still larger than 20 as used by the competing flow) will not change the sharing ratio.
We will show later that a configurable capacity sharing can be reached in our final TCP SIAD
approach (when also Additional Decrease is used).

4.2.2 Queue Development and Convergence with the Use of Adaptive Decrease

In this section we evaluate AD_only and Fixed_Decrease. While Adaptive Decrease only es-
timates the number of backlogged packets in the queue of the current flow, Fixed Decrease is
a simple sample scheme that could be used if the total queue length would be known instead.
However, both approaches can or cannot fulfill the design goals depending on flow synchroniza-
tion; meaning that two of flows will reduce their congestion synchronously in the some RTT.
We demonstrate that Adaptive Decrease can only empty the queue if the two competing flows
are synchronized. In contrast, a reduction of number of packets that reflects the total queue size
underutilizes the link in the case of synchronization. Subsequently, in the following section we
further demonstrate that the chosen approach of using Adaptive Decrease in combination with
Additional Decrease is, however, able to achieve our design goals by just emptying the queue
no matter if the flows are synchronized or not.



4.2 Stability and Convergence of Individual Algorithm Components 101

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(a) Two flows with buffer of 0.5·BDP.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(b) Second flow starts at 5 seconds.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(c) Two flows with buffer of 1·BDP.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(d) Second flow starts at 5 seconds.

Figure 4.7: Two competing Fixed_Decrease flows.

Adaptive Decrease

To demonstrate the desired adaptivity of Adaptive Decrease to the buffer size we evaluated the
AD_only variant in three scenarios with buffer sizes of 0.5, 1.0, and 1.5 times the base BDP.
Figure 4.6 shows additionally to the congestion window over time also the queue length over
time. It can be seen that in all cases the buffer is emptied at every decrease and therefore a
standing queue can be avoided. Further, the queue starts immediately to grow again after a
decrease which keeps the link utilization high. Figure 4.6b also demonstrates that Adaptive
Decrease still maintains the same convergence properties than traditional AIMD as it is still a
multiplicative decrease scheme.

Fixed Decrease

As an alternative we demonstrate a variant with the fixed subtractive decrease, named Fixed_Decrease,
which does not use a multiplicative decrease scheme anymore. Figure 4.7 shows simulation
results where a fixed decrease of 42 packets on congestion notification is configured. In Fig-
ures 4.7a and 4.7b the queue size is configured to 0.5·BDP which translates to 41 full-sized
packets. As we have two (synchronized) flows in this scenario and therefore in total decrease
by 84 packets, this configuration underutilizes the link. Only one case can be observed at around



102 Chapter 4. Evaluation

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(a) Two flows with buffer of 0.5·BDP.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(b) Second flow starts at 5 seconds.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(c) Two flows with buffer of 1.5·BDP.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(d) Two flows at 20 Mbit/s.

Figure 4.8: Two competing SIAD_only flows.

22 seconds where the decrease just empties the buffer as only one of the flows got a congestion
notification by chance. Further, it can be seen, especially in Figure 4.7b where the second flow
starts later, that the subtractive decrease behavior does not provide convergence. Even worse,
the flow that starts later when the link is already utilized, still always decreases by the same
fixed value as the competing flow. Therefore, it only reaches a maximum congestion window
of 42 packets within one congestion epoch and then decreases again to MIN_CWND. Note in
Figure 4.7c both flows by chance achieve a nearly equal sharing (but still never converge fully).
In this scenario, the buffer is configured to a size of 1.0·BDP and respectively 82 full packets
while the flows still decrease by 42 packets (only). As both flows are synchronized the buffer
is just emptied with every decrease. However, if only one flow decreases or one of the flows
is not able to decrease by the total of 42 packets, this causes a standing queue and therefore
unnecessarily increases the delay as it can be observed clearly in Figure 4.7d. Moreover, in
Figure 4.7d the same effect as before can be still observed when one of the flows starts later.

4.2.3 Fixed Feedback Rate, Queue Development, and Convergence with the Use of Scal-

able Increase and Adaptive Decrease

In this section, we show that the demonstrated abilities of Scalable Increase and Adaptive De-
crease still hold if both algorithms are used in combination based on the SIAD_only variant.



4.2 Stability and Convergence of Individual Algorithm Components 103

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

Figure 4.9: Two competing SAID_addDecrease flows.

Further, we demonstrate that the use Additional Decrease together with Scalable Increase Adap-
tive Decrease in the SIAD_addDecrease variant can also the empty the queue in those cases
where the decrease is not synchronized. Finally, we demonstrate that the Trend calculation
still re-introduces convergence to equal capacity sharing of two competing flows if used with
Scalable Increase Adaptive Decrease in the SIAD_trend variant.

Scalable Increase Adaptive Decrease

Figure 4.8 reveals the same problem to convergence for SIAD_only as for SI_only. Further,
SIAD_only needs a longer time to converge to a stable state in case of one of the flows starting
later as shown in Figure 4.8b. But Figure 4.8c and 4.8d show the adaptivity to different queue
sizes and, respectively, the scalability due to the fixed feedback rate independent of the link
bandwidth.

Scalable Increase Adaptive Decrease and Additional Decrease

By evaluating SIAD_addDecrease we show the ability of the Additional Decrease algorithm to
always empty the queue even when not synchronized, e.g., as it can bee seen around 12 seconds
in Figure 4.9. In this moment by chance only one of the flows gets a congestion notification
and therefore additional Decrease is subsequently performed by the same flow until the queue
is sensed empty.

Scalable Increase Adaptive Decrease and Trend

As previously seen for SI_trend and now illustrated for SIAD_trend in Figure 4.10, the trend
calculation provides convergence to equal sharing when two flows with the same NUMRTT

configuration compete independent of the starting times of the flows. The convergence speed
is about similar as previously demonstrated for SI_trend as the addition of Adaptive Decrease
does not have any influence on convergence of two synchronized, competing flows.



104 Chapter 4. Evaluation

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(a) Both flows start simultaneously.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(b) Second flow starts at 5 seconds.

Figure 4.10: Two competing SIAD_trend flows.

4.2.4 Conclusion

In this section we have shown that the general principle of Scalable Increase can provide a fixed
feedback rate independent of the link bandwidth as desired for scalability. Further, Adaptive
Decrease is able to empty the queue on each congestion event if all flows are synchronized. We
demonstrated the ability of Additional Decrease to also cope with situations where flows are not
synchronized. As a drawback, any implementation of Scalable Increase does not provide con-
vergence to an equally sharing ratio anymore even though that is a known property of AIMD.
Therefore, we have shown that the introduction of a Trend calculation can re-introduce con-
vergence to equally sharing if Scalable Increase is used. Not shown in this section but clearly
displayed later in more dynamic scenarios is that Fast Increase is needed to provide quick allo-
cation for newly available bandwidth. However, the introduction of Fast Increase comes with
higher dynamics and therefore is disadvantageous for convergence as well. Still, over a longer
time scale Trend calculation can still provide convergence to equal sharing and therefore is a
valuable and important component of the final TCP SIAD algorithm.

Having shown that each of the single algorithms provides a component that is needed to fulfill
the design goals as stated in Section 1.4 and having demonstrated the implications on conver-
gence and capacity sharing with the use of Scalable Increase and well of the introduction of
Trend, we subsequently evaluate the complete TCP SIAD algorithm, as described in the previ-
ous chapter, in the following sections.

4.3 Adaptivity and Scalability based on Single-Flow Behavior

In this section we concentrate on a scenario with only one TCP connection from one data-
unlimited sender to one receiver. We use this simple scenario to evaluate the required adaptivity
to different buffer sizes and scalability with link speed of the proposed TCP SIAD scheme and
in comparison to other high-speed congestion control schemes. Again, all simulation runs had
an OWD of 50 ms, thus an RTT of 100 ms. At first, we show the congestion window devel-
opment of TCP SIAD and six other current and in Linux implemented (high-speed) schemes,



4.3 Adaptivity and Scalability based on Single-Flow Behavior 105

namely TCP NewReno, TCP Cubic, Scalable TCP, High Speed TCP, H-TCP and TCP Illinois.
Further, we will compare the mean link utilization and average queue length to show that a
standing queue can be avoided while the link is still always highly utilized with TCP SIAD.
This addresses the adaptivity requirement as stated in Section 1.2. We, moreover, show the loss
distance and total loss rate to proof TCP SIAD’s scalability to the link speed.

4.3.1 Statistical Evaluation in Steady State

Figure 4.11a shows the congestion window of one TCP NewReno flow and the queue length
over time for different link speeds (10 Mbit/s and 20 Mbit/s) and buffer sizes (1.5·, 1.0·, and
0.5·BDP). It can be seen that the feedback rate strongly depends on the average BDP and
therefore also the maximum queue size. Moreover, the queue and so the link run empty if the
configured buffer size is smaller than the base BDP.

TCP Illinois has a very similar behavior as TCP NewReno. Only the increase is faster at the
beginning of each congestion epoch as it can be seen in Figure 4.11b. This helps to better utilize
the link in case of small bottleneck buffer configurations but also causes a higher average queue
length and therefore high (and unnecessary) end-to-end delays. However, as it used the same
decrease scheme, TCP Illinois does not improve the scalability.

As shown in Figure 4.11c TCP Cubic can utilize bottlenecks with smaller buffers (down to half
the BDP) as it only reduces the sending rate by 0.3. In return it causes a larger standing queue
already with smaller buffer sizes than TCP NewReno. Further, a typically bi-frequent behavior
of TCP Cubic’s congestion window can be seen. As designed for high-speed networks TCP
Cubic’s feedback rate is higher than TCP NewReno’s. However, the congestion event distance
still gets larger when the link capacity increases and therefore TCP Cubic scales better than
TCP NewReno but does not solve the scalability problem fully.

For High Speed TCP as in Figure 4.11d the increase rate gets higher the larger the link band-
width is. Therefore, for the selected scenarios with 10 Mbit/s and 20 Mbit/s the feedback rate
seems to be similar but in fact still depends on the link speed (as we show more clearly next with
the statistical assessment of the congestion event distance). Moreover, as already explained in
Section 2.2.2, High Speed TCP selects the decrease factor such that it is fair to TCP NewReno
cross traffic on link speed links and therefore still causes either link underutilization or a stand-
ing queue.

In contrast, Scalable TCP provides the same feedback rate in all scenarios and therefore fully
scales with all link speeds as expected for a MIMD scheme. Unfortunately, it most often causes
a large standing queue as shown in Figure 4.11e. Further, as we assess next in more detail, the
feedback rate is high and therefore also the loss rate is very high.

Figures 4.11f displays the congestion window and queue length of H-TCP. Similar to TCP SIAD
in Figure 4.12, H-TCP adapts its decrease factor to the queue size. As H-TCP only implements
a decrease between 0.3 and 0.5, it still causes a standing queue when the buffer is larger than
the base BDP. Comparing the increase rate of H-TCP and TCP SIAD based on the shown
congestion window plots, we expect a higher loss rate for H-TCP which we will as we further
investigate below.



106 Chapter 4. Evaluation

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

20 Mbit/s, 1.0 BDP
10 Mbit/s, 1.5 BDP
10 Mbit/s, 1.0 BDP
10 Mbit/s, 0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP NewReno.

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

20 Mbit/s, 1.0 BDP
10 Mbit/s, 1.5 BDP
10 Mbit/s, 1.0 BDP
10 Mbit/s, 0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP Illinois.

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

20 Mbit/s, 1.0 BDP
10 Mbit/s, 1.5 BDP
10 Mbit/s, 1.0 BDP
10 Mbit/s, 0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) TCP Cubic.

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

20 Mbit/s, 1.0 BDP
10 Mbit/s, 1.5 BDP
10 Mbit/s, 1.0 BDP
10 Mbit/s, 0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) High Speed TCP.

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

20 Mbit/s, 1.0 BDP
10 Mbit/s, 1.5 BDP
10 Mbit/s, 1.0 BDP
10 Mbit/s, 0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(e) Scalable TCP.

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

20 Mbit/s, 1.0 BDP
10 Mbit/s, 1.5 BDP
10 Mbit/s, 1.0 BDP
10 Mbit/s, 0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(f) H-TCP.

Figure 4.11: Congestion window and queue length over time for a single flow.

In TCP SIAD we removed this limitation because Scalable Increase partly compensates a too
large decrease as it can be seen, e.g., in Figure 4.12a where Additional Decreases are performed
from time to time (negative spikes) which, however, are recovered quickly as the increase rate is
respectively larger afterwards. Figures 4.12a and 4.12b illustrate simulation results for different
link speeds but with the same buffer size of 0.5·BDP. For all scenarios, TCP SIAD operates with
the configured (or a higher) feedback rate and therefore scales. Note, if the buffer size (in pack-
ets) is smaller than the configured NumRT T value (in RTTs), TCP SIAD respectively operates



4.3 Adaptivity and Scalability based on Single-Flow Behavior 107

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

10 Mbit/s
5 Mbit/s
2 Mbit/s

 0

 25

 50

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP SAID with rates 2 to 10 M/bits.

 0

 500

 1000

 1500

 2000

 2500

cw
nd

 [p
kt

]

100 Mbit/s
50 Mbit/s
20 Mbit/s
10 Mbit/s

 0
 100
 200
 300
 400
 500

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP SAID with rates 10 to 100 M/bits.

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

1.5 BDP
1.0 BDP
0.5 BDP
0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) TCP SAID with NumRTT = 20.

 0

 100

 200

 300

 400

 500

 600

cw
nd

 [p
kt

]

1.5 BDP
1.0 BDP
0.5 BDP
0.3 BDP

 0
 50

 100
 150

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP SAID with NumRTT = 40.

Figure 4.12: Congestion window and queue length over time for a single TCP SIAD flow.

at the minimum increase rate of 1 packet per RTT instead of the desired rate and consequently
the feedback rate is also higher than configured. Figures 4.12c and 4.12d show simulation runs
with various buffer size configurations on a 10 Mbit/s link for NumRT T values of 20 and 40. It
can be seen that the feedback rate is controlled as desired based on the NumRT T configuration.
Further, in all cases there is never a standing queue as Adaptive Decrease correctly calculates
the decrease factor for all buffer configurations.

After assessing the different characteristics of the regarded schemes, we will now compare
statistical properties for all schemes in a larger set of scenarios with link speeds from 1 to
100 Mbit/s and buffer size configurations from 0.1 to 2.0·BDP. All figures below show two
configurations for TCP SIAD with NumRTT values of 20 and 40.

In Figures 4.13a, 4.13b, and 4.13c, the average link utilization, the average queue fill level
as well as the minimum queue fill level are shown for simulation runs with a bandwidth of
10 Mbit/s but different buffer sizes.

TCP SIAD is designed to always fill the queue (as every loss-based scheme). We made the
decision to design a loss-based scheme to be able to compete with loss-based schemes which
are predominant in the Internet. However, TCP SIAD is also designed to always fully empty the
queue on congestion. This goal was reached in all simulations as a minimum queue fill level of



108 Chapter 4. Evaluation

 0.8
 0.85
 0.9

 0.95
 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2
lin

k 
ut

ili
za

tio
n 

[fr
ac

tio
n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0.8
 0.85
 0.9

 0.95
 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2
lin

k 
ut

ili
za

tio
n 

[fr
ac

tio
n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(a) Average link utilization.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(b) Average queue fill level.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(c) Minimum queue fill level.

Figure 4.13: Single flow at 10 Mbit/s.

zero indicates in Figure 4.13c. Further, as TCP SIAD implements linear increase it targets an
average queue fill of 0.5 of the maximum configured buffer size. This can be observed in simu-
lations in Figure 4.13b. Unfortunately, varying between queue length of zero and the maximum
configured queue length also induces the maximum delay variation, as the queue fill level can
directly be translated into end-to-end queuing delay. As small queuing delays and low varia-
tions are needed for latency sensitive applications, small queues or at least low ECN marking or
dropping thresholds in case of AQM are desired with the use of TCP SIAD. While small queues
or low thresholds lead to link underutilization with most traditional schemes, TCP SIAD allows
network operators to configure small queues and still reach high network utilization as indicated
in Figure 4.13a. It can be seen that TCP SIAD always reached a high utilization. In one of the
simulation scenarios (0.7 BDP), TCP SIAD performs various Additional Decreases, similar as
shown previously, and therefore only reaches a slightly lower, but still high utilization. Note
that the use of AQM provides free queue space for small traffic burst without inducing burst
loss. Further, the use of ECN avoids congestion signaling losses. TCP SIAD would benefit
from the use of ECN as a configured, high feedback rate (to reach high responsiveness) can also
lead to an increased loss rate compared to other high-speed schemes as shown further below.
However, the smaller the queue, the smaller is also the per-RTT increase step of TCP SIAD
which again lowers the overshoot and therefore the loss rate.

As expected only Scalable TCP, H-TCP and TCP SIAD can utilize the link fully with very
small buffer sizes as it can be seen in Figure 4.13b. Of these H-TCP maintains the lowest
average queue fill level, as shown in Figure 4.13b, but it also introduces a standing queue as the
minimum queue length that larger than zero indicates in Figure 4.13c. Only TCP SIAD is able



4.3 Adaptivity and Scalability based on Single-Flow Behavior 109

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(a) Average loss rate.

 0

 5

 10

 15

 20

 25

 1  10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0

 5

 10

 15

 20

 25

 1  10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(b) Average loss event distance.

Figure 4.14: Single flow with queue size of 0.5·BDP

to always empty the queue completely in all scenarios. Even though H-TCP does not always
empty the queue fully, it increases the sending rate more than linearly and therefore stays for
a longer time at a lower queue fill level. Therefore, the average queue fill is most often lower
than for TCP SIAD. However, the drawback of this increase function is the large overshoot
when the queue is finally filled resulting in a larger loss rate as can be seen in Figure 4.14a.
Note, we also considered choosing a different increase function for TCP SIAD but with the
expectation of smaller queues in future networks the gain in average latency does not justify
the additional complexity as already discussed in Section 3.1 in the previous chapter. Further,
while TCP SIAD always maintains an average queue fill level of about 50%, the average queue
fill of H-TCP increases with the queue size as it induces a larger the standing queue. While
H-TCP is designed to only address scenarios with small buffer sizes, TCP SIAD can even avoid
a standing queue in case of large buffer configurations.

For all other schemes the average as well as the minimum queue fill level also increase with
the configured queue size as they also build up a standing queue. This introduces permanent
additional and unnecessary delay. Of course whenever there is a permanent standing queue,
the link is fully utilized. This is the case for all other schemes other than TCP SIAD when
the queue is larger than the BDP as the minimum queue fill level indicates in Figure 4.13c.
TCP SIAD is designed to rather slightly underutilize the link but drain the queue with every
decrease. Therefore, e.g., in the scenario with a maximum queue size of 0.7·BDP, TCP SIAD
only achieves a slightly lower utilization (but still 96.4%). In this scenario TCP SIAD performs
frequently Additional Decreases as the minimum delay is not measured correctly.

Appendix C shows the same diagrams for a link speed of 20 Mbit/s. It can be seen that similar
results can be achieved also with a higher link speed.

While one goal of TCP SIAD is high utilization even with small queues, another goal is to main-
tain a given feedback rate and therefore scale with any network bandwidth. In Figures 4.14a
and 4.14b we see the average loss rate and the average time between two loss events which cor-
responds to the feedback rate. In this setup the maximum queue size is configured to 0.5·BDP
while the bandwidth is varied.

Even though all high-speed proposals scale better than TCP Reno and TCP Illinois, only Scal-
able TCP and TCP SIAD maintain a feedback rate independent of the bandwidth. Scalable TCP



110 Chapter 4. Evaluation

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0

 25

 50

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

Figure 4.15: Single flow with changing RTTs.

provides a fixed and quite high loss rate at the cost of high queuing delay. In contrast TCP SIAD
can be configured to maintain a given congestion event distance which also influences the loss
rate as it is shown for the two example configurations where NumRT T equals 20 or 40. For small
BDPs the targeted feedback rate in Figure 4.14b is exceeded, as the maximum congestion win-
dow is very small (less than 40 or less than 20 packets) and TCP SIAD implements a minimum
increase rate of 1 packet per RTT.

Note that the error bar shown is the standard deviation of the loss event distance. The standard
deviation is especially high for TCP Cubic due to the bi-frequent behavior of the congestion
window as shown earlier.

Appendix C show the same diagrams for a buffer size of 1.0·BDP which allows a fairer com-
parison with TCP Reno but provides the same conclusion.

4.3.2 Assessment of the Vulnerability to Delay Estimation Errors

In this section we evaluate the ability of TCP SIAD to adapt to permanent delay changes, e.g.,
due to route changes, or to high frequency delay variations. Further, we assess the influence
of CBR cross traffic on the base delay estimation. Note, most hybrid schemes use the total
minimum RTT seen during a connection and do not update in any case. As TCP SIAD aims to
empty the queue in every congestion epoch, it fortunately is also able to measure (and update)
the base RTT in every epoch. Of course, there are situations where the base RTT cannot be
measured, e.g., if the time stamp resolution is too small or due too strong variation of the delay
samples. In these cases we have to rely on previous measurements.

Figure 4.15 shows one single TCP SIAD flow on a 10 Mbit/s link with a bottleneck buffer size
of 0.5 BDP. At the beginning of the simulation the RTT is 100 ms, after 30 s of simulation time
the RTT is changed to 40 ms, and at 60 s of simulation time the RTT is increased to 140 ms.
It can be seen that it takes a few overshoots before TCP SIAD correctly adapts to a smaller
RTT. This is because even though the smaller base RTT can be measured immediately after a
decrease, also the Linear Increment threshold incthresh and the trend calculation have to adapt
to a new maximum congestion window which is also smaller now. The adaptation to a larger
value is completed as soon as one decrease with the old value is performed. Of course, the



4.3 Adaptivity and Scalability based on Single-Flow Behavior 111

 0
 50

 100
 150
 200
 250
 300
 350

cw
nd

 [p
kt

]

 0
 25
 50
 75

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP NewReno.

 0
 50

 100
 150
 200
 250
 300
 350

cw
nd

 [p
kt

]

 0
 25
 50
 75

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP Cubic.

 0
 50

 100
 150
 200
 250
 300
 350

cw
nd

 [p
kt

]

 0
 25
 50
 75

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(c) H-TCP.

 0
 50

 100
 150
 200
 250
 300
 350

cw
nd

 [p
kt

]

 0
 25
 50
 75

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP SIAD with NumRTT = 20.

Figure 4.16: Congestion window and queue length over time with per-packet rates between
10 Mbit/s and 30 Mbit/s.

old decrease value provokes a too large decrease. But due to this too large decrease the link
gets underutilized for a short time and the minimum delay can be updated. Subsequently, Fast
Increase provides quick re-allocation of the link resources.

In the following, we will evaluate two extreme cases where we vary either the link serving rate
or the link transmission base delay on a per packet basis. In wireless networks, the rate and
delay can change quickly but usually there are still a couple of packets served with the same
rate. Note, while in wireless network today the lower layer already provides in-order delivery
(at the cost of slightly higher delays), in our case of varying per-packet delay, one packet can
overtake another. Therefore, these scenarios can be rarely found in real (wireless) network but
still provide extreme cases for evaluation.

Figure 4.16 shows the congestion window of one TCP NewReno, one TCP Cubic, on H-TCP,
or one TCP SIAD flow as well as the queue size over time. The link in this simulations has
a per-packet serving rate between 10 Mbit/s and 30 Mbit/s. This leads to delay variations but
in-order delivery. The base RTT is 100 ms. The buffer size is configured to 1.0·BDP based on
the minimum rate of 10 Mbit/s.



112 Chapter 4. Evaluation

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0

 25

 50

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP NewReno.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0

 25

 50

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP Cubic.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0

 25

 50

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(c) H-TCP.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0

 25

 50

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP SAID with NumRTT = 20.

Figure 4.17: Congestion window and queue length over time with per-packet RTT variations
between 100 ms and 103 ms.

It can be seen that the congestion window development of TCP NewReno and TCP Cubic
does not seem to get influenced by these small delay variations. However, as the buffer size is
configured based on the smallest serving rate, TCP NewReno cannot always keep the link full
but still reaches a link utilization of 97.8%. Both H-TCP and TCP SIAD are visibly influenced
by the delay variations as from time to time a too large decrease factor is calculated. Still both
schemes reach a high link utilization of 97.9% and 98.3%, respectively. TCP SIAD reaches a
slightly higher utilization due to the ability of Scalable Increase to calculate a higher increase
rate.

Figure 4.17 shows again the congestion window and queue length over time for TCP Reno,
TCP Cubic, H-TCP and TCP SIAD. The buffer size is 0.5·BDP based on a base RTT of 100 ms.
This time the link serving rate is fixed to 10 Mbit/s but the per-packet delay is varied between
100 ms and 103 ms as one example for potential realistic delay variations. Note that per-packet
delay variations lead to re-ordering that is wrongly interpreted by TCP as loss and therefore can
lead to unnecessary sending rate reductions. Of course, the higher the delay variation, the more
re-ordering happens.

With this buffer configuration TCP NewReno can anyway not fully utilize the link but is other-
wise not further influenced by the delay variation. In contrast TCP Cubic, that should be able to



4.3 Adaptivity and Scalability based on Single-Flow Behavior 113

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1  2  3  4  5

ut
ili

za
tio

n 
[fr

ac
tio

n]

maximum delay addon [ms]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (20)
TCP SIAD (40)

(a) With 0.5·BDP of buffering.

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 1  2  3  4  5

ut
ili

za
tio

n 
[fr

ac
tio

n]

maximum delay addon [ms]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (20)
TCP SIAD (40)

(b) With 1·BDP of buffering.

Figure 4.18: Link utilization with additional per-packet delay between 1 ms and up to 5 ms and
a base RTT of 100 ms.

fully utilize a link with 0.5·BDP of buffering, experiences additional congestion events due to
re-ordering. This is because TCP Cubic is increasing its sending rate faster with a higher rates
than TCP NewReno. In this scenario TCP Cubic reaches only a utilization of 98.0%. H-TCP
and TCP SIAD are even more influenced by the delay variation as both are hybrid schemes. H-
TCP can only reach a utilization of 90.7% and TCP SIAD of 83.2% in this scenario. The strong
oscillations that can be seen for TCP SIAD are due to Scalable Increase that is directly followed
by a Additional Decrease phase. This happens more likely when TCP SIAD’s estimations have
been wrong, in this case due to link delay variations.

Figure 4.18 shows the link utilization for different amplitudes of delay variations. While TCP
NewReno has a nearly constant high utilization in all scenarios, the utilization for TCP Cubic
decreases slightly with increasing delay variations. H-TCP and TCP SIAD, both, are strongly
affected by these variations. But note this is an extreme case that can rarely be found in real
networks. For TCP SIAD, the utilization decreases the more, the smaller the NumRT T value is
as a smaller value leads to a larger per-RTT increase rate.

In the following we demonstrate a case where TCP SIAD is not able to empty the buffer on
decrease because of non-adaptive cross traffic.

Figure 4.19a shows the congestion window and queue length of one TCP SIAD flow on a
10 Mbit/s link with 100 ms RTT and a buffer size of 0.5·BDP. Additionally to the TCP SIAD
flow, there is CBR traffic sending with a rate of 5 Mbit/s using equal sized packets of 1514 Bytes.
As explained earlier, Adaptive Decreases calculates its decrease factor based on its own share
of the bandwidth assuming flow synchronization. If there is CBR traffic on the same link,
this traffic of course does not decrease at all. Consequently TCP SIAD performs Additional
Decreases from time to time. Therefore, as the queue length over time shows, TCP SIAD is
often not able to fully empty the buffer.

In Figure 4.19b a 100 Mbit/s link with 50 Mbit/s CBR cross traffic is shown. In this case the
time stamp resolution of TSOpt is too small (1 ms in Linux) to detect increases in delay right
after a decrease. Therefore, the minimum delay will be wrongly updated in every congestion
epoch to a higher value. It can be seen that TCP SIAD detects three increases of the minimum
delay in a row and resets the minimum delay to the first value every fourth congestion events.



114 Chapter 4. Evaluation

 0
 20
 40
 60
 80

 100
 120
 140
 160

cw
nd

 [p
kt

]

 0
 15
 30
 45

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(a) On 10 Mbit/s link with 5 Mbit/s CBR traffic.

 0
 200
 400
 600
 800

 1000
 1200
 1400

cw
nd

 [p
kt

]

 0
 125
 250
 375

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(b) On 100 Mbit/s link with 50 Mbit/s CBR traffic.

Figure 4.19: One TCP SIAD flow with CBR cross traffic.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0

 25

 50

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(a) On 10 Mbit/s link with TSOpt.

 0

 50

 100

 150

 200

 250
cw

nd
 [p

kt
]

 0

 25

 50

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(b) On 10 Mbit/s link without TSOpt.

Figure 4.20: One TCP SIAD flow w/ and w/o TCP Timestamp Option (TSOpt).

Even though the minimum delay does not further increase by using this approach, it is never
measured correctly and therefore this situation causes a standing queue.

Finally, we demonstrate how TCP SIAD works if TSOpt is not supported by the receiver side.
In this case the Linux kernel samples RTT measurements and calculates a smoothed average as
described in Section 3.3.2. Figures 4.20a and 4.20b show one TCP SIAD on a 10 Mbit/s link
with an RTT of 100 ms and buffer size of 0.5·BDP with and without TSOpt enabled. It can be
seen that the flow without TSOpt support performs less Additional Decreases because of the
smoothed measurement.

4.3.3 Conclusion

We demonstrated in a steady state single flow scenario the ability of TCP SIAD to utilize the
bottleneck and to avoid a standing queue with arbitrary buffer sizes. This fulfills the requirement
on adaptivity as stated in Section 1.2. Further, we have shown that the configured feedback rate
can be reached under various network conditions and therefore TCP SIAD provides scalability



4.4 Capacity Sharing with Multiple Competing Flows 115

as required for high-speed networks. None of the schemes that we evaluated in comparison,
including H-TCP, were able to achieve high link utilization and avoid a standing queue for all
scenarios. In case of H-TCP, this is due to the limitation of the decrease factor range which
we do not have in TCP SIAD. Further, only Scalable TCP and TCP SIAD provide the same
congestion feedback rate for all scenarios independent of the link bandwidth. While Scalable
TCP induces a fixed feedback rate most often leading to high loss rates, the feedback rate of
TCP SIAD is configurable.

Additionally, still focusing on evaluations with only a single congestion controlled flow, we
assessed the vulnerability of TCP SIAD on delay estimation errors due to changes in the base
delay, delay variation, or the influence of CBR cross traffic. We demonstrated that TCP SIAD
can quickly adapt to a larger or smaller base delay while other delay-based or hybrid schemes
usually do not adapt at all but use the absolute minimum seen during the connection as the base
delay. While both hybrid schemes in evaluation, TCP SIAD and H-TCP, are more sensible to
delay variations than others, they can still achieve reasonable link utilization in extreme sce-
narios. Of course, the higher the aggressiveness of TCP SIAD is configured the better is the
link utilization. In the presence of CBR cross traffic, Adaptive Decrease is not able anymore to
fully empty the queue. However, if the base delay can be estimated correctly, TCP SIAD per-
forms Additional Decreases. Unfortunately, if the link bandwidth is very high, the current time
resolution of TSOpt is not sufficient to estimate the delay correctly. For this case, TCP SIAD
implements a mechanism to detect monotonous increases in base delay and subsequently resets
the minimum delay to a previous value (as previously described in Section 3.2.5). Originally
TSOpt was not designed to be used for congestion control but only for RTT estimation which
usually is in the range of 10 to 100 ms. To address new use cases, there is standardization activ-
ity in the IETF [129]. If the TSOpt is not available and therefore only smoothed RTT samples,
TCP SIAD is still able to operate as desired but might occasionally not be able to fully empty
the queue.

Since we have shown that our design goals have been achieved in these basics scenarios, we in
the following evaluate the convergence and capacity sharing properties of TCP SIAD as well as
its robustness. Therefore, we evaluate TCP SIAD in more dynamic scenarios with two or more
flows using the same or different congestion control schemes in the following sections.

4.4 Capacity Sharing with Multiple Competing Flows

So far, we have analyzed the characteristics of a single TCP SIAD flow and shown that only
TCP SIAD fulfills the stated requirements on adaptivity and scalability as well as the resulting
desired design goals. Therefore, in this section we focus on capacity sharing between multiple
flows. We first investigate the intra-protocol capacity sharing analyzing a scenario with two
competing flows using the same congestion control scheme and the same or different NumRT T

values, including the case where both flows have different RTTs. Further, we evaluate a scenario
where one flow has multiple bottlenecks and finally investigate inter-protocol scenarios.



116 Chapter 4. Evaluation

 0

 50

 100

 150

 200

 250

 300

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) Two TCP NewReno flows without
delayed ACKs.

 0

 50

 100

 150

 200

 250

 300

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) Two TCP NewReno flows with
delayed ACKs.

 0

 50

 100

 150

 200

 250

 300

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) Two TCP SIAD (NumRTT = 20) without
delayed ACKs.

 0

 50

 100

 150

 200

 250

 300

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) Two TCP SIAD (NumRTT = 20) with
delayed ACKs.

Figure 4.21: Two flows on 20 Mbit/s link with and without the use of delayed ACKs.

4.4.1 Statistical Evaluation with two Competing Flows

To evaluate scenarios with multiple flows, we perform the same statistical evaluations as in
the previous section but based on scenarios with two flows. In this section we use a dumbbell
scenario, as described above, with two senders and two receivers. Each of the senders maintains
one data-unlimited connection to one of receivers on a 20 Mbit/s bottleneck link with 0.5·BDP
buffering. Both flows have a base RTT of 100 ms.

Before we discuss the statistical evaluation, we have to demonstrate de-synchronization that
can be observed due to delayed ACKs. Figures 4.21b and 4.21a show two TCP NewReno
flows with and without delayed ACKs. It can be seen that both flows are fully synchronized
without the use of delayed ACKs. If delayed ACKs are used, however, the TCP NewReno
implementation in Linux has only an increase rate of 1/2 packet per RTT. Therefore, both flows
together which increase with a rate of about 1 packet per RTT and consequently there is also
only one loss per RTT. This means usually only one of the flows gets a congestion notification
per congestion event and the flows are not synchronized anymore. While for other schemes
with higher increases rates like TCP Cubic the congestion window dynamics are less affected,
the influence of delayed ACK is clearly visible for TCP SIAD in Figures 4.21d and 4.21c.



4.4 Capacity Sharing with Multiple Competing Flows 117

 0

 50

 100

 150

 200

 250

 300

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) On 20 Mbit/s link with TSOpt.

 0

 50

 100

 150

 200

 250

 300

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) On 20 Mbit/s link without TSOpt.

Figure 4.22: Two TCP SIAD flows with and without TCP Timestamp Option (TSOpt).

TCP SIAD compensates delayed ACKs based on an estimation of the number of acknowledged
packets as described in Section 3.3.3. Subsequently, the traffic is more bursty as always multiple
packets are sent out at once. This burstiness leads to the observable higher oscillations in the
congestion window development of TCP SIAD with the use of delayed ACKs. While this
figure only shows 100 ms of the simulation, we would like to note, that there are over the whole
simulation these periods where both flows do not share the capacity equally but there is no
periodicity. The length of this period is random and, e.g., influenced by the packet scheduling.

Further, similar as in the previous section, we briefly assess the capacity sharing of TCP SIAD
if TSOpt is not available. In Figure 4.22b it can be seen that two competing flows without use of
TSOpt on average share the capacity equally. Compared to Figure 4.22a where TSOpt is used
the dynamics look very similar. However, there are a few more cases where the queue was not
emptied completely due to the smoothed delay estimation.

We perform all further investigation with the use of TSOpt. Further, we also use delayed ACKs
if not stated differently. In Section 4.4.3 we deactivate delayed ACK to demonstrate equal
capacity sharing between TCP Reno and TCP SIAD. While TCP SIAD implements a minimum
increase rate of 1 packet per RTT, The Linux implementation of TCP NewReno only increases
by 1/2 packet per RTT if delayed ACKs are used. In this case TCP SIAD would always get a
larger share than TCP NewReno.

In the following we evaluate TCP SIAD in comparison to other high-speed schemes in the two
flow scenario displaying the same statistics as in the previous section. Due to de-synchronization
all schemes can achieve a higher link utilization than in the one flow scenario as shown in Fig-
ure 4.23. As shown for the one flow scenario, TCP SIAD still maintains high link utilization
independent of the configured buffer size.

In addition, we also show the oscillation size normalized by the buffer size for this two flow
scenario, as oscillations are expected to be irregular and therefore potentially high. In a fully
synchronized case for TCP SIAD, we would expect that two competing flows have an average
oscillation size of 0.5 of the buffer size. As it can be seen in Figure 4.23b the average oscillation
size is higher and also the standard deviation is large. This is partly due to de-synchronization



118 Chapter 4. Evaluation

 0.8
 0.85
 0.9

 0.95
 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

lin
k 

ut
ili

za
tio

n 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0.8
 0.85
 0.9

 0.95
 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

lin
k 

ut
ili

za
tio

n 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(a) Average link utilization.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

os
ci

lla
tio

n 
si

ze
 [s

*B
D

P
]

scaling factor s [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

os
ci

lla
tio

n 
si

ze
 [s

*B
D

P
]

scaling factor s [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(b) Average oscillation size.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(c) Average queue fill level.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(d) Minimum queue fill level.

Figure 4.23: Two flows on 20 Mbit/s link.

but is also further amplified due to Fast Increase and Additional Decrease. In case of unsyn-
chronized decreases, Additional Decrease aims to empty the buffer while Fast Increase might
subsequently cause an overshoot. For all other schemes the normalized oscillation rate is de-
creasing with an increase in the provided buffer size as they do not adapt their decrease behavior
to the buffer sizes but we normalized the oscillation rate by the buffer size. For small buffer sizes
the standard deviation for the oscillation size of TCP NewReno (and High Speed TCP) is also
very large. This is again due to de-synchronization.

While TCP SIAD still maintains an average queue fill fraction of about 0.5, all other schemes,
expect H-TCP, experience in this scenario higher queuing delays due to a larger standing queue
in case of unsynchronized window reductions. However, this is not well reflected by the mini-
mum size that is still similar to the results of the one flow scenarios as by chance synchronized
decreases happen. Still with larger buffer sizes all schemes, except TCP SIAD, cause a standing
queue.

Table 4.1: Mean loss event distance and standard deviation in seconds with buffer size of
0.5·BDP and NumRT T = 20.

Mbit/s mean total mean flow 1 mean flow 2
10 1.7855 (±0.8446) 1.9235 (±0.8717) 1.9532 (±0.871)
20 2.2191 (±0.8011) 2.3867 (±0.7551) 2.3438 (±0.7646)
50 2.4823 (±0.6931) 2.6175 (±0.6293) 2.5615 (±0.6789)

100 2.84 (±0.3067) 2.8634 (±0.3083) 2.8621 (±0.3112)



4.4 Capacity Sharing with Multiple Competing Flows 119

 0.001

 0.01

 0.1

 1

 10

 100

 10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0.001

 0.01

 0.1

 1

 10

 100

 10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(a) Average loss rate.

 0

 5

 10

 15

 20

 25

 10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0

 5

 10

 15

 20

 25

 10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(b) Average loss event distance.

Figure 4.24: Two flows with 0.5·BDP of buffering.

Figure 4.24b shows that even with two competing flows TCP SIAD implements, as desired,
a constant feedback rate according to its configuration. Figure 4.24b illustrates therefore the
overall loss distance of both flows together between two congestion events as measured at the
bottleneck queue.

If the loss event distance is measured for each flow separately, as shown in Table 4.1, both
flows receive feedback with about the same frequency. The total loss distance is always slightly
smaller than the individually seen distances as the common congestion event is usually longer
than the one seen by a single flow. Note that in case of a NumRTT value of 40 with a link speed
of 20 Mbit/s and below the loss event distance is smaller than configured due to the minimum
increase rate of 1 packet per RTT. In Figure 4.24a the total loss rate is displayed. TCP SIAD
induces the highest loss rate of all evaluated schemes. This is expected because most schemes
also have a much lower feedback rate except Scalable TCP and H-TCP. Scalable TCP, however,
maintains the queue at a very high fill level, as clearly visible in Figure 4.23c and 4.23d, which
consequently leads to a smaller overshoot with every congestion event. H-TCP has a similar
loss rate than TCP SIAD even though the feedback rate is slightly decreasing with higher link
speeds.

The results show that the conclusions drawn from the basic one flow scenario in the previous
section still hold and therefore only TCP SIAD fulfills all stated design goals, also in multi-flow
scenarios.

4.4.2 Intra-Protocol Evaluation incl. different RTT Flows or Multiple Bottlenecks

In this section we focus on how different sharing ratios can be achieved based on TCP SIAD’s
configuration parameter NumRT T . Further, we evaluate typical scenarios where congestion con-
trol schemes often cannot achieve equal rate sharing. Therefore, we investigate RTT-unfairness
due to different RTTs of the competing flows and a scenario where one flow passes multiple bot-
tlenecks. We perform multiple simulation runs with different NumRTT configurations to show
that NumRT T can be adjusted to help this problem.

In Figure 4.25a and 4.25b we show, as an example, the congestion window and queue length
over time for two TCP SIAD flows with the same NumRTT configuration of 20 and, respectively,



120 Chapter 4. Evaluation

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

(a) Both with NumRT T of 20.

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

(b) Both with NumRT T of 30.

 0

 50

 100

 150

 200

 250

 300

 350

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

(c) With NumRTT of 20 and 30.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

(d) With NumRTT of 20 and 40.

Figure 4.25: Two TCP SIAD flows on 20 Mbit/s link and with 0.5·BDP of buffering.

30 on a 20 Mbit/s link with an buffer size of 0.5·BDP. In both figures the two flows share the
link over the simulation time of 580 s (excluding 20 s start-up phase) in average about equally
even though there are periods where one or the other get a larger share for several seconds (up
to minutes). Note, this also happens with traditional congestion control, especially if the con-
gestion epochs are very long, e.g., in high-speed networks. In case of a NumRT T configuration
of 20 the two flows achieve an average rate of 10.26 Mbit/s and 9.69 Mbit/s. The link utilization
is 99.79 % and the average queue fill is 0.5 of the maximum queue length. With a NumRT T

configuration of 30 the flows reach an average rate of 9.61 Mbit/s and 10.26 Mbit/s and a link
utilization of 99.85 % as well as an average queue fill of 0.51 of the maximum queue length.

Figures 4.25c and 4.25d further show two cases with different NumRT T values for both flows.
As desired the flows do not share the capacity equally anymore. In case of values of 20 and 30
one flow gets an average rate of 13.07 Mbit/s while the other one gets 6.86 Mbit/s with a link
utilization of 99.66% and an average queue fill of 0.45; With 20 and 40 they reach an average
rate of 14.24 Mbit/s and 5.7 Mbit/s with a link utilization of 99.7% and an average queue fill of
0.44.

Tables 4.2 and 4.3 display the ratio of the average rate of the first to the average rate of the
second flow for different NumRT T configurations. All values for the scenario depicted above
with a link speed of 20 Mbit/s and a buffer size of 0.5·BDP can be found in Table 4.2. Table 4.3
provides the same evaluation with a higher link bandwidth of 100 Mbit/s and smaller queue size
of 0.1·BDP buffer size. In both cases on the diagonal there are values about 1 (equal sharing)
while in the left lower part all values are below 1 and the right upper part all are above. This



4.4 Capacity Sharing with Multiple Competing Flows 121

Table 4.2: Sharing ratio of two TCP SIAD flows on 20 Mbit/s link with 0.5·BDP of buffering.

flow 1
flow 2

10 20 30 40 50

10 0.95 3.83 4.72 6.25 6.49
20 0.29 1.06 1.91 2.5 2.54
30 0.17 0.47 0.93 1.48 1.49
40 0.19 0.38 0.68 0.98 1.09
50 0.14 0.4 0.67 0.97 1.05

Table 4.3: Sharing ratio of two TCP SIAD flows on 100 Mbit/s link with 0.1·BDP of buffering.

flow 1
flow 2

10 20 30 40 50

10 0.93 2.95 6.14 4.35 4.57
20 0.27 1.05 1.71 1.73 1.81
30 0.3 0.62 1.11 1.25 1.38
40 0.19 0.61 0.84 1.05 1.09
50 0.20 0.68 0.66 0.96 1.06

means, as expected, always the flow with the smaller NumRT T gets the larger share. Note that,
e.g., when competing with a flow with a NumRT T of 10, an increase in aggressiveness from 50
to 40 might not lead to a higher share, as it can be seen in the tables. This is because in both
cases the flow with larger NumRT T value already operates mostly with the minimum increase
rate of 1 packet per RTT; while the configuration would actually require a lower increase rate.
Moreover, these values also show that within the simulation time of 600 s there was not always
fully equal sharing achieved (values are between 0.93 and 1.11). This is due to the high window
dynamics of TCP SIAD especially in cases with large buffers and subsequently long periods
where the link is not shared equally. Still, as expected, in both tables the values are getting
smaller to lower left corner and larger to the upper right corner. This demonstrates well that
TCP SIAD’s configuration parameter NumRT T can be used to influence the capacity sharing
between competing flows. Now, a higher-layer control loop could adjust NumRTT during the
transmission time to better cope with application requirements like a minimum sending rate.

In the following, we evaluate RTT-(un)fairness. We investigate two flows competing on a
20 Mbit/s link with one of the flows having an RTT of 100 ms while the other one has a twice
as large RTT of 200 ms. The buffer is configured to one BDP based on a mean RTT of 150 ms.
RTT-unfairness is a problem of many existing schemes. This means equal rate sharing cannot
be achieved anymore if two competing flows operate based on different base RTTs. This can
also be seen in Table 4.4 where we show the mean sending rate (as well as the confidence in-
terval) for the two flows for all different schemes in test. Moreover, we calculated a fairness
value based on Jain’s Fairness Index, as explained in Section 2.5.3, where 1 stands for maxi-
mum fairness. Only TCP Cubic and H-TCP can achieve a high fairness value. Note, especially
TCP Cubic was explicitly designed to address RTT-unfairness. TCP SIAD can only achieve a
fairness value of 0.71 when both flows have the same NumRT T configuration of 20. However,
if we configure a value of 10 for the flow with larger RTT of 200 ms and a value of 40 for the
other one with 100 ms RTT, TCP SIAD achieves a very high fairness value. As the right con-



122 Chapter 4. Evaluation

Table 4.4: Two flows with different RTTs (100 ms and 200 ms) on 20 Mbit/s link.

mean rate 1 mean rate 2 fairness
TCP NewReno 15.13 (±0.73) 4.87 (±0.73) 0.7917

TCP Cubic 12.73 (±0.48) 7.27 (±0.48) 0.9307
H-TCP 11.74 (±0.13) 8.26 (±0.13) 0.9704

High Speed TCP 16.92 (±0.18) 3.08 (±0.18) 0.6765
Scalable TCP 18.52 (±0.10) 1.48 (±0.10) 0.5894

TCP Illinois 13.52 (±1.18) 6.49 (±1.18) 0.8900
TCP SIAD (20/20) 15.63 (±0.49) 4.27 (±0.48) 0.7542
TCP SIAD (20/10) 8.84 (±.37) 10.95 (±1.33) 0.9888
TCP SIAD (40/10) 6.97 (±1.23) 12.74 (±1.21) 0.9212
TCP SIAD (40/20) 8.08 (±1.52) 11.72 (±1.46) 0.9673

TCP SIAD (NumMS=4000) 10.93 (±2.2) 8.95 (±2.17) 0.9902
TCP SIAD (NumMS=5000) 11.66 (±1.61) 8.11 (±1.53) 0.9687

figuration cannot be found by both flows in a distributed manner, it is actually more sensible to
set the configuration not based on RTTs but based on absolute time if equal sharing is desired
in this scenario. If we configure the desired congestion epoch time to 4000 ms for both flows,
TCP SIAD achieves a fairness of 0.9902.

Another scenario where traditional congestion control schemes often do not achieve equal ca-
pacity sharing is a scenario where one flows crosses multiple bottlenecks while the competing
flows on each bottleneck only has to cope with one bottleneck. We evaluate this scenario based
on a parking lot topology as described in Section 2.5.2.2 and as also further detailed for our
evaluation setup description above. Each bottleneck link as well as the access link at sender and
receiver side for the cross traffic and the return link of each flow have an delay of 10 ms such
that each flow experiences the same base RTT of 60 ms. The link bandwidth of each bottle-
neck link is 10 Mbit/s; therefore in the best case each flow should get a rate of about 5 Mbit/s.
The buffer size is configured to 1·BDP. In such a case the flow crossing multiple bottlenecks
receives more often congestion notifications (from the different bottlenecks) and consequently
with traditional congestion control schemes it reduces its sending rate more often than the other
flows. This effect is demonstrated for TCP NewReno, TCP Cubic and H-TCP in Table 4.5
where the average sending rate of flow 0 is much lower than for the other three crossing flows.
In this case, the fairness is also calculated using Jain’s Fairness Index but based on two groups
of flows. One group is the flow that is passing multiple bottlenecks while the others that cross
only one bottleneck represent the second group. Similar as above by adjusting the NumRT T

configuration of TCP SIAD we can again achieve an about equal sharing and therefore a high
fairness value.

Finally as an example in Figure 4.26 we show ten TCP SIAD flows competing on a 100 Mbit/s
link and a maximum buffer size of 0.1·BDP. As an example, the red line shows the congestion
window development of the flow that puts the first packet on the link. While this flow can grab
slightly more capacity at the beginning, it still has (only) an average rate of 10.67 Mbit/s over
the total simulation time of 580s (without start-up phase). Therefore, competing TCP SIAD
flows are able to share the capacity about equally as shown in detail for this ten flow scenario in
appendix C in Table C.2.



4.4 Capacity Sharing with Multiple Competing Flows 123

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  20  40  60  80  100

cw
nd

 [p
kt

]

time [s]

Figure 4.26: 10 TCP SIAD flows on 100 Mbit/s link and with 0.1·BDP of buffering.

In this section we have shown that NumRTT can be used to influence the capacity sharing be-
tween TCP SIAD flows. In the following we now analyze capacity sharing of TCP SIAD with
non-SIAD cross traffic.

4.4.3 Inter-protocol Evaluation with Competing Non-SIAD flows

To evaluate inter-protocol capacity sharing we investigate scenarios where one TCP SIAD flow
competes with TCP NewReno and TCP Cubic cross traffic as these congestion control schemes
are the most common representatives that can be found in the current Internet [149]. While TCP
SIAD is not designed to provide fair/equal capacity sharing with traditional TCP (NewReno)
cross traffic, we at least would like to demonstrate that, when competing with TCP SIAD, the
traditional schemes still gets a reasonable share. Further, we also show that TCP SIAD can be
configured to share the bottleneck link equally with other schemes (if, e.g., some network and
traffic conditions are known). Therefore, we choose the NumRT T setting such that it has the
about same feedback rate as a cross traffic flow induces in the scenario under evaluation when
it would be allocating half of the link capacity. E.g., in case of an increase rate of 1 packet

Table 4.5: Flow 0 experiencing multiple bottlenecks with each having a link bandwidth of
10 Mbit/s.

mean rate 0 mean rate 1 mean rate 2 mean rate 3 fairness
NewReno 3.14 (±0.57) 6.85 (±0.57) 6.85 (±0.57) 6.86 (±0.57) 0.8788

Cubic 2.46 (±1.03) 7.53 (±1.03) 7.53 (±1.03) 7.54 (±1.03) 0.7956
H-TCP 3.04 (±0.22) 6.91 (±0.23) 6.94 (±0.22) 6.95 (±0.22) 0.8682

SIAD (20) 1.67 (±0.17) 8.07 (±0.23) 8.13 (±0.19) 8.17 (±0.2) 0.697
SIAD (40) 1.83 (±0.19) 7.82 (±0.24) 7.93 (±0.23) 7.94 (±0.21) 0.7204

SIAD (10/40) 4.13 (±0.35) 5.15 (±0.42) 5.43 (±0.39) 5.55 (±0.35) 0.9831
SIAD (5/40) 4.74 (±0.25) 4.23 (±0.31) 4.68 (±0.27) 4.93 (±0.26) 0.9998



124 Chapter 4. Evaluation

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (40)
TCP NewReno

(a) TCP SIAD flow with NumRTT of 40.

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (20)
TCP NewReno

(b) TCP SIAD flow with NumRTT of 20.

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (40)
TCP NewReno

(c) TCP SIAD flow with NumRTT of 40
and without delayed ACKs.

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (20)
TCP NewReno

(d) TCP SIAD flow with NumRTT of 20
and without delayed ACKs.

Figure 4.27: One TCP SIAD flow competing with one TCP NewReno flow on 10 Mbit/s link
with 1·BDP of buffering.

per RTT and halving on congestion as TCP NewReno would do, a congestion epoch length of
about 41 packets would be achieved when allocating 5 Mit/s with 1·BDP of buffer before the
bottleneck link and an RTT of 100 ms. Therefore, we expect about equal sharing for a TCP
SIAD NumRT T configuration of about 40.

In Figure 4.27 one TCP SIAD and one TCP NewReno flow share the same bottleneck with
a link bandwidth of 10 Mbit/s and a maximum queue size of 1·BDP. If delayed ACKs are
used, TCP SIAD gets always a larger share than TCP NewReno. This is because TCP SIAD
implements a minimum increase rate of 1 packet per RTT while the Linux implementation of
TCP NewReno effectively only has an increase rate of 1/2 a packet per RTT. Still, the share that
TCP SIAD grabs can be influenced by the NumRT T configuration. If TCP SIAD is configured
with a NumRT T value of 40, it achieves a share of 6.53 Mbit/s compared to 3.47 Mbit/s for the
TCP NewReno flow which is about double the rate as expected. With a NumRT T of 20 the TCP
SIAD flow has an higher average rate of 7.47 Mbit/s and consequently the TCP NewReno flow
only of 2.46 Mbit/s. Note, using a larger value than 40 would not help in this situation as TCP
SIAD with NumRT T = 40 already operates at the minimum increase rate of 1 packet per RTT.

If we, instead, disable the delayed acknowledgements mechanism the Linux NewReno flow
reaches an increase rate of 1 packet per RTT. In Figure 4.27c TCP SIAD is again configured
with NumRT T set to 40. Now it can be seen that both flows share the link about equally; more
precisely the NewReno flow has a share of 5.06 Mbit/s and TCP SIAD of 4.93 Mbit/s. In Fig-



4.4 Capacity Sharing with Multiple Competing Flows 125

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (10)
TCP Cubic

(a) TCP SIAD flow with NumRTT of 10.

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (20)
TCP Cubic

(b) TCP SIAD flow with NumRTT of 20.

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (30)
TCP Cubic

(c) TCP SIAD flow with NumRTT of 30.

 0

 100

 200

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

TCP SIAD (40)
TCP Cubic

(d) TCP SIAD flow with NumRTT of 40.

Figure 4.28: One TCP SIAD flow competing with one TCP Cubic flow on 10 Mbit/s link with
1·BDP of buffering.

ure 4.27d NumRT T is set to 20. Here TCP SIAD gets again a larger share of 7.35 Mbit/s while
the TCP NewReno flow has an average rate of 2.63 Mbit/s.

In Figure 4.28d the scenario is the same as before where roughly equal sharing was reached
when competing with TCP NewReno; but this time TCP Cubic is used instead. We can see
that TCP Cubic is more aggressive and therefore gets the larger share. While TCP SIAD with a
NumRTT value of 40 has an average rate of 3.77 Mbit/s only, the TCP Cubic flow has a through-
put of 6.23 Mbit/s on average. If we set the NumRTT to 30 in Figure 4.28c, we can again achieve
about equal sharing with 4.98 Mbit/s for the TCP SIAD flow compared to 5.02 Mbit/s for the
TCP Cubic flow. Or if we choose an even smaller value of 10, TCP SIAD achieves the larger
share with 6.44 Mbit/s compare to 3.43 Mbit/s for the TCP Cubic flow. Further, results on ca-
pacity sharing with TCP NewReno and TCP Cubic are shown in the appendix in Table C.5, C.6,
and C.7.

4.4.4 Conclusion

This section shows that TCP SIAD can still fulfill the desired design goals when multiple flows
are competing for the same bottleneck even though TCP SIAD induces higher dynamics mainly
due to Fast Increase and Additional Decrease. Further, we have demonstrated that the NumRT T

configuration parameter of TCP SIAD can be used to impact the capacity share between com-
peting flows using the same or a different congestion control schemes. The configuration pa-



126 Chapter 4. Evaluation

rameter NumRT T either directly defines the feedback rate (when alone on the bottleneck link) or
the share of the capacity between the competing flows. In case cross traffic imposes additional
congestion with a higher frequency, the configured rate cannot be reached anymore. However,
TCP SIAD is able to achieve a stable capacity share between competing flows (on the cost of
higher congestion).

As discussed in Section 3.4.3, NumRT T could therefore be used by a higher-layer control loop
to better enforce application requirements while we anticipate ingress policing, e.g., based on
congestion, to implement (per-user) fairness in the future Internet.

In the following section we evaluate more dynamic scenarios with either rate changes or start-
ing and stopping of cross traffic. This scenario is used to assess our stated requirement on
convergence.

4.5 Convergence and Responsiveness to Starting Traffic

Having assessed efficiency regarding scalability and adaptivity as well as the capacity shar-
ing capabilities of TCP SIAD, we now evaluate convergence properties in comparison to TCP
NewReno, TCP Cubic, and H-TCP. We expect similar results for H-TCP and TCP SIAD, as
both schemes implement (to some extend) the same decrease behavior and some kind of Fast
Increase behavior. The increase behavior is most important when capacity resources become
newly available that subsequently need to be allocated by the running flow(s), e.g., due to stop-
ping cross traffic. In contrast, the decrease behavior is important when new starting cross traffic
attempts to grab its share of the capacity. In this case, the convergence time depends strongly
on how fast the running flow can release capacity to the new flow. We evaluate these transient
effects based on three scenarios with either changing rate conditions, CBR cross traffic or one
new starting flow that uses the same congestion control mechanism as the existing flow that is
already fully utilizing the link resources at that point of time.

4.5.1 Transient Behavior due to Rate Changes or CBR Cross Traffic

Our initial test simply changes the link rate while one flow is active. This can, e.g., happen due
to route changes. Figures 4.29a and 4.29b show a scenario where the link has at the beginning
a bandwidth of 10 Mbit/s, while it is changed to 3 Mbit/s after 30 s and back to 10 Mbit/s at
a simulation time of 60 s. The buffer is sized to 0.5·BDP based on the initial bandwidth of
10 Mbit/s. Two cases are shown for TCP SIAD with a NumRT T value of 20 and 40. In both
cases TCP SIAD can quickly adapt to a lower rate. Due to Additional Decrease it is able to
fully empty the queue and consequently immediately switch to a larger decrease factor. The
convergence time in the case where new capacity is available depends on the point of time in
the congestion epoch at which the rate change happens as well as on the NumRT T value. In
fact, as it can be seen by the length of the time period that the queue is empty after the rate
adjustment in these simulation runs that the TCP SIAD configuration with a NumRTT value of
40 converges faster. This is because rate adjustment happens right at the end of a congestion
epoch where the congestion window is already maximized. Further, it can be seen that as
soon as Fast Increase is entered, TCP SIAD quickly allocates the new capacity. Therefore, we



4.5 Convergence and Responsiveness to Starting Traffic 127

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0
 10
 20
 30
 40

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) With NumRTT = 20 and rate changes
from 10 Mbit/s to 3 Mbit/s and back.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0
 10
 20
 30
 40

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) With NumRT T = 40 and rate changes
from 10 Mbit/s to 3 Mbit/s and back.

 0

 500

 1000

 1500

 2000

 2500

cw
nd

 [p
kt

]

 0
 100
 200
 300
 400

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) With NumRTT = 20 and rate changes
from 100 Mbit/s to 25 Mbit/s and back.

Figure 4.29: One TCP SIAD flow with different NumRT T configurations and rate changes.

have shown that TCP SIAD can fulfill our design goals on fast bandwidth allocation in case of
changing traffic conditions.

Similar to the previous scenario we also investigate a 100 Mbit/s link and 0.5·BDP buffer size
with a rate change to 25 Mbit/s and back. In this case TCP SIAD cannot immediately adapt
the decrease factor correctly because of the too low time stamp resolution. This means it can
of course still utilize the link but not empty the queue completely as Additional Decreases are
performed right at the beginning. Often a short overshoot due to Fast Increase can still trigger
Additional Decrease later on. At 60 s, even though the rate has be increased by 75 Mbit, TCP
SIAD can re-allocate the capacity quickly within a few seconds.

Inspired by the TCP Evaluation Suite [13, 63], we further have a look at a scenario where CBR
cross traffic stops at a certain point in time and later starts sending again. While it is proposed
to investigate a step decrease from 75 Mbit/s to 0 Mbit/s and the respective increase step back to
75 Mbit/s on a 100 Mbit/s link, we first examine a scenario with a lower bandwidth, similar to
the scenario above, to be able to compare to TCP NewReno. Scalability in the sense of grabbing
new available capacity in Congestion Avoidance is a well-known problem of TCP NewReno as
depicted in the introduction in Section 1.1.1, therefore it would take TCP NewReno a very long
time to converge on the 100 Mbit/s link. In contrast high-speed schemes as TCP Cubic and also
H-TCP are developed to grab newly available capacity fast and therefore work better on, e.g., a
100 Mbit/s bottleneck link, as shown afterwards.



128 Chapter 4. Evaluation

0
20
40
60
80

100
120
140
160
180
200

c
w

n
d

 [
p

k
t]

0
25
50
75

0 10 20 30 40 50 60 70 80 90 100

q
u

e
u

e
 [

p
k
t]

time [s]

(a) TCP NewReno.

0
20
40
60
80

100
120
140
160
180
200

c
w

n
d
 [
p
k
t]
 

0
25
50
75

0 10 20 30 40 50 60 70 80 90 100

q
u
e
u
e
 [
p
k
t]
 

time  [s] 

(b) TCP Cubic.

0
20
40
60
80

100
120
140
160
180
200

c
w

n
d
 [
p
k
t]

0
25
50
75

0 10 20 30 40 50 60 70 80 90 100

q
u
e
u
e
 [
p
k
t]

time [s]

(c) H-TCP.

0

50

100

150

200

250

c
w

n
d
 [
p
k
t]

0
25
50
75

0 10 20 30 40 50 60 70 80 90 100

q
u
e
u
e
 [
p
k
t]

time [s]

(d) TCP SIAD with NumRT T = 20.

Figure 4.30: One Flow on 10 Mbit/s link with 7 Mbit/s CBR traffic till 30 s and from at 60 s on.

Figure 4.30 shows the congestion window of the congestion-controlled flow and bottleneck
queue length on a 10 Mbit/s link with a buffer size of 1·BDP at an RTT of 100 ms. From the
beginning of the simulation until 30 s of the simulation time a second flow sends CBR traffic
with a rate of 7 Mbit/s and restarts at 60 s. These stop and start times just provide one sample
measurement point for this scenario as the actual convergence time also depends, sometimes
strongly, on the point of time in the congestion epoch at which the CBR traffic stops. It is not
trivial to examine the convergence time objectively as various samples (equally) distributed over
one congestion epoch would need to be taken. Unfortunately the length of a congestion epoch
is very different for each scheme and sometimes also depend on the current network situation.
For a first assessment, we consider the scenario described above and, for a start, discuss general
convergence characteristics of the schemes in test.

Both traditional schemes, TCP Cubic and TCP NewReno, cannot utilize the link after stopping
of the CBR traffic for several seconds. This can be clearly seen in Figures 4.30a and 4.30b at 30
seconds simulation time, the queue length is zero for a quite long time (several seconds). TCP
NewReno needs 6.2 s to reach a rate larger than 9.5 Mbit/s and TCP Cubic 6.6 s. In contrast, H-
TCP and TCP SAID with a NumRT T value of 20 need only 1.6 s and, respectively, 2.2 s. Note,
this measurement has only a resolution of 200 ms as this is our measurement interval for the
average rate. While the slow increase rate of TCP NewReno is a known problem, TCP Cubic
is designed to scale better but unfortunately spends a long time at the plateau around the target
congestion window value. However, even though TCP NewReno and TCP Cubic have about
the same convergence time in this scenario, convergence is much worse for TCP NewReno with
higher bandwidth links, as explained below.



4.5 Convergence and Responsiveness to Starting Traffic 129

0

200

400

600

800

1000

1200

1400

c
w

n
d
 [
p
k
t]

0
100
200
300
400

0 10 20 30 40 50 60 70 80 90 100

q
u
e
u
e
 [
p
k
t]

time [s]

(a) TCP Cubic.

0

200

400

600

800

1000

1200

1400

c
w

n
d
 [
p
k
t]

0
100
200
300
400

0 10 20 30 40 50 60 70 80 90 100

q
u
e
u
e
 [
p
k
t]

time [s]

(b) H-TCP.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

c
w

n
d
 [
p
k
t]

0
100
200
300
400

0 10 20 30 40 50 60 70 80 90 100

q
u
e
u
e
 [
p
k
t]

time [s]

(c) TCP SIAD flow with NumRT T of 20.

Figure 4.31: One flow on 100 Mbit/s link with 75 Mbit/s CBR traffic till 30 s and from 60 s on.

In Figure 4.31 a 100 Mbit/s link and 0.5·BDP of buffer space are used. In this scenario TCP
NewReno can not fully utilize the link anyway and can therefore only reach a maximum rate of
43.42 Mbit/s within the first 30 s where no CBR cross traffic is on the link. TCP Cubic has still
a quite long convergence time (to reach a sending rate of more than 95 Mbit/s) of 12.8 s, while
H-TCP and TCP SIAD (NumRT T = 20) can maintain a convergence time in the same range than
in the smaller bandwidth scenario of 2.6 s and, respectively, 2.2 s. Note, this time TCP SIAD
converges faster but mainly, as explained above, because the TCP SIAD flow has by chance
already a larger rate at the point of time when the CBR traffic stops. Appendix C.4 also shows
traces for the same network scenarios but with two TCP flows using the same congestion control
scheme that are competing with CBR cross traffic. We can conclude that Fast Increase provides
quick bandwidth allocation as desired while especially TCP Cubic has a long convergence time
in the shown scenario. Therefore, we see the concept of a separate Fast Increase phase similar
in the case where no information about the available capacity is known more as general concept
that could be used in new congestion control schemes.

In case of starting CBR traffic in [13, 63], it is proposed to evaluate the harm that is caused to the
CBR traffic when a congestion control scheme decreases its sending rate too slowly. Therefore,
it is proposed to count the number of losses seen by the CBR traffic in the first 100 s after
starting. As it can be seen, e.g., for TCP Cubic and TCP SIAD in Figure 4.31, schemes designed
for high-speed networks are usually able to adapt within the first few seconds. Therefore, we
compare the number of losses seen by the CBR in the first 5 seconds. For the scenario described
above, one TCP Cubic flow causes 1314 losses, one H-TCP flow 990 and one TCP SIAD flow
1476 to the CBR cross traffic. Additionally, in Table 4.6 we display the total loss rate for both
together the TCP traffic and the CBR cross traffic for the first couple (up to 5) seconds and



130 Chapter 4. Evaluation

Table 4.6: Loss rate when CBR traffic starts on 100 Mbit/s link.

·BDP 1 s 2 s 3 s 4 s 5 s

TCP Cubic

0.3 35.92% 33.01% 27.46% 22.49% 18.93%
0.5 37.58% 30.66% 24.32% 20.11% 16.76%
1.0 35.94% 31.99% 27.25% 23.13% 19.42%
1.2 40.64% 35.26% 29.63% 24.09% 20.06%

H-TCP

0.3 30.41% 27.93% 24% 19.59% 16.34%
0.5 33.89% 29.12% 23.01% 20.01% 16.56%
1.0 23.49% 21.73% 15.78% 12.24% 9.97%
1.2 16.56% 13.33% 9.87% 7.56% 6.04%

TCP SIAD (20)

0.3 37.03% 35.93% 30.25% 25.59% 22.74%
0.5 39.96% 30.82% 24.11% 20.92% 17.48%
1.0 35.53% 29.12% 21.38% 18.37% 17.14%
1.2 31.01% 27.21% 20.63% 18.66% 16.08%

TCP SIAD (40)

0.3 36.98% 32.97% 26.98% 22.71% 19.32%
0.5 31.42% 29.6% 24.44% 19.03% 17.33%
1.0 32.78% 27.38% 22.32% 18.9% 15.89%
1.2 26.98% 24.16% 18.12% 16.92% 14.42%

for different buffer configurations. Of course, the higher the NumRT T configuration value is,
the lower is the loss rate as this configuration makes TCP SIAD less aggressive. Further, TCP
SIAD induces a lower loss rate, the larger the buffering is. This is because the decrease factor
is also larger and therefore the increase step per RTT is smaller. For H-TCP this is only true in
the range between 0.5 and 1·BDP of buffering. Further, as with the convergence time the size
of the overshoot is also determined by the starting time of the CBR traffic. Appendix C.4 show
the same table for a 10 Mbit/s link. In this table it can clearly be seen that, e.g., the loss rate
for H-TCP is again higher with 1.2·BDP of buffering. We conclude that TCP SIAD induces a
reasonable loss rate as its loss rate is comparable to TCP Cubic in small buffer scenarios or even
lower otherwise.

4.5.2 Evaluation of Convergence Times with Adaptive Cross Traffic

To provide a more general evaluation of the convergence properties we use a scenario on a
20 Mbit/s link with one flow that starts right at the beginning of the simulation and a second
flow that starts later on during the simulation run. Both flows always use the same congestion
control scheme in this investigation. We have performed 20 simulation runs for each setup with
different start times at each full second between 20 s and 39 s of the simulation time. Please
note, this measurement provides a better assessment than in the previous section but still does
not allow for a fair comparison. E.g., while 19 s covers several congestion epochs for SIAD
independent of the available bandwidth, the same setup catches only a part of one congestion
epoch for TCP NewReno setups with high BDPs.

Figure 4.32a shows the mean convergence time to reach 95% of the desired equal bandwidth
share (of 10 Mbit/s for each flow) as well as the absolute minimum and maximum seen for these
sample set depending on the configured buffer scaling. While the convergence times for H-TCP



4.5 Convergence and Responsiveness to Starting Traffic 131

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (20)

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

(a) 95% average, min, and max convergence time.

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (20)

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

(b) 80% average, min, and max convergence time.

Figure 4.32: Convergence time of two flows on 20 Mbit/s link with different start times.

and TCP SIAD (with NumRT T = 20) still lie in the same range, TCP Cubic, as expected from
the first assessment above, has always a higher average convergence time. In contrast, TCP
NewReno has even a smaller convergence time for small buffers as the decrease factor of 0.5 is
in this case quite large compared to the buffer size. But with smaller buffers than 1·BDP, TCP
NewReno is not able to utilize the link fully. Therefore, the buffer is often empty and thus all
the buffer space can be used by the starting flow. With increasing buffer sizes, the maximum
BDP increases as well and TCP NewReno needs subsequently a longer time for convergence.
Both H-TCP and TCP SIAD provide, in comparison, short average convergence times and about
the same average convergence time for all buffer settings. However, TCP SIAD has a higher
maximum value that means that there was at least one strong outlier. As there are no outliers in
Figure 4.32b anymore which shows the convergence time to reach 80% of the fair share, TCP
SIAD can grab a reasonable share quickly. As TCP SIAD also operates for quite long time
periods in different sharing ratio in steady state, as we have observed in previous sections, this
observation is explainable.

Appendix C.5 shows the same effects for TCP SIAD with NumRT T = 40 as well as for a the
convergence time to reach 80% of the desired bandwidth. Further, selected congestion window
and queue length traces are shown for the 20 Mbit/s scenario as well as for a 100 Mbit/s scenario.
For 100 Mbit/s TCP SIAD’s convergence times are higher but still in the same range.

The TCP Evaluation Suite [13, 63] proposes to examine convergence with starting cross traffic
that has Slow Start disabled by setting the Slow Start threshold to the initial congestion window
value of 10 packets. This is supposed to cover the worst case where a congestion notification is
received within the first RTT, e.g., because the running flows have already filled up the queue
completely at the starting time of the new flow. We covered this case by evaluating a large set
of start times and the results are reflected by the maximum convergence time as given above.
However, Appendix C.5 shows the same figure than above for the average, minimum, maximum
convergence time to reach 80% or 95% of the equal sharing rate but with Slow Start disabled.
Depending on the RTT, queue size and increase behavior disabling Slow Start adds a couple of
seconds to the average convergence time for TCP NewReno and TCP Cubic. In contrast, for
TCP SIAD disabling Slow Start only adds a few RTTs as in this case TCP SIAD starts in Fast
Increase phase instead. This means, TCP SIAD will also start with an increase rate of 1 packet
per RTT, instead of 10 packets per RTT, but still doubles its increase rate per RTT. Therefore,



132 Chapter 4. Evaluation

TCP SIAD needs five (additional) RTTs to reach an increase rate of 16 packets per RTT but also
already a congestion window of 25 at that point of time.

4.5.3 Conclusion

In this section we evaluated the convergence properties of TCP SIAD in dynamic scenarios.
We have shown that due to Additional Decrease TCP SIAD can quickly adapt its decrease
factor when the available capacity is decreased such that the queue is emptied as desired (if
the time stamp resolution is sufficient). If capacity is allocated by newly starting CBR traffic
TCP SIAD might induce a rather high loss rate (similar as TCP Cubic) as Fast Increase can
cause a large overshoot. However, we have shown that Fast Increase is necessary to allocate
newly available capacity quickly in high-speed networks. While TCP Cubic, even though it is
designed for high-speed networks, takes a long time to converge, TCP SIAD has in all scenarios
a convergence time of only about 2 seconds. Regarding convergence time, H-TCP and TCP
SIAD provide similar performance while clearly outperforming TCP Cubic which is currently
the most widely-used high-speed congestion control scheme.

4.6 Robustness in High-Congestion Traffic Scenarios

In addition to congestion control requirements like efficiency (scalability and adaptivity), ca-
pacity sharing, and convergence we aim to assess the robustness of TCP SIAD. Robustness is
especially important regarding the question if TCP SIAD is suitable to be used (for experimen-
tation at least) in the Internet where a wide range of different scenarios can occur. However,
as an evaluation of robustness is not straight-forward, our approach is to evaluate TCP SIAD
in extreme scenarios that are rare in the wild but, when proven to work, do also cover those
scenarios that can actually occur in the Internet.

Note, we already evaluated the robustness of TCP SIAD against delay variations in Section 4.3.2
and showed that TCP SIAD as a hybrid approach is stronger influenced than pure loss-based
schemes but still provides reasonable performance and we show that TCP flows never full starve
without getting any capacity anymore.

In this section we aim to evaluate TCP SIAD’s robustness against loss and therefore perform
simulations with additional artificial random loss as well as with short flow cross traffic that
induces traffic bursts on the link and therefore also causes large (and infrequent) burst losses.
Moreover, we investigate the interaction with a set of AQM mechanisms that also induce dif-
ferent loss patterns. This is especially important as it can be expected that AQM will be found
more often in the future Internet regarding ongoing activities in standardization [18].

4.6.1 Impact of High Loss Rates

In this section we focus on the influence of high loss rates on TCP SIAD induced by two effects,
either due to bursty cross traffic or, even worse, due to errors in lower layers which can cause
packet drops that are not related to congestion.



4.6 Robustness in High-Congestion Traffic Scenarios 133

Table 4.7: Link utilization and loss rate for one flow and short flow cross traffic on 10 Mbit/s
link using different buffer configurations.

buffer size [·BDP] utilization loss rate

TCP NewReno
0.3 43.05% 3.665%
0.5 59.37% 2.476%
1.0 89.44% 1.26%

TCP Cubic
0.3 77.18% 2.91%
0.5 89.69% 1.425%
1.0 99.19% 0.798%

H-TCP
0.3 87.88% 1.586%
0.5 93.32% 1.579%
1.0 90.27% 2.433%

TCP SIAD (10)
0.3 95.74% 2.834%
0.5 94.48% 3.858%
1.0 94.77% 3.854%

TCP SIAD (20)
0.3 94.74% 2.535%
0.5 93.64% 3.156%
1.0 91.62% 3.362%

TCP SIAD (40)
0.3 95.06% 2.979%
0.5 93.06% 3.784%
1.0 91.08% 4.223%

A long-living flow can get (severely) disturbed by (a large number of) short traffic peaks that
fill up the queue and therefore signal congestion but do not last long enough to utilize the
capacity that was consequently freed by the long-living flow. As soon as the queue overflows
(or grows large enough to imply an AQM reaction by either drops or ECN marks) the long-
living flow receives a congestion notification and reduces its sending rate. Unfortunately, if
those small bursts only remain active for less than an RTT, there is already no cross traffic
anymore to potentially allocated the freed bandwidth when the load of the long-living flow is
finally reduced.

To further evaluate this effect, we modeled a scenario where short flows of 300.000 Bytes appear
with an equally distributed Inter-Arrival Time (IAT) of 2 s to 3 s on a 10 Mbit/s link with an
RTT of 100 ms for each flow. With a buffer size of one base BDP this scenario has a maximum
BDP of 250.000 Bytes. This means, one short burst would not leave Slow Start (due to the
exponential increase and an initial window of 10) when alone on the link but is large enough to
fill the buffer when partly already allocated by long-living traffic.

As it can be seen in Table 4.7 TCP SIAD reaches for all tested buffer sizes and NumRT T con-
figurations an average link utilization of 90% to 95%. While TCP NewReno and TCP Cubic
are anyway not able to utilize the link fully if the buffer size is too small, both schemes also
only reach a link utilization of about 89% in those scenarios where they actually would be able
to utilize the link fully (without any disruption of small traffic peaks). Without short flow cross
traffic and a buffer size of one BDP TCP Cubic reaches full utilization because it induces a
standing queue in this case. This means the buffer is never fully empty, and those packets in the
buffer can potentially compensate for unnecessary window reductions. In contrast, TCP SIAD



134 Chapter 4. Evaluation

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1  0.2  0.3  0.4  0.5
ut

ili
za

tio
n 

[fr
ac

tio
n]

maximum loss addon [%]

TCP Reno
TCP Cubic

H-TCP
TCP SAID (20)

Figure 4.33: Average link utilization of one flow on 10 Mbit/s link and 0.5·BDP of buffering
with random loss.

always reduces the buffer such that the link stays utilized; no matter how often congestion is
indicated by the network feedback. H-TCP has a similar behavior (for a buffer range of 1·BDP
to 0.5·BDP). Even though H-TCP performs better than TCP NewReno or TCP Cubic, it still
gets more strongly influenced by short traffic bursts than TCP SIAD, as it stays longer at the
low sending rate after a decrease even though the cross traffic already disappeared. In the sce-
narios with a buffer size of 1·BDP TCP SIAD performs more often Additional Decreases than
in case of smaller buffer sizes. These can partly be compensated by Fast Increase, but still lead
to a slightly lower utilization of 91% or more. Further, as Fast Increase is often entered TCP
SIAD maintains a higher utilization than other schemes but also at the cost of higher loss rates.
Both, high permanent utilization and loss, also cause slightly longer transmission times for the
short flow traffic but this cannot be avoided if the high link utilization is desired and loss-based
congestion control that frequently needs to fill the queue is used. Example congestion window
and queue length traces are shown in Appendix C.6.

To further test TCP SIAD’s robustness in high loss scenarios, we additionally evaluate a scenario
with randomly distributed, artificial losses. E.g., non-congestion related loss could occur on
the lower layers when a bit error causes a packet drop. Often, these losses are not randomly
distributed but bundled. As TCP congestion control only reacts to congestion once per RTT,
a random distribution of loss is even worse. Figure 4.33 gives the average link utilization of a
10 Mbit/s link with 1.0·BDP of buffering where the artificially induced loss rate is between 0.1%
and 0.5%. It shows clearly that TCP SIAD handles this case best with a high link utilization in
all cases. Also other NUMRTT configurations of TCP SIAD provide similar results.

Figure 4.34 shows sample traces for the schemes in test with 0.1% artificial loss. With tradi-
tional both schemes, TCP NewReno and TCP Cubic, the queue is mostly empty as they always
decrease by a fixed value even though most of the losses are not caused by congestion in this sce-
nario. TCP NewReno and TCP Cubic can only reach a link utilization of 35.15% and 48.96%.
H-TCP handles the situation better and utilizes the link by 68.85%. Only TCP SIAD reaches a
high utilization of 94.3% with NumRT T = 20 or 97.3% with NumRT T = 40. Of course, H-TCP
and TCP SIAD also decrease for each loss notification assuming congestion. However, they
decrease less as the queue was not fully filled when the congestion notification was generated.
Therefore, also the delay is not at its maximum value when the assumed congestion notification
is received. H-TCP still decreases at least with a factor of 0.3 and therefore underutilizes the
link. TCP SIAD is able to re-allocate the capacity more quickly due to Fast Increase, which



4.6 Robustness in High-Congestion Traffic Scenarios 135

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP NewReno.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP Cubic.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

qu
eu

e 
[p

kt
]

time [s]

(c) H-TCP.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP SIAD with NumRTT = 20.

Figure 4.34: One flow on 10 Mbit/s link and 0.5·BDP of buffering with 0.1% additional random
loss.

in return also causes higher oscillations and loss rates. However, in such a situation where
non-congestion losses alter the congestion signal there is a trade-off between achieving link
utilization by sending aggressively which causes overshoots and inducing low loss rates. TCP
SIAD allows to maintain this trade-off by providing configurable aggressiveness.

4.6.2 Influence of the use of AQM schemes

Finally, we investigate the influence of AQM mechanisms implemented in the bottleneck queue
on TCP SIAD. Even if today a majority of queues are DropTail, we expect the large-scale
introduction of AQM in the Internet to move forward in the course of reducing the end-to-
end latency in the Internet to better support latency-sensitive applications. To provide lower
latency, two new schemes have recently been proposed, namely CoDel and PIE as introduced
in Section 2.3.1. In this section we evaluate the interaction of TCP SIAD with CoDel and PIE
as well as RED, the most well-known AQM scheme.

For CoDel and PIE we use the standard parameterization as both schemes are proposed to work
with zero configuration. This means CoDel targets a queuing delay value of 5 ms and PIE of
20 ms. That translates for our used scenario on a 10 Mbit/s link to a queue fill length of about
4 packets in case of CoDel and 16 packets in case of PIE. With 100 ms RTT and one BDP of
maximum buffering, we except a queue fill level of a about 0.05 for CoDel or 0.2 for PIE.



136 Chapter 4. Evaluation

Table 4.8: RED parameterization.

queue size [BDP] Min_T hresh Max_T hresh maxP w
RED4 4.0 1/4 3/4 0.1 0.002
RED1 1.0 1/4 3/4 0.1 0.002

NRED4 4.0 1/4 3/4 0.1 1
NRED1 1.0 1/4 3/4 0.1 1

Further, we investigate four different parameterizations of RED, as shown in Table 4.8: the rec-
ommended parameterization [42] with two different maximum buffer sizes of 1.0·BDP (RED1)
and 4.0·BDP (RED4) as well as the same settings but with a non-smoothed variant (w = 1)
(NRED1 and NRED4). With a weighting factor w of 1 the feedback signal is not based on the
average queue length but on actual current queue and therefore not smoothed but directly feed
back. We investigate this non-smoothed variant as such an immediate feedback signal is cur-
rently under discussion in the IETF to reduce feedback latency. The smoothing should prevent
a congestion reaction if the congestion is not permanent but, e.g., caused by a small traffic burst
that disappears again after a short time. As congestion control has a feedback delay of one RTT,
no congestion control scheme can react properly to congestion that is present for less than one
RTT. Therefore, to avoid link underutilization, the smoothing in RED aims to not signal this
kind of (short-term) congestion at all but delay the feedback signal. As we have seen above,
TCP SIAD is more resistant to disruptions by short traffic burst and we expect better results with
the use of TCP SIAD than for the traditional parameterization. This is because TCP SIAD will
anyway only reduce as much as needed to empty the queue and thereby avoid underutilization.
Therefore, it is of advantage to signal the feedback immediately without further delays.

Figure 4.35 shows example traces for TCP SIAD with NUMRTT = 20 and the use of the four
AQM schemes, with and without smoothing in case of RED, for a maximum buffer size of
1.0·BDP. While TCP SIAD achieves high utilization in all cases as the queue is never empty
for a long time, the use of AQM can also induce high oscillations. Only the non-smoothed
variant provides a more stable behavior as a congestion situation is resolved faster while in the
other cases often congestion is signaled over two subsequent RTTs.

For comparison we run the same simulation as well with TCP NewReno, TCP Cubic, and
H-TCP. Note if the maximum buffer size is set to 4·BDP, the lower threshold Min_T hresh

is at 1·BDP. In this case, also TCP NewReno should be able to fully utilize the link, in all
other cases we expect TCP NewReno to underutilize the link due to the fixed decrease factor
of 0.5. Table 4.9a, 4.9c, and 4.9b show the average link utilization, queue fill level, and loss
rate of TCP NewReno, TCP Cubic, H-TCP, as well as TCP SIAD for two configuration with a
NumRTT value of 20 and 40 on a 10 Mbit/s bottleneck link. As expected TCP SIAD can reach
respectively high link utilization of 88%-99% for all scenarios as shown in Table 4.9a. The
utilization is always comparable to the utilization reached by the other schemes. While TCP
Cubic in the most of the investigated cases provides the best utilization, H-TCP and TCP SIAD
achieve the higher utilization in case of CoDel and RED with one BDP buffering, respectively.

Also as expected TCP SIAD always induces the highest loss rate, as shown in Table 4.9b, due to
Fast Increase and consequently high oscillations. However for the non-smoothed RED variant
the loss rates are comparable low.



4.6 Robustness in High-Congestion Traffic Scenarios 137

 0
 50

 100
 150
 200
 250
 300
 350

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) RED with queue size of 1·BDP (RED1).

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

cw
nd

 0
 25
 50
 75

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) Non-smoothed RED with queue size of
1·BDP (NRED1).

 0

 50

 100

 150

 200

 250

 300

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) CoDel.

 0

 50

 100

 150

 200

 250

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) PIE.

Figure 4.35: One TCP SIAD (NumRT T = 20) flow on 10 Mbit/s bottleneck link with different
AQM schemes.

While Table 4.9c seems to indicate that the average queue fill level is also very high, TCP SIAD
in fact reaches more closely the queue fill level as desired by the respective AQM parameter-
ization. This would be in case of all RED schemes a queue fill level of about 0.25, about 0.2
for PIE (20 ms queuing and 100 ms base delay) and 0.05 for CoDel. For all cases where the
link utilization is low, the average queue fill level is consequently smaller as the queue is often
empty for a longer time.

4.6.3 Conclusion

We have shown that TCP SIAD is more robust in situations with higher loss rates, e.g., due to
short flow and bursty cross traffic or additional losses on the lower layers. In situations with
additional, not-congestion related, random loss between 0.2% and 0.5% on a 10 Mbit/s link with
0.5·BDP of buffering TCP SIAD (e.g. with NumRT T = 20) can reach a utilization of 84.96 % –
94.47 % due to Adaptive Decrease, while all other schemes including H-TCP cannot utilize the
link very well. TCP NewReno only utilizes the link with 15.25 % – 24.93 %, TCP Cubic with
17.46 % – 31.6 %, and H-TCP with 25.58 % – 47.29 %. This shows the ability of TCP SIAD to
cope with a wide range of Internet scenarios where unexpected loss occurs.

Further, TCP SIAD also reaches high utilization with the use of AQM on the bottleneck queue
but it might induce high oscillations. We considered implementing further heuristics in TCP



138 Chapter 4. Evaluation

Table 4.9: One flow on 10 Mbit/ link with use of AQM.

(a) Average link utilization.

NewReno TCP Cubic H-TCP TCP SIAD (20) TCP SIAD (40)
RED4 99.27% 99.96% 90.28% 90.31% 91.32%
RED1 89.44% 89.4% 85.28% 88.55% 92.64%

NRED4 100% 100% 97.12% 97.07% 99.75%
NRED1 89.5% 98.91% 97.7% 98.2% 96.56%

CoDel 78.75% 90.45% 94.82% 91.74% 92.12%
PIE 87.52% 96.06% 93.64% 89.28% 92.16%

(b) Average loss rate [%].

NewReno TCP Cubic H-TCP TCP SIAD (20) TCP SIAD (40)
RED4 0.006 0.062 0.347 2.246 1.924
RED1 0.015 0.094 0.532 4.23 3.807

NRED4 0.005 0.032 0.168 0.341 0.048
NRED1 0.012 0.035 0.167 0.577 1.114

CoDel 0.016 0.044 0.123 4.106 2.867
PIE 0.014 0.037 0.127 3.689 3.806

(c) Average queue fill [fraction].

NewReno TCP Cubic H-TCP TCP SIAD (20) TCP SIAD (40)
RED4 0.1428 0.1362 0.1278 0.2926 0.2672
RED1 0.0783 0.0592 0.14 0.291 0.2721

NRED4 0.1432 0.1840 0.1125 0.1468 0.1451
NRED1 0.0665 0.1036 0.1054 0.1376 0.1392

CoDel 0.0084 0.0118 0.0178 0.106 0.1268
PIE 0.0514 0.0911 0.1012 0.2174 0.2058

SIAD to avoid permanent oscillations which would be especially optimized for this scenario.
Note that this again would influence the trade-off between responsiveness and smoothness as
introduced in Section 2.5.3. As TCP SIAD, however, works stable with a non-smoothed al-
gorithm, we aim for such an AQM mechanism in the future Internet that avoids any additional
feedback delay but leave the optimization to the end-host. Such an AQM scheme would support
low latency best and has been proposed in the IETF [27]. The goal is to re-define the semantics
of ECN such that one gets a more accurate and more frequent feedback signal and subsequently
to adapt the congestion response in the end host accordingly. The result on TCP SIAD presented
above supports the request to remove feedback smoothing from the network. Consequently, the
combination of such an AQM scheme and the use of TCP SIAD helps to provide better support
for low-latency services in the future Internet.

Further, to avoid unnecessary Additional Decreases in situations where congestion feedback is
received often and the base RTT is hard to estimate due to noise, TCP SIAD could benefit from
an additional signaling that indicates explicitly when the queue is empty. In the context of a re-
definition of the semantics of ECN, we plan to further evaluate this approach by, e.g., using the
de-facto unused ECN ECT(1) codepoint for this signaling. In general, further experimentation



4.6 Robustness in High-Congestion Traffic Scenarios 139

with the use AQM as well as with the use of ECN are needed. As the future semantics of ECN
as well as AQM approaches to support low latency services are current research targets, we
leave further evaluation on TCP SIAD in this context to future work.

Still we conclude that TCP SIAD shows a general robustness to high loss scenarios as well as
to delay variations, shown earlier. Therefore, the scalable and adaptive approach of TCP SIAD
provides benefits when used in today’s Internet where mainly loss-based congestion control
schemes are used (and therefore TCP SIAD need to compete with those schemes). Further, TCP
SIAD provides high link utilization even with small buffers and higher congestion feedback
rates which is desirable for low latency support in the future Internet.



140 Chapter 4. Evaluation



5 Summary and Conclusion

In this work we proposed and evaluated a new congestion control scheme, called TCP SIAD,
motivated by three current research challenges, namely scalability in high-speed networks, sup-
port for new emerging low latency services, and the implementation of per-user fairness in the
Internet. Scalability is a well-known problem of traditional congestion control schemes where
the feedback rate decreases with increasing link bandwidth. This leads to long convergence
times in large BDP networks or, even worse, prohibits a full utilization of the available band-
width resources at all. Further, more and more applications with narrow requirements on low
latency are emerging which are not well addressed by existing proposals. Even though con-
gestion control cannot solve the latency problem in today’s Internet alone, it is responsible to
always provide high link utilization even if buffers are configured small to prevent long queuing
delays. While many of the existing approaches aim for TCP-friendliness and therefore limit
their design space or introduce additional complexity, we do not require flow fairness. Flow
fairness limits the instantaneous sending rate per flow which can lead to unnecessary service
degradation in situations where the available resource could be distributed over time such that
all services are satisfied. However, the implementation of (long-term) per-user fairness can-
not be provided by congestion control (that works on a per flow basis) and therefore must be
addressed by additional mechanisms in the Internet as, e.g., proposed by ingress congestion
policing.

Based on these challenges, we derived general requirements for congestion control for scala-
bility, adaptivity, capacity sharing, as well as convergence and discussed limitations of current
congestion control schemes. Finally, we state concrete design goals that our congestion con-
trol scheme aims for to address these requirements: high link utilization independent of the
network configuration (even with small buffers), minimization of queuing delay (by avoiding
a standing queue), quick capacity allocation (if new bandwidth resources become available),
implementation of a fixed feedback rate (to fully solve the scalability problem), and a configu-
ration possibility to influence the aggressiveness (and therefore the capacity sharing). None of
the current and in this work discussed schemes can achieve all of these design goals.

Therefore, we proposed a new TCP congestion control scheme. TCP SIAD is still an AIMD
scheme, as most of today’s proposals, but is especially targeted to cope with small buffers
as well as high-speed links by implementing a Scalable Increase Adaptive Decrease scheme.
Further, we propose three additional algorithms, namely Additional Decrease, Fast Increase and
Trend calculation, to address all of our design goals.

AIMD schemes in general implement a linear increase of α packets per RTT and a multiplica-
tive decrease with factor β on congestion notification. Scalable Increase determines the linear

141



142 Chapter 5. Summary and Conclusion

increase factor α dynamically for each congestion epoch such that a target congestion window
value incthresh can be reached in a configurable number NumRT T of RTTs. If the congestion
window grows above the threshold incthresh, α is further increased exponentially within one
congestion epoch to quickly allocate newly available capacity in the Fast Increase phase. If con-
gestion occurs, Adaptive Decrease calculates the decrease factor β based on the current estimate
of the queue share such that the queue just empties. This approach avoids a standing queue but
at the same time also avoids underutilization of the link if the queue is small. If the queue was
not emptied by this first decrease due to de-synchronization with competing flows, Additional
Decreases are performed. If the sending rate would thereby be reduced too much, Scalable In-
crease partially compensates this with a larger increase factor to keep the link utilization high.
Further, the target value is calculated based on Trend calculation where the previous maximum
congestion window value is considered to estimate a trend over time to achieve convergence.

In simulative evaluation based on the integration of our TCP SIAD Linux implementation, we
have shown that TCP SIAD is able to utilize a link independent of the configured bottleneck
buffer size and at the same time avoid a standing queue in single- as well as in multi-flow sce-
narios. While H-TCP implements the same decrease scheme, it restricts its decrease factor to be
between 0.3 and 0.5 and therefore still causes a standing queue or underutilizes the link in cer-
tain scenarios. Only TCP SIAD and Scalable TCP provide a constant feedback rate independent
of the link bandwidth. However, as Scalable TCP is an MIMD scheme with a fixed increase fac-
tor it induces high loss and in most scenarios a large standing queue. Further, we demonstrated
that TCP SIAD is able to achieve stable capacity sharing that can be impacted by the NumRT T

configuration parameter. We have shown that NumRTT can even be configured such that equal
capacity sharing with cross traffic that uses a different congestion control or operates based on
different network conditions can be achieved. Moreover, if flows have different base RTTs and
equal sharing is desired, the feedback frequency can be configured by Numms in milliseconds
instead. We have assessed the convergence properties of TCP SIAD based on rate changes,
competing CBR traffic, as well as competing TCP traffic, and have shown that TCP SIAD con-
verges reasonably fast compared to other schemes such as H-TCP and often even much faster
than TCP Cubic. Moreover, TCP SIAD provides a much higher resilience to non-congestion
losses than all other schemes in test since Adaptive Decrease reduces the sending rate based on
its current share of the bottleneck queue. All in all, TCP SIAD reaches the stated design goals
as well as more general stated requirements for congestion control and shows high robustness
that allows for further testing in the Internet.

Future Work

While we have listed and discussed further degrees of freedom in the design space of TCP
SIAD in Section 3.4.1, we would like to focus in our future work on a simplified version of
TCP SIAD. In fact, robustness is not trivial to evaluate. We assessed vulnerability to delay
estimation errors and resilience to high loss rates for this purpose. However, one key principle
for robustness is simplicity. For example using a fixed but configurable increase step instead of
Scalable increase would strongly simplify convergence and capacity sharing. Of course, such a
scheme would not be fully scalable anymore. However, due to Adaptive Decrease it would only
scale with the configured buffer size which we expect to be independent of the BDP in future



143

networks supporting low latency services. To evaluate such a simplified scheme would allow a
comparison with TCP SIAD as proposed in this work.

In addition, we aim to experiment with TCP SIAD in combination with ECN or a future ex-
plicit signaling that could provide more accurate, immediate, and more fine-grained congestion
feedback or even additional information about, e.g., if the queue is fully empty or not, as briefly
discussed in 3.4.1. Based on these experiments, we aim to provide input on the currently run-
ning standardization process in the IETF.

Another area of research in the environment of congestion control is the start-up behavior. We
simply adopted the start-up behavior from Slow Start. However, there are a large number of
proposals to improve TCP’s start up behavior. As TCP SIAD implements the same increase
behavior below the Slow Start threshold and above the Linear Increment threshold incthresh,
both could potentially be improved when further extending TCP SIAD. Especially interactive
communication does have tight requirements to quickly reach a certain rate, e.g., at the be-
ginning of an audio communication. In this respect, evaluating TCP SIAD for the use with
(real-time) media transmissions that have quite different requirements as, e.g., currently under
evaluation in the RTP Media Congestion Avoidance Techniques (rmcat) working group in the
IETF [73] would be an interesting application and potentially lead to further extensions of the
SIAD scheme, such as probing capabilities.

We have shown that it is generally desirable for high-speed congestion control schemes to im-
plement a Fast Increase phase (not only at start up) to differentiate steady state behavior from
changing network conditions and thereby achieve fast capacity allocation in future high-speed
network. Therefore, it can also be evaluated how to integrate Fast Increase into other schemes.
In addition, SIAD implements a new approach that provides full scalability in future high-speed
networks as well as a configuration possibility that supports congestion policing. Evaluating
TCP SIAD within a congestion-policed network is expected to provide more flexible capac-
ity sharing and therefore better QoE for all applications. Moreover, with the implementation
of Adaptive Decrease TCP SIAD allows network operators to configure smaller buffers and
thereby reduce latency without causing network underutilization which is especially important
for emerging interactive and real-time applications. Therefore, we can in summary conclude
that these basic principles as introduced by TCP SIAD provide an important basis for an effi-
cient operation in the future Internet.



144 Chapter 5. Summary and Conclusion



A Source Code

A.1 tcp_siad.c

Listing A.1: tcp_siad.c

1 /∗ S c a l a b l e I n c r e a s e A d a p t i v e Decrease ( SIAD ) C o n g e s t i o n C o n t r o l A l g o r i t h m

2 Au th o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define OFFSET 1 / / i n p k t s ( b eca u se o f ro u n d in g )

10 #define MIN_CWND 2U / / minimum cwnd

11 #define NUM_RTT 20 / / d e f a u l t number o f RTT p er c o n g e s t i o n epoch

12 / / b e tween two c o n g e s t i o n e v e n t s

13 #define MIN_RTT 2 / / minimum number o f RTTs f o r one c o n g e s t i o n epoch

14

15 static int num_rtt = NUM_RTT;

16 static int num_ms = 0;

17

18 module_param(num_rtt, int, 0644);

19 MODULE_PARM_DESC(num_rtt, "desired number of RTTs between two congestion

events (if resulting time interval is larger than configured number of

milliseconds)");

20 module_param(num_ms, int, 0644);

21 MODULE_PARM_DESC(num_ms, "desired milliseconds between two congestion

events (if larger than resulting time interval for the configured number

of RTTs)");

22

23 / / 64 By te =16∗32 b i t

24 struct siad {

25 int config_num_rtt; / / c o n f i g u r e d Num_RTT v a l u e

26 / / by S o c k e t Op t io n TCP_SIAD_NUM_RTT

27 / / ( must be f i r s t v a r i a b l e i n s i a d s t r u c t )

28 u32 default_num_rtt; / / d e f a u l t Num_RTT v a l u e

29 / / from module p a ra me te r or s y s c t l

30 / / ( w i l l be s e t a t c o n n e c t i o n s t a r t )

31 u32 default_num_ms; / / d e f a u l t Num_ms v a l u e

32 / / from module p a ra me te r or s y s c t l

33 / / ( w i l l be s e t a t c o n n e c t i o n s t a r t )

34 u32 curr_num_rtt; / / c u r r e n t c a l c u l a t e d Num_RTT

35 / / based on minimum o f n u m _ r t t and num_ms

145



146 Appendix A. Source Code

36 / / or c o n f i g _ n u m _ r t t or s y s c t l _ t c p _ s i a d _ n u m _ r t t

37

38 u32 increase; / / = a lp h a ∗ c u r r _ n u m _ r t t

39 / / ( p r o v i d e s s u f f i c i e n t r e s o l u t i o n as minimum

40 / / i n c r e a s e r a t e o f 1 p k t / c o n g e s t i o n epoch needed

)

41 u32 prev_max_cwnd; / / e s t i m a t e d maximum cwnd

42 / / a t p r e v i o u s c o n g e s t i o n e v e n t

43 u32 incthresh; / / L i n e a r I n c r e m e n t t h r e s h o l d

44 / / t o e n t e r Fa s t I n c r e a s e phase

45 / / ( t a r g e t v a l u e a f t e r d e c r e a s e based on max .

cwnd )

46

47 u32 prior_snd_una; / / ACK number o f t h e p r e v i o u s l y r e c e i v e d ACK

48

49 u32 prev_delay; / / d e l a y v a l u e o f p r e v i o u s sample

50 / / ( t o f i l t e r o u t s i n g l e o u t l i e r s )

51 u32 curr_delay; / / f i l t e r e d c u r r e n t d e l a y v a l u e

52 u32 min_delay; / / a b s o l u t e minimum d e l a y

53 u32 curr_min_delay; / / minimum d e l a y s i n c e l a s t c o n g e s t i o n e v e n t

54 u32 dec_cnt; / / number o f a d d i t i o n a l d e c r e a s e s

55 / / ( f o r c u r r e n t c o n g e s t i o n epoch )

56 u8 min_delay_seen; / / s t a t e v a r i a b l e i f t h e minimum d e l a y was seen

57 / / a f t e r a r e g u l a r window r e d u c t i o n

58 u8 increase_performed; / / s t a t e v a r i a b l e i f a t l e a s t one i n c r e a s e

59 / / was p er fo rmed b e f o r e new d e c r e a s e

60 u16 prev_min_delay1, / / p r e v i o u s min _ d e la y v a l u e s i f

61 prev_min_delay2, / / mo n o to n o u s ly i n c r e a s i n g v a l u e s

62 prev_min_delay3; / / due t o measurement e r r o r s

63 };

64

65 static void tcp_siad_init(struct sock *sk){

66 struct siad *siad = inet_csk_ca(sk);

67 struct tcp_sock *tp = tcp_sk(sk);

68

69 siad->config_num_rtt = 0;

70 / / S e t s y s c t l o n l y a t c o n n e c t i o n s t a r t

71 if (sysctl_tcp_siad_num_rtt) {

72 siad->default_num_rtt = max(MIN_RTT, sysctl_tcp_siad_num_rtt);

73 } else {

74 siad->default_num_rtt = num_rtt;

75 }

76 if (sysctl_tcp_siad_num_ms) {

77 siad->default_num_ms = sysctl_tcp_siad_num_ms;

78 } else {

79 siad->default_num_ms = num_ms;

80 }

81 siad->curr_num_rtt = siad->default_num_rtt;

82

83 siad->increase = tp->snd_cwnd*siad->curr_num_rtt;

84 siad->prev_max_cwnd = tp->snd_cwnd;

85 siad->incthresh = tp->snd_cwnd;

86

87 siad->prior_snd_una=tp->snd_una;

88

89 siad->curr_delay = 0;

90 siad->min_delay = INT_MAX;



A.1 tcp_siad.c 147

91 siad->curr_min_delay = INT_MAX;

92 siad->prev_delay = INT_MAX;

93 siad->dec_cnt = 0;

94 siad->min_delay_seen=1;

95 siad->increase_performed=0;

96 siad->prev_min_delay1=0;

97 siad->prev_min_delay2=0;

98 siad->prev_min_delay3=0;

99 }

100 EXPORT_SYMBOL_GPL(tcp_siad_init);

101

102 static void tcp_siad_cwnd_event(struct sock *sk, enum tcp_ca_event event)

103 {

104 struct tcp_sock *tp = tcp_sk(sk);

105 struct siad *siad = inet_csk_ca(sk);

106

107 switch (event) {

108 case CA_EVENT_COMPLETE_CWR:

109 siad->prior_snd_una=tp->snd_una;

110 siad->curr_min_delay = INT_MAX;

111 siad->dec_cnt = 0;

112 siad->min_delay_seen = 0;

113 siad->increase_performed=0;

114 break;

115 default:

116 break;

117 }

118 }

119 EXPORT_SYMBOL_GPL(tcp_siad_cwnd_event);

120

121 void tcp_siad_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) {

122 struct tcp_sock *tp = tcp_sk(sk);

123 struct siad *siad = inet_csk_ca(sk);

124

125 / / E s t i m a t e c u r r e n t RTT

126 u32 delay;

127 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) {

128 / / c u r r e n t measurement sample o f r t t based on TSopt

129 delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;

130 } else {

131 / / smoothed RTT based on sampled RTT measurements

132 delay = tp->srtt>>3;

133 }

134 / / f i l t e r o u t s i n g l e o u t l i e r s

135 siad->curr_delay = min(delay, siad->prev_delay);

136 siad->prev_delay = delay;

137

138 / / minimum d e l a y

139 if (siad->min_delay == INT_MAX || delay <= siad->min_delay ) {

140 / / i n i t i a l i z e t o t a l min d e l a y or s e t t o s m a l l e r v a l u e

141 siad->min_delay = delay;

142 siad->min_delay_seen=1;

143 siad->curr_min_delay = delay;

144 } else if (delay <= siad->curr_min_delay) {

145 / / u p d a te c u r r e n t minimum

146 siad->curr_min_delay = delay;



148 Appendix A. Source Code

147 if (tp->snd_cwnd > tp->snd_ssthresh+(siad->increase/siad->curr_num_rtt)

+1) {

148 / / r e s e t t o t a l minimum as same minimum was seen o ver s e v e r a l RTTs

149 siad->min_delay = delay;

150 siad->min_delay_seen=1;

151 }

152 }

153 / / Do n o t p er fo rm a d d i t i o n a l d e c r e a s e s i n Fa s t I n c r e a s e or Slow S t a r t

154 if (tp->snd_cwnd > siad->incthresh || tp->snd_cwnd < tp->snd_ssthresh)

155 siad->min_delay_seen=1;

156

157 / / E s t i m a t e unack ’ ed b y t e s s i n c e l a s t ACK

158 u32 bytes_acked = ack-siad->prior_snd_una;

159 siad->prior_snd_una = ack;

160

161 / / Do n o t i n c r e a s e or d e c r e a s e i f a p p l i c a t i o n l i m i t e d

162 if (!tcp_is_cwnd_limited(sk, in_flight))

163 return;

164

165 / / Per form ( a d d i t i o n a l ) d e c r e a s e or i n c r e a s e o f c o n g e s t i o n window

166 if (tp->snd_cwnd > tp->snd_ssthresh+(siad->increase/siad->curr_num_rtt)+2

167 && siad->min_delay_seen==0 && siad->dec_cnt<(siad->curr_num_rtt-1) )

{

168 / / minimum d e l a y n o t seen i n t h e f i r s t RTT −> A d d i t i o n a l Decrease

169 / / ( p e r fo rm a t maximum Num_RTT−1 a d d i t i o n a l d e c r e a s e s )

170

171 / / c o u n t number o f a d d i t i o n a l d e c r e a s e

172 siad->dec_cnt++;

173

174 / / R e s e t c o n g e s t i o n c o u n t e r a t d e c r e a s e

175 tp->snd_cwnd_cnt=0;

176

177 / / r ed u ce e s t i m a t e d cwnd from one RTT ago (= s s t h r e s h )

178 tp->snd_cwnd = (siad->min_delay * tp->snd_ssthresh / siad->curr_delay);

179

180 if (tp->snd_cwnd > MIN_CWND+OFFSET) {

181 / / d e c r e a s e f u r t h e r i f l a r g e enough

182

183 / / 1 . d e c r e a s e by a d d i t i o n a l o f f s e t

184 tp->snd_cwnd = tp->snd_cwnd-OFFSET;

185

186 / / 2 . red u ce a t l e a s t by new a lp h a (= i n c r e a s e / Num_RTT )

187 / / or rea ch t o 0 ( or MIN_CWND) a f t e r Num_RTT−1 r e d u c t i o n s

188

189 / / r e c a l c u l a t e i n c r e a s e and a lp h a

190 / / ( assuming a l r e a d y a n o t h e r r e d u c t i o n o f t h e new a lp h a

191 / / −> sia d−>c u r r _ n u m _ r t t−s ia d−>d ec_ cn t −1)

192 / / minimum i n c r e a s e r a t e o f 1 p k t / RTT

193 siad->increase = max(1*siad->curr_num_rtt,

194 (siad->incthresh - tp->snd_cwnd) *
195 siad->curr_num_rtt / (siad->curr_num_rtt-siad->dec_cnt-1));

196 u32 alpha = siad->increase/siad->curr_num_rtt;

197 / / c a l c u l a t e r e d u c t i o n t o rea ch 0 a f t e r Num_RTT−1 r e d u c t i o n s

198 u32 reduce = tp->snd_cwnd/(siad->curr_num_rtt-siad->dec_cnt);

199 if (reduce < alpha) {

200 / / r ed u ce a t l e a s t by a lp h a

201 if (alpha+MIN_CWND < tp->snd_cwnd) {



A.1 tcp_siad.c 149

202 tp->snd_cwnd -= alpha;

203 } else {

204 / / s e t t o MIN_CWND

205 tp->snd_cwnd = MIN_CWND;

206 / / don ’ t do any f u r t h e r d e c r e a s e s

207 siad->min_delay_seen=1;

208 }

209 } else {

210 / / r ed u ce by ’ red u ce ’ i f l a r g e r th a n a lp h a

211 if (reduce+MIN_CWND < tp->snd_cwnd) {

212 tp->snd_cwnd -= reduce;

213 } else {

214 / / s e t t o MIN_CWND

215 tp->snd_cwnd = MIN_CWND;

216 / / don ’ t do any f u r t h e r d e c r e a s e s

217 siad->min_delay_seen=1;

218 }

219 / / r e c a l c u l a t e i n c r e a s e as cwnd was red u ced a g a in

220 / / minimum i n c r e a s e r a t e o f 1 p k t / RTT

221 siad->increase = max(1*siad->curr_num_rtt,

222 (siad->incthresh - tp->snd_cwnd) *
223 siad->curr_num_rtt / (siad->curr_num_rtt-siad->dec_cnt));

224 }

225 } else {

226 / / s e t t o MIN_CWND

227 tp->snd_cwnd = MIN_CWND;

228 / / don ’ t do any f u r t h e r d e c r e a s e s

229 siad->min_delay_seen=1;

230 / / r e c a l c u l a t e i n c r e a s e

231 / / minimum i n c r e a s e r a t e o f 1 p k t / RTT

232 siad->increase = max(1*siad->curr_num_rtt,

233 (siad->incthresh - tp->snd_cwnd) *
234 siad->curr_num_rtt / (siad->curr_num_rtt-siad->dec_cnt));

235 }

236

237 / / r e s e t s s t h r e s h

238 tp->snd_ssthresh = tp->snd_cwnd-1;

239

240 / / don ’ t do any f u r t h e r d e c r e a s e s

241 / / as i n c r e a s e r a t e would need t o be l a r g e r th a n d o u b l i n g p er RTT

242 if (siad->increase > tp->snd_cwnd*siad->curr_num_rtt) {

243 siad->min_delay_seen=1;

244 }

245

246 } else {

247 / / r e g u l a r i n c r e a s e

248

249 / / r e s e t n u m _ r t t d u r i n g one c o n g e s t i o n epoch v i a s o c k e t o p t i o n

250 if (siad->config_num_rtt!=0 &&

251 siad->config_num_rtt!=siad->curr_num_rtt) {

252 siad->curr_num_rtt = siad->config_num_rtt;

253 }

254

255 / / co mp en sa te f o r d e l a y e d ACK by c a l c u l a t i o n a c k e d _ p k t s

256 u32 acked_pkts = bytes_acked/tp->mss_cache;

257 if (bytes_acked%tp->mss_cache || acked_pkts==0)

258 acked_pkts++;



150 Appendix A. Source Code

259 tp->snd_cwnd_cnt += acked_pkts;

260

261 / / same l o g i c as i n t c p _ c o n g _ a v o i d _ a i ( )

262 / / b u t a l s o a d a p t s i n c r e a s e r a t e ( and t h e r e f o r e i n c l u d e s SS )

263

264 / / i n c r e a s e by more th a n one (N) p a c k e t s

265 / / i f s e v e r a l p a c k e t s ack ’ ed and snd_cwnd_cnt>=N∗ n e x t

266 u32 next = max(1, tp->snd_cwnd*siad->curr_num_rtt/siad->increase);

267 if (tp->snd_cwnd_cnt >= next) {

268 int n = tp->snd_cwnd_cnt/next;

269 if (tp->snd_cwnd < tp->snd_cwnd_clamp) {

270 / / a c t u a l number o f i n c r e a s e d p a c k e t s

271 int inc = min(acked_pkts, min(n, tp->snd_cwnd_clamp-tp->snd_cwnd));

272 tp->snd_cwnd+=inc;

273 siad->increase_performed=1;

274

275 / / a d a p t i n c r e a s e r a t e a t t h r e s h o l d s

276 / / or i n Slow S t a r t / Fa s t I n c r e a s e

277 if (tp->snd_cwnd >= tp->snd_ssthresh &&

278 (tp->snd_cwnd-inc) < tp->snd_ssthresh &&

279 siad->incthresh > tp->snd_ssthresh)

280 / / r e c a l c u l a t e i n c r e a s e when e n t e r i n g CA from SS

281 siad->increase = max(1*siad->curr_num_rtt,

282 siad->incthresh - tp->snd_ssthresh);

283 else if ((tp->snd_cwnd >= tp->snd_ssthresh &&

284 (tp->snd_cwnd-inc)<tp->snd_ssthresh &&

285 siad->incthresh <= tp->snd_ssthresh) ||

286 (tp->snd_cwnd >= siad->incthresh &&

287 (tp->snd_cwnd-inc)<siad->incthresh))

288 / / r e s e t i n c r e a s e r a t e t o 1 p k t / RTT

289 / / 1 ) i f we p a ssed s s t h r e s h

290 / / b u t don ’ t have i n f o r m a t i o n on i n c t h r e s h or

291 / / 2 ) p a ssed / rea ch ed i n c t h r e s h

292 siad->increase = 1*siad->curr_num_rtt;

293 else if (tp->snd_cwnd > siad->incthresh &&

294 siad->increase < ((tp->snd_cwnd>>1)*siad->curr_num_rtt))

295 / / S low S t a r t ( below s s t h r e s h )

296 / / or Fa s t I n c r e a s e ( above i n c t h r e s h ) :

297 / / d o u b le i n c r e a s e r a t e p er RTT

298 / / b u t l i m i t maximum i n c r e a s e r a t e t o 1 . 5∗ cwnd p er RTT

299 siad->increase += (inc*siad->curr_num_rtt);

300 else if (tp->snd_cwnd < tp->snd_ssthresh)

301 / / a lwa ys s e t a lp h a t o cwnd i n Slow S t a r t

302 siad->increase = tp->snd_cwnd*siad->curr_num_rtt;

303 }

304 / / d e c r e a s e c o u n t e r ( n o t by i n c b u t n )

305 tp->snd_cwnd_cnt -= n*next;

306 }

307 }

308 }

309 EXPORT_SYMBOL_GPL(tcp_siad_cong_avoid);

310

311 u32 tcp_siad_ssthresh(struct sock *sk) {

312 struct siad *siad = inet_csk_ca(sk);

313 struct tcp_sock *tp = tcp_sk(sk);

314

315 / / R e s e t c o n g e s t i o n c o u n t e r a t d e c r e a s e



A.1 tcp_siad.c 151

316 tp->snd_cwnd_cnt=0;

317

318 / / E s t i m a t e cwnd when c o n g e s t i o n e v e n t o c c u r r e d ( a b o u t one RTT ago )

319 u32 cwnd = tp->snd_cwnd;

320 if (siad->increase_performed==1) {

321 if (siad->increase >= tp->snd_cwnd*siad->curr_num_rtt ||

322 tp->snd_cwnd <= tp->snd_ssthresh) {

323 / / ( s i m p l y ) h a l v e cwnd

324 / / i f i n c r e a s e i s l a r g e r th a n c u r r e n t snd_cwnd or

325 / / i f i n Slow S t a r t

326 cwnd = tp->snd_cwnd>>1;

327 } else if (tp->snd_cwnd > siad->incthresh &&

328 siad->increase == (tp->snd_cwnd>>1)*siad->curr_num_rtt) {

329 / / r ed u ce by 1 / 3 i f i n Fa s t I n c r e a s e

330 / / b u t i n c r e a s e r a t e i s l i m i t e d t o maximum a l r e a d y

331 cwnd -= cwnd/3;

332 } else if (tp->snd_cwnd >= siad->incthresh &&

333 siad->incthresh > tp->snd_ssthresh &&

334 siad->increase == 1*siad->curr_num_rtt) {

335 / / r ed u ce by ( o l d ) a lp h a i f Fa s t I n c r e a s e has been j u s t e n t e r e d

336 / / and t h e r e f o r e a lp h a i s 1

337 cwnd -= (siad->incthresh - tp->snd_ssthresh)/siad->curr_num_rtt;

338 } else if (tp->snd_cwnd > siad->incthresh) {

339 / / minus a lp h a / 2 i n Fa s t I n c r e a s e

340 cwnd -= min(tp->snd_cwnd-MIN_CWND,

341 (siad->increase/siad->curr_num_rtt)>>1);

342 } else {

343 / / minus a lp h a (= number o f i n c r e a s e s d u r i n g l a s t RTT

344 / / s i n c e c o n g e s t i o n e v e n t o c c u r r e d )

345 cwnd -= min(tp->snd_cwnd-MIN_CWND,

346 siad->increase/siad->curr_num_rtt);

347 }

348 }

349

350 / / d e t e c t mo n o to n ic i n c r e a s i n g min d e l a y s and r e s e t

351 if (siad->min_delay < siad->prev_min_delay1 ||

352 siad->min_delay < siad->prev_min_delay2 ||

353 siad->min_delay < siad->prev_min_delay3) {

354 siad->prev_min_delay1=0;

355 siad->prev_min_delay2=0;

356 siad->prev_min_delay3=0;

357 } else if (siad->min_delay > siad->prev_min_delay1) {

358 if (siad->prev_min_delay1 == 0)

359 siad->prev_min_delay1 = siad->min_delay;

360 else if (siad->prev_min_delay2 == 0)

361 siad->prev_min_delay2 = siad->min_delay;

362 else if (siad->min_delay > siad->prev_min_delay2) {

363 if (siad->prev_min_delay3 == 0)

364 siad->prev_min_delay3 = siad->min_delay;

365 else if (siad->min_delay > siad->prev_min_delay3) {

366 / / r e s e t minimum d e l a y and remember as f i r s t v a l u e

367 / / ( r e s e t o t h e r two v a l u e t o z e r o )

368 siad->min_delay = siad->prev_min_delay1;

369 siad->prev_min_delay2=0;

370 siad->prev_min_delay3=0;

371 }

372 }



152 Appendix A. Source Code

373 }

374

375 / / c a l c u l a t e new s s t h r e s h

376 u32 ssthresh = cwnd;

377 if (siad->min_delay!=INT_MAX && siad->curr_delay!=0) {

378 / / d e c r e a s e p r o p o r t i o n a l t o d e l a y r a t i o ( s e e H−TCP )

379 ssthresh = (siad->min_delay * cwnd / siad->curr_delay);

380 } else {

381 / / h a l v e i f no i n f o r m a t i o n

382 ssthresh = cwnd>>1;

383 }

384 if (ssthresh > MIN_CWND+OFFSET) {

385 / / d e c r e a s e by a d d i t i o n a l o f f s e t

386 ssthresh = ssthresh-OFFSET;

387 } else {

388 / / a t l e a s t MIN_CWND

389 ssthresh = MIN_CWND;

390 }

391

392 / / s e t c u r r e n t v a l u e f o r n u m _ r t t

393 / / based on d e f a u l t v a l u e s or c o n f i g u r a t i o n o ver s o c k e t o p t i o n

394 if (siad->config_num_rtt) {

395 / / u se v a l u e o f s o c k e t o p t i o n TCP_SIAD_NUM_RTT

396 siad->curr_num_rtt = siad->config_num_rtt;

397 } else if (siad->default_num_ms && siad->min_delay!=INT_MAX &&

398 siad->curr_delay!=0) {

399 / / c a l c u l a t e a Num_RTT based on c u r r e n t a vera g e RTT and num_ms

400 / / u se minimum o f d e f a u l t v a l u e s ( e i t h e r c a l c u l a t e d Num_RTT or num_ms )

401 u32 tmp = (siad->default_num_ms<<1)/(siad->curr_delay+siad->min_delay);

402 siad->curr_num_rtt = max(siad->default_num_rtt, tmp);

403 } else {

404 / / u se n u m _ r t t i n ca se no v a l i d RTT measurements a re a v a i l a b l e

405 siad->curr_num_rtt = siad->default_num_rtt;

406 }

407

408 / / c a l c u l a t e i n c r e a s e t h r e s h o l d / t a r g e t v a l u e

409 / / a m p l i f y t r e n d t o speed−up c o n v e r g e n c e ( b u t more o s c i l l a t i o n ! )

410 / / t r e n d can be p o s i t i v e or n e g a t i v e

411 int trend = cwnd - siad->prev_max_cwnd;

412 if (siad->prev_max_cwnd < 2*cwnd)

413 / / i n c r e m e n t t h r e s h o l d a t l e a s t new cwnd a f t e r r e d u c t i o n (= s s t h r e s h )

414 siad->incthresh = max(cwnd + trend, ssthresh);

415 else

416 siad->incthresh = ssthresh;

417

418 / / c a l c u l a t e new i n c r e a s e

419 / / w i t h minimum i n c r e a s e r a t e o f 1 p a c k e t p er RTT

420 siad->increase = max(1*siad->curr_num_rtt, siad->incthresh - ssthresh);

421

422 / / remember e s t i m a t e d max v a l u e b e f o r e r e d u c t i o n

423 / / f o r n e x t t r e n d c a l c u l a t i o n

424 siad->prev_max_cwnd = cwnd;

425

426 return ssthresh;

427 }

428 EXPORT_SYMBOL_GPL(tcp_siad_ssthresh);

429



A.1 tcp_siad.c 153

430

431 u32 tcp_siad_undo_cwnd(struct sock *sk) {

432 struct siad *siad = inet_csk_ca(sk);

433 struct tcp_sock *tp = tcp_sk(sk);

434 u32 cwnd = siad->incthresh;

435 siad->incthresh = siad->prev_max_cwnd;

436 siad->min_delay_seen = 1;

437 return cwnd;

438 }

439 EXPORT_SYMBOL_GPL(tcp_siad_undo_cwnd);

440

441 static struct tcp_congestion_ops tcp_siad = {

442 .init = tcp_siad_init,

443 .name = "siad",

444 .ssthresh = tcp_siad_ssthresh,

445 .cong_avoid = tcp_siad_cong_avoid,

446 .cwnd_event = tcp_siad_cwnd_event,

447 .undo_cwnd = tcp_siad_undo_cwnd,

448 };

449

450 static int __init tcp_siad_register(void){

451 return tcp_register_congestion_control(&tcp_siad);

452 }

453

454 static void __exit tcp_siad_unregister(void){

455 tcp_unregister_congestion_control(&tcp_siad);

456 }

457

458 module_init(tcp_siad_register);

459 module_exit(tcp_siad_unregister);

460

461 MODULE_AUTHOR("Mirja Kuehlewind");

462 MODULE_LICENSE("GPL");

463 MODULE_DESCRIPTION("TCP SIAD");

464 MODULE_VERSION("1.0");



154 Appendix A. Source Code

A.2 Patches for sysctl parameters and socket option

Listing A.2: Patch for TCP SIAD incl. sysctl’s and socket option

1 diff -paur linux-3.5.7/include/linux/sysctl.h linux-3.5.7_siad-sysctl/

include/linux/sysctl.h

2 --- linux-3.5.7/include/linux/sysctl.h 2012-10-12 22:48:25.000000000 +0200

3 +++ linux-3.5.7_siad-sysctl/include/linux/sysctl.h 2014-10-21

14:26:13.260651350 +0200

4 @@ -425,6 +425,8 @@ enum

5 NET_TCP_ALLOWED_CONG_CONTROL=123,

6 NET_TCP_MAX_SSTHRESH=124,

7 NET_TCP_FRTO_RESPONSE=125,

8 + NET_TCP_SIAD_NUM_RTT=128,

9 + NET_TCP_SIAD_NUM_MS=129,

10 };

11

12 enum {

13 diff -paur linux-3.5.7/include/linux/tcp.h linux-3.5.7_siad-sysctl/include/

linux/tcp.h

14 --- linux-3.5.7/include/linux/tcp.h 2012-10-12 22:48:25.000000000 +0200

15 +++ linux-3.5.7_siad-sysctl/include/linux/tcp.h 2014-03-31

18:36:50.000000000 +0200

16 @@ -110,6 +110,7 @@ enum {

17 #define TCP_REPAIR_QUEUE 20

18 #define TCP_QUEUE_SEQ 21

19 #define TCP_REPAIR_OPTIONS 22

20 +#define TCP_SIAD_NUM_RTT 23

21

22 struct tcp_repair_opt {

23 __u32 opt_code;

24 diff -paur linux-3.5.7/include/net/tcp.h linux-3.5.7_siad-sysctl/include/

net/tcp.h

25 --- linux-3.5.7/include/net/tcp.h 2012-10-12 22:48:25.000000000 +0200

26 +++ linux-3.5.7_siad-sysctl/include/net/tcp.h 2014-10-21 14:27:02.212652513

+0200

27 @@ -253,6 +253,9 @@ extern int sysctl_tcp_cookie_size;

28 extern int sysctl_tcp_thin_linear_timeouts;

29 extern int sysctl_tcp_thin_dupack;

30 extern int sysctl_tcp_early_retrans;

31 +extern int sysctl_tcp_siad_num_rtt;

32 +extern int sysctl_tcp_siad_num_ms;

33 +

34

35 extern atomic_long_t tcp_memory_allocated;

36 extern struct percpu_counter tcp_sockets_allocated;

37 Only in linux-3.5.7_siad-sysctl/include/net: tcp.h~

38 diff -paur linux-3.5.7/kernel/sysctl_binary.c linux-3.5.7_siad-sysctl/

kernel/sysctl_binary.c

39 --- linux-3.5.7/kernel/sysctl_binary.c 2012-10-12 22:48:25.000000000 +0200

40 +++ linux-3.5.7_siad-sysctl/kernel/sysctl_binary.c 2014-10-21

14:27:33.283653252 +0200

41 @@ -400,6 +400,8 @@ static const struct bin_table bin_net_ip

42 /* NET_TCP_AVAIL_CONG_CONTROL "tcp_available_congestion_control" no

longer used */

43 { CTL_STR, NET_TCP_ALLOWED_CONG_CONTROL, "

tcp_allowed_congestion_control" },



A.2 Patches for sysctl parameters and socket option 155

44 { CTL_INT, NET_TCP_MAX_SSTHRESH, "tcp_max_ssthresh" },

45 + { CTL_INT, NET_TCP_SIAD_NUM_RTT, "tcp_siad_num_rtt" },

46 + { CTL_INT, NET_TCP_SIAD_NUM_MS, "tcp_siad_num_ms" },

47

48 { CTL_INT, NET_IPV4_ICMP_ECHO_IGNORE_ALL, "icmp_echo_ignore_all" },

49 { CTL_INT, NET_IPV4_ICMP_ECHO_IGNORE_BROADCASTS, "

icmp_echo_ignore_broadcasts" },

50 diff -paur linux-3.5.7/net/ipv4/Kconfig linux-3.5.7_siad-sysctl/net/ipv4/

Kconfig

51 --- linux-3.5.7/net/ipv4/Kconfig 2012-10-12 22:48:25.000000000 +0200

52 +++ linux-3.5.7_siad-sysctl/net/ipv4/Kconfig 2014-10-21 14:28:55.673655210

+0200

53 @@ -567,6 +567,19 @@ config TCP_CONG_ILLINOIS

54 For further details see:

55 http://www.ews.uiuc.edu/~shaoliu/tcpillinois/index.html

56

57 +config TCP_CONG_SIAD

58 + tristate "TCP SIAD"

59 + depends on EXPERIMENTAL

60 + default n

61 + ---help---

62 + TCP SIAD is congestion control scheme that dynmaically adapt the

63 + increase step and the decrease factor (to the buffer size based on

64 + RTT measurements). Further a new parameter configures the

65 + congestion event length and therefore the aggressivness.

66 +

67 + For further details see:

68 + http://mirja.kuehlewind.net/siad

69 +

70 choice

71 prompt "Default TCP congestion control"

72 default DEFAULT_CUBIC

73 @@ -595,6 +608,9 @@ choice

74 config DEFAULT_WESTWOOD

75 bool "Westwood" if TCP_CONG_WESTWOOD=y

76

77 + config DEFAULT_SIAD

78 + bool "Siad" if TCP_CONG_SIAD=y

79 +

80 config DEFAULT_RENO

81 bool "Reno"

82

83 @@ -616,6 +632,7 @@ config DEFAULT_TCP_CONG

84 default "vegas" if DEFAULT_VEGAS

85 default "westwood" if DEFAULT_WESTWOOD

86 default "veno" if DEFAULT_VENO

87 + default "siad" if DEFAULT_SIAD

88 default "reno" if DEFAULT_RENO

89 default "cubic"

90

91 diff -paur linux-3.5.7/net/ipv4/Makefile linux-3.5.7_siad-sysctl/net/ipv4/

Makefile

92 --- linux-3.5.7/net/ipv4/Makefile 2012-10-12 22:48:25.000000000 +0200

93 +++ linux-3.5.7_siad-sysctl/net/ipv4/Makefile 2014-10-21 14:09:22.917029849

+0200

94 @@ -48,6 +48,7 @@ obj-$(CONFIG_TCP_CONG_SCALABLE) += tcp_s

95 obj-$(CONFIG_TCP_CONG_LP) += tcp_lp.o



156 Appendix A. Source Code

96 obj-$(CONFIG_TCP_CONG_YEAH) += tcp_yeah.o

97 obj-$(CONFIG_TCP_CONG_ILLINOIS) += tcp_illinois.o

98 +obj-$(CONFIG_TCP_CONG_SIAD) += tcp_siad.o

99 obj-$(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) += tcp_memcontrol.o

100 obj-$(CONFIG_NETLABEL) += cipso_ipv4.o

101

102 diff -paur linux-3.5.7/net/ipv4/sysctl_net_ipv4.c linux-3.5.7_siad-sysctl/

net/ipv4/sysctl_net_ipv4.c

103 --- linux-3.5.7/net/ipv4/sysctl_net_ipv4.c 2012-10-12 22:48:25.000000000

+0200

104 +++ linux-3.5.7_siad-sysctl/net/ipv4/sysctl_net_ipv4.c 2014-10-21

14:30:06.829656901 +0200

105 @@ -687,6 +687,20 @@ static struct ctl_table ipv4_table[] = {

106 .extra2 = &two,

107 },

108 {

109 + .procname = "tcp_siad_num_rtt",

110 + .data = &sysctl_tcp_siad_num_rtt,

111 + .maxlen = sizeof(int),

112 + .mode = 0644,

113 + .proc_handler = proc_dointvec,

114 + },

115 + {

116 + .procname = "tcp_siad_num_ms",

117 + .data = &sysctl_tcp_siad_num_ms,

118 + .maxlen = sizeof(int),

119 + .mode = 0644,

120 + .proc_handler = proc_dointvec,

121 + },

122 + {

123 .procname = "udp_mem",

124 .data = &sysctl_udp_mem,

125 .maxlen = sizeof(sysctl_udp_mem),

126 diff -paur linux-3.5.7/net/ipv4/tcp.c linux-3.5.7_siad-sysctl/net/ipv4/tcp.

c

127 --- linux-3.5.7/net/ipv4/tcp.c 2012-10-12 22:48:25.000000000 +0200

128 +++ linux-3.5.7_siad-sysctl/net/ipv4/tcp.c 2014-10-21 14:42:13.892674181

+0200

129 @@ -2638,6 +2638,15 @@ static int do_tcp_setsockopt(struct sock

130 else

131 icsk->icsk_user_timeout = msecs_to_jiffies(val);

132 break;

133 + case TCP_SIAD_NUM_RTT:

134 + /* Defines the desired distance between to congestion events in number

of RTTs

135 + * if SIAD congestion control is used

136 + */

137 + if (!strcmp(icsk->icsk_ca_ops->name, "siad") && val > 0) {

138 + int *setvalue = (int*) inet_csk_ca(sk);

139 + *setvalue = val;

140 + }

141 + break;

142 default:

143 err = -ENOPROTOOPT;

144 break;

145 diff -paur linux-3.5.7/net/ipv4/tcp_input.c linux-3.5.7_siad-sysctl/net/

ipv4/tcp_input.c



A.2 Patches for sysctl parameters and socket option 157

146 --- linux-3.5.7/net/ipv4/tcp_input.c 2012-10-12 22:48:25.000000000 +0200

147 +++ linux-3.5.7_siad-sysctl/net/ipv4/tcp_input.c 2014-10-21

14:32:16.329659979 +0200

148 @@ -101,6 +101,9 @@ int sysctl_tcp_moderate_rcvbuf __read_mo

149 int sysctl_tcp_abc __read_mostly;

150 int sysctl_tcp_early_retrans __read_mostly = 2;

151

152 +int sysctl_tcp_siad_num_rtt __read_mostly = 0;

153 +int sysctl_tcp_siad_num_ms __read_mostly = 0;

154 +

155 #define FLAG_DATA 0x01 /* Incoming frame contained data. */

156 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */

157 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */

158 Only in linux-3.5.7_siad-sysctl/net/ipv4: tcp_siad.c

Listing A.3: Sysctl’s for disabling delayed ACKs and Slow Start threshold setting

1 diff -paur linux-3.5.7/include/linux/sysctl.h linux-3.5.7_sysctls/include/

linux/sysctl.h

2 --- linux-3.5.7/include/linux/sysctl.h 2012-10-12 22:48:25.000000000 +0200

3 +++ linux-3.5.7_sysctls/include/linux/sysctl.h 2014-10-21

15:14:06.675719641 +0200

4 @@ -425,6 +425,8 @@ enum

5 NET_TCP_ALLOWED_CONG_CONTROL=123,

6 NET_TCP_MAX_SSTHRESH=124,

7 NET_TCP_FRTO_RESPONSE=125,

8 + NET_TCP_DELAYED_ACKS=126,

9 + NET_TCP_INITIAL_SSTHRESH=127,

10 };

11

12 enum {

13 diff -paur linux-3.5.7/include/net/tcp.h linux-3.5.7_sysctls/include/net/

tcp.h

14 --- linux-3.5.7/include/net/tcp.h 2012-10-12 22:48:25.000000000 +0200

15 +++ linux-3.5.7_sysctls/include/net/tcp.h 2014-10-21 15:14:42.758720498

+0200

16 @@ -253,6 +253,9 @@ extern int sysctl_tcp_cookie_size;

17 extern int sysctl_tcp_thin_linear_timeouts;

18 extern int sysctl_tcp_thin_dupack;

19 extern int sysctl_tcp_early_retrans;

20 +extern int sysctl_tcp_delayed_acks;

21 +extern int sysctl_tcp_initial_ssthresh;

22 +

23

24 extern atomic_long_t tcp_memory_allocated;

25 extern struct percpu_counter tcp_sockets_allocated;

26 diff -paur linux-3.5.7/kernel/sysctl_binary.c linux-3.5.7_sysctls/kernel/

sysctl_binary.c

27 --- linux-3.5.7/kernel/sysctl_binary.c 2012-10-12 22:48:25.000000000 +0200

28 +++ linux-3.5.7_sysctls/kernel/sysctl_binary.c 2014-10-21

15:15:18.460721347 +0200

29 @@ -400,6 +400,8 @@ static const struct bin_table bin_net_ip

30 /* NET_TCP_AVAIL_CONG_CONTROL "tcp_available_congestion_control" no

longer used */

31 { CTL_STR, NET_TCP_ALLOWED_CONG_CONTROL, "

tcp_allowed_congestion_control" },

32 { CTL_INT, NET_TCP_MAX_SSTHRESH, "tcp_max_ssthresh" },



158 Appendix A. Source Code

33 + { CTL_INT, NET_TCP_DELAYED_ACKS, "tcp_delayed_acks" },

34 + { CTL_INT, NET_TCP_INITIAL_SSTHRESH, "tcp_initial_ssthresh" },

35

36 { CTL_INT, NET_IPV4_ICMP_ECHO_IGNORE_ALL, "icmp_echo_ignore_all" },

37 { CTL_INT, NET_IPV4_ICMP_ECHO_IGNORE_BROADCASTS, "

icmp_echo_ignore_broadcasts" },

38 diff -paur linux-3.5.7/net/ipv4/sysctl_net_ipv4.c linux-3.5.7_sysctls/net/

ipv4/sysctl_net_ipv4.c

39 --- linux-3.5.7/net/ipv4/sysctl_net_ipv4.c 2012-10-12 22:48:25.000000000

+0200

40 +++ linux-3.5.7_sysctls/net/ipv4/sysctl_net_ipv4.c 2014-10-21

15:16:32.252723100 +0200

41 @@ -687,6 +687,20 @@ static struct ctl_table ipv4_table[] = {

42 .extra2 = &two,

43 },

44 {

45 + .procname = "tcp_delayed_acks",

46 + .data = &sysctl_tcp_delayed_acks,

47 + .maxlen = sizeof(int),

48 + .mode = 0644,

49 + .proc_handler = proc_dointvec,

50 + },

51 + {

52 + .procname = "tcp_initial_ssthresh",

53 + .data = &sysctl_tcp_initial_ssthresh,

54 + .maxlen = sizeof(int),

55 + .mode = 0644,

56 + .proc_handler = proc_dointvec,

57 + },

58 + {

59 .procname = "udp_mem",

60 .data = &sysctl_udp_mem,

61 .maxlen = sizeof(sysctl_udp_mem),

62 Only in linux-3.5.7_sysctls/net/ipv4: sysctl_net_ipv4.c~

63 diff -paur linux-3.5.7/net/ipv4/tcp_input.c linux-3.5.7_sysctls/net/ipv4/

tcp_input.c

64 --- linux-3.5.7/net/ipv4/tcp_input.c 2012-10-12 22:48:25.000000000 +0200

65 +++ linux-3.5.7_sysctls/net/ipv4/tcp_input.c 2014-10-21 15:18:11.793725466

+0200

66 @@ -101,6 +101,9 @@ int sysctl_tcp_moderate_rcvbuf __read_mo

67 int sysctl_tcp_abc __read_mostly;

68 int sysctl_tcp_early_retrans __read_mostly = 2;

69

70 +int sysctl_tcp_delayed_acks __read_mostly = 1;

71 +int sysctl_tcp_initial_ssthresh __read_mostly = 0;

72 +

73 #define FLAG_DATA 0x01 /* Incoming frame contained data. */

74 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */

75 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */

76 @@ -903,7 +906,10 @@ static void tcp_init_metrics(struct sock

77 /* ssthresh may have been reduced unnecessarily during.

78 * 3WHS. Restore it back to its initial default.

79 */

80 - tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;

81 + if (sysctl_tcp_initial_ssthresh > 0)

82 + tp->snd_ssthresh = sysctl_tcp_initial_ssthresh;

83 + else



A.2 Patches for sysctl parameters and socket option 159

84 + tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;

85 }

86 if (dst_metric(dst, RTAX_REORDERING) &&

87 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {

88 @@ -5219,7 +5225,10 @@ static void __tcp_ack_snd_check(struct s

89 tcp_send_ack(sk);

90 } else {

91 /* Else, send delayed ack. */

92 - tcp_send_delayed_ack(sk);

93 + if (sysctl_tcp_delayed_acks)

94 + tcp_send_delayed_ack(sk);

95 + else

96 + tcp_send_ack(sk);

97 }

98 }



160 Appendix A. Source Code

A.3 Variants

Listing A.4: SI_only

1 /∗ S c a l a b l e I n c r e a s e ( S I ) C o n g e s t i o n C o n t r o l A l g o r i t h m

2 Au th o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define NUM_RTT 20

10

11 struct si {

12 u32 curr_num_rtt;

13

14 u32 increase;

15 u32 incthres;

16 };

17

18 static void tcp_si_init(struct sock *sk){

19 struct si *si = inet_csk_ca(sk);

20 struct tcp_sock *tp = tcp_sk(sk);

21

22 if (sysctl_tcp_siad_num_rtt)

23 si->curr_num_rtt = sysctl_tcp_siad_num_rtt;

24 else

25 si->curr_num_rtt = NUM_RTT;

26

27 si->incthres = tp->snd_cwnd;

28 si->increase = tp->snd_cwnd*si->curr_num_rtt;

29 }

30

31 void tcp_si_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) {

32 struct tcp_sock *tp = tcp_sk(sk);

33 struct si *si = inet_csk_ca(sk);

34

35 if (!tcp_is_cwnd_limited(sk, in_flight))

36 return;

37

38 /∗ In " s a f e " area , i n c r e a s e . ∗ /

39 if (tp->snd_cwnd <= tp->snd_ssthresh) {

40 tcp_slow_start(tp);

41 /∗ In d a n g ero u s area , i n c r e a s e s l o w l y . ∗ /

42 } else {

43 tcp_cong_avoid_ai(tp, min(tp->snd_cwnd,

44 tp->snd_cwnd*si->curr_num_rtt/si->increase));

45 }

46 }

47 EXPORT_SYMBOL_GPL(tcp_si_cong_avoid);

48

49 u32 tcp_si_ssthresh(struct sock *sk) {

50 struct si *si = inet_csk_ca(sk);

51 struct tcp_sock *tp = tcp_sk(sk);

52

53 si->incthres = tp->snd_cwnd;



A.3 Variants 161

54 u32 ssthresh = tp->snd_cwnd>>1;

55

56 si->increase = max (1*si->curr_num_rtt, (si->incthres - ssthresh));

57

58 return ssthresh;

59 }

60 EXPORT_SYMBOL_GPL(tcp_si_ssthresh);

61

62 static struct tcp_congestion_ops tcp_si = {

63 .init = tcp_si_init,

64 .name = "si",

65 .ssthresh = tcp_si_ssthresh,

66 .cong_avoid = tcp_si_cong_avoid,

67 };

68

69 static int __init tcp_si_register(void){

70 return tcp_register_congestion_control(&tcp_si);

71 }

72

73 static void __exit tcp_si_unregister(void){

74 tcp_unregister_congestion_control(&tcp_si);

75 }

76

77 module_init(tcp_si_register);

78 module_exit(tcp_si_unregister);

79

80 MODULE_AUTHOR("Mirja Kuehlewind");

81 MODULE_LICENSE("GPL");

82 MODULE_DESCRIPTION("TCP SI");

83 MODULE_VERSION("0.1");

Listing A.5: Fixed Increase

1 /∗ Fixed I n c r e a s e ( f i x e d i ) C o n g e s t i o n C o n t r o l A l g o r i t h m

2 a u t h o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 struct fixedi {

10 u32 increase;

11 };

12

13 static void tcp_fixedi_init(struct sock *sk){

14 struct fixedi *fixedi = inet_csk_ca(sk);

15 struct tcp_sock *tp = tcp_sk(sk);

16

17 / / m i su se s y s c t l f o r c o n f i g u r a b l e i n c r e a s e r a t e

18 if (sysctl_tcp_siad_num_rtt)

19 fixedi->increase = sysctl_tcp_siad_num_rtt;

20 else

21 fixedi->increase = 1;

22 }

23

24 void tcp_fixedi_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) {



162 Appendix A. Source Code

25 struct tcp_sock *tp = tcp_sk(sk);

26 struct fixedi *fixedi = inet_csk_ca(sk);

27

28 if (!tcp_is_cwnd_limited(sk, in_flight))

29 return;

30

31 /∗ In " s a f e " area , i n c r e a s e . ∗ /

32 if (tp->snd_cwnd <= tp->snd_ssthresh) {

33 tcp_slow_start(tp);

34 /∗ In d a n g ero u s area , i n c r e a s e s l o w l y . ∗ /

35 } else {

36 tcp_cong_avoid_ai(tp, min(tp->snd_cwnd, tp->snd_cwnd/fixedi->increase));

37 }

38 }

39 EXPORT_SYMBOL_GPL(tcp_fixedi_cong_avoid);

40

41 static struct tcp_congestion_ops tcp_fixedi = {

42 .init = tcp_fixedi_init,

43 .name = "fixedi",

44 .cong_avoid = tcp_fixedi_cong_avoid,

45 };

46

47 static int __init tcp_fixedi_register(void){

48 return tcp_register_congestion_control(&tcp_fixedi);

49 }

50

51 static void __exit tcp_fixedi_unregister(void){

52 tcp_unregister_congestion_control(&tcp_fixedi);

53 }

54

55 module_init(tcp_fixedi_register);

56 module_exit(tcp_fixedi_unregister);

57

58 MODULE_AUTHOR("Mirja Kuehlewind");

59 MODULE_LICENSE("GPL");

60 MODULE_DESCRIPTION("TCP FIXED INCREASE RATE");

61 MODULE_VERSION("0.1");

Listing A.6: SI_trend

1 /∗ S c a l a b l e I n c r e a s e w i t h Trend ( s i _ t r e n d ) C o n g e s t i o n C o n t r o l A l g o r i t h m

2 a u t h o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define NUM_RTT 20

10

11 struct si_trend {

12 u32 curr_num_rtt;

13

14 u32 prev_max_cwnd;

15 u32 increase;

16 u32 incthresh;

17 };



A.3 Variants 163

18

19 static void tcp_si_trend_init(struct sock *sk) {

20 struct si_trend *si_trend = inet_csk_ca(sk);

21 struct tcp_sock *tp = tcp_sk(sk);

22

23 if (sysctl_tcp_siad_num_rtt)

24 si_trend->curr_num_rtt = sysctl_tcp_siad_num_rtt;

25 else

26 si_trend->curr_num_rtt = NUM_RTT;

27

28 si_trend->prev_max_cwnd = tp->snd_cwnd;

29 si_trend->incthresh = tp->snd_cwnd;

30 si_trend->increase = tp->snd_cwnd*si_trend->curr_num_rtt;

31 }

32

33 void tcp_si_trend_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) {

34 struct tcp_sock *tp = tcp_sk(sk);

35 struct si_trend *si_trend = inet_csk_ca(sk);

36

37 if (!tcp_is_cwnd_limited(sk, in_flight))

38 return;

39

40 / / r e g u l a r i n c r e a s e

41 /∗ In " s a f e " area , i n c r e a s e . ∗ /

42 if (tp->snd_cwnd <= tp->snd_ssthresh) {

43 tcp_slow_start(tp);

44 /∗ In d a n g ero u s area , i n c r e a s e s l o w l y . ∗ /

45 } else {

46 tcp_cong_avoid_ai(tp, min(tp->snd_cwnd,

47 tp->snd_cwnd*si_trend->curr_num_rtt/si_trend->increase));

48 }

49 }

50 EXPORT_SYMBOL_GPL(tcp_si_trend_cong_avoid);

51

52 u32 tcp_si_trend_ssthresh(struct sock *sk) {

53 struct si_trend *si_trend = inet_csk_ca(sk);

54 struct tcp_sock *tp = tcp_sk(sk);

55

56 si_trend->incthresh = tp->snd_cwnd;

57 u32 ssthresh = tp->snd_cwnd>>1;

58

59 int trend = ssthresh - si_trend->prev_max_cwnd;

60 if (si_trend->prev_max_cwnd < 2*ssthresh)

61 / / i n c r e m e n t t h r e s h o l d a t l e a s t new cwnd a f t e r r e d u c t i o n (= s s t h r e s h

)

62 si_trend->incthresh = max(ssthresh + trend, ssthresh);

63 else

64 si_trend->incthresh = ssthresh;

65

66 / / minimum i n c r e a s e o f 1 /NUM_RTT p k t / RTT

67 si_trend->increase = max (1*si_trend->curr_num_rtt, (si_trend->

incthresh - ssthresh));

68

69 si_trend->prev_max_cwnd = tp->snd_cwnd;

70

71 return ssthresh;

72 }



164 Appendix A. Source Code

73 EXPORT_SYMBOL_GPL(tcp_si_trend_ssthresh);

74

75 static struct tcp_congestion_ops tcp_si_trend = {

76 .init = tcp_si_trend_init,

77 .name = "si_trend",

78 .ssthresh = tcp_si_trend_ssthresh,

79 .cong_avoid = tcp_si_trend_cong_avoid,

80 };

81

82 static int __init tcp_si_trend_register(void){

83 return tcp_register_congestion_control(&tcp_si_trend);

84 }

85

86 static void __exit tcp_si_trend_unregister(void){

87 tcp_unregister_congestion_control(&tcp_si_trend);

88 }

89

90 module_init(tcp_si_trend_register);

91 module_exit(tcp_si_trend_unregister);

92

93 MODULE_AUTHOR("Mirja Kuehlewind");

94 MODULE_LICENSE("GPL");

95 MODULE_DESCRIPTION("TCP SI TREND");

96 MODULE_VERSION("0.1");

Listing A.7: AD_only

1 /∗ A d a p t i v e Decrease (AD) C o n g e s t i o n C o n t r o l A l g o r i t h m

2 Au th o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define OFFSET 0

10 #define MIN_CWND 2U

11

12 struct ad {

13 u32 min_delay;

14 u32 prev_delay;

15 u32 curr_delay;

16 };

17

18 static void tcp_ad_init(struct sock *sk) {

19 struct ad *ad = inet_csk_ca(sk);

20 ad->min_delay = INT_MAX;

21 ad->prev_delay = 0;

22 ad->curr_delay = 0;

23 }

24

25 void tcp_ad_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) {

26 struct tcp_sock *tp = tcp_sk(sk);

27 struct ad *ad = inet_csk_ca(sk);

28

29 / / E s t i m a t e c u r r e n t RTT

30 u32 delay;



A.3 Variants 165

31 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) {

32 / / c u r r e n t measurement sample o f r t t based on TSopt

33 delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;

34 } else {

35 / / smoothed RTT based on sampled RTT measurements

36 delay = tp->srtt>>3;

37 }

38

39 / / minimum d e l a y

40 if (ad->min_delay == INT_MAX || delay <= ad->min_delay )

41 / / i n i t i a l i z e t o t a l min d e l a y or s e t t o s m a l l e r v a l u e

42 ad->min_delay = delay;

43 ad->curr_delay = min(delay, ad->prev_delay);

44 ad->prev_delay = delay;

45

46 if (!tcp_is_cwnd_limited(sk, in_flight))

47 return;

48

49 /∗ In " s a f e " area , i n c r e a s e . ∗ /

50 if (tp->snd_cwnd <= tp->snd_ssthresh) {

51 tcp_slow_start(tp);

52 /∗ In d a n g ero u s area , i n c r e a s e s l o w l y . ∗ /

53 } else {

54 tcp_cong_avoid_ai(tp, tp->snd_cwnd);

55 }

56 }

57 EXPORT_SYMBOL_GPL(tcp_ad_cong_avoid);

58

59 u32 tcp_ad_ssthresh(struct sock *sk) {

60

61 struct ad *ad = inet_csk_ca(sk);

62 struct tcp_sock *tp = tcp_sk(sk);

63

64 / / c a l c u l a t e new s s t h r e s h

65 u32 cwnd = tp->snd_cwnd;

66 if (tp->snd_cwnd <= tp->snd_ssthresh)

67 / / a t l e a s t h a l v e a f t e r s low s t a r t ( s e e V . Ja co b so n e Paper )

68 cwnd = tp->snd_cwnd>>1;

69

70 u32 ssthresh;

71 if (ad->min_delay!=INT_MAX && ad->curr_delay!=0)

72 / / d e c r e a s e f a c t o r p r o p o r t i o n a l t o d e l a y r a t i o ( s e e H−TCP )

73 ssthresh = ad->min_delay * cwnd / ad->curr_delay;

74 else

75 ssthresh = cwnd>>1;

76 if (ssthresh > MIN_CWND+OFFSET) {

77 ssthresh = ssthresh-OFFSET; / / d e c r e a s e by a d d i t i o n a l o f f s e t

78 } else {

79 ssthresh = MIN_CWND; / / a t l e a s t MIN_CWND

80 }

81

82 return ssthresh;

83 }

84 EXPORT_SYMBOL_GPL(tcp_ad_ssthresh);

85

86 static struct tcp_congestion_ops tcp_ad = {

87 .init = tcp_ad_init,



166 Appendix A. Source Code

88 .name = "ad",

89 .ssthresh = tcp_ad_ssthresh,

90 .cong_avoid = tcp_ad_cong_avoid,

91 };

92

93 static int __init tcp_ad_register(void) {

94 return tcp_register_congestion_control(&tcp_ad);

95 }

96

97 static void __exit tcp_ad_unregister(void) {

98 tcp_unregister_congestion_control(&tcp_ad);

99 }

100

101 module_init(tcp_ad_register);

102 module_exit(tcp_ad_unregister);

103

104 MODULE_AUTHOR("Mirja Kuehlewind");

105 MODULE_LICENSE("GPL");

106 MODULE_DESCRIPTION("TCP AD");

107 MODULE_VERSION("0.1");

Listing A.8: Fixed Decrease

1 /∗ Fixed Decrease ( f i x e d d ) C o n g e s t i o n C o n t r o l A l g o r i t h m

2 Au th o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define MIN_CWND 2U / /

10 #define FIXED_DECREASE 42

11

12 u32 tcp_fixedd_ssthresh(struct sock *sk) {

13 struct fixedd *fixedd = inet_csk_ca(sk);

14 struct tcp_sock *tp = tcp_sk(sk);

15

16 / / c a l c u l a t e new s s t h r e s h

17 u32 ssthresh;

18 if (tp->snd_cwnd <= tp->snd_ssthresh)

19 / / a t l e a s t h a l v e a f t e r s low s t a r t ( s e e V . Ja co b so n e Paper )

20 ssthresh = tp->snd_cwnd>>1;

21 else if (tp->snd_cwnd > MIN_CWND+FIXED_DECREASE) {

22 / / d e c r e a s e by f i x e d v a l u e (= queue s i z e )

23 ssthresh = tp->snd_cwnd-FIXED_DECREASE;

24 } else {

25 ssthresh = MIN_CWND; / / a t l e a s t MIN_CWND

26 }

27

28 return ssthresh;

29 }

30 EXPORT_SYMBOL_GPL(tcp_fixedd_ssthresh);

31

32 static struct tcp_congestion_ops tcp_fixedd = {

33 .name = "fixedd",

34 .ssthresh = tcp_fixedd_ssthresh,



A.3 Variants 167

35 };

36

37 static int __init tcp_fixedd_register(void){

38 return tcp_register_congestion_control(&tcp_fixedd);

39 }

40

41 static void __exit tcp_fixedd_unregister(void){

42 tcp_unregister_congestion_control(&tcp_fixedd);

43 }

44

45 module_init(tcp_fixedd_register);

46 module_exit(tcp_fixedd_unregister);

47

48 MODULE_AUTHOR("Mirja Kuehlewind");

49 MODULE_LICENSE("GPL");

50 MODULE_DESCRIPTION("TCP FIXED DECREASE");

51 MODULE_VERSION("0.1");

Listing A.9: AD_addDcrease

1 /∗ A d a p t i v e Decrease w i t h A d d i t i o n a l Decrease ( ad_addDecrease ) C o n g e s t i o n

C o n t r o l A l g o r i t h m

2 Au th o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define OFFSET 1

10 #define MIN_CWND 2U

11

12 struct ad_addDecrease {

13 u32 incthresh;

14

15 u32 prev_delay;

16 u32 curr_delay;

17 u32 min_delay;

18 u32 curr_min_delay;

19 u32 dec_cnt;

20 u8 min_delay_seen;

21 };

22

23 static void tcp_ad_addDecrease_init(struct sock *sk){

24 struct ad_addDecrease *ad_addDecrease = inet_csk_ca(sk);

25 struct tcp_sock *tp = tcp_sk(sk);

26

27 ad_addDecrease->incthresh = tp->snd_cwnd;

28

29 ad_addDecrease->curr_delay = 0;

30 ad_addDecrease->min_delay = INT_MAX;

31 ad_addDecrease->curr_min_delay = INT_MAX;

32 ad_addDecrease->prev_delay = INT_MAX;

33 ad_addDecrease->dec_cnt = 0;

34 ad_addDecrease->min_delay_seen=1;

35 }

36



168 Appendix A. Source Code

37 static void tcp_ad_addDecrease_cwnd_event(struct sock *sk, enum

tcp_ca_event event)

38 {

39 struct tcp_sock *tp = tcp_sk(sk);

40 struct ad_addDecrease *ad_addDecrease = inet_csk_ca(sk);

41

42 switch (event) {

43 case CA_EVENT_COMPLETE_CWR:

44 ad_addDecrease->curr_min_delay = INT_MAX;

45 ad_addDecrease->dec_cnt = 0;

46 ad_addDecrease->min_delay_seen = 0;

47 break;

48 default:

49 break;

50 }

51 }

52

53 void tcp_ad_addDecrease_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)

{

54 struct tcp_sock *tp = tcp_sk(sk);

55 struct ad_addDecrease *ad_addDecrease = inet_csk_ca(sk);

56

57 / / E s t i m a t e c u r r e n t RTT

58 u32 delay;

59 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) {

60 / / c u r r e n t measurement sample o f r t t based on TSopt

61 delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;

62 } else {

63 / / smoothed RTT based on sampled RTT measurements

64 delay = tp->srtt>>3;

65 }

66 / / f i l t e r o u t s i n g l e o u t l i e r s

67 ad_addDecrease->curr_delay = min(delay, ad_addDecrease->prev_delay);

68 ad_addDecrease->prev_delay = delay;

69

70 / / minimum d e l a y

71 if (ad_addDecrease->min_delay == INT_MAX || delay <= ad_addDecrease->

min_delay ) {

72 / / i n i t i a l i z e t o t a l min d e l a y or s e t t o s m a l l e r v a l u e

73 ad_addDecrease->min_delay = delay;

74 ad_addDecrease->min_delay_seen=1;

75 ad_addDecrease->curr_min_delay = delay;

76 } else if (delay <= ad_addDecrease->curr_min_delay) {

77 / / u p d a te c u r r e n t minimum

78 ad_addDecrease->curr_min_delay = delay;

79 if (tp->snd_cwnd > tp->snd_ssthresh+1+1) {

80 / / r e s e t t o t a l minimum as same minimum was seen o ver s e v e r a l RTTs

81 ad_addDecrease->min_delay = delay;

82 ad_addDecrease->min_delay_seen=1;

83 }

84 }

85 if (tp->snd_cwnd > ad_addDecrease->incthresh || tp->snd_cwnd < tp->

snd_ssthresh)

86 ad_addDecrease->min_delay_seen=1;

87

88 if (!tcp_is_cwnd_limited(sk, in_flight))

89 return;



A.3 Variants 169

90

91 / / d e c r e a s e / i n c r e a s e cwnd

92 if (tp->snd_cwnd > tp->snd_ssthresh+1+2 && ad_addDecrease->

min_delay_seen==0 && ad_addDecrease->dec_cnt<(ad_addDecrease->

incthresh-tp->snd_ssthresh-1) ) {

93 / / minimum d e l a y n o t seen i n t h e f i r s t two RTTs −> a d d i t i o n a l

d e c r e a s e

94

95 ad_addDecrease->dec_cnt++;

96

97 / / r ed u ce e s t i m a t e d cwnd a t c o n g e s t i o n e v e n t one RTT ago (= s s t h r e s h

)

98 / / based on RTT measurements

99 tp->snd_cwnd = (ad_addDecrease->min_delay * tp->snd_ssthresh /

ad_addDecrease->curr_delay);

100

101 if (tp->snd_cwnd > MIN_CWND+OFFSET) {

102 / / d e c r e a s e f u r t h e r i f l a r g e enough

103

104 / / 1 . d e c r e a s e by a d d i t i o n a l o f f s e t

105 tp->snd_cwnd = tp->snd_cwnd-OFFSET;

106

107 / / 2 . red u ce t o rea ch t o 0 (MIN_CWND) a f t e r Num_RTT−1 r e d u c t i o n s

108 u32 reduce = tp->snd_cwnd/(ad_addDecrease->incthresh-tp->snd_ssthresh

-ad_addDecrease->dec_cnt);

109 if (reduce+MIN_CWND < tp->snd_cwnd) {

110 tp->snd_cwnd -= reduce;

111 } else {

112 / / s e t t o MIN_CWND

113 tp->snd_cwnd = MIN_CWND;

114 ad_addDecrease->min_delay_seen=1; / / don ’ t do any f u r t h e r

d e c r e a s e s

115 }

116 } else {

117 / / s e t t o MIN_CWND

118 tp->snd_cwnd = MIN_CWND;

119 ad_addDecrease->min_delay_seen=1; / / don ’ t do any f u r t h e r d e c r e a s e s

120 }

121

122 / / r e s e t s s t h r e s h

123 tp->snd_ssthresh = tp->snd_cwnd-1;

124 } else {

125 / / r e g u l a r i n c r e a s e

126 /∗ In " s a f e " area , i n c r e a s e . ∗ /

127 if (tp->snd_cwnd <= tp->snd_ssthresh) {

128 tcp_slow_start(tp);

129 /∗ In d a n g ero u s area , i n c r e a s e s l o w l y . ∗ /

130 } else {

131 tcp_cong_avoid_ai(tp, tp->snd_cwnd);

132 }

133 }

134 }

135 EXPORT_SYMBOL_GPL(tcp_ad_addDecrease_cong_avoid);

136

137 u32 tcp_ad_addDecrease_ssthresh(struct sock *sk) {

138 struct ad_addDecrease *ad_addDecrease = inet_csk_ca(sk);

139 struct tcp_sock *tp = tcp_sk(sk);



170 Appendix A. Source Code

140

141 / / c a l c u l a t e new s s t h r e s h

142 u32 cwnd = tp->snd_cwnd;

143 if (tp->snd_cwnd <= tp->snd_ssthresh)

144 cwnd = tp->snd_cwnd>>1;

145

146 u32 ssthresh;

147 if (ad_addDecrease->min_delay!=INT_MAX && ad_addDecrease->curr_delay

!=0)

148 / / d e c r e a s e f a c t o r p r o p o r t i o n a l t o d e l a y r a t i o ( s e e H−TCP )

149 ssthresh = ad_addDecrease->min_delay * cwnd / ad_addDecrease->

curr_delay;

150 else

151 ssthresh = cwnd>>1;

152 if (ssthresh > MIN_CWND+OFFSET) {

153 ssthresh = ssthresh-OFFSET; / / d e c r e a s e by a d d i t i o n a l o f f s e t

154 } else {

155 ssthresh = MIN_CWND; / / a t l e a s t MIN_CWND

156 }

157

158 / / c a l c u l a t e i n c r e a s e t h r e s h o l d / t a r g e t v a l u e

159 ad_addDecrease->incthresh = cwnd;

160

161 return ssthresh;

162 }

163 EXPORT_SYMBOL_GPL(tcp_ad_addDecrease_ssthresh);

164

165 static struct tcp_congestion_ops tcp_ad_addDecrease = {

166 .init = tcp_ad_addDecrease_init,

167 .name = "ad_addD",

168 .ssthresh = tcp_ad_addDecrease_ssthresh,

169 .cong_avoid = tcp_ad_addDecrease_cong_avoid,

170 .cwnd_event = tcp_ad_addDecrease_cwnd_event,

171 };

172

173 static int __init tcp_ad_addDecrease_register(void){

174 return tcp_register_congestion_control(&tcp_ad_addDecrease);

175 }

176

177 static void __exit tcp_ad_addDecrease_unregister(void){

178 tcp_unregister_congestion_control(&tcp_ad_addDecrease);

179 }

180

181 module_init(tcp_ad_addDecrease_register);

182 module_exit(tcp_ad_addDecrease_unregister);

183

184 MODULE_AUTHOR("Mirja Kuehlewind");

185 MODULE_LICENSE("GPL");

186 MODULE_DESCRIPTION("TCP AD ADDITIONAL DECREASE");

187 MODULE_VERSION("0.1");

Listing A.10: SIAD_only

1 /∗ S c a l a b l e I n c r e a s e A d a p t i v e Decrease ( s i a d _ o n l y ) C o n g e s t i o n C o n t r o l

A l g o r i t h m

2 Au th o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /



A.3 Variants 171

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define OFFSET 1

10 #define MIN_CWND 2U

11 #define NUM_RTT 20

12

13 struct siad_only {

14 u32 curr_num_rtt;

15

16 u32 min_delay;

17 u32 prev_delay;

18 u32 curr_delay;

19

20 u32 increase;

21 u32 incthres;

22 };

23

24 static void tcp_siad_only_init(struct sock *sk){

25 struct siad_only *siad_only = inet_csk_ca(sk);

26 struct tcp_sock *tp = tcp_sk(sk);

27

28 if (sysctl_tcp_siad_num_rtt)

29 siad_only->curr_num_rtt = sysctl_tcp_siad_num_rtt;

30 else

31 siad_only->curr_num_rtt = NUM_RTT;

32

33 siad_only->incthres = tp->snd_cwnd;

34 siad_only->increase = tp->snd_cwnd*siad_only->curr_num_rtt;

35

36 siad_only->min_delay = INT_MAX;

37 siad_only->prev_delay = 0;

38 siad_only->curr_delay = 0;

39 }

40

41 void tcp_siad_only_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) {

42 struct tcp_sock *tp = tcp_sk(sk);

43 struct siad_only *siad_only = inet_csk_ca(sk);

44

45 / / E s t i m a t e c u r r e n t RTT

46 u32 delay;

47 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) {

48 / / c u r r e n t measurement sample o f r t t based on TSopt

49 delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;

50 } else {

51 / / smoothed RTT based on sampled RTT measurements

52 delay = tp->srtt>>3;

53 }

54

55 / / minimum d e l a y

56 if (siad_only->min_delay == INT_MAX || delay <= siad_only->min_delay )

57 / / i n i t i a l i z e t o t a l min d e l a y or s e t t o s m a l l e r v a l u e

58 siad_only->min_delay = delay;

59 siad_only->curr_delay = min(delay, siad_only->prev_delay);

60 siad_only->prev_delay = delay;



172 Appendix A. Source Code

61

62 if (!tcp_is_cwnd_limited(sk, in_flight))

63 return;

64

65 /∗ In " s a f e " area , i n c r e a s e . ∗ /

66 if (tp->snd_cwnd <= tp->snd_ssthresh) {

67 tcp_slow_start(tp);

68 /∗ In d a n g ero u s area , i n c r e a s e s l o w l y . ∗ /

69 } else {

70 tcp_cong_avoid_ai(tp, min(tp->snd_cwnd,

71 tp->snd_cwnd*siad_only->curr_num_rtt/siad_only->increase));

72 }

73 }

74 EXPORT_SYMBOL_GPL(tcp_siad_only_cong_avoid);

75

76 u32 tcp_siad_only_ssthresh(struct sock *sk) {

77 struct siad_only *siad_only = inet_csk_ca(sk);

78 struct tcp_sock *tp = tcp_sk(sk);

79

80 / / c a l c u l a t e new s s t h r e s h

81 u32 cwnd = tp->snd_cwnd;

82 if (tp->snd_cwnd <= tp->snd_ssthresh)

83 cwnd = tp->snd_cwnd>>1;

84 else

85 cwnd -= min(tp->snd_cwnd-MIN_CWND, siad_only->increase/siad_only->

curr_num_rtt);

86

87 u32 ssthresh; / / = cwnd ;

88 if (siad_only->min_delay!=INT_MAX && siad_only->curr_delay!=0)

89 / / d e c r e a s e f a c t o r p r o p o r t i o n a l t o d e l a y r a t i o ( s e e H−TCP )

90 ssthresh = siad_only->min_delay * cwnd / siad_only->curr_delay;

91 else

92 ssthresh = cwnd>>1;

93 if (ssthresh > MIN_CWND+OFFSET) {

94 ssthresh = ssthresh-OFFSET; / / d e c r e a s e by a d d i t i o n a l o f f s e t

95 } else {

96 ssthresh = MIN_CWND; / / a t l e a s t MIN_CWND

97 }

98

99 / / c a l c u l a t e i n c r e a s e t h r e s h o l d / t a r g e t v a l u e

100 siad_only->incthres = cwnd;

101 / / minimum i n c r e a s e o f 1 /NUM_RTT p k t / RTT

102 siad_only->increase = max (1*siad_only->curr_num_rtt, (siad_only->

incthres - ssthresh));

103

104 return ssthresh;

105 }

106 EXPORT_SYMBOL_GPL(tcp_siad_only_ssthresh);

107

108 static struct tcp_congestion_ops tcp_siad_only = {

109 .init = tcp_siad_only_init,

110 .name = "siad_only",

111 .ssthresh = tcp_siad_only_ssthresh,

112 .cong_avoid = tcp_siad_only_cong_avoid,

113 };

114

115 static int __init tcp_siad_only_register(void){



A.3 Variants 173

116 return tcp_register_congestion_control(&tcp_siad_only);

117 }

118

119 static void __exit tcp_siad_only_unregister(void){

120 tcp_unregister_congestion_control(&tcp_siad_only);

121 }

122

123 module_init(tcp_siad_only_register);

124 module_exit(tcp_siad_only_unregister);

125

126 MODULE_AUTHOR("Mirja Kuehlewind");

127 MODULE_LICENSE("GPL");

128 MODULE_DESCRIPTION("TCP siad_only");

129 MODULE_VERSION("0.1");

Listing A.11: SIAD_trend

1 /∗ S c a l a b l e I n c r e a s e A d a p t i v e Decrease w i t h Trend ( s i a d _ t r e n d ) C o n g e s t i o n

C o n t r o l A l g o r i t h m

2 Au th o r : Mir ja Kühlewind , Uni S t u t t g a r t

3 ∗ /

4

5 #include <linux/module.h>

6 #include <net/tcp.h>

7 #include <linux/types.h>

8

9 #define OFFSET 1

10 #define MIN_CWND 2U

11 #define NUM_RTT 20

12

13 struct siad_trend {

14 u32 curr_num_rtt;

15

16 u32 min_delay;

17 u32 prev_delay;

18 u32 curr_delay;

19

20 u32 increase;

21 u32 incthresh;

22 u32 prev_max_cwnd;

23 };

24

25 static void tcp_siad_trend_init(struct sock *sk) {

26 struct siad_trend *siad_trend = inet_csk_ca(sk);

27 struct tcp_sock *tp = tcp_sk(sk);

28

29 if (sysctl_tcp_siad_num_rtt)

30 siad_trend->curr_num_rtt = sysctl_tcp_siad_num_rtt;

31 else

32 siad_trend->curr_num_rtt = NUM_RTT;

33

34 siad_trend->prev_max_cwnd = tp->snd_cwnd;

35 siad_trend->incthresh = tp->snd_cwnd;

36 siad_trend->increase = tp->snd_cwnd*siad_trend->curr_num_rtt;

37

38 siad_trend->min_delay = INT_MAX;

39 siad_trend->prev_delay = 0;



174 Appendix A. Source Code

40 siad_trend->curr_delay = 0;

41 }

42

43 void tcp_siad_trend_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) {

44 struct tcp_sock *tp = tcp_sk(sk);

45 struct siad_trend *siad_trend = inet_csk_ca(sk);

46

47 / / E s t i m a t e c u r r e n t RTT

48 u32 delay;

49 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) {

50 / / c u r r e n t measurement sample o f r t t based on TSopt

51 delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;

52 } else {

53 / / smoothed RTT based on sampled RTT measurements

54 delay = tp->srtt>>3;

55 }

56

57 / / minimum d e l a y

58 if (siad_trend->min_delay == INT_MAX || delay <= siad_trend->min_delay

)

59 siad_trend->min_delay = delay; / / i n i t i a l i z e t o t a l min d e l a y or s e t t o

s m a l l e r v a l u e

60

61 siad_trend->curr_delay = min(delay, siad_trend->prev_delay);

62 siad_trend->prev_delay = delay;

63

64 if (!tcp_is_cwnd_limited(sk, in_flight))

65 return;

66

67 / / r e g u l a r i n c r e a s e

68 /∗ In " s a f e " area , i n c r e a s e . ∗ /

69 if (tp->snd_cwnd <= tp->snd_ssthresh) {

70 tcp_slow_start(tp);

71 /∗ In d a n g ero u s area , i n c r e a s e s l o w l y . ∗ /

72 } else {

73 tcp_cong_avoid_ai(tp, min(tp->snd_cwnd,

74 tp->snd_cwnd*siad_trend->curr_num_rtt/siad_trend->increase)

);

75 }

76 }

77 EXPORT_SYMBOL_GPL(tcp_siad_trend_cong_avoid);

78

79 u32 tcp_siad_trend_ssthresh(struct sock *sk) {

80 struct siad_trend *siad_trend = inet_csk_ca(sk);

81 struct tcp_sock *tp = tcp_sk(sk);

82

83 / / c a l c u l a t e new s s t h r e s h

84 u32 cwnd = tp->snd_cwnd;

85 if (tp->snd_cwnd <= tp->snd_ssthresh)

86 cwnd = tp->snd_cwnd>>1; / / a t l e a s t h a l v e a f t e r s low s t a r t ( s e e V .

Ja co b so n e Paper )

87 else

88 cwnd -= min(tp->snd_cwnd-MIN_CWND, siad_trend->increase/siad_trend->

curr_num_rtt);

89

90 u32 ssthresh; / / = cwnd ;

91 if (siad_trend->min_delay!=INT_MAX && siad_trend->curr_delay!=0)



A.3 Variants 175

92 / / d e c r e a s e f a c t o r p r o p o r t i o n a l t o d e l a y r a t i o ( s e e H−TCP )

93 ssthresh = siad_trend->min_delay * cwnd / siad_trend->curr_delay;

94 else

95 ssthresh = cwnd>>1;

96 if (ssthresh > MIN_CWND+OFFSET) {

97 ssthresh = ssthresh-OFFSET; / / d e c r e a s e by a d d i t i o n a l o f f s e t

98 } else {

99 ssthresh = MIN_CWND; / / a t l e a s t MIN_CWND

100 }

101

102 / / c a l c u l a t e i n c r e a s e t h r e s h o l d / t a r g e t v a l u e

103 int trend = ssthresh - siad_trend->prev_max_cwnd;

104 if (siad_trend->prev_max_cwnd < 2*ssthresh)

105 siad_trend->incthresh = max(ssthresh + trend, ssthresh);

106 else

107 siad_trend->incthresh = ssthresh;

108

109 / / minimum i n c r e a s e o f 1 /NUM_RTT p k t / RTT

110 siad_trend->increase = max (1*siad_trend->curr_num_rtt, (siad_trend->

incthresh - ssthresh));

111

112 siad_trend->prev_max_cwnd = cwnd;

113

114 return ssthresh;

115 }

116 EXPORT_SYMBOL_GPL(tcp_siad_trend_ssthresh);

117

118 static struct tcp_congestion_ops tcp_siad_trend = {

119 .init = tcp_siad_trend_init,

120 .name = "siad_trend",

121 .ssthresh = tcp_siad_trend_ssthresh,

122 .cong_avoid = tcp_siad_trend_cong_avoid,

123 };

124

125 static int __init tcp_siad_trend_register(void){

126 return tcp_register_congestion_control(&tcp_siad_trend);

127 }

128

129 static void __exit tcp_siad_trend_unregister(void){

130 tcp_unregister_congestion_control(&tcp_siad_trend);

131 }

132

133 module_init(tcp_siad_trend_register);

134 module_exit(tcp_siad_trend_unregister);

135

136 MODULE_AUTHOR("Mirja Kuehlewind");

137 MODULE_LICENSE("GPL");

138 MODULE_DESCRIPTION("TCP SIAD TREND");

139 MODULE_VERSION("0.1");



176 Appendix A. Source Code



B Overview of Evaluation Scenarios,

Parameters, and Metrics

Table B.1 gives an overview about metrics and requirements and Table B.2 summarizes the
network and traffic parameters used in Chapter 4.

Table B.1: Overview of evaluation scenarios and metrics.

section requirement scenario traffic metrics

4.3.1 adaptivity
scalability

dumbbell 1 greedy flow avg. link utilization
avg. queue fill
min. queue fill
avg. loss rate
avg. loss event distance

4.3.2 robustness dumbbell 1 greedy flow avg. link utilization
4.4.1 capacity sharing dumbbell 2 greedy flows avg. link utilization

avg. queue fill
min. queue fill
avg. loss rate
avg. loss event distance
avg. oscillation size

4.4.2 capacity sharing dumbbell
parking lot

2-10 greedy flows avg. sending rate
fairness index

4.4.3 capacity sharing dumbbell 2 greedy flows
(SIAD/non-SIAD)

avg. sending rate

4.5.1 convergence dumbbell 1 greedy flow
CBR cross traffic

convergence time

4.5.2 convergence dumbbell 2 greedy flows avg. loss rate
avg. convergence time
min. convergence time
max. convergence time

4.6.1 robustness (loss) dumbbell 1 greedy flow avg. link utilization
avg. loss rate

4.6.1 robustness
(AQM)

dumbbell 1 greedy flow avg. link utilization
avg. loss rate
avg. queue fill

177



178
A

ppendix
B

.
O

verview
of

E
valuation

S
cenarios,P

aram
eters,and

M
etrics

Table B.2: Overview of evaluation network parameters and number of greedy flows per scenario.

section bandwidth buffer size [*BDP] base RTT flows comment

4.3.1 1-100 Mbit/s 0.2 - 2.0 100 ms 1 statistical evaluation
4.3.2 (1) 10 Mbit/s 0.5 100 ms / 40 ms / 140 ms 1 RTT changes at 30s and 60s sim. time
4.3.2 (2) 10-30 Mbit/s 1.0 100 ms 1 varying bandwidth
4.3.2 (3) 10 Mbit/s 0.5 100-103 ms 1 varying RTT
4.3.2 (4) 10 Mbit/s 0.5 100 ms 1 5 Mbit/s CBR cross traffic
4.3.2 (5) 10 Mbit/s 0.5 100 ms 1 TSOpt test
4.4.1 (1) 20 Mbit/s 0.5 100 ms 2 delACK and TSOpt tests
4.4.1 (2) 10-100 Mbit/s 0.2 - 2.0 100 ms 2 statistical evaluation
4.4.2 (1) 20 Mbit/s 0.5 100 ms 2 flows with diff. NumRT T values
4.4.2 (2) 100 Mbit/s 0.1 100 ms 2 flows with diff. NumRT T values
4.4.2 (3) 20 Mbit/s 1.0 (150 ms) 100 ms, 200 ms 2 flows with diff. base RTTs
4.4.2 (4) 10 Mbit/s 1.0 60 ms 4 one flow with multiple bottlenecks
4.4.2 (5) 100 Mbit/s 0.1 100 ms 10

4.4.3 10 Mbit/s 1.0 100 ms 2 TCP SIAD vs. NewReno/TCP Cubic
4.5.1 (1) 10 Mit/s / 3 Mit/s / 10 Mit/s 0.5 (10 Mit/s) 100 ms 1 bandwidth changes at 30 s and 60 s
4.5.1 (2) 100 Mit/s / 25 Mit/s / 100 Mit/s 0.5 (100 Mit/s) 100 ms 1 bandwidth changes at 30 s and 60,s
4.5.1 (3) 10 Mit/s 1.0 100 ms 1 on/off 5 Mbit/s CBR cross traffic
4.5.1 (4) 100 Mit/s 0.3, 0.5, 1.0, 1.2 100 ms 1 on/off 50 Mbit/s CBR cross traffic

4.5.2 20 Mit/s 0.2 - 2.0 100 ms 2 2. flow starts later in time
4.6.1 (1) 10 Mit/s 0.3, 0.5, 1.0 100 ms 1 short flow cross traffic
4.6.1 (2) 10 Mit/s 0.5 100 ms 1 additional random loss added

4.6.2 10 Mit/s 1.0, 4.0 100 ms 1 diff. AQM schemes



C Further Results

C.1 Individual Algorithm Components: SIAD_trend_fastinc

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(a) Both flows start simultaneous.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(b) Second flow starts at 4 seconds.

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100
 125

 0  10  20  30  40  50  60

qu
eu

e 
[p

kt
]

time [s]

(c) Second flow starts at 5 seconds.

Figure C.1: Two competing SIAD_trend_fastinc flows with different start times.

179



180 Appendix C. Further Results

C.2 Single Flow and Two Flows Behavior

 0.8
 0.85
 0.9

 0.95
 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

lin
k 

ut
ili

za
tio

n 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0.8
 0.85
 0.9

 0.95
 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

lin
k 

ut
ili

za
tio

n 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(a) Average link utilization.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(b) Average queue fill level.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

qu
eu

e 
[fr

ac
tio

n]

scaling factor [BDP]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(c) Minimum queue fill level.

Figure C.2: Single flow at 20 Mbit/s.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(a) Average loss rate.

 0

 5

 10

 15

 20

 25

 1  10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0

 5

 10

 15

 20

 25

 1  10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(b) Average loss event distance.

Figure C.3: Single flow with queue size of 1.0*BDP



C.2 Single Flow and Two Flows Behavior 181

 0.001

 0.01

 0.1

 1

 10

 100

 10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0.001

 0.01

 0.1

 1

 10

 100

 10  100

lo
ss

 r
at

e 
[%

]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(a) Average loss rate.

 0

 5

 10

 15

 20

 25

 10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

TCP Reno
TCP Cubic

HS-TCP
H-TCP

 0

 5

 10

 15

 20

 25

 10  100

lo
ss

 e
ve

nt
 d

is
ta

nc
e 

[s
]

rate [Mbps]

Scalable TCP
TCP Illinois

TCP SIAD (20)
TCP SIAD (40)

(b) Average loss event distance.

Figure C.4: Two flows with queue size of 1.0*BDP

C.2.1 One of four Competing Flows crossing Multiple Bottlenecks

Table C.1: Flow 0 experiencing multiple bottlenecks with each having a link bandwidth of
20 Mbit/s.

mean rate 0 mean rate 1 mean rate 2 mean rate 3 fairness
TCP NewReno 3.32 (±0.68) 16.66 (±0.68) 16.67 (±0.68) 16.68 (±0.68) 0.6913

TCP Cubic 2.69 (±0.85) 17.30 (±0.85) 17.31 (±0.85) 17.31 (±0.85) 0.6517
H-TCP 3.86 (±0.66) 16.06 (±0.67) 16.13 (±0.66) 16.14 (±0.66) 0.7264

TCP SIAD (20) 1.43 (±0.32) 18.42 (±0.35) 18.42 (±0.35) 18.43 (±0.33) 0.5771
TCP SIAD (40) 2.63 (±0.47) 17.06 (±0.55) 17.13 (±0.52) 17.2 (±0.5) 0.6502

TCP SIAD (10/40) 6.7 (±0.72) 12.25 (±0.92) 12.68 (±0.81) 12.91 (±0.82) 0.9143
TCP SIAD (5/40) 8.62 (±0.76) 9.64 (±0.95) 10.41 (±0.84) 10.94 (±0.75) 0.9919



182 Appendix C. Further Results

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(a) TCP NewReno.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(b) TCP Cubic.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(c) H-TCP.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(d) TCP SIAD (NumRTT =20).

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(e) TCP SIAD (NumRTT =40).

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(f) TCP SIAD (NumRTT =40) but multi-
bottleneck flow with NumRTT =5.

 0

 50

 100

 150

 200

 250

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(g) TCP SIAD (NumRTT =40) but multi-
bottleneck flow with NumRTT =10.

Figure C.5: Four TCP SIAD flows on 10 Mbit/s link and 0.5*BDP buffering with one flow
crossing multiple bottlenecks.



C.2 Single Flow and Two Flows Behavior 183

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(a) TCP NewReno.

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(b) TCP Cubic.

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(c) H-TCP.

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(d) TCP SIAD (NumRTT =20).

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(e) TCP SIAD (NumRTT =40).

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(f) TCP SIAD (NumRTT =40) but multi-
bottleneck flow with NumRTT =5.

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600

cw
nd

 [p
kt

]

time [s]

Multi-bottleneck flow

(g) TCP SIAD (NumRTT =40) but multi-
bottleneck flow with NumRTT =10.

Figure C.6: Four TCP SIAD flows on 20 Mbit/s link and 0.5*BDP buffering with one flow
crossing multiple bottlenecks.



184 Appendix C. Further Results

C.2.2 Two Competing Flows with different RTTs of 100 ms and 200 ms

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(a) TCP NewReno.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(b) TCP Illinois.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(c) TCP Cubic.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(d) Scalable TCP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(e) High Speed TCP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(f) H-TCP.

Figure C.7: Two flows on 20 Mbit/s link and 1.0*BDP buffering with different RTTs of 100 ms
and 200 ms.



C.2 Single Flow and Two Flows Behavior 185

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(a) Both flows with NumRT T = 20.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(b) One TCP SIAD flow with NumRTT = 20
and the other NumRTT = 10.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200

cw
nd

 [p
kt

]

time [s]

(c) Both TCP SIAD flows with NumMS = 5000.

Figure C.8: Two TCP SIAD flows on 20 Mbit/s link and 1.0*BDP buffering with different RTTs
of 100 ms and 200 ms.

C.2.3 Statistiacl Evaluation of Scenario with 10 TCP SIAD Flows

Table C.2: Mean rates of 10 TCP SIAD flows with NumRT T = 20.

10 Mbit/s 20 Mbit/s 50 Mbit/s 100 Mbit/s
0.3*BDP 0.3*BDP 0.3*BDP 0.1*BDP 0.3*BDP 0.5*BDP

0.64 (±0.09) 1.69 (±0.33) 5.36 (±0.91) 10.67 (±1.63) 11.62 (±1.98) 8.76 (±1.61)
0.58 (±0.07) 1.68 (±0.24) 5.28 (±0.93) 9.42 (±1.07) 9.16 (±2.07) 8.44 (±2.4)
0.63 (±0.11) 1.58 (±0.17) 4.92 (±0.99) 9.44 (±1.67) 9.58 (±2.19) 9.95 (±1.9)
0.62 (±0.09) 1.65 (±0.17) 4.7 (±0.8) 10.08 (±1.22) 9.69 (±1.72) 10.13 (±2.49)
0.63 (±0.1) 1.93 (±0.18) 4.55 (±0.77) 9.33 (±1.01) 9.8 (±2.68) 10.03 (±1.37)
0.59 (±0.1) 1.77 (±0.24) 5.25 (±0.77) 10.01 (±1.62) 9.17 (±2.12) 9.93 (±2.23)

0.56 (±0.07) 1.63 (±0.12) 4.24 (±0.54) 9.45 (±1.17) 8.32 (±1.84) 10.79 (±1.9)
0.59 (±0.08) 1.84 (±0.2) 5.19 (±0.82) 10.02 (±1.71) 10.07 (±1.69) 8.3 (±1.61)
0.56 (±0.07) 1.65 (±0.2) 4.73 (±0.89) 9.32 (±1.43) 9.97 (±2.04) 11.69 (±2.82)
0.62 (±0.13) 1.55 (±0.15) 4.86 (±0.64) 11.04 (±1.9) 11.53 (±2.61) 10.45 (±2.18)



186 Appendix C. Further Results

Table C.3: Average queue fill level (q), average link utilization (u), and average loss rate (l) of
10 competing TCP SIAD flows with NumRT T = 20.

10 Mbit/s 20 Mbit/s 50 Mbit/s 100 Mbit/s
0.3*BDP 0.3*BDP 0.3*BDP 0.1*BDP 0.3*BDP 0.5*BDP

q 0.64 0.51 0.44 0.46 0.41 0.42
u 99.29% 98.73% 99.24% 99.55% 99.58% 99.76%
l 7.081% 4.119% 2.797% 1.816% 2.374% 2.987%

Table C.4: Mean loss distance and standard deviation [s] of 10 competing TCP SIAD flows
with NumRT T = 20 and 0.3*BDP of buffering.

10 Mbit/s 20 Mbit/s 50 Mbit/s 100 Mbit/s
total 0.41727 (±0.064093) 0.55132 (±0.11328) 0.72141 (±0.16704) 0.82051 (±0.20832)

flow 1 0.6623 (±0.22516) 0.81382 (±0.36869) 0.9617 (±0.45443) 0.9827 (±0.35799)
flow 2 0.65291 (±0.21955) 0.78287 (±0.3345) 0.94958 (±0.43428) 1.0084 (±0.41703)
flow 3 0.65079 (±0.21726) 0.8014 (±0.37064) 0.97274 (±0.46445) 1.0131 (±0.41105)
flow 4 0.65501 (±0.23017) 0.79808 (±0.37861) 0.9401 (±0.40626) 1.0026 (±0.40563)
flow 5 0.65512 (±0.23426) 0.75252 (±0.30741) 0.98071 (±0.48287) 0.99453 (±0.4027)
flow 6 0.65809 (±0.22775) 0.78227 (±0.34877) 0.96753 (±0.44723) 1.0085 (±0.39865)
flow 7 0.64306 (±0.20709) 0.79674 (±0.34767) 0.97567 (±0.44896) 1.0034 (±0.4026)
flow 8 0.6617 (±0.22544) 0.77469 (±0.31996) 0.97727 (±0.4685) 1.0005 (±0.40353)
flow 9 0.65954 (±0.21593) 0.78981 (±0.35083) 0.95275 (±0.41815) 1.0182 (±0.43484)

flow 10 0.65132 (±0.22405) 0.78562 (±0.33306) 0.98208 (±0.45528) 0.97049 (±0.37646)



C.3 Capacity Sharing with Non-SIAD Flows 187

C.3 Capacity Sharing with Non-SIAD Flows

Table C.5: TCP NewReno cross traffic with delayed ACKs.

Rate Q size NumRT T SIAD mean rate NewReno mean rate

10 Mbit/s

0.5*BDP

10 8.05 Mbit/s 1.75 Mbit/s
20 7.11 Mbit/s 2.82 Mbit/s
30 6.52 Mbit/s 3.43 Mbit/s
40 6.89 Mbit/s 3.05 Mbit/s

1.0*BDP

10 8.25 Mbit/s 1.53 Mbit/s
20 7.47 Mbit/s 2.46 Mbit/s
30 6.99 Mbit/s 3.00 Mbit/s
40 6.53 Mbit/s 3.47 Mbit/s

20 Mbit/s

0.5*BDP

10 17.99 Mbit/s 1.71 Mbit/s
20 17.46 Mbit/s 2.49 Mbit/s
30 16.45 Mbit/s 3.51 Mbit/s
40 14.81 Mbit/s 5.14 Mbit/s

1.0*BDP

10 18.37 Mbit/s 1.34 Mbit/s
20 17.69 Mbit/s 2.18 Mbit/s
30 16.88 Mbit/s 3.08 Mbit/s
40 16.71 Mbit/s 3.29 Mbit/s



188 Appendix C. Further Results

Table C.6: TCP NewReno cross traffic without delayed ACKs.

Rate Q size NumRT T SIAD mean rate NewReno mean rate

10 Mbit/s

0.5*BDP

10 8.31 Mbit/s 1.63 Mbit/s
20 6.91 Mbit/s 3.01 Mbit/s
30 6.12 Mbit/s 3.79 Mbit/s
40 6.11 Mbit/s 3.79 Mbit/s
50 6.12 Mbit/s 3.78 Mbit/s

1.0*BDP

10 8.38 Mbit/s 1.45 Mbit/s
20 7.35 Mbit/s 2.63 Mbit/s
30 6.22 Mbit/s 3.78 Mbit/s
40 5.06 Mbit/s 4.93 Mbit/s
50 4.74 Mbit/s 5.26 Mbit/s

20 Mbit/s

0.5*BDP

10 18.31 Mbit/s 1.65 Mbit/s
20 16.82 Mbit/s 3.12 Mbit/s
30 15.35 Mbit/s 4.57 Mbit/s
40 13.87 Mbit/s 6.00 Mbit/s
50 12.34 Mbit/s 7.49 Mbit/s

1.0*BDP

10 18.29 Mbit/s 1.48 Mbit/s
20 17.32 Mbit/s 2.64 Mbit/s
30 16.22 Mbit/s 3.78 Mbit/s
40 15.08 Mbit/s 4.92 Mbit/s
50 13.81 Mbit/s 6.19 Mbit/s

Table C.7: TCP Cubic cross traffic with delayed ACKs.

Rate Q size NumRT T SIAD mean rate Cubic mean rate

10 Mbit/s

0.5*BDP

10 6.2 Mbit/s 3.69 Mbit/s
20 5.27 Mbit/s 4.73 Mbit/s
30 4.88 Mbit/s 5.12 Mbit/s
40 4.67 Mbit/s 5.33 Mbit/s

1.0*BDP

10 6.44 Mbit/s 3.43 Mbit/s
20 4.85 Mbit/s 5.15 Mbit/s
30 4.98 Mbit/s 5.02 Mbit/s
40 3.77 Mbit/s 6.23 Mbit/s

20 Mbit/s

0.5*BDP

10 16.48 Mbit/s 3.2 Mbit/s
20 14.02 Mbit/s 5.98 Mbit/s
30 11.2 Mbit/s 8.8 Mbit/s
40 11.74 Mbit/s 8.26 Mbit/s

1.0*BDP

10 16.55 Mbit/s 3.06 Mbit/s
20 10.61 Mbit/s 9.3 Mbit/s
30 10.79 Mbit/s 9.21 Mbit/s
40 7.63 Mbit/s 12.37 Mbit/s



C.4 Two Flow Traces and Loss Rates with Starting CBR Traffic 189

C.4 Two Flow Traces and Loss Rates with Starting CBR Traffic

 0

 20

 40

 60

 80

 100

 120

cw
nd

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP NewReno.

 0

 20

 40

 60

 80

 100

 120

cw
nd

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP Cubic.

 0

 20

 40

 60

 80

 100

 120

cw
nd

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) H-TCP.

 0

 50

 100

 150

 200

 250

cw
nd

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP SIAD flow with NumRTT of 20.

Figure C.9: Two flows at link rate 10 Mbit/s with 7 Mbit/s CBR traffic; off at 30 s on at 60 s.



190 Appendix C. Further Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

cw
nd

 0
 100
 200
 300
 400
 500

 0  10  20  30  40  50  60  70  80  90  100
qu

eu
e 

[p
kt

]
time [s]

(a) TCP Cubic.

 0

 100

 200

 300

 400

 500

 600

 700

 800

cw
nd

 0
 100
 200
 300
 400
 500

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) H-TCP.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

cw
nd

 0
 100
 200
 300
 400
 500

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) TCP SIAD with NumRTT of 20.

Figure C.10: Two flows at link rate 100,Mbit/s with 75 Mbit/s CBR traffic; off at 30 s, on at
60 s.



C.4 Two Flow Traces and Loss Rates with Starting CBR Traffic 191

Table C.8: Loss rate when CBR traffic starts on 10 Mbit/s link.

*BDP 1 s 2 s 3 s 4 s 5 s

TCP NewReno

0.3 28.76% 19.36% 13.49% 11.37% 09.95%
0.5 15.43% 8.35% 5.62% 4.26% 3.52%
1.0 32.46% 24.02% 18.23% 13.96% 11.17%
1.2 27.62% 20.81% 14.32% 10.88% 8.8%

TCP Cubic

0.3 28.71% 22.49% 16.89% 13.42% 10.82%
0.5 36.43% 27.22% 20.84% 16.46% 13.73%
1.0 35.21% 26.84% 21.3% 16.69% 14.06%
1.2 33.98% 30.23% 23.95% 19.61% 16.39%

H-TCP

0.3 26.12% 26.02% 19.69% 16.29% 14.1%
0.5 33.2% 27.52% 21.22% 17.64% 14.41%
1.0 09.96% 5.61% 4.18% 3.13% 3.46%
1.2 13.96% 8.79% 5.80% 4.95% 4.42%

TCP SIAD (20)

0.3 33.38% 30.86% 24.71% 20.78% 17.4%
0.5 34.86% 25.58% 20.38% 16.49% 13.45%
1.0 19.08% 11.73% 15.32% 16.52% 15.41%
1.2 8.41% 10.64% 7.59% 5.64% 4.69%

TCP SIAD (40)

0.3 33.29% 27.07% 21.53% 17.55% 14.72%
0.5 34.98% 25.26% 20.79% 16.75% 13.71%
1.0 27.96% 19.53% 14.73% 14.15% 11.66%
1.2 25.92% 20.85% 17.35% 14.3% 11.45%



192 Appendix C. Further Results

Table C.9: Number of losses when CBR traffic starts on 10 Mbit/s link.

*BDP 1 s 2 s 3 s 4 s 5 s

TCP NewReno

0.3 32 41 41 43 43
0.5 30 30 30 30 31
1.0 58 73 73 73 73
1.2 39 54 54 54 54

TCP Cubic

0.3 35 52 52 52 52
0.5 109 132 133 133 133
1.0 53 72 77 77 77
1.2 29 57 60 61 61

H-TCP

0.3 67 105 105 109 109
0.5 62 102 103 103 105
1.0 13 13 14 14 18
1.2 24 25 25 28 29

TCP SIAD (20)

0.3 43 83 87 87 87
0.5 94 109 116 116 116
1.0 40 44 59 80 88
1.2 8 18 18 18 19

TCP SIAD (40)

0.3 65 106 110 110 112
0.5 111 130 144 144 144
1.0 43 50 51 53 53
1.2 35 57 72 74 74



C.5 Evaluation of Convergence Time 193

Table C.10: Number of losses when CBR traffic starts on 100 Mbit/s link.

*BDP 1 s 2 s 3 s 4 s 5 s

TCP NewReno

0.3 21 21 21 21 21
0.5 28 28 28 28 28
1.0 21 38 38 38 38
1.2 0 20 20 20 20

TCP Cubic

0.3 560 1154 1261 1261 1261
0.5 1040 1314 1314 1314 1314
1.0 446 713 821 877 877
1.2 311 613 860 860 860

H-TCP

0.3 0 0 140 146 146
0.5 670 960 990 990 990
1.0 216 438 438 438 438
1.2 182 285 298 298 298

TCP SIAD (20)

0.3 579 1257 1355 1391 1391
0.5 1226 1414 1419 1476 1476
1.0 481 641 665 697 778
1.2 694 1120 1120 1198 1198

TCP SIAD (40)

0.3 691 1137 1198 1229 1229
0.5 546 736 738 751 812
1.0 13 13 13 75 75
1.2 517 905 905 986 986

C.5 Evaluation of Convergence Time

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (40)

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

(a) 95% Average, min, and max convergence time
(NumRTT = 40).

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (40)

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

(b) 80% Average, min, and max convergence time
(NumRTT = 40).

Figure C.11: Average, minimum, and maximum convergence time of two flows with different
start times on 20 Mbit/s link.



194 Appendix C. Further Results

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP Reno.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP Reno

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) TCP Cubic.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP Cubic

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(e) H-TCP.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(f) H-TCP.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(g) TCP SIAD.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0  20  40  60  80  100

cw
nd

time [s]

 0

 25

 50

 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(h) TCP SIAD

Figure C.12: Example traces of two converging flows on 20 Mbit/s link and 0.5*BDP buffering.



C.5 Evaluation of Convergence Time 195

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100

cw
nd

time [s]

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP Cubic.

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100

cw
nd

time [s]

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP Cubic

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100

cw
nd

time [s]

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) TCP SIAD.

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100

cw
nd

time [s]

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP SIAD

Figure C.13: Example traces of two converging flows on 100 Mbit/s link and 0.3*BDP buffer-
ing.

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (20)

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

(a) Convergence time to reach 95% of equal sharing rate
without Slow Start.

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

TCP Reno
TCP Cubic

H-TCP
TCP SIAD (20)

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

 0

 50

 100

 150

 200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

co
nv

er
ge

nc
e 

tim
e 

[s
]

scaling factor [BDP]

(b) Convergence time to reach 80% of equal sharing rate
without Slow Start.

Figure C.14: Average, minimum, and maximum convergence time of two flows on 20 Mbit/s
link with different start times.

Note, in case of reaching 95% of the equal share rate one TCP Cubic simulation run did not
convergence within 1200 s simulation time. This simulation run was not considered in the
evaluation results presented above.



196 Appendix C. Further Results

C.6 Short Flow Cross Traffic

Table C.11: Link utilization and loss rate with one flow and short flow cross traffic using TCP
Cubic on 10 Mbit/s link.

buffer size [*BDP] utilization loss rate

TCP NewReno
0.3 42.02% 3.65%
0.5 55.09% 2.177%
1.0 94.53% 0.51%

TCP Cubic
0.3 77.18% 2.91%
0.5 89.69% 1.425%
1.0 99.19% 0.798%

H-TCP
0.3 91.69% 1.241%
0.5 93.93% 1.157%
1.0 95.4% 1.364%

TCP SIAD (10)
0.3 93.13% 2.816%
0.5 93.64% 3.194%
1.0 95.11% 2.894%

TCP SIAD (20)
0.3 92.43% 1.964%
0.5 91.61% 1.707%
1.0 93.47% 2.218%

TCP SIAD (40)
0.3 91.55% 2.476%
0.5 90.87% 3.056%
1.0 94.19% 2.264%

 0
 50

 100
 150
 200
 250
 300

 0  20  40  60  80  100

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP Reno.

 0
 50

 100
 150
 200
 250
 300
 350

 0  20  40  60  80  100

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(b) TCP SIAD (NumRTT = 20)

Figure C.15: One long-living flow with short flow cross traffic on 10 Mbit/s link and 1.0*BDP
buffering.



C.6 Short Flow Cross Traffic 197

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(a) TCP Cubic.

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(b) H-TCP.

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(c) TCP SIAD (NumRTT = 10).

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

cw
nd

 [p
kt

]

 0
 25
 50
 75

 100

 0  20  40  60  80  100

qu
eu

e 
[p

kt
]

time [s]

(d) TCP SIAD (NumRTT = 40).

Figure C.16: One long-living flow with short flow cross traffic on 10 Mbit/s link and 0.5*BDP
buffering.



198 Appendix C. Further Results

C.6.1 Example Traces with the Use of Different AQM schemes

 0

 50

 100

 150

 200

 250

 300

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) RED with queue size of 1.0*BDP (RED1).

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 0

 25

 50

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) Non-smoothed RED with queue size of
1.0*BDP (NRED1).

 0

 50

 100

 150

 200

 250

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) CoDel.

 0

 50

 100

 150

 200
cw

nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) PIE.

Figure C.17: TCP Reno flow on 10 Mbit/s bottleneck link with different AQM schemes.



C.6 Short Flow Cross Traffic 199

 0

 50

 100

 150

 200

 250

 300

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) RED with queue size of 1.0*BDP (RED1).

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 0

 25

 50

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) Non-smoothed RED with queue size of
1.0*BDP (NRED1).

 0

 50

 100

 150

 200

 250

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) CoDel.

 0

 50

 100

 150

 200

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) PIE.

Figure C.18: TCP Cubic flow on 10 Mbit/s bottleneck link with different AQM schemes.



200 Appendix C. Further Results

 0

 50

 100

 150

 200

 250

 300

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) RED with queue size of 1.0*BDP (RED1).

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 0

 25

 50

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) Non-smoothed RED with queue size of
1.0*BDP (NRED1).

 0

 50

 100

 150

 200

 250

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) CoDel.

 0

 50

 100

 150

 200

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) PIE.

Figure C.19: H-TCP flow on 10 Mbit/s bottleneck link with different AQM schemes.



C.6 Short Flow Cross Traffic 201

 0

 50

 100

 150

 200

 250

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(a) RED with queue size of 1.0*BDP (RED1).

 0
 20
 40
 60
 80

 100
 120
 140

cw
nd

 0
 25
 50
 75

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(b) Non-smoothed RED with queue size of
1.0*BDP (NRED1).

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(c) CoDel.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

cw
nd

 0
 25
 50
 75

 100

 0  10  20  30  40  50  60  70  80  90  100

qu
eu

e 
[p

kt
]

time [s]

(d) PIE.

Figure C.20: Two TCP SIAD flows (NumRT T = 20) on 10 Mbit/s bottleneck link with different
AQM schemes.



202 Appendix C. Further Results



Bibliography

[1] Performance Enhancements in the Next Generation TCP/IP Stack.
http://technet.microsoft.com/en-au/library/bb878127.aspx, Nov 2005.

[2] Bufferbloat. https://www.bufferbloat.net/, December 2014. Website.

[3] IKR Simulation and Emulation Library. http://www.ikr.uni-
stuttgart.de/Content/IKRSimLib/, December 2014. Website.

[4] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/, December 2014. Website.

[5] ns-3: a discrete-event network simulator for Internet systems. http://www.nsnam.org/,
December 2014. Website.

[6] Qemu. http://www.qemu.org/, December 2014. Website.

[7] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock. Host-to-Host Congestion Control
for TCP. Communications Surveys Tutorials, IEEE, 12(3):304–342, 2010.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan. Data center TCP (DCTCP). SIGCOMM Comput. Commun. Rev.,
41(4), Aug. 2010.

[9] M. Allman. TCP Congestion Control with Appropriate Byte Counting (ABC). RFC 3465
(Experimental), IETF, February 2003.

[10] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681 (Proposed
Standard), IETF, Sept. 2009.

[11] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581 (Proposed
Standard), IETF, April 1999. Obsoleted by RFC 5681.

[12] G. Almes, S. Kalidindi, and M. Zekauskas. A One-way Packet Loss Metric for IPPM.
RFC 2680 (Proposed Standard), IETF, Sept. 1999.

[13] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang, L. Eggert, S. Ha,
and I. Rhee. Towards a common TCP evaluation suite. In Proc. PFLDnet, 2008.

[14] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. SIGCOMM Com-

put. Commun. Rev., 34(4):281–292, Aug. 2004.

203



204 BIBLIOGRAPHY

[15] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. REM: Active Queue Management. IEEE

Network, 15:48–53, 2001.

[16] J. Aweya, M. Ouellette, and D. Y. Montuno. A Control Theoretic Approach to Active
Queue Management. Comput. Netw., 36(2-3):203–235, July 2001.

[17] A. Baiocchi, A. P. Castellani, and F. Vacirca. YeAH-TCP: yet another highspeed TCP.
In Proc. PFLDnet, 2007.

[18] F. Baker and G. Fairhurst. IETF Recommendations Regarding Active Queue Manage-
ment. Internet-Draft draft-ietf-aqm-recommendation-08, IETF, Aug. 2014.

[19] D. Bansal and H. Balakrishnan. Binomial congestion control algorithms. In Proc. Twen-

tieth Annual Joint Conference of the IEEE Computer and Communications Societies (IN-

FOCOM), volume 2, pages 631–640 vol.2, 2001.

[20] S. Bauer, D. Clark, and W. Lehr. The Evolution of Internet Congestion. In Proc. 37th Re-

search Conference On Communication, Information and Internet Policy (TPRC), 2009.

[21] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2 edition, 1992.

[22] S. Bhattacharyya, D. Towsley, and J. Kurose. The loss path multiplicity problem in
multicast congestion control. In Proc. Eighteenth Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), volume 2, pages 856–863 vol.2,
Mar 1999.

[23] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122 (Pro-
posed Standard), IETF, Oct. 1989.

[24] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion Avoidance on
a Global Internet. In IEEE Journal on Selected Areas in Communications, volume 13,
1995.

[25] B. Briscoe. Flow rate fairness: dismantling a religion. SIGCOMM Comput. Commun.

Rev., 37(2):63–74, Mar. 2007.

[26] B. Briscoe, M. Kühlewind, and R. Scheffenegger. Accurate ECN Feedback in TCP.
Internet-Draft draft-kuehlewind-tcpm-accurate-ecn-03, IETF, July 2011.

[27] B. Briscoe, M. Kuhlewind, D. Wagner, and K. D. Schepper. ECN the identifier of a new
service model. http://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-3.pdf, March
2014. IETF-89 Proceedings.

[28] B. Briscoe, R. Woundy, and A. Cooper. Congestion Exposure (ConEx) Concepts and
Use Cases. RFC 6789 (Informational), IETF, Dec. 2012.

[29] L. Budzisz, R. Stanojević, A. Schlote, F. Baker, and R. Shorten. On the Fair Coexistence
of Loss- and Delay-based TCP. IEEE/ACM Trans. Netw., 19(6):1811–1824, Dec. 2011.

[30] L. Budzisz, R. Stanojevic, R. Shorten, and F. Baker. A strategy for fair coexistence
of loss and delay-based congestion control algorithms. Communications Letters, IEEE,
13(7):555–557, July 2009.



BIBLIOGRAPHY 205

[31] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang. TCP Westwood: End-to-
end Congestion Control for Wired/Wireless Networks. Wirel. Netw., 8(5):467–479, Sept.
2002.

[32] D. Cavendish, M. Gerla, and S. Mascolo. A control theoretical approach to congestion
control in packet networks. IEEE/ACM Transactions on Networking, 12(5):893–906, Oct
2004.

[33] M. C. Chan and R. Ramjee. TCP/IP Performance over 3G Wireless Links with Rate
and Delay Variation. In Proceedings of the 8th Annual International Conference on

Mobile Computing and Networking (MobiCom), pages 71–82, New York, NY, USA,
2002. ACM.

[34] D.-M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Comput. Netw. ISDN Syst., 17(1):1–14, June 1989.

[35] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing tcp’s initial window. RFC
6928 (Experimental), IETF, April 2013.

[36] corbet. Pluggable congestion avoidance modules. http://lwn.net/Articles/128681/, March
2005.

[37] J. Crowcroft. Pricing the Internet. In IEE Colloquium on Charging for ATM, pages
1/1–1/4, Nov 1996.

[38] J. Crowcroft and P. Oechslin. Differentiated End-to-end Internet Services Using a
Weighted Proportional Fair Sharing TCP. SIGCOMM Comput. Commun. Rev., 28(3):53–
69, July 1998.

[39] N. Dukkipati. Rate Control Protocol (Rcp): Congestion Control to Make Flows Complete

Quickly. PhD thesis, Dept. of Elec. Eng., Stanford University, Stanford, CA, USA, 2008.

[40] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The BLUE Active Queue Manage-
ment Algorithms. IEEE/ACM Trans. Netw., 10(4):513–528, Aug. 2002.

[41] V. Firoiu and X. Zhang. Best Effort Differentiated Services: Trade-off Service Differ-
entiation for Elastic Applications. In Proc. of the IEEE International Conference on

Telecommunications (ICT), 2000.

[42] S. Floyd. RED: Discussions of Setting Parameters.
http://www.icir.org/floyd/REDparameters.txt, November 1997.

[43] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimental),
IETF, December 2003.

[44] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms. RFC 5166
(Informational), IETF, March 2008.

[45] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An Algorithm for Increasing
the Robustness of RED’s Active Queue Management. Technical report, Aug. 2001.
http://www.icir.org/floyd/adaptivered/.



206 BIBLIOGRAPHY

[46] S. Floyd, M. Handley, and J. Padhye. A Comparison of Equation-based and AIMD
Congestion Control. Technical report, ACIRI, 2000. www.icir.org/tfrc/aimd.pdf.

[47] S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP Friendly Rate Control (TFRC):
Protocol Specification. RFC 5348 (Proposed Standard), IETF, September 2008.

[48] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery Algo-
rithm. RFC 2582 (Experimental), IETF, April 1999.

[49] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast Re-
covery Algorithm. RFC 3782 (Proposed Standard), IETF, April 2004.

[50] S. Floyd and V. Jacobson. Random Early Detection gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, pages 397–413, Aug. 1993.

[51] S. Floyd, S. Ratnasamy, and S. Shenker. Modifying TCP’s Congestion Con-
trol for High Speeds. Technical report, ICSI Networking Group, May 2005.
www.icir.org/floyd/papers/hstcp.pdf.

[52] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in the Internet. ACM Queue,
9(11):40:40–40:54, Nov. 2011.

[53] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion control.
In Automatica, volume 35, pages 1969–1985, Dec. 1999.

[54] S. Golestani and K. Sabnani. Fundamental observations on multicast congestion control
in the internet. In Proc. Eighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), volume 2, pages 990–1000, Mar. 1999.

[55] S. Gorinsky, M. Georg, M. Podlesny, and C. Jechlitschek. A Theory of Load Adjustments
and its Implications for Congestion Control. Journal of Internet Engineering, 1:82–93,
2007.

[56] K.-J. Grinnemo and A. Brunstrom. A Survey of TCP-Friendly Congestion Control Mech-
anisms for Multimedia Traffic. Technical Report 2003:1, Karlstad University, Division
for Information Technology, 2003.

[57] Y. Gu, D. Towsley, C. Hollot, and H. Zhang. Congestion Control for Small Buffer High
Speed Networks. In Proc. Twenty-sixth Annual Joint IEEE International Conference on

Computer Communications (INFOCOM), pages 1037–1045, May 2007.

[58] L. Guo and I. Matta. The War Between Mice and Elephants. Technical report, Dept. of
Comput. Sci., Boston Univ., Boston, MA, USA, 2001.

[59] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM

SIGOPS Operating System Review, 42(5):64–74, 2008.

[60] G. Hardin. The Tragedy of the Commons. Science, 162(3859):1243–1248, December
1968.

[61] G. Hasegawa, K. Kurata, and M. Murata. Analysis and improvement of fairness between
TCP Reno and Vegas for deployment of TCP Vegas to the Internet. In International

Conference on Network Protocols (ICNP), pages 177–186. IEEE, 2000.



BIBLIOGRAPHY 207

[62] D. Hayes and G. Armitage. Improved coexistence and loss tolerance for delay based
TCP congestion control. In IEEE 35th Conference on Local Computer Networks (LCN),
pages 24–31, Oct 2010.

[63] D. Hayes, D. Ros, L. Andrew, and S. Floyd. Common TCP Evaluation Suite. Internet-
Draft draft-irtf-iccrg-tcpeval-00, IETF, 2014.

[64] D. A. Hayes and G. Armitage. Revisiting TCP Congestion Control Using Delay Gra-
dients. In 10th International IFIP TC 6 Networking Conference, volume 6641, pages
328–341. Lecture Notes in Computer Science, 2011.

[65] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification to TCP’s
Fast Recovery Algorithm. RFC 6582, IETF, April 2012.

[66] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara. ABE: providing a low-delay service
within best effort. IEEE Network, 15(3):60–69, 2001.

[67] V. Jacobson. Congestion avoidance and control. SIGCOMM Comput. Commun. Rev.,
18(4):314–329, Aug. 1988.

[68] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. RFC
1323 (Proposed Standard), IETF, May 1992.

[69] R. Jain. A Delay-Based Approach for Congestion Avoidance in Interconnected Hetero-
geneous Computer Networks. ACM Computer Communication Review, 19:56–71, 1989.

[70] R. Jain. Congestion control in computer networks: issues and trends. IEEE Network

Magazine, 4:24–30, 1990.

[71] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness and Discrimina-
tion for Resource Allocation in Shared Computer Systems. Technical Report 301, DEC
Research, 1984.

[72] R. Jain and K. Ramakrishnan. Congestion avoidance in computer networks with a con-
nectionless network layer: concepts, goals and methodology. In Proceedings of the Com-

puter Networking Symposium, pages 134–143, 1988.

[73] R. Jesup and Z. Sarker. Congestion Control Requirements For RMCAT. Internet-Draft
draft-ietf-rmcat-cc-requirements-08, IETF, Nov. 2014.

[74] C. Jin, D. Wei, and S. Low. FAST TCP: motivation, architecture, algorithms, perfor-
mance. In Proc. Twenty-third Annual Joint Conference of the IEEE Computer and Com-

munications Societies (INFOCOM), volume 4, pages 2490–2501, 2004.

[75] H. Jung, S. gyu Kim, H. Yeom, S. Kang, and L. Libman. Adaptive delay-based conges-
tion control for high bandwidth-delay product networks. In Proc. Thirtieth Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM), pages
2885–2893, April 2011.

[76] K. Kaneko, T. Fujikawa, Z. Su, and J. Katto. TCP-Fusion A Hybrid Congestion Control
Algorithm for High-speed. In Proc. PFLDnet, 2007.



208 BIBLIOGRAPHY

[77] R. Karp and C. Papadimitriou. Optimization Problems in Congestion Control. In IEEE

Symposium on Foundations of Computer Science, pages 66–74, 2000.

[78] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-Delay
Product Networks. ACM SIGCOMM Computer Communication Review, 32(4):89–102,
2002.

[79] F. Kelly. Charging and rate control for elastic traffic. European Transactions on Telecom-

munications, 8(1):33–37, January-February 1997.

[80] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: Shadow
prices, proportional fairness and stability. Journal of the Operational Research Society,
49(3):237–252, Mar. 1998.

[81] T. Kelly. Scalable tcp: Improving performance in highspeed wide area networks. SIG-

COMM Comput. Commun. Rev., 33(2):83–91, Apr. 2003.

[82] P. Key and L. Massoulié. User policies in a network implementing congestion pricing.
In Proc. Workshop on Internet Service Quality and Economics, 1999.

[83] R. King, R. Baraniuk, and R. Riedi. Tcpafrica: An adaptive and fair rapid increase rule
for scalable tcp. In Proc. Twenty-second Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM), volume 3, pages 1838–1848, 2005.

[84] V. Konda and J. Kaur. Rapid: Shrinking the congestion-control timescale. In Proc.

Twenty-ninth Annual Joint Conference of the IEEE Computer and Communications So-

cieties (INFOCOM), pages 1 –9, apr. 2009.

[85] R. Koodli and R. Ravikanth. One-way Loss Pattern Sample Metrics. RFC 3357 (Infor-
mational), IETF, Aug. 2002.

[86] M. Kühlewind. Adaptive and Scalable Congestion Control wanted! In ISOC Workshop

on Reducing Internet Latency, 2013.

[87] M. Kühlewind and B. Briscoe. Chirping for Congestion Control - Implementation Fea-
sibility. In Proc. PFLDNeT, 2010.

[88] M. Kühlewind, R. Scheffeneger, and B. Briscoe. Problem Statement and Requirements
for a More Accurate ECN Feedback. Internet-Draft draft-ietf-tcpm-accecn-reqs-07,
IETF, July 2014.

[89] N. Kuhn, P. Natarajan, D. Ros, and N. Khademi. AQM Characterization Guidelines.
Internet-Draft draft-kuhn-aqm-eval-guidelines-02, IETF, August 2014.

[90] S. S. Kunniyur and R. Srikant. An Adaptive Virtual Queue (AVQ) Algorithm for Active
Queue Management. IEEE/ACM Trans. Netw., 12(2):286–299, April 2004.

[91] A. Kuzmanovic and E. W. Knightly. TCP-LP: low-priority service via end-point conges-
tion control. IEEE/ACM Trans. Netw., 14:739–752, August 2006.

[92] C. Lefelhocz, B. Lyles, S. Shenker, and L. Zhang. Congestion Control for Best Effort
Service: why we need a new paradigm. IEEE Network, 10:10–19, 1996.



BIBLIOGRAPHY 209

[93] D. Leith and R. Shorten. H-TCP: TCP for high-speed and long-distance networks. In
Proc. PFLDnet, 2004.

[94] D. Leith, R. Shorten, G. McCullagh, J. Heffner, L. Dunn, and F. Baker. Delay-based
AIMD congestion control. In Proc. Fifth International Workshop on Protocols for FAST

Long-Distance Networks (PDLFnet), 2007.

[95] Y.-T. Li. Evaluation of TCP Congestion Control Algorithms on the Windows Vista Plat-
form. http://www.slac.stanford.edu/pubs/slactns/tn04/slac-tn-06-005.pdf.

[96] S. Liu, T. Başar, and R. Srikant. TCP-Illinois: A Loss and Delay-based Congestion Con-
trol Algorithm for High-speed Networks. In Proc. First ACM International Conference

on Performance Evaluation Methodolgies and Tools (valuetools), 2006.

[97] S. Liu, M. Vojnovic, and D. Gunawardena. Competitive and Considerate Congestion
Control for Bulk Data Transfers. In Proc. Fifteenth IEEE International Workshop on

Quality of Service, pages 1–9, June 2007.

[98] D. Loguinov and H. Radha. End-to-End Rate-Based Congestion Control: Convergence
Properties and Scalability Analysis. IEEE/ACM Trans. Netw., 11(4):564–577, 2003.

[99] H. Low, O. Paganini, and J. C. Doyle. Internet congestion control. IEEE Control Systems

Magazine, 22:28–43, 2002.

[100] J. K. MacKie-Mason and H. R. Varian. Pricing the Internet. In Public access to the

Internet, pages 269–314, 1993.

[101] L. Mamatas, T. Harks, and V. Tsaoussidis. Approaches to Congestion Control in Packet
Networks. Journal of Internet Engineering, 1(1):22–33, January 2007.

[102] M. Mathis. Relentless Congestion Control. In Proc. PFLDNeT, 2009.

[103] M. Mathis, N. Dukkipati, and Y. Cheng. Proportional Rate Reduction for TCP. RFC
6937 (Experimental), IETF, May 2013.

[104] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment
Options. RFC 2018 (Proposed Standard), IETF, Oct. 1996.

[105] M. Mathis, J. Semke, and J. Mahdavi. The Rate-Halving Algorithm for TCP Congestion
Control. Internet-Draft draft-mathis-tcp-ratehalving-00, IETF, August 1999.

[106] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm. SIGCOMM Comput. Commun. Rev., 27(3):67–82,
July 1997.

[107] S. Mehrotra, J. Li, S. Sengupta, M. Jain, and S. Sen. Hybrid Window and Rate Based
Congestion Control for Delay Sensitive Applications. In IEEE Global Telecommunica-

tions Conference (GLOBECOM), Dec 2010.

[108] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard), IETF,
Dec 1998.



210 BIBLIOGRAPHY

[109] K. Nichols and V. Jacobson. Controlling Queue Delay. ACM Queue, 5:20–34, May 2012.

[110] C. Nicholson and T. Barth. Akamai Introduces Advanced Technology to
Speed Downloads and Improve Online Video Quality Across its Global Platform.
http://www.akamai.com/html/about/press/releases/2013/press_091313.html, September
2013.

[111] U. of North Carolina. TCP Evaluation Tmix Traces.
http://hosting.riteproject.eu/tcpevaltmixtraces.tgz, 2008.

[112] T. Ott, T. V. Lakshman, and L. Wong. SRED: stabilized RED. In Proc. Eighteenth Annual

Joint Conference of the IEEE Computer and Communications Societies (INFOCOM),
volume 3, pages 1346–1355 vol.3, Mar 1999.

[113] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Reno performance: a
simple model and its empirical validation. IEEE/ACM Trans. Netw., 8(2):133–145, 2000.

[114] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and B. Ver-
Steeg. PIE: A lightweight control scheme to address the bufferbloat problem. In HPSR,
pages 148–155. IEEE, 2013.

[115] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988 (Pro-
posed Standard), IETF, November 2000.

[116] R. Pletka, M. Waldvogel, and S. Mannal. PURPLE: predictive active queue management
utilizing congestion information. In Proc. 28th Annual IEEE International Conference

on Local Computer Networks (LCN), pages 21–30, Oct 2003.

[117] M. Podlesny and S. Gorinsky. RD network services: differentiation through performance
incentives. SIGCOMM Comput. Commun. Rev., 38(4):255–266, Aug. 2008.

[118] O. Pomerantz. Linux Kernel Module Programming Guide. iUniverse, Incorporated,
2000.

[119] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD), Sept.
1981. Updated by RFCs 1122, 3168, 6093, 6528.

[120] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Notifi-
cation (ECN) to IP. RFC 3168 (Proposed Standard), IETF, Sept. 2001.

[121] K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Congestion Avoidance
in Computer Networks. ACM Trans. Comput. Syst., 8(2):158–181, May 1990.

[122] I. Rhee and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variant.
www4.ncsu.edu/ rhee/export/bitcp/cubic-paper.pdf, 2005.

[123] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell. pathChirp: Ef-
ficient Available Bandwidth Estimation for Network Paths. In Passive and Active Mea-

surement Workshop (PAM), 2003.

[124] M. Rio, M. Goutelle, T. Kelly, R. H. Jones, Jean, and Y. T. Li. A Map of the Networking
Code in Linux Kernel 2.4.20. Technical Report DataTAG-2004-1, FP5/IST DataTAG
Project, Mar. 2004.



BIBLIOGRAPHY 211

[125] S. Ryu, C. Rump, and C. Qiao. Advances in internet congestion control. In IEEE Com-

munications Surveys, 2001.

[126] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM

Trans. Comput. Syst., 2(4):277–288, Nov. 1984.

[127] Z. Sarker, V. Singh, X. Zhu, and M. Ramalho. Test Cases for Evaluating RMCAT Pro-
posals. Internet-Draft draft-ietf-rmcat-eval-test-00, IETF, August 2014.

[128] P. Sarolahti and A. Kuznetsov. Congestion Control in Linux TCP. In Proc. of the

FREENIX Track: USENIX Annual Technical Conference, pages 49–62, 2002.

[129] R. Scheffenegger, M. Kuehlewind, and B. Trammell. Additional negotiation in the TCP
Timestamp Option field during the TCP handshake. Internet-Draft draft-scheffenegger-
tcpm-timestamp-negotiation-05, IETF, Oct. 2012.

[130] S. Seth and M. A. Venkatesulu. TCP/IP Architecture, Design and Implementation in

Linux. Wiley-IEEE Computer Society Press, 2008.

[131] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay Background
Transport (LEDBAT). RFC 6817 (Experimental), IETF, December 2012.

[132] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE J. Sel. A. Commun.,
13(7):1176–1188, Sept. 2006.

[133] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in Computer Networks: Re-
shaping the Research Agenda. SIGCOMM Comput. Commun. Rev., 26(2):19–43, Apr.
1996.

[134] H. Shimonishi, T. Hama, and T. Murase. TCP-Adaptive Reno for Improving Efficiency-
Friendliness Tradeoffs of TCP Congestion Control Algorithm. In Proc. IEEE Global

Telecommunications Conference (GLOBECOM), 2005.

[135] R. Shorten and D. J. Leith. On queue provisioning, network efficiency and the Transmis-
sion Control Protocol. IEEE/ACM Trans. Netw., 15(4):866–877, 2007.

[136] V. Singh and J. Ott. Evaluating Congestion Control for Interactive Real-time Media.
Internet-Draft draft-ietf-rmcat-eval-criteria-02, IETF, July 2014.

[137] N. Spring, D. Wetherall, and D. Ely. Robust Explicit Congestion Notification (ECN)
Signaling with Nonces. RFC 3540 (Experimental), IETF, June 2003.

[138] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms. RFC 2001 (Proposed Standard), IETF, January 1997.

[139] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for High-
speed and Long Distance Networks. TechReport MSR-TR-2005-86, Microsoft Research
publications, July 2005.

[140] R. B. Technologies. GENI Exploring Networks of the Future. http://www.geni.net/,
October 2014.



212 BIBLIOGRAPHY

[141] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A Mechanism for Background
Transfers. SIGOPS Oper. Syst. Rev., 36(SI):329–343, Dec. 2002.

[142] R. Wang, M. Valla, M. Sanadidi, B. K. F. Ng, and M. Gerla. Efficiency/Friendliness
Tradeoffs in TCP Westwood. In Proc. Seventh IEEE Symposium on Computers and

Communications, July 2002.

[143] Z. Wang and J. Crowcroft. A New Congestion Control Scheme: Slow Start and Search
(Tri-S). ACM Computer Communication Review, 21:32–43, 1991.

[144] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler. Linux Network Architecture.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[145] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D. Smith. Tmix: A
Tool for Generating Realistic TCP Application Workloads in Ns-2. SIGCOMM Comput.

Commun. Rev., 36(3):65–76, July 2006.

[146] T. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz, and D. Wagner. VMSimInt: A
Network Simulation Tool Supporting Integration of Arbitrary Kernels and Applications.
In Proc. 7th International ICST Conference on Simulation Tools and Techniques (SIMU-

Tools), 2014.

[147] J. Widmer, R. Denda, and M. Mauve. A survey on TCP-friendly congestion control.
IEEE Network, 15(3):28–37, 2001.

[148] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control (BIC) for fast long-
distance networks. In Proc. Twenty-third Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM), volume 4, pages 2514–2524, March 2004.

[149] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu. TCP Congestion Avoidance Algorithm
Identification. In Proc. 31st IEEE International Conference on Distributed Computing

Systems (ICDCS), pages 310–321, 2011.

[150] Y. Yang, M. S. Kim, and S. Lam. Transient behaviors of TCP-friendly congestion con-
trol protocols. In Proc. Twentieth Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), volume 3, pages 1716–1725 vol.3, 2001.




	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation based on Current Research Challenges
	Scalability
	Low Latency Support
	Per-User Congestion Policing

	Congestion Control Requirements
	Limitations of Current Congestion Control
	Congestion Feedback Rate depends on Available Bandwidth
	Bottleneck Link Utilization depends on Buffer Size

	Design Goals
	Outline

	Internet Congestion Control in TCP
	Classification of Congestion Control Schemes
	End-to-End Binary-Feedback Best-Effort Congestion Control
	TCP Congestion Control
	Slow Start and Congestion Avoidance
	Fast Retransmit and Fast Recovery

	Overview of Congestion Control Schemes
	Low Latency (and Delay-based) Congestion Control
	High-Speed (and Loss-based) Congestion Control

	Summary and Discussion

	Network-supported Congestion Avoidance
	Active Queue Management (AQM)
	Explicit Congestion Notification (ECN)
	Services Differentiation to Support Low Latency
	Summary and Discussion

	TCP Congestion Control Implementation in Linux
	TCP Congestion Control Performance Evaluation
	Event-driven Network Simulation Integrating Virtual Machines
	TCP Evaluation Suite
	Traffic Generation
	Topologies and Tests

	Goals and Metrics
	Summary and Discussion


	TCP Scalable Increase Adaptive Decrease (SIAD) Algorithm
	Design Approaches
	Algorithm Design
	Scalable Increase
	Linear Increment Threshold and Trend
	Fast Increase
	Adaptive Decrease
	Additional Decrease

	Implementation
	Maintaining State Information
	Delay Estimation and Filtering
	Linear Increase Calculation

	Summary and Discussion
	Degrees of Freedom in Design
	Implementation Complexity
	Buffer Sizing and Configuration


	Evaluation
	Simulation Setup
	Simulation Scenario and Traffic Generation
	Metrics

	Stability and Convergence of Individual Algorithm Components
	Fixed Feedback Rate and Convergence with the Use of Scalable Increase
	Queue Development and Convergence with the Use of Adaptive Decrease
	Fixed Feedback Rate, Queue Development, and Convergence with the Use of Scalable Increase and Adaptive Decrease
	Conclusion

	Adaptivity and Scalability based on Single-Flow Behavior
	Statistical Evaluation in Steady State
	Assessment of the Vulnerability to Delay Estimation Errors
	Conclusion

	Capacity Sharing with Multiple Competing Flows
	Statistical Evaluation with two Competing Flows
	Intra-Protocol Evaluation incl. different RTT Flows or Multiple Bottlenecks
	Inter-protocol Evaluation with Competing Non-SIAD flows
	Conclusion

	Convergence and Responsiveness to Starting Traffic
	Transient Behavior due to Rate Changes or CBR Cross Traffic
	Evaluation of Convergence Times with Adaptive Cross Traffic
	Conclusion

	Robustness in High-Congestion Traffic Scenarios
	Impact of High Loss Rates
	Influence of the use of AQM schemes
	Conclusion


	Summary and Conclusion
	Source Code
	tcp_siad.c
	Patches for sysctl parameters and socket option
	Variants

	Overview of Evaluation Scenarios, Parameters, and Metrics
	Further Results
	Individual Algorithm Components: SIAD_trend_fastinc
	Single Flow and Two Flows Behavior
	One of four Competing Flows crossing Multiple Bottlenecks
	Two Competing Flows with different RTTs of 100ms and 200ms
	Statistiacl Evaluation of Scenario with 10 TCP SIAD Flows

	Capacity Sharing with Non-SIAD Flows
	Two Flow Traces and Loss Rates with Starting CBR Traffic
	Evaluation of Convergence Time
	Short Flow Cross Traffic
	Example Traces with the Use of Different AQM schemes


	Bibliography

