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ABSTRACT

The general single server system GI/G/1 has been
treated manifold,but only for some special cases
handy formulae are available.Very often exact
calculations are too cumbersome and sophisticated
for practical engineering,as well as upper and
lower bounds generally are too gross approxima-
tions.

Therefore the need was felt to support the
traffic engineer with simple explicit approxi-
mation formulae,based on a 2-moments approxima-
tion.

In this paper such formulae are derived heuris-
tically for the mean waiting time and the proba-
bility of waiting.

The quality of the formulae,which have been
checked by numerous comparisons with exact and
simulation results,is such, that within the most
interesting range of server utilizations from
0.2 to 0.9 the error is less than 20% (typically
< 10%) for all combinations of the arrival and
service processes characterized by the folowing
distribution.types:D,E4,E2,M,H2.

Besides these types,for validation purposes,also
other distribution functions have been investi-
gated,differing in the third and higher moments.

The formulae are also easily applicable with
comparable accuracy to batch arrival systems by
considering equivalent single arrival arrange-
ments.

By known relations,also simple approximations
are provided,e.g. for the variances of the asso-
ciated output processes,the first two moments of
the idle time distribution and the mean length
of a busy period.
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1 INTRODUCTION
1.1 GENERAL REMARKS

In computers and communications systems very
often queueing problems may be represented by
queueing systems of the type GI/G/1 (general in-
put and general service process,single server).
For traffic engineers in particular, the mean
waiting time and the probability of waiting are
of interest for system analysis or design.

In the literature,exact and explicit solutions
for such queueing systems are available only for
certain types of arrival or service processes
(e.g. M/G/1).

Very often these different solutions for diffe-
rent traffic assumptions require the numerical
evaluation of roots of transcendental equations by
the aid of computers.For other types of arrival
or service processes implicit solutions are k
(e.g. based on Lindley's integral equation).But
often these solutions are not straightforward
and/or require a lot of evaluation work.

In many applications of traffic engineering,
either the procedures and tools for these solu-
tions are not available for the engineers in due
time or the amount of evaluation work is not jus-
tified for guick estimates.On the other hand,
known approximation formulae for the delay are
limited strongly in application range (e.g. heavy
traffic approximations).

Therefore, the urgent need was felt to support the
traffic engineer with 'simple explicit but gen 3
approximation formulae for the mean waiting t:
and the probability of waiting.

The restriction to the first two moments of the
interarrival and service time distribution func-
tions{d.f.!s) was near at hand,since e.g.

- in case of Poisson input the mean waiting
time only depends on the first two moments
of the service time 4d.f.

~ 2-moments approximations have been proved
useful e.g. for overflow systems

- the models used for system analysis often
are approximate models themselves,and

~NE A A+ A 8 "
often exact d.f.s are not known at all

In addition,very encouraging results have been
obtained with 2-moments approximations applied to
queues in series [17],considering many different
d.f'!s of service times(see also Chapter 3.3).

1.2 SOME NOTATIONS

Let be
TA = interarrival time between requests
Ty = waiting time of a request (excluding

service)

TH = gservice or holding time of a request
TF = flow time of a request (=T +T.)
‘TIP= duration of an idle period
TBP= duration of a busy period
TD = interdeparture time between requests
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Now, the traffic offered A is
E(TH)

= E(T,)

A .
with E(T,)=h as mean service time and A as arri-
val rate of the requests.

The traffic offered A here is identical with the
server utilization,since there are no losses
(pure waiting system),The queue discipline may
be arbitrary as long as it is independent of the
service times.

=?=Ewﬂ)=%:h, (1.1)

The d.fis of the interarrival and service times
be FA(t) and FH(t),with associated coefficients

of variation

= var(T,) /E(T,) » Sy = Var (Ty) /E(Ty) (1.2)

Ca

1.3 MAIN RESULTS OBTAINED

The key results of this paper are simple explicit
approximation formulae for the mean waiting time
E(Tw) and the probability of waiting W in a

GI1I/G/1 system:

2(1=A) (1-c§)2
N 8 2 .
£ 1
e 3A Ci+c§ ca
B(r) =20 (c2ecdy , (1.3)
2(1-3) 21
-O-Ar— T o2 =
cA+4cH A
and 5 )
1+cA+A'cH ’ 5
1+A(c§—1)+A%(4c§+c2) cy < 1
w=A+(c§-1»A(1—A) (1.4)
4a 2
33 3 2 A=
cA+A (4cA+cH)

The accuracy of these formulae has been tested
by comparisons with a large amount of exact and
simulation results,including in particular sys-
tems with all combinations of D,E4,E2,M,H2 d.fis.

From these results, further traffic characteris-
tics can be obtained (e.g. mean queue lengths),
also for batch input systems.

1.4 CHAPTER SURVEY

In Chapter 2 a short summary is given about ex-
plicit results,existing in the literature and
being of special interest for the heuristic deve-
lopment of the formulae (1.3) and (1.4) in Chap-
ter 3,where also validation results are included.
In Chapter 4 it is shown,that also batch input
systems may be easily calculated approximately
by considering equivalent single arrival systems.

Chapter 5 finally demonstrates that via known
relations also explicit and simple formulae for
further traffic characteristics (e.g. the vari-
ances of the associated output processes) now

are available,

2 EXISTING EXPLICIT RESULTS

The substantial amount of publications relating
to the general gueueing system GI/G/1 demonstrates
the state of the art of gueueing theory,which
nevertheless cannot reveal the gap between exact
mathematical results and gquick engineering appli-
cations.
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Several calculation methods have been developed
to solve GI/G/1 problems,including

- ERLANG's method of phases,see e.g. [1] =[3]

- LINDLEY's integral method [4]

- KENDALL's method of the imbedded Markov
chain [5]

These methods and others have been proved very
powerful to penetrate into the theoretical depth
and to develop many exact results.But for practi=-
cal applications there are severe disadvantages:

1) Some methods require special traffic assump-
tions in order to be applicable

2)Most of the existing exact results include
Laplace transforms and generating functions
as well as roots of partly very sophisticated
equations

3)For each type of a special GI/G/1 system,the
way of obtaining numerical results may be more or
less different

In the essence,simple explicit and exact formulae
for the meanwaiting time and the probability of
waiting exist only for the case of Poisson input
(M/G/1). The well-known formula of POLLACZEK and
KHINTCHINE (1930/32), cf. e.g.[3], 1s

A(1+c§)
E(T,,) = +h , (2.1}

W 2 (1=R)

here only given for the first moment of the wai-
ting time.

The associated probability of waiting simply is
W= A (2.2)

The need for bridging the above mentioned gap
has been recognized manifold and resulted e.g. in

- the application of numerical inversion tech-
niques for Laplace transforms

- fitting observed distributions by step func-
tions (6] or phase-type functions

- tables for queueing systems of different
types,see e.g. (19

-~ the derivation of upper and lower bounds for
the mean waiting times [9) , [1Q, 1.

KINGMAN [7] has derived an upper bound for the
mean waiting time in GI/G/1

2 2
B Allcs/p2)0+cf]

H
E(T,) £

-h , (2.3)
2(1-4)

being a good approximation for heavy traffic

(A=>1) .

Some authors also derived lower bounds or low

traffic approximations ([8],[8)) for single arri-

val GI/G/1 queues.

Also diffusion approximation methods have been

applied 12 ,to obtain heavy traffic formulae

even for transient conditions. The mean virtual

delay for stationary conditions has been approxi-

mated recently in ﬁz] by

2,2
A+CH)_

2(1-a)

Af{c

E(Ty) yirtual = h (2.4)

Unfortunately the upper and lower bounds for
real mean waiting times are not very useful
for the major interesting range of utilizations.
E.g. the heavy traffic formula (2.3) applied to
A=0.7 overestimates the mean waiting times up to
100%.

Therefore, the goal was set to derive purely heu-
ristically an extension of the Pollazcek-Khint-
chine formula,allowing to give gquick answers with
a reasonable accuracy,though being restricted to
the first 2 moments of intersrrival and service
time 4.f.'s.
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3 SYSTEMS WITH SINGLE ARRIVALS

The restriction to single arrivals within this
chapter means that interarrival times TA=O are
not allowed,i.e. FA(0)=O.

3.1 APPROXIMATION Of THE MEAN WAITING TIME
3.1.1 BASIS OF SOLUTION

Preliminary investigations had shown,that a good
starting point for the heuristic approximation
of the mean waiting time was the formula

Al 2,2 BNERS
= ’(C +C )'Q(A:C ' C ) .
2(1-a) * H AT

E(Tw)

containing a refinement function g{(.),which is
derived in the following.

The function g(.) now is restricted by seve-
ral boundary conditions:

a)For c§=1 the Pollaczek-Khintchine formula

must result /~ﬂg(A,1,c§) = 1 (3.2)
b)For A —»1 the heavy traffic formula (2.3)
should re-sult:’_,‘g(1 Cilc )= 1 (3.3)

c)For D/D/1 sytems there is no waiting at all
~9(A,0,0) < @ (3.4)

3.1.2 FORMULA DEVELOPMENT

During formula development it proved useful to
distinguish between two dlgferent ranges for the
refinement function g(.), Ca £1 and cA > 1,respec-
tively.

3.1.2.1 Hypoexponential Interarrival d.f.'s

From separate pre-investigations of D/M/1 systems
a useful explicit approximation turned out to be

A¢h -2(1-4)

BTy = TR e OB (3.5
The combination of all these boundary conditions
(3.2)=(3.5) led to the form

(1—-02)b
_2(1-a)
3A 2 2 2
g(A,ci,cg) = e ascy+ cy (cAé1)
(3.6)

where a and b are free parameters. 2
Regarding many other systems with O<c, <1 (e.g.
E4 and Ez inputs), the best compromise turned out

to be a=1,b=2,which led to the final result (1.3)
for ci £1.

3,1.2.2 Hyperexponential Interarrival d.f.'s

In order to fulfill (3.2) and (3.3) for c2>1 the

form
—(1-3) (CQ 1) ¢
2 2 a.c;+ bec 2
g(A,cp,cy) = e A H (cy=1)
(3.7)

has been selected.Again a,b,c are still free pa-
rameters.

In case of HZ/D/1 systems with c2=2,only a is re-
levant in thls expression.Comparisons with simu-
lation results led to a=1.Using this result and
considering HZ/D/T systems with c§=4,it turned

out,that c=1 is a reasonable choice.
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Finally,H,/M/1 systems comparisons led to b=4,
thus resu%tlng the final result (1.3) for c2>1.

(Throughout this paper H is a hyperexponential
d.£. with 2 alternative %ranches being utilized
equally.)

Naturally, this heuristic procedure was not
straightforward and required revision of a for-
mer parameter selection. Furthermore, the syste~
matic finding of fitting expressions was facili-
tated by defining boundary conditions and utili-~
zing the degrees of freedom within them.

3.1.3 COMPARISONS OF NUMERICAL RESULTS

Fig.3.1 and 3.2 are some examples of comparisons
between the approximate results according to eq.
(1.3) and results of simulation runs.

As can be seen,the coincidence between approxi=-
mate and simulation results is sufficiently good.
General error considerations will be done in 3.3,
also for other d.f.

ETy
h
2.0
D|6]1 -sysTems
5 05,0512
r 1.0
0.5

0 2
Fig. 3.1 Mean Waiting Times for D/G/1 Systems
([simulation results with 95% confidence

intervals)
A Ey
| h
- 10 Hol 6] 1 -svsTems
i cZ = 0,0.5,1,2 1

g =2 //

=V

Fig. 3.2 Mean Waiting Times for HZ/G/1 Systems
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3.2 APPROXIMATION OF THE PROBABILITY OF WAITING
3.2.1 BASIS OF SOLUTION

Similarly as in the previous case for the mean
waiting time,the frame of the formula for the
probability of waiting W had to satisfy different
boundary conditions.As a reasonable base it was
selected

2
W=aA+ (cA-l)'A-(1-A)'f(A,ci,cé) (3.8)

with £(.) as another refinement function.Boundary
conditions are

a)For c§=1 (e.g. Poisson input) it holds W=A
b)For A =>1 also W >1,for A0 also W> O
c)W<A for c§< 1 and W>A for c§> 1 are well-known
general trends.
3.2.2 FORMULA DEVELOPMENT
As previously, hypo- and hyperexponential types
of interarrival d.f.'s have been treated separa-
tely.

3.2.2.1 Hypoexponential Interarrival d.f.'s

Since in D/D/1 W=0 for stationary conditions,it
is necessary that
1

£(2,0,0) = T (3.9)

This led to the general form of

2 2
1+acA+ bcH

2 2, _ 2
f(A,cA,cH) = (cA£1) (3.10)

2 2
1 A+ccA+ch
where a,b,c,d again are free parameters,which in
addition may depend on A.

In the first step,D/G/1 systems have been consi-
dered for the determination of b and d.Separate
pre-investigations for D/M/1,where

1 = W
1nW

holds,led to the approximation

A =- (3.11)

\ .
W = 2R (3.12)
1+A2
Now, (3.12) and (3.10) in (3.8) with cizo and
c§=1 yielded

1+A _  1+b
B c NS <
1+A° 1-A+d
from which b=A was adopted,rendering d=A(1+3) .
Fortunately,this selection of b and d proved to
be useful for other D/G/1 systems,too.

Further considerations of E, and E, arrival pro-

cesses similarly yielded a=1 and c=4A2,which led
to the final result (1.4) for c§é1.

3.2.2.2 Hyperexponential Interarrival d.f.'s

For c2>1 the following form of the refinement
funct%on f(.) was selected:

f(A,ci,cé) = 2 (3.13)
bcz+cc2
a*teCy

The parameters a,b,c again are
dent on A.

possibly depen-
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Considering HZ/D/1 systems,a=4A and b=1+4A2 have
been found to“fit reasonably with simulation re-
sults. 2

Since the influence of cy ©on W was relatively

small,c=A2has been found quickly,which led to the
final result (1.4) for cA>1.

3.2.3 COMPARISONS OF NUMERICAL RESULTS

Fig. 3.3 shows as an example some approximation
results for the probabilities of waiting for
systems with E input pfocesses,compared with
simulation results (small confidence intervals
omitted) .

AW
1.0
i Ey|6]1 -svsTems
8T 2= 0,054 ,//
6T o
T .S
e Mo~
M
" A
24 / A
! 77
0 b5
2 4 6 .8 1.0 A

Fig. .3.3 Waiting Probability for E4/G/1 Systems

3.3 ERROR CONSIDERATIONS AND LIMITS OF APPLICATION
3.3.1 ' STANDARD ' DISTRIBUTION FUNCTIONS

Of special interest for the application of the
approximations 1is their accuracy.Since only

the first two moments of both interarrival and
service time d.f. are considered,certain errors

have been tolerated from the start.

First of all,as a dedicated statement,for all
GI/G/1 systems with arbitrary combinations of
the d.f.'s

D,E4,E2,M,H2(c2=2),Hz(c2=4)

(here called 'standard' types) ,the error in
the mean waiting time is less than ~20% for
traffics offered A = 0.2 up to 0.9.Typically,
the error is less than 10%,cf. fig. 3.1 and

A 9
Do ko

The same error limits are obtained even ifhighgr
variances of H d.f.'s are included,only restric-

ted by the conaition
2 2 £
CA+CH~12,

which seems to be uncritical for practical appli-
cations.

It is obvious that with respect to the mean
waiting time approximation,the associated err-
ors in flow times (waiting + service) are sen-
sibly lower ,especially for lower traffics A.

With respect to the probability of waiting
these error limits can pe maintained,if the
‘poundary' combination D/E,/1 is neglected.




3.3.2 OTHER DISTRIBUTION FUNCTIONS

To judge the influence of the 3'rd and higher
moments,many other types of d.fl!s have been in-
vestigated.

} rety
1.0
.6 Po £y
.4" C2=0-5
.24////// M

0 0.5 1.0 1.5 2.0 ;/E(T)

Fig. 3.4 Three Distribution Functions with Same
First Two Moments

As an example,consider fig. 3.4 with 3 different

d.f.'s F(t), having same mean E(T) and variation

coefficient c.

Compared with the E2 d.f.

types

- a step function,here called P
metrically distributed heights

- a function type DM,describing the sum of a
constant and of a negative~exponentially
distributed part (allowing to adopt all
variation coefficients O%c#1,cf. €73).

Figs 3.5a,b show as an example simulation results
for the mean waiting time and the probability of
waiting for all 9 sytems FA/FH/T,having these 3

are the following

shaving geo-

types EZ'P(D v

bution FA and/or service time distribution FH‘
4 EqQy FalFull
i 2epls
2.4 I 2=0.8 WITH ;A c5=0.5 }
.7[ Tt FA,Fne{Ez,Pm,DM
A
1.8t 1,04 W
o
87 87T A=0.8
A=0.6 TrrTr ey
_4._5________"__
. 6t
6 3§ § 3 §§ A<0.6
T 'g"’I'E'i'!“‘:'I“
AT 4
+ A=0.4 + A=0.4
iy Laz T
271 $«§§'§§§ 27 TipREY
T ; svsTEm I SYSTEM
A N N RN EEEE R
Fig. 3.5a,b Mean Waiting Times E(T and Proba-

bilities of Waiting W ¥or Different
Systems FA/FH/1 (1=E2/E2/1 2= Ez/gm/n

3—'=Ez/DM/1,4=‘P(D /}52/1,5=‘E’CD /PCD /1,
6=Pa>/DM/1,7=DM/EZ/1,8=DM/Pa)/1,
9=DM/DM/ 1)

In addition, the approximation results according
to (1.3) and (1.4) are shown as horizontal lines .

As it can be seen,the errors in the probability
of waiting are very low,whereas the mean waiting
time sometimes is overestimated for these special
types of d.f.
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DM as types of interarrival distri-

There has only one critical case been observed,
where the 2-moments approximation is inefficient
even for estimates.This have been systems with

2
¢, =0 and (degenerated) 2-step d.fl!s for the
service times,allowing also Service times Ty=0.
For such D/P2/1 systems for

A& 1/( 1+c )

no waiting at all occurs,which naturally cannot
be reflected in a 2~moments approximation. For
this very special and degenerated case the appro-
ximations cannot be recommended generally.

4 SYSTEMS WITH BATCH ARRIVALS

In this chapter it is shown that the formulae
for the mean waiting time and the probability of
waiting also can be applied to systems with batch
arrivals by defining equivalent single arrival
systems.

4.1 GENERAL REMARKS

In communications systems,e.g., often the arrivals
at centralized units occur in batches or groups

of arbitrary size K,now being assumed to be an
independent random variable.Let p, (K=0,1,..) be
the probability that at a possible arrival instant
of a batch (characterized by a d.f. for the inter-
arrival times TAB of batches) a batch of size K

arrives.For reasons of generality,let also
'batches' of size XK=0 be included.This is useful
especially in so-called sampled systems,where the
batches only arrive at eguidistantly distributed
clock instants(see e.g. [13]).

Now,by standard calculations,general relations
between characteristic values of the first request
of a batch (indexed by an additional 1) and an
arbitrary member of it can be established.

With respect to the mean waiting time it results

Var (K)

E(T,) = E(Ty,)+(
w w1 X)

+ER-1E ()

This formula can be found e.g. in [ig ,(i3] and (14},

With respect to the probability of waiting, it
can be simply stated that with the probability g
that an arbitrary request is the first request
within its batch

1 1-Pg
97 EXIK0) - EB(K) (4.2)
it holds (zero service times excluded)
W= qew, + (1 - g)1i (4.3)
This means 11-n )
A =
W= 1 =1 -, ) (4.4)

E(K)

The two formulae (4.1) and (4.4) allow to deter-
mine values for single requests,if the correspon-
ding ones of the first of a batch are known,see
4.2 .

4.2 EQUIVALENT SYSTEMS WITH SINGLE ARRIVALS

The waiting time of the first request of a batch
can be calculated by considering an equivalent
system, deflnlng a whole batch (»0) as a 'super-
-request' [2] .Then the new interarrival times are
the times between the arrivals of batches >0, the
service times are the total times to serve &
whole batch (»0).
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If we denote the characteristics of the equiva-
lent. system by an additional asterisk *,then

¥* = .
E(TS) = E(K|X>0) E(Ty) (4.5)
With
var (1}) = E(TH)%Var(K]K>O)+E(KiK>O%Var(TH) (4.6)
it can be shown that the resulting equivalent

(squared) variation coefficient of service time
is

1-p var (K) ]

*2 ] 2

c = o] — 3 - p (4'7)
H £ ) [ E(K) H o

Let now the arrival process be characterized by
AB of batches (of

size K20,i.e. the times between successive
closings of an 'input switch', with mean

E(TAB) and variation cqefflc1ent Cam

- the interarrival times T

- the batch size probabilities Px (K=20)

Since the equivalent system is based on batches

of size >0,it holds

E(T,.)
E(r) = s——BBe (4.8)
; Po
and
®2 _ 2
cx = (1 pOrCAB + Py (4.9)

Summarizing,the equivalent system is character-
ized by

- the mean service time
E(X)
1=

* -
E(T7) = 5 E(Ty) (4.10)

- the same traffic offered as in the original
batch input system

*
E(T.") E(K): E(T,)
At = é* = Ho oo (4.11)
E(TA ) E(TAB)
- and the variation coefficients c§ and cé*

according to (4.9) and (4.7).

These values have to be calculated before ucing
the GI/G/1 approximation formulae for the equi-
valent single arrival system.

4.3 EXAMPLES FOR BATCH ARRIVAL SYSTEMS

Since for M/G/1systems the formulae (1.3) and
(1.4) are exact,all batch arrival systems render=-
ing equivalent M/G/1 systems will be calculated
exactly.

This holds for negative exponentially distributed
interarrival times between batches,of arbitrary
size K20 and distribution (i.e. CAB =1, po arbi-

trary) .If p~>0,this will also result in negative
exponential?y distributed interarrival times bet-
ween batches of size K»Q,with mean increased by

1/(1—p0) (compound Poisson arrival process) .

Combining (4.1) with (1.3) and (4.7) to (4.17),
it results for negative exponentially distributed
interarrival times between batches of arbitrary
size KO

h [ 2 var (K) ) -1 2)
E(T,,) = ———o A(1+c)+ ~z7m=+ E(K) -1} (4.1
W 2 (1-) H E(K)
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For the probability of waiting from (4.4) with
W.=A
1

1—po
E(K)

«(1-3) L (4.13)

Eg. (4.12) is identical with a result of GAVER
{20}, who derived the generating function of the
state probabilities of systems with compound
Poisson arrival processes.

Since the formulae are exact for compound Poi-
sson arrival processes,for validity purposes,

it remains to show examples,where the times
between two batch arrivals are not negative
exponentially distributed.

To select an extreme but nevertheless important
case,equidistantly distributed interarrival times
are selected,i.e. so-called sampled systems.These
systems may be conceived as having an input switch
being closed periodically.

Geometrically distributed batch sizes:

The first example has geometrically distributed
batch sizes,with

¢} K=0 o
b= . (4.14
K {(1*p»pK ' w0
Thus
1 P
E(K) = 525 and Var(X)= p) (4.15a,b)
p (1-p)
and with (4.7)
#2 . (1ep)ec? 4.16
ey = (1-p)ecy + p { )
%2 2

Since po=0,cA =gAB=O.The probability p could be

interpreted as the probability, that the ne*t
single request belongs to the same bgtch (i.e.
p=FA(O) in case of normal single arrival GI/G/1

notation).

The following examples adopt p=1/3,rendering
E(K)=1.5 and Var (K)=0.75,also E(T])=1.5"h.With

(4.1) and (4.4) approximate values for E(T ) and
W can be calculated,here done for different ser-
vice time d.f.'s,see figs 4.1 and 4.2.

A ETY
h

SAMPLED BATCH INPUT
{geometric batches »0,

n'{ E(K)=1.5,Var (K)=.75)

- £
0 2 N 5 8 A

Fig. 4.1 Mean Waiting Times for Sampled Batch
Arrival Systems
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A W

1.0

g+ SAMPLED BATCH INPUT

' (same system as in fig. 4.1)
6+

i N

0o 2 4 6 .8

1>
1.0 A

Fig. 4.2 Probability of Waiting for Sampled Batch
Arrival Systems

Remember,that these results have been obtained
with very low calculation effort.

Poisson distributed batch sizes:

If the single requests arrive in front of the
sample switch with negative exponentially distri-
buted interarrival times,the distribution of the
batch sizes is Poisson,having var{K)/E(K)=1.

For the examples shown in fig 4.3 the clock time
was chosen to be equal to the mean service time
( E(TAB)=E(TH) ) ,rendering A=E(K) and thus deter-

mining the Py values via the Poisson distribution.

Then from (4.9) c:2=po,whereas cﬁz is determined
with(4.7).
A eayp
h
r4.0 SAMPLED BATCH INPUT

(Poisson distr. batche

1
-

.0 G (:)
'

exact curves

L2 0 - approximation

7,
,/ //EZ/ZD

1.0 ///i;lifj;p

/s

o
g
==
' ~ .
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Fig. 4.3 Mean Waiting Times for Sampled Batch
Arrival Systems
(Poisson distributed batch sizes)

The solid lines are exact results,the curves for
M and E, have been calculated with a program

of ngSSCHUH and WIZGALL ﬁﬁ].For constant servi-
ce times it simply holds (LANGENBACH-BELZ (13))
A

E(Tw) = «h (4.17)

2{(1-A4)
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The associated curves for the probabilities of
waiting W nearly have been identical for all 3
d.f.'s with the line W=A,both simulation and
approximate calculation.Therefore they are not
shown here.

5 DETERMINATION OF FURTHER TRAFFIC VALUES

Up to this chapter only the expected waiting time
E(T.) and the probability of waiting W have been
conSidered,both for single arrival and batch
arrival systems.Based on relations for a wide
class of stationary single server systems (MAR-
SHALL [9] , RICE [1¢] ),the approximation formulae
(1.3) and (1.4) can also be used to calculate
approximately further systems characteristics.

5.1 OUTPUT VARIANCE

The following relation between the variance of
the output process and the mean waiting time has
been found in[9]

4

Var (Ty) = Var(TA)+2Var(TH)~=%(1—A)'E(Tw) (5.1

Using coefficients of variation and E(Tp)=E(T,)

c2 = c2 + ZA%CZ - 2A(1«A).§£Eﬂl
D A H h

(5.2}
With E(Tw) according to (1.3) this is a simple
and explicit approximation for the variation
coefficient ¢ of the output or departure process,

This formula specializes for Poisson input to
the well-known form [21

= 1 = A%(1-c? .
cp =1 = A%(-cp), (5.3)

KUHN
cesses in general queueing networks
over (1.3) (see also output figures in

18] has used (5.2) for the output pro-
and_took
fis]).

5.2 IDLE AND BUSY PERIOD

According to an exact formula from [16]

~W) e =1 . (5.4)
(1-W)*E(Typ) == h

also the mean time E(T;p) of an idle period can

_be approximated,using (1.4):

1- A
) = ———==-+h (5.5)

E(T A (1-W)

Ip

The next relation{from [9]) includes the second
moment of the idle period E(T 2),which theref
e
a

ted GSLH% the approximations

o Y

also could be calcul
derived:

2
&

A2 2 1 2 - 2.
A+ cH+( ~A) E(TIP)

*h - (5.6)
2A(1-A) ZE(TIP)

c

E(T,)=

There is also a possibility to approximate the
mean length of a busy period TBP via the rela-
tion [1¢]

1-P

(5.7)

E(Tgp) *E(Trp)

PO
where Py is the absolute probability of an empty
system(also allowing finite.waiting storage) .
For pure waiting systems,as being considered here,
PO=1—A,such that with (5.5)
) = —1 __.n
1 - W

E(TBP (5.8)
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In RIORDAN @Z'eqns (5.4) and (5.7) are derived
without special assumptions concerning the in-=
put process.Thus the equations for the mean
idle period (5.5) and the mean busy period (5.8)
are also applicable to batch input systems with
W according to (4.4). :

6 SUMMARY AND CONCLUSION

For the general single server system GI/G/1

simple 2-moments approximations have been derived

for the mean waiting time and the probability of
waiting.The stimulae have been the gap between
many complex exact results and a quick numerical
calculation for engineering purposes.

With the restriction to 2 moments,the formulae
and application should be guick and simple,natu-
rally thus inducing certain errors.By using ex-
plicit exact formulae as frames and by systemati=-
cally utilizing the freedoms within those,the
heuristic' formulae development could be done
more or less systematically.

The accuracy of the formulae has been investiga-
ted and proved to be very useful within a wide
range of applications or traffic assumptions,

also easily including systems with batch arrivals.

Furthermore it may be noted,that there exist sim-
ple possibilities to include alsco GI/G/1 systems
with probabilistic feedback or even batch service
systems,not being considered here.

In addition,also simple formulae are available
for the variances of the output processes as
well as the mean values for the idle and busy
periods.

The usefulness of the approximation of the mean
waiting times and of the output variances has
been already demonstrated in a companion paper
by KUHN [18] in context with queueing networks.
Also tables including these approximations are
provided (19

It is hoped that these heuristic approximations,
which cannot and will not replace GI/G/1 investi-
gations with detailed reflection of the inter-
.arrival and service time d.f.'s,will be helpful
for the traffic engineer to obtain very quickly
and simply useful estimates for the delay in his
special single server models.
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