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ABSTRACT

The study of traffic flow in modern computer

and communication networks and various other
technical systems leads in many cases to oystems
or subsystems with queues arranged in series or
tandem.

This paper is concerned eop801ally with a sys-
tem of two unlimited gqueues in series, when
Poisson traffic is offered to the first stage
‘and the service times in the two stages are in-
dependent of each other and negative exponen-
tially distributed. The first stage includesone
service-unit,while the second stage is allowed
to be a multiserver queuing system.

In this paper,by pursuing g particular customer
(call or reguest) at his wHik through the whole
system , the fate of a customer in the second
stage is determined as a function of all possi-
ble components of fate in the first stage.
Though the flow times (waltlng plus service
times) of the same customer in the success ive
stages are independent, other values of fate
are not independent (wa;hlnb times or the num-
bers of customers met upon arriving at the
single stages).

Since the fate of a customer in the second
stage is independent of the concrete value (»0)
of his waiting time in the first stage, it is
possible to determine the total waiting time
distribution function by convolution of special
terms.

Finally, also such customers are investigated
which have met & known nunber of predecessors
in the first stage upon their arrival.
Considering all possible paths in a RANDOM WALK
diagram, the queue-length met upon arrival in
the second (single %erver) stage 1s determined,
as well as the expected wailting time or flow

time.
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1. INTRODUCTION
1.1 DESCRIPTION OF THE SYSTEM
The system dealt with consists of two unlimited
queues arranged in series,where the input process
to the first stage is a P01s on nroceuo'w1th mean
arrival ratex.The arriving customers,calls or
requests,shortly referred to as calls first are
served by & single server and then by one sgerver
of the second stage,which is allowed to be a
multiserver system (fig. 1.1).
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Fig.1.1 The system

The service or holding times THi(i:1’2) of a call
in both stages are independent &f each other and
negative exponentially distributed with distri-
bution funections (d.f.)

def - &1
P(T.et) %S Moy = 4- g & (1.1)
and means
o (1.2
E(Rh)x e ha :
The traffics offered A. are defined by
f\g et (1.3)
and the utilizations
Az s
8_{11 “"ﬁi:- = T ‘with ‘/“H”"n'L £ (1.4)

Both stages are assumed to be in statistical equi-

librium,;so that
7b<vmin§pﬁL}ig) (1.5)

Considering a general call at its walk through
the whole system,the following time diagram is
obtained:
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Fig.1.2 General time diagram

T\]1< the random waiting time not including ser-
vice TH ;and (Wl the random flow time in stage 1.
The queue dlnC}LliﬂGS in both stages are, as
long as no d.f.s of the waiting times are con-
cerned,arbitrary,otherwise in order of arrival

(FIFO).
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JACKSON [5] proved the state probabilities of the

single stages of such a system at the same time

f0 be independent of each other.So it is possible

_ +0 guote directly the state probabilities of the
whole svs
Conolderlng a particular call at its walk through
the whole Sjbueh,d further group of traffic cha-
racteristics may be obtained which will be regar-
ded in thﬁ _paper in more detail.

Blg:1.3 represents a graphical survey of some re-
lations between various fate values (pandom vari-
ables) of a certain arbitrary call in such a two

stage system (n1>1 included).
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Fig. 1.3 Relations between fate values

Besides Twi,THigTﬂf and the number of calls met

upon arrival in stage i (ki arr 1)sal:ao the number
]
of calls left behind in the first stage (X, 1y dep 1)

and the departure ssequence of the first stdgc pre-
vi-us to the departure of the considered call
{ ' dep.geq ) are involved.

The arrows conﬁegfwng two values show1nn whether
(separately considered) they are dependent or
not, are labeled with references to the iitera-
ture ( [¥] means basic parts of this paper, see
1.3).

Using
chain, the independence of the
shown by REICH Lh,JQ] for sanglo
BURKE {3} for multiserver systems.
sults from [3] see 2.1).

the concept of reversibility of a Markov
flow times was

server and by
Further re-

NELSON [7] derived by convolution an expression
for the distribution function of the total wait-
ing time in a (more generally structured) systen,
assuming independence of the walting times in the
single stages.

~—

BURKE [?] proved that the waiting times of a call
in the inve%iibgced system with no=1 are depen-
dent. Using the theorem of JACKSON and the vir-
tual delay in stage 2, he showed by eyplicit cal-
culation that the probabilities of waliting
Wj:P(Twﬁ>O) in the f“W5L and second stape are
't independent. ‘ the traffic offered
> 2 1s pure ahwncc tr 1ff;c, the future fate
J 2 call (number X arr of calls mct in tdgc
e ipon arrival the and/Gr waiting time LVD) is
net independent of its previous fgtc in utdLD 1.
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1.3 TREATED PROBLEMS

The aim of this paper is to investigate and to
throw more light upon the deCTdJﬂCleo between
these various fate values of a call in the two

successive stages and to extend known results.
Therefore, several test-calls with different
and mare or less known fate in the first stage
are considered.
First, there are calls with special assumptions
about the waiting time in the first stage (no
waiting, waiting in the first stage of unknin
duration, known waiting time (»0) ). ’
Determining the number of calls met by these
test~calls upon arrival in the second stage, the
influences of these values to the further fate
(wajting or flow time) are obtained. Admitting
both calls with known and unknown service time in
the first stage, also the influence of the ser-
vice time in the first stage is shown (chapter 2).
The knowledge of all these dependencies is the
precondition for the determination of total
fates (total waiting time d. f. with total pro-
bability of waiting and mean total waiting time
of the waiting calls). Since in a preliminary
chapter it is shown, that the additional assump-
tion of a concrete waiting time (>0) in the
first stege has no further effect (called 'lim-
ited dependency! Y, it is possible to determine
the d. f. of the total waiting time by con-
volution of special terms in chapter 3.
In the last chapter, a further group of test-
calls is considered, namely such calls which
have found a certain number of predcceumers in
the first stage. Considering all pessible paths
in a RANDOM WALK diagram,the number of calls met
in & second (single server) stage is determined.
It is shown that fow the gueue lengths no such
tlimited dependency' is valid as for the wait-—
ing times,

2. TEST CALLS WITH GIVEN WAITING TIME IN STACE 1
2.1 OUTPUT PROCESS OF M/M/n DURING CONCRETE
WAITlWG TTV“

Th@ aim of this preliminary investigation is to
obtain statements about the behaviour of & sta-
tionary single stage M/M/n system with FIFO
during a certain waiting time Ty=ty, (>0) of a
test~call. Let pw(jﬁt y o= P(Y *;iT =t ) be the

pTObubl] ty that this testwcalj has met J (=n)
alls upon its arrival in the whole stage.
AppTvlng the thooxem of BA& 'S it holds:
bk
>\ 6w '/X)
(2.14)

F}L‘ XVC” ¢ 1 1TW6 JL(U o D “ 3 BP(’XW E[tofg‘rﬁ’c}ﬂ
Inserting known expressions into the right side

and making the limit transition dt—20,1t is
obtained N -
= <] (?L% )—
Puli o) = - 1Akel
Patd C),) ¢ (:}‘“ﬂ)g
It is obvious that this expression (which is in-
dependent of £) is identical with the probao¢11~
ty that jen=z calls arrive during to

to30, 321 (2.2)

The probability that a call with concrete wait-
ing time Tt (>0) has met z(x0) calls in the
waiting sLoam is the same as the probability
that the same call upon leaving the waiting stor-
e (to boan service) leaves z(20) caills behind.
If a call with concrete wait ng time to(>0) has
met 3(>n) calls upon arrival in the whole stage
(thi cceurs with probe .leV pd(g,t )} }yexactly
4-n+l calls must be served until its service be-
gins. Since the departure of the last one of
therm coincides with the end of t_, exactly 4-n
calls leave the system during t,. If we forge
the value of 4, nevertheless the Poisson di o
bution (2.2) must be fulfilled for reasons of
cionarity. Ln1g implies that the ocutput in-
tervals during t, are negative exponentially
distributed with mean 1/% (Poisson),
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were perfoﬂmed by LUP\L{{; Considering so-called
'partial delays' (partial maiting times for
calls who find at least¥-1 calls in the waiting
storage to leave waiting place number v ; Y03 )
he proved that the conditional d.f. of a partial
delay given a call has met j calls in the wait-
ing Stor“g“ is the same as under the condition
that 4 calls arrived during this partial delay.
Hereof a lemma was derived which states,that a
partial delay given that calls arrived during
this partial delay, Is independent of the pre-
vious departure sequence.

Finally, it may be noted that in case of nq=1
with the very same method used here for the
waiting times, an alternative proof of the in-
dependence between the fate in the second stage
and the flow time in the first stage can be ob~-
tained.

2.2 GENERAL WAY OF CALCULATION

The observation of the system starts at time T,
when the fixed service time TH1=t1 of a testwcall

begins
& T,.=t
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Fig.2.1 Time diagranm

From the state probabilities ,p’(x) at time T*
(called sbtarting probabii* jeo) which are inde-
pendent of the reouarea service time t ,the state
probabilitie p (xlt ) at time (T+5,)7" (called

meeting DIOb&DJlltleo) are determined

(Prefix ¢ means that the pobability is a condi-
tional pPObdbillty related to a special cagll,
where ¢=0 refers to a call with P =0 and c¢= 1 to
a call with Tw >0 of known or unkg%wn duration.)

The values received are valid for calls with a
certain required service time in the first stage.
By integration over all possible service times
also results are obtained for calls with unknown
service time T, .

tame Tyq

2.3 STARTING PROBABILITIES IN STAGE 2

Using the theorem of JACKSON [Bhit is obvious that
the state pPObalelthn Q(A) at the arrival of
a nonwaiting call in stage®l are independent ang
ascording to the Wbsolut state probabilities:

0p2(x) = py(x) (2.3)
where
g (0)'-%& D4XE
A= o, A (2.1)
o). P 4
P2 - X2y
vith nel o '
T
Ayt 1 - (2.5)
RO T iy
Y'\l
which is the absolute urob&bl]}fv of waiting in

the second stage according to the second formula
of ERLANG,cf.e.g. SYSKI[iﬁ.

For cellis which have to wait in the first stage

the following situation prevails:
at tim dr7ed test-call with wai-

in stage 1.Due to
vmte probabilities of the
> are identical with the
ab@u‘u{c values accor (2.4).During the sub-
£ ”, t  the put process of the second
ise8n(shown in 2.1),s0 the state pro-
s of the second stage at time T will
also bc distributed according to the absolute

ting t
JLCKS
second

values, So 0 for x = O

1}32(><) { ) (2.6)
~p2 x-~1) for x > O

It is obvious that(2.6) is also valid when the

concrete value of ijls unkxo‘ 1,0r when a concrete

service time TH1: g s preassigrned to a test-call.

2.4 MEETING PROBABILITIES IN STAGE 2

Let p(i,t,) vte the probability that 1 calls leave
the uQCOY% stage during the service time T},ut1
of & test-call.As long as stage 2 is fully :
occupied (X \nQ; the rate of the whole stage to
serve one ¢al7 will bejx,‘ pé 5 (ef. fig.2.1).

So the meeting probabilities are
Lee)

" T ! . X210
P (k) :Lp(t,ﬂs)“(,%(xw) o i’(g,r/)
iz0 s L]
where 1 U*‘)i
2 — —-)1\2 1‘ a2t .
pli, )= e i 120 (2.8)

is the probability of i Poisson events during t1
By integration we will get the meeting probabili~
ties for corresponding test-calls with unknown
service time Tht w

I
c@”(xszjcﬁw%«)d”*““‘ =0,47(2.9)
o
Por test-calls which have not waited in stage 1
it is obtained from (2.7)

daf IR\
POtz x e mert) 2 gl oM 52z 10y

If the assumption of a certain service time is
dropped,we receive by (2.9) with (1.1)

def i £q

P(XE,M,Z:%“T“W;O) = f (0 [y £} 10 (2.11)

Similarly,we obtain the meeting probabilities for
calls with T >0 of known or unknown duration

Wi
(c=1): .
" P
£F () = Rere Gt xzmr(z.ia)
Ea ;
A = g A (2.13)

Considering a call of which only the service time
in the first stage is known,we get from (2.10)
and (2.12) by weilghting summation

Apatte (2.14)

. oy ek
Pw%mﬁﬂﬁhwﬂﬁ)““fiwﬁﬂ“('1*‘”)$(‘ e Xeny

2.5 CONDITIONAL PROBABILITIES OF WAITING

Summing up the meeting probmbﬁlitio” for 21l num-

bers of calls met in the waiting storage,the prob-
ability of waiting in stage 2 is obtained for the

various test-calls: o

,,,,, (2.15)
K ﬁ
If service iAMO is unknown: v%L , c=0,1;
£,
Wy = ety i
£ Foy (2.16)

.12) yield with (2.15)
leulations

(2.10)and (2 after some

intermediate ca

. i ) o
P(v. ,301"; vyt O T =
and

o P(Ten 70 sty ) = Ez calhare fpanh(2.17)

e - a4 (2.18)
APy Ol Tt = 7‘&2 tl ralAile '(/"’*{ Wiy b

Considering test= calls with unspedified
times,the following formulae are obtained:

service

def
P(‘TWZ?O%Y;'“"\; 0} = oWy = oF Bz malf 4?)
with (4?) (2.19)
el - .
P (T\:&?O iﬂwsm) = 4\"/ 2 ale {:;i_,yu{ﬁ‘\'zs
with gFmfet oA (54)  (2.20%
' Cqbpig=n) Ut %-89,



Comparing the two probabilities of waiting,we get
the simple relation

Aa.
oy = »g;-,lwz_ (2.21)
Especially,for n2:1 (2.19)and (2.20) simplify to

the same results®derived by BURKE (2] .
In fig.2.2 these conditional probabilities of wai-
ting are plotted versus the utilization 85= Ay/n

of stage 2 with 92/81 as parameter, i ee
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Fig 2.2 Conditional probabilities of waiting

ﬂféﬁ‘e &’

o2

1W

All curves for are situated below wer%HQ(Ag,

all curves for above.

N

2.6 CONDITIONAL WAITING TIME DISTRIBUTION
FUNCTIONS IN STAGE 2

If it is further assumed that a considered test-
call must wait in the second stage,for each test-
/1 the same conditional meeting probabilities
&. . obtained as for all waiting calls in stage 2
together:

p( XZ,QWZZ S ! sz‘?O) :

Therefore the folleowing is true:

As soon as a call must wait in the second stage,
the number of calls met and therefore (arbitrary
queue discipline allowed) the further fate
(waiting time, flow time) is independent of the
pyev%ous fate in stage 1 (waiting and/or service
time ),

(With the results of chapter 4 it can
that this is only true, if no special
calls met in the first stage X
assumed. )

S If, for example, the qu
2 is FIFO, each of thes
the second stapge has th
conditional d.f. 1

1,arr

eve di
¢ test
e same
1

) def ~ At
p(ﬂ{v\;?ﬂ’}‘t; ]\/\.'12>O) = \NIZV\!(>JE) =g S )

scipline
t calls waiting in
e (complementary)
as all calls together:

be shown
number of

1(">O) is

in stage

(2.23)

T oopping the condition that the test-call has to
st an the second stage, it is obtained by

(2.23) with (2.17) to (2.20)

iTe

o

109

™2

N
-,

T

[3Y]

Epnn(Ad) . e'}ix~>\}(%4“ft> (2.24)

CFKKN2>{}TQ43%J’x

{fﬁ;)c c=0,4;
g

- (g 2N
C\\A/2(>{.) o ¢ - ‘E;z’nl(/fﬂz}“s‘f - ) (2.25)

Formula (2.25) for unknown service time in stage
1 yields_for n2:1 the same expressions given by
BURKE [2] .

From (2.24) it is possible to determine the fate
of a call with a certain required service. “ime
in the first stage by weighting summation:

P (Toy 57 t sThq 3{‘_1) = P(Tw 57 b T O:iT(uM: {’l)J‘ pﬁ;n'z" t,Twaf’ % i"ﬂ,af‘%-i )

Elpz

Q% Ly~ L+
=48, 5)- (h) P D (2.26)

3, DETERMINATION OF TOTAL PATES

The independence of the flow times in the two
stages proved in the literature causes the total
flow time d.f. to be a simple convelution of the
tWo single stage flow time d.f.°’s, ef. 1.2 .
Determining the total waiting time d.f., the
dependencies of the walting times in the single
stages must be taken into account. This is now
possible,because in the previous chapter these
dependencies not only have been shown to exist
but also completely determined, for known and
for unknown service time as well.

3.1 TOTAL PROBABILITY OF WAITING

waiting W is the pro-

The total probability of
to wait somewhere in

bability that a call has
the system.
W P(Ty3002 PlTwa>0) + P(Ts=0) P (Tivg>0 | Tuws0)

. .1
F Pl 0) «P(Twg>0) = PTu 05 Tz > 0) G0

Using (2.19) or (2.20) the following form for W
can be obtained

W)
W oE My o W
\/\ i v S{‘Jrgzng" 91

where
\NI‘ZSI‘:: “éi I Wz_: Ez)nq_("“:ﬁ

(3.2)

0204 TOsT T8 9

Fig.%.1 Totael probability of waiting



In fig. 3.1

shown for n.

lity of Wal{
picted:

the total probability of walting is
i.For cowpafibon the total probabi-
ing assuning 1ndeyendoncu is also de-

o ~
Wappr ‘A’i > (3.3)
The total probability of waiting always is less
than that value obtained by assuming indepen-
dence of the waiting times, because preflerably
such calls wait in the second stage;which have
already waited in the first stage.

An analogous relation to (3.1) yields with
PTo>0]Tyq70,Tyq5ty) from (2.17) a formula

desceribing the dependence of W from the service
time in the first stage:

Plry»o [Tz ta) = \o/, (’f“\«/ﬂ\:'\'x/z’ (3"9“L;"x)\)h (

FowlW oW
*‘nz W

3.4)

3.2 MEAN TOTAL WAITING TIME OF THE WAITING CALLS
The mean total waiting time related to a]l calls
is (independent of the sequence of the Lagfs)
the sum of the mean waiting time in the single
stages related to all calls, even if the wailt-
ing times are dependent:

E(TW) = E(Tw'i) “‘E(Tw’;ﬂ (3.5)

So the mean total waiting time of the waiting
calls is

(3.6)

Ir, for example, 2 single server stages with

h h =h are in series (A A2 A) it holds
2P
bt R 20 (3.7)

3.% DISTRIBUTION FUNCTION OF THE TOTAL
WAITING TIME

In a 2-stage system it generally holds

Plrye>t)= PlTpen= 0 Pt E'Twz 20) 4 PTowa= ) PlTy2> ‘wa 0) +

(3.8)

summation of (coxplementé?&)
s all weighting p“Obabllifjvu
are known and P(T,,>t/T,, = 0) was derived in

(2.25), The last d.f. is concerned with calls
waiting in both stages. Because it was shown
that in the considered system the random values
of T and ', are independent of each other if
and ofily if oLh are »0, convolution only is
allowed under these add1tiona1 conditions:

4 P(Tur? 0, Teeg?0) p( Toeat Twn? H Foin” 0, Tw770)

In this weighted
conditicnal d.f.

Twg>0) = PlTwrart | > ©) 3 Pligrt [T 0)
. ~{ gty -7 ¥t .,
(Eﬁ“;\)%ﬂxve(/z " (509)

By the irrelevance of the concrete value of Tw1

Plrwa* Tort X'T'W,p 0,

(>0) it can be shown that
P(Tww >t [T 0) = Pl 0T O Pl T 0) (5, 50)
So, finally, the d.f. of the total waiting time
can be written as:
S -2 g el
{ ﬁ’t &; {;}AZ‘—;\ 5'4/,54 “llld e ¥
RS IRRWAPS ok
Eq*‘/l 5N li/” Vo
-
E_, fﬂwa) X‘ /‘(\z < for Cq ‘%»/‘A?_ (3. 11)
N AL ' ~ (-
I P {a. \ jin /
Iy ’%¢g ‘d) ))
uﬂ*ﬂl/i&f\‘ji (3.12)
3

/5 i

In case of n,=1 a symmetrical expression in &4
and g, can bé achieved:

\Wod) st E2 méz;zg oGt
E bbby (3.13)
AL B (6T y
TG £y Eqrfy-A for é4#6,

if 2 single server btagea are in series,tue
total weiting time <. is independent of the
sequence of the two gtagcs, i.e. the two stages
are 1nueffh?ngeab‘e in relation to the total
walting time. This term was used by REICH xCﬂ
for ysugmb viith sequence-independent total
flow time distribution function.

It is obvious that the total waiting time d.f.

for calls with a prea¢slgned service time in
the {irst stage is obtained by the very same

procedure.

3,0 CORRELATION AND ERROR CONSIDERATIONS

Assuming independence of the waiting times,the
approximate total waiting time d.f. simply is
obtained by convolution:

\/\/(>t’mfmr = PlTwa>t) 3 F}(Twz'?’f) (3 ll,)
As a simple example,for 2 equal single server
btage%(ﬂ A2 =A h1 h? =h) it holds
t (A=A 1
Wt) oo = Af2-AAU-A): m}. &R (3.15)

according (3 12) is

(3.16)

The (complementary) d.f{.
Wirt) = o fa-dhrliop) g A

In fig. 3.2 these two d.f.s,which have the same
expectation E(Tw),are depicted.

» W)
10 - A

OXE)

005

01

Fig.3.2 Total waiting time distribution function
It is easily seen,that the exact curves 31cld due
to the dependence of the walting times,a greater
variance than the approximated ones

We have
var(Tw) = var(Tw1)+var(Tw2)+200v()Vi, wa)
with . ; o
“OV“M"Iwz)”“lm'rwz)‘7“(*\‘ B y(l‘w2)
o (1 L )T (3.17)
(B-n)g,-n), L B gy Eby
The correlation coefficient
2Ty Toaad 7 7
I T

9]



which is in case of vaﬂ(“w')=var(Tw,) identical

ive) covariance is taken into account,is shown
in fig. 3.3 for n,= 1.For comparison,a simple
example for n?71 “1s also depicted,

1 0w Twg)

S = in(S 192)
C;'{'m B = n\u'@\? ’E; Qz‘}}

mmﬂﬂ«

i
Ll

Oay

O

Fig.%.3 Correlation ceoefficients

W)/W, we

Determining the relative errors (wappr
will get in principle the same traffic dependen=

sas for the correlation coefficients.So only
some caleulated maximum values of this relative
error &s a function of the number n., of servers
in the second stage are given here:

n, 1 2 3 6 10
possiblel s3gl 139] o | 6% | U%

For n?>1 these errors can be obtained;when the
utiliZations are such,that the probabilities of
waiting in both &d”bb are nearly equal and in the
range of 0.2 to O 3.

b, TEST=CALLS WITH GIVEN STARTING POSITION
IN STAGE 1 (RANDOM WALK)

In this chapter the conditional meeting proba-
bilities

: def
POt a2~ |Xagret=30) =, ([ x4

are considered, that is to say, the dependence
of the number of calls (queue lengths) met upon
! arrivals of the same call in the two stages.
.. order to obtain explicit results, the case of
two single server stages is considered. (It is

ciear that Xiﬁarr 4 F 0 is ddentical with Awlzo,

a condition considered in chapter 2.)

4.1 GENERAL WAY OF CALCULATION

The walk of a call through the system may be
deseribed by a sequence of flow-states,the call
is engaged with (path in a RANDOM WALX diagram).
Since the fate of the considered call is not
1nf1ucncud by succes alng calls (FIFQ), the
RANDOM WALK diagram is a directed graph without
loop% (fig. 4.1

A general flow-state related to a consi-

dered call is dnlin =d sufh that i, calls are in
the first and Lq in the second gtuge,wnnr SUC
CC“"IH& calls aPe irrelevant ,but including the
call in question.I{ this flow-state exlsts, the
next event is el r the ending of service in the
first or second stage with probabilities

R = R~ S 1 L
myF ; A [ . (4.1)
g«*éz 4T
is empty, double arrows show that the
p probability is equsal to 1 (reflecting

dexJ ).

LG 7

ith the relative incregse of V&“laNCOthQH {pogi~
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Fig. 4.1 RANDOM WALK diagram
' Eio!

Each call starts its walk at the starting flow-
state E gi Jand moves on a certain path with
certain nxobubllatv to the absorbing flow state
[, 'thexe the call leaves the system. It is not
difficult to quote the d.f. of the time a call
spends in a flow-state; then it is obvious, how
Tw1, THi“TWE and THQ are reflected in this dia-
gram.

Since this RANDOM WALK diagram now contains all
necessary information,it would be possible in
pr1n01ple to make dlSO time considerations con-
cerning T, as in chapter 2, but the method used
there provéd to be more effective for this case.

Let be:
= ppligsi,s) the flow-state probability,that the
walk of a call fz@mE?& to gwghtmuche %1&§2
(31,32 implicitly undarotood)
- d, the number of'p,~transitions' of a path
: . .t
(piwdlstaDC@) i 1,2
=d_ the number of transitions of a path without
a?torvatlde.

Then the probability of a certain path is egual
b do di d

. . G . L4 Z

F%&h =188 (h.2)
and the flow-~state probability is equal to the
sum of probabilities of all paths leading {rom

Elli;é}to the considered flow-state.

If & call uses the transition from LJS[TQ
it meets exactly x calls upon arrival in th
seconnd stage. Thus it 1s sufficient to calculate
the flow state probabilities DV(I,A) (x=0...3, +
j2~:),from which directly the conditional
meeting probabilities for a certain starting
pattern {xl,xgk

_ del )
p'\y:z'm-rq: X ! ?»'chrfr’-x" 5 Xfé,lmm 59(2} = -@2(){ { Xﬁlﬂz)

are obtained.Finally a weighted summation over
rie X/%a ). -
%, yields pt( 1)

+

I, 2 PLOW-STATE PRODARILITIES

- 5 fixed starting flow-state )l
h to a fixed 1] statle
number 4 of f{lo tates with 1
Dends .. Low- Wit
time for stage 2.For (%ﬁ<xéJj+J2n1 there is no




path which touches such an idle state.Therefore,
all possible paths from a fixed starting position
have the same probability and the number of paths
is simply to quote.For o<x€j.~1 there are paths
having d,50,1, cedao idle states. If k(d LX) is

the number of paths from flow- Qtﬁts[wl,dgAlei

Zldle states,so it hof§o:&uwx
. " ds 4
Pelix) = ) Rxf g™ (4.3
dyzo

. e e e T o .
with d1“33 1-dg,d 2=y 1+J2 N R PR

To determine k(4 ,}) the following definition and
‘lemma is made ( f%g. c2):

(0,0
Lo
G Let ¥ (d  ,u,v,a) be the
"\ L-—: e R AR R d
{ number of paths leading

¥ from (0,0) to (u,v) ,
which touch but not cross
the line y=x+a exactly
dO times.

X
s eyl (am0,us0,0%v<u+a)

Fig,l,2 Directed path

LEMMA « u+v u+v
) ( )‘( } for d,=0 (h.h.1)

u u+a:

VXdo,u,v,a):(u¢v'd?._ utv=d g eon 0<d £v-a+1
(4.4,2)

uta-1

PROOF: For a>0,u»0,0<4veuta,(l4.0,1) is identical
with lemma 2 of MILCH and WAGGONER [6] and may be
proved,also for a»0,uz0,0zvsu+a,with the reflect-
tion principle,cf.e.g. FELLER [i.(4.4.2) is for the
same conditions part of corollary 2 Ln[ﬁjdnd has
been proved by the so-called telescope principle.
Because of?{d SU,V,0) =QKd ~1,u~1,v,1) for d o705

a =0 is also allowed Then the validity for V"O is
cbvious.
Going back to the random walk diagram w1th

uta

k(doax) = \?‘(doujl“l55-1"1”"3'2"){)52) (4.5)

an explicit general formula for the flow-state
probabilities pE(i,x).can be derived.

b,3 CONDITIONAL MEETING PROBABILITIES

If & call starts its walk with flow~state J193q
upon its arrival x1~J1w1 respectively Xp=j7%"

calls already have been in the system.So with
pz(xixigx2) pF(isx)»—p1 for x>0 (4.6)

(4.3)=(4.5) yield

{ ,‘4 Yg- % y 49 ?x 44 ¥y R N
Ao (X[ %q g ) 2= ,
2 e (4. 7)
x
X g Rt Ry Aty . My b ¥ Ty Y
+pi- %{(X T Mg 1T
- iy HaaNg /.

i=0

I x»%, the sum should be replaced by 0.

o1t can be shown that (b, 7)yee

2
state probabilities of a sing
arrival 1 fs and servi
the arrvival of call num
of the arpival proce
in the em,(lnve”‘
where'ti is repre
of the arriving ca 1}

Tnis kind of consideration was made by 'l“!?.ﬁfxcs{‘l”1
who derived with thetheory of homogeneous Markov-
=chains an extensive expression for the bi
generating function of these higher transiti
probabilities. For a rather simplifying special
cagse of this function an explicit result was
stated,which yields transferred to this problem
K4

s * f M(""I': Xqd pst b,
2(%{%4,0) ZL%)°§;%3G14}%$°% (8

A A
By complete induction,accordance between (4.8)
and (4.7) with %520 can be shown,

By weighting summation over x, the wanted condi-
tional meeting probabilities Tare obtained:

[
Pl i X4) = ‘}f(%zt,mmzxa Xf’if“”ﬁx"* /P?‘.(K ’X“le}
Xg_:;Q ( 4 .9 )

So the general formula is

4 2%141 %
A ”"( )
ol ),

Jeman(g, X145}
. e (4.10)
1-&3-4% (X«rj-n !
Pl };ﬂ{ vorit 7Pl )15%
. ¥ X2 0

The sum over i should be replaced by 0 if Kr¥ge

Pytfzg) = {1 '"’&‘2)

In fig.4.% these meeting probabilitiesare plotted
and comparen with the absolute meeting p?ubdblllty
ps(%).In this ewample,where the second stage is

slower than the first stege (£,£64) ,it i8 vivid-
1y shown,how momentary variations (traffic peaks)
in the first stage are continued later on in the
second stage.

4 pa(XlKe)
04l 12T #5035, Ay07

O3RN AY —— pn(x)
02

0]

o 0 %

Fig.b,3 Conditional meeting probabilities

It is cl@az,that in case of Ez»fy the influence of
%g to p (x;xl is wesker and that pQ(xix ) must
tend for xf%woto the absolute state pfﬂbablllflva
of a M/M/1 system with arrival rateé.and service
rate €;.

If X345 1O idle situation is possible for stage 2
and (4,10) can be simplified to

¥ 44

PelxIng) = (1-Agde Ay

which is for xle identical with Opi(x} according
(2.11),derivdtﬁ in c¢hapter 2. ©

Eguation (4.10) shows that,for instance,the probe-
ability of waiti i ccond stage is the
higher,the r . of C‘WW%
the fiyst s hat here no such
Flimited ¢ is valid as obtained for the

comy
the Lnrtnac
ditional wal
the mean v

trxm




ol

dat
E (X [X"s} i E<:<2‘“w2 \ X'ﬁ,&.\z’vﬁzx?) = E{-»‘gz(x i){q}

n=g
which are shown in figs.4.4 and 4.5.

(ho12)

S

o 2 4 T & ,@”5

Fig.b. 4 Conditicnal expectations in stage 2

(£,7E4)

& EXIXg)

-~ N W Do

o2 TT4d 6 T8 10X

Fig.h.5 Conditional expectations in stage 2
By these curves the following behaviours
(obtained by plausible separate arguments) are
confirmed: ) . ) )
If v & according to a quagistationary behaviour
i
§ 2 Aj; . ! E‘q
tim F (% s mlee with Pug= -5 (h.13)
‘ycc-ot(\i s ’7*‘;‘{'3 2 Eq ! _

whereas in case offslthe expectation value nearly
linsarly increases with gradient

EOx [ ot ona) = E (x| xa) g, (head)
R4 a4 ’

eince the probebility that the second stage is
jidle tends to O for sufficiently high &4 and Xqe

Considering total fates as in chapter 3§b¢sides
the total probability of waiting and the inherent
mesn total waiting time of the waiting calls,the
total number of predeccessors in stage 1 and 2

R
P(,\g,ma *X‘gﬂawl’ X) = }’P(‘fw,am’ 7“)\«%(@ \‘i_')) (h.15)
j=0

ained,which is equivalent to
s total waiting time is com=

further can he detel
the number of phases
posed of.
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CONCLUSION

For a system with two queues in series the fate
of a call in the second stage was determined as
a function of all components of the previous
fate in stage 1, existing dependencies were
illuminated and calculated. Therefore, it is
possible to give a more detailed fate prediction
of special calls (e.g. with certain required
service time).

It was shown that in relation to the waiting
times the dependency is limited, zo that as
practical result the total waiting time d4.7.
could be determined.

The error made by assuming independence was showng
which cannot always be accepted in this system.
Moreover,the dependencies including the correla-
tion coefficient may be considered to give orien-
tation values for corresponding systems,if service
time d.f. has no memoryless property as investi-
gated; also it is hoped that these results may
give more insight into these problems if the
structure is more complicated.

The results given for the total waiting time

d.f. are valid for systems with n,=1 and n,z1.
In case of n,> 1 the fate in the second stage
depends on the concrete value of the waiting

time in the first stage, beceause of the possi-
bility of overtaking in the first stage.

Finally, it may be noted that it is possible to
extend the results of chapters 2 and 3% to a
system with several parallel gueuing systems in
the second stage (tandem gqueues with group
selection}.

The guthor wants to express his thanks to the
Deutsche Forschungsgemeinschaft (German Research
Society) which supported this work, being part
of a research project.
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