- 305 -

PROCESSOR PRIORITY MODEL WITH DIFFERENT USER TASKS AND
OPERATING SYSTEM PHASES

Wolfgang Kraemer

Institute of Switching and Data Technics
University of Stuttgart, Germany

ABSTRACT

A processor model is considered with different types of user tasks
as well as different operating system phases. The processing of
user code (in problem state) and the processing of operating system
code (in supervisor state) are scheduled by interrupt schemes and
by dispatching rules. The operating system phases may consist of
interrupt handling, scheduling, channel program construction,
paging overhead functions... There are m different types of user
tasks with different dispatching priorities. The operating system
phases. initiated by the user tasks are running’with higher priority
than the associated user tasks. This results in a single server
queueing model with feedbacks into higher (and lower) priority
classes. Such a model is analyzed under the assumptions of

= a Poisson input process of arriving I/O-interrupt requests and
- general distribution functions for the processing times of
user and system tasks.,

Main results are the waiting times in the different queues of the
operating system as well as response times for the different user
tasks.

Numerical results are shown and compared with those obtained b

- o R ™ §

simpler models.

1 INTRODUCTION

Queueing models for multiprogrammed computer systems have achieved
great importance for the determination of global performance values
of systems with several programs in main storage. For a fixed degree

Presented at the International Symposium on Computer Performance,
Modeling, Measurement, and Evaluation, Yorktown Heights,
New York 1977.
Proceedings published by: North-Holland, Publishing Company,
Amsterdam, New York, Oxford, S. 305-325.

- 306 -

of multiprogramming these models are so-called closed or cyclic
models, but also so-called open models are considered for a variable
degree of multiprogramming. They are used to calculate the different
utilizations of the servers (I/O0 devices, processor (s)) as well as

the associated queue lengths or waiting times.

The central part of such queueing networks is represented by a
central processing unit CPU {central server mode17/4/). The utili-
zation of the CPU is a most important measure for system throughput,
which - often together with response time constraints = normally is
tried to be maximized. This can be done e.g. by different scheduling
disciplines for the CPU, denoted in the following as "processor”

The most simple discipline is FIFO (first=-in, first-out) between
all user tasks, which leads to a standard single servexr FIFO model
for the processor.

In case of time-slicing, it is often more sulited to apply processor
models with the so-called processor sharing discipline (see also /2/%
This dincipline automatically favours jobs with short CPU times at
the cost of longer ones. Fortunately, this processor discipline is
included in queueing networks with "local balance" or "product
solution® /3,15/, for which a universal queueing analysis software
tool QNET 4 has been implemented /16/. '

To increase system throughput, very often fixed priorities are
assigned . to different user tasks, i.e. the different user tasks
reside e.g. in different partitions with different priorities.
Normally highest throughput is achievedwhen high CPU dispatching
priority is given to jobs or user tasks with high I/0 activity.

To calculate the times these different jobs are in the system, it

is necessary to determine'the different flow or response times of the
central processing unit. For this purpose, ordinary priority models
(e.g. preemptive resume) cannot be used generally, since for the
scheduling of the operating system queues the priority of the
associated user task often is not considered. This, naturally, is
useful since operating system phases are used by all user programs
concurrently.

- 307 -

The consideration of system overhead can be done e.g.
- by defining global processor occupations including overhead
(e.g. /13/), thus preserving a single queue model or
- by explicit consideration of operating system phases with
associated queues and priorities, thus leading to single
server queueing models with multiple queues, priorities

and feedbacks.

The subject of this paper is a separate processor model with several
operating system phases of different priorities and with several types

of user tasks having different dispatching priorities.

The aim of the queueing analysis of this model is

- to determine the influence of system overheads on the response
' times of user tasks

- to calculate waiting times within internal operatlng system
gqueues

- to investlgate the influence of the grade of interruptibility
‘of operating system phases (i.e. of the proportion of super=
visor code running enabled)

- to compare the results for the response times of the different

. jobs with response time results of simpler models

It is possible to consider and use this model as a CPU module within
an (open) network of a total computer system, also representing the
I/0 subsystem (disks, drums, channels...), since I/0 scheduling often
is done without regarding user priorities. ‘

2 PROCESSOR MODEL

2.1 Definition of User Task Phases

The total flow of a batch job or also transaction through a multi;
programmed computer system can be described essentially by a
sequence of alternating occupations of the central processor and

the I/0 devices. Each time a program has to perform an access to

an I/0 device, a switch into the operating system is necessary to
construct ae.g. appropriate channel programs and to perform quecue
scheduling for the I/0 system as well as to reschedule the processor
itself. éuch I/0 accesses may be accesses to user files in case of
user specified I/0 (READ/WRITE) or may be accesses to the page data
set in case of a page fault in virtual storage systems., '

- 308 -

(saT3trIqeqoxd mcﬁsocmuﬂuﬂﬂa~mmaﬂv moﬁ>umwuﬂm9~mmumu ﬁm>ﬂuumuﬂﬁv
‘*gT2A3TqNS Y3TM £ pue 7 ST2a97° (€ ToaaT) burssaooad jse3l Iasn

pue (z’L‘0 ST2A9T) burssaooad walsis putqexado yiTm TIpPOW I0SS8D0Id s1°b1d

) Y
ot | | .

Olg
. e %9
g \
” \ _ ¢ | ,
(eaTarduesad-uou) (eat1dwes ad-uou/aaTidusaad) 1
aseyd waisAs burizexaado HmﬁuﬂnH’ | \v sysey Emummm u % "
SE€ ; ‘ .
oma A / \ *1pueH
f .. w { . | , ’ ﬁNm.H. LI B) —‘Nm-ﬁ ~ UQHUCH
y H
wen, | L., | zerg | ey .] 5 LH
—br e e L W S "
seseyq ysel 19sn oatidwesad u \ o ‘ ! \ |
1] 1 {
[X N 6 @
sanany . ~ sanend anand
yse] I19sQ 2V, sel, woisks 3dxaur
, XY D O\H
. Nuzg vee Mg :
Emnm ity teg b
-~

- 309 =~

The phases of a user task between such two subsequent switches into
supervisor state for performing I/O here are called user task phases.
The mean pathlength of such a user task phase can be obtained by
dividing the total number of user instructions performed during
processing a job in problem state by the total number of its physical
I/0 accesses.

2.2 Structure of the Processor Model

Figure 1 shows the structure of the processor model with its

different queues priority levels and feedbacks.

The service boxeé within the processor represent the processing of
user or operating system (supervisor) code. They are labeled for a
level i with their service or holding times THi’ resulting from
associated pathlengths and processor speeds (MIPS values).

The model contains queues at different levels
- the I/O-interrupt queue at level 1
- n system task queues for n(= 0) system tasks at level 2

- m user task queues for m(>=1) types.of user tasks with
different dispatching priorities within level 3.
Furthermore,a priority level indexed with i=0 is contained, which
always is non-preemptive and for which no request ' must wait, since
the user task phases on level 3 throughout are running enabled with
respect to I/O-interrupt requests (i.e. they always can be inter-

rupted) .
So, levels 0,1 and 2 represent the processing of operating system-

code in supervisor state, whereas level 3 is the level for the
processing of user task phases in problem state.

In the following, the operating system parts are described.

The processor model is considered on the level of user task phases
defined above and is driven'by external I/O-interrupt requests,
arriving with rate’}’t1 from .the I/O subsystem. These requests
represent messages from the channels and devices which have to be
investigated and handled by processing appropriate I/O-interrupt
handling routines.

In most cases, the I/O interrupt is signalizing the end of a data
transfer between main and secondary storage (channel end, device
end) . The consequence of such a message is first an attempt to

- 310 =

issue the next START-I/0, i.e. to reschedule the same device or
channel. After this has been done, the associated user task of

the I/0 interrupt is dispatchable again, i.e. is selectable for the
beginning of its next user task phase. This 1is represented by the
branch from level 1 into the associated queue of level 3.

There might be further reasons for I/0 interrupts e.g. 'SEEK-end'
of a disk, which does not result in making the associated user task
dispatchable again. This is represented by a branch leaving the
processor after 1level 1. In the model this path is selected by an
arbitrary fraction Pio of I/O-interrupt requests. This fraction
e.g. is O if for each physical I/O request only 1 interrupt is
needed. Consider e.g. disks with RPS (rotational position sensing,
see also e.g. /5/), where normally no separate I/O interrupt for

a seek end is necessary since the I/0 can be performed with one

channel program.
Thus the total pathlengh of level 1 service may be interpreted to

include

- a part for the analysis of the type of interrupt (a general

entry routine)
- the proper interrupt handling routine

the channel device scheduling

the dispaﬁcher performing a task switch.

Level 3 of the model consists of m(2 1) different queues for m
different types of user tasks with different user priorities. This
means, if a user task phase of a user task of the last priority m
has been interrupted by an I/O interrupt making a class 1 user task
dispatchable, this class 1 user task is dispatched before resuming
the interrupted user task phase of a class m user task. When the

end of a user task phase is reached, an immediate switch into
supervisor state is performed (e.g. by a supervisor call SVC) to
prepare the I/0 access, This includes an entry routine, the
gonstruction of appropriaté’channel programs , queue entries, channel
scheduling and the dispatching of the next task. There are further
activities necessary, depending on the type of I/O. This may be in
case of user -I/O the translation of the channel program (CCW Trans-
lation) or in case of a page fault the execution of the page replace=
ment algorithm. ‘

- 311 =

In the model all these activities are represented by a general non=
preemptive operating system part at level O and by n different system
tasks at level 2.

"System tasks" here are considered to be internal tasks of an oper-
ating system combining a certain amount of work for a special
purpose.This may be e.g. a page manager which is responsible for the
paging,or may be a task for the fetching of transient parts of the

operating system,

If in case of an I/O access such a system task is needed, then
during the non-preemptive operating system phase with index O the
queue entry for a system task is prepared, performed and analyzed

by the dispatcher. If no system task is included, requests leave

the processor in the branch labeled with the associated fraction P3g*

As can be seen, in the termindlogy used, operating system phases
correspond to levels O, 1 and 2, whereas only in level 2 system
tasks are processed. '

2.3 Processor Scheduling

To completely define the functioning of the model, it is necessary
to describe the interrupt scheme (i.e. which service may be inter-

rupted by I/0 interrupt requests) and the procedure for the
scheduling of waiting requests (dispatching rule).

INTERRUPT SCHEME:

The only requests arriving from outside of the processor (i.e. being
agynchronous) are the I/O-interrupt requests with index 1. Table 1
shows, whether a class 1 serxrvice may be interrupted by an arriving
I/O=-interrupt request, -

level 0 1 , 2 3
p if Cq o=

status n n ‘ P
n if c12=1

Table 1: Interrupt Scheme (p=preemptive resume,n=non=preemptive,
Cq o= control variable)

- 312 -

Note that class O service cannot be interrupted at all, i.e. class O
service .is running disabled for all I/O-interrupt requests. Also, I/0
interrupt requests do not interrupt themselves. For ease of notation
a contrcl variable Cqp has been introduced, indicating purely
preemptive system tasks (c12=0) or purely non-preemptive system

tasks (c12=1). These two bordering cases for level 2 have been
included, since often operating system phases are a sequence of
preemptiﬁe and non-preemptive parts of code, implemented e.g. by
ENABLE and DISABLE commands. Also interruptions might be allowed only
at certain predetermined points.

Naturally all user code (running in problem state) is preemptive.

DISPATCHING RULE:
This rule determines which request of the waiting requests will get~
the control on the processor (will be dispatched) if a service has

reached a normal end.

If there are requests waiting for processor service, a request with
momentary highest dispatching priority (lowest priority indexf is
chosen for service. Note that level 3 might be considered to consist
of m separate interrupt levels (i.e. class 31 always is dispatched

before an interrupted class 32 request) .
Within each single queue the queue discipline FIFO is adopted.

2.4 Definitions and Assumptions

The model consists of levels 0,1,2 and 3. In addition, level 2 is
composed of n(=0) sublevels where n is the number of system tasks.
Also level 3 is formed by m(= 1) sublevels with m as the number of
different types of user tasks., Let these levels and sublevels be
denoted by i (i=O'1'2'3’21'oazn’31o..3m)-

Now, the total flow or response time for a request from its
arrival at the I/O-interrupt queue and the time being completely
served by the processcor (i.e. the time instant leaving the
processor) 1is the sum of the flow times in the different levels
involved. The flow time TFi'for a priority level i is

Tre = Twi * Twsy + Tyy ()

'I'wi is the initial waiting time for a level i,i.e. the waiting

- 313 =~

time from the arrival up to the first péfiod of service. If level
i is interruptible, the service time THi may not be given continuously
due to interrupts. These interrupts induce a total subsequent

waiting time T The sum of service time and subsequent waiting

Wsi®
time often is called residence time /7/.

Let each level or sublevel i be characterized by

‘hi = arrival rate of requests
hi = E(THi) mgan service time
Ai =’?\i-hi offered traffic (utilization) for level i (2)

The distribution functions of all service times may be arbitrary
with

Cyy = coefficient of variation (standard deviation/mean value),

It is assumed throughout that the arrival process of class 1 is
a Poisson process and that the service times are independent of
each other.

Furthermore, probabilistic branching is assumed. The associated
branching probabilities be pij‘ The probability of leaving the
processor after the class 1 service is Pio’ whereas with probability
P3g 1O system task is involved.

n m
E:%Zj w and Ej;Bj = 1,
3=1 J=1

It is very simple to calculate all arrival rates'?’ti and all
utilizations Ai.for the model.

Naturally,

For ease of notation, let

n m
A, = Z:'Azj , Ay = E_ Ay (3a,b)
J=1 =1
2
1+ c;
_ Hi | LA 2
z, = » hyed, = > E(THi) (4)
Y n
hg = hg + (1=P34) » }: P24"h2j ()

- 314 -

v, o= , ® , ! = . - ¢ vhl)

j=1¢v.m

2.5 Related Models
Priority systems with feedbacks have been investigated e.g. by ENNS /8/.
Also the well-known time-sharing models belong to this type of gueue-

ing systems /11/. '

A processor model with explicit operating system phases has been con-
sidered by LEWIS,SHEDLER /14/ as part of a cyclic queueing system.
That closed queueing model has been treated by Imbedded Markov Chain
analysis,assuming a finite number of identical jobs with same prio-
rity.

Recently,HERZOG /10/ investigated flexible priority models for
communication processors serving different classes of jobs or requests
and taking into account system overhead especially for interrupt
handling.That processor model with so-called preemption-distance
priorities (cf.e.g. /9/) is for the special case of pure preemptive
priorities identical with a simplified version of the model treated
here,having p10=o,p30=1,h0=0 and'no system tasks (n=0).

3 QUEUEING ANALYSIS

3.1 Method of Analysis

For the investigation of priority systems with feedbacks,several
methods can be and have been used,which are sometimes more or less
related.These methods include in many cases the consideration of
certain requests,often called test-requests,during their flow through
the system.From this,the moments of the random variables involved
(waiting time,response time) are calculated. ‘

This basic principle was used e.g. by HERZOG /9,10/ and applied to
systems with preemption-distance priorities in order to calculate the
first moment of the waiting or response times. ’
Furthermore,when considering test~requests it is tried to define par-
tially equivalent M/G/1 systems /7,8,11/ in order to directly apply
known résglts for this single server system without priorities,also

for higher moments.

- 315 -

The method of analysis used for the special processor model treated
in this paper,can be considered to be a congenial extension and
application of COBHAM's calculation method /6/,which has been deve-
loped and applied to priority systems with non-preemptive priorities,
As will be explained,this method mainly consists of two parts

- the calculation of total initial amounts of work
= the application of results of generalizéd busy periods for
M/G/1 systems ‘

When calculating different initial amounts of work,it was in part
necessary to consider test-requests during part of their flow
through the system as it was demonstrated by HERZOG.

As will be also shown in the following,special attention had to be
glven to the mechanism of interruptions.This means that at an arbi-
trary instant also interrupted requests are present,only requlring
part of a service time to be completed.

3.1.1 Initial Waiting Times

The calculation of the mean initial waiting times E(TWi) of a
request in queue i is performed in two steps:

- First, a so-called initial amount of work TOi is calculated,
This is a certain backleog of processor work at that instant,
the considered request of class i arrives at queue i.It is
composed only by that services,which - according to the

~interrupt and dispatching disciplines = have to be done before
the considered request might be dispatched for class i service.

This initial amount of work may be enlarged by external requests
arriving later on.
- Therefore,secondly,the extension of the waiting time is calcu-
lated being induced by arriving external requests.
Since the external arrivals form a Poisson process,it can be easily

shown that
E(T

.-
oi (7,

E(T
"
1 - Ai

) =

where Af is a partial effective server utilization induced by exter-i
nal arrivals.This result,already applied by COBHAM /6/,can also be
obtained by considering generalized busy periods in M/G/1 systems
(cf, e.g./1,7;11/)

- 316 -

Due to the FIFO discipline within all qﬁeues,requests arriving
later on in class 1 do not influence the initial waiting time of a

considered class 1 request,and therefore

A, =0 (8)

All class 1 requests arriving during the initial waiting time of
a request in any class 2 queue will be dispatched previously,but
only for receiving service in class 1.S0

A’g‘jﬂ"\.‘ vj“?nocn (9)

Regarding a request waiting in queue 3i’ it must be taken into
account that all class 1 requests are dispatched previously and
that some of them are continued in a higher priority class of
level 3 and then possibly in class 2:

+ A (10)
1

> X
l.—l
'
—

1
33

(N
]

The appropriate initial amounts of work will be calculated separate=
ly in chaptors 3.2 ££, ‘

3.1.2 Subsequent Waiting Times

The calculation of the subsequent waiting times for interruptible
services analogously result in

{

E(THi)
E(T....)+ E(T...,) = s (11a)
81 Hi * ¥
1Ay |
Az‘*
(\ = Cr——C———— 8 {
or E‘TWSi’ - A**’E(THi) {(11b)
i

i
In this model

t 33 .
with A as another effective server utilization,

Va3 0 for non-interruptible service
Ay = % (12)
Ai else
Using the well-known Little's theorem,for each waiting time also
corresponding queue lengths can be obtained.

- 317 -

3.2 Class 1 Waiting Time

The (initial) waiting time of class 1 requests in the I/O-interrupt
queue 1is identical Qith the initial amount of work T01 for this
queue.This backlog of work is composed of requests of different
classes,each request needing a cerﬁain time or residual time to
be served.Table 2 shows the mean or expected number of requests

together with their service demand.

C.~"A
: . 12 2y
Mean number AO A1 'A1 E(TW1) (W=1...n)
2 2 : 2
Mean (resi- 1+CHO, 1+CH1 4 h 1+cHZY
dual) time ‘ ‘

Table 2: Components of the mean initial amount of work
for class 1 |

If at an arbitrary instant a request of class 1 arrives,with proba-
bility Ai a class i service is in progress,having an expected resi-

dual service time of 5
1+ ¢,

— SHi,,

2 (i =Q1_1_)¢

i
This is a well-known result from renewal theory.

The mean number of waiting class 1 requests is'h1-E(T ,each

)
w1
requiring a full class 1 service.If class 2 service cannot be
interrupted,(012=1),a further part has to be added.

So the mean waiting time in the I/O-interrupt ﬁueue turns out to

be

E(Ty,) = y=1__ (13)

3.3 Clags 2 Waiting Times

To calculate the initial waiting time of a request in a qucuc 21,
consideration of a test request may start when it begins service
at level O.Then no other requests are present in the queues of
1ev§ls 1 or 2,since user task phases are always interruptible,

- 318 =

" So the initial waiting time of a class 21 request is identical with
the sum of all class 1 service times of all requests arrived during
the non-preemptive phase O,possibly enlarged by further arriving
class 1 requests.At the end of the service time THO of the consi-
dered request in the mean7\1'ho class 1 requests have arrived,

each claiming for‘a mean service time h1.Therefore the initial

amount of work is

| E(Tpp3) = B9°hg
so . A1
E(Twzi) = “?—:-Af-—'ho i=1,.0n (14)

The subsequent waiting time is

N A1
E(Tygoy) = (1 = cq) =3

, .'h2i (15)
' i=1...n

3.4 Class 3 Waiting Times

To calculate the initial waiting time of a class 3i request,it is

necessary to pursue such a request (cf. £ig.2).

Let such a class 3i request arrive at time t at queue 1 and after
waiting and service time it arrives at time t' at queue 3i’

Twr * Ty T

i
T (11

t i t §e

t -—é—-——-

Fig 2: Time diagram fo: considered test request of class Bi
The initial amount of work for this test request at time t' is
composed of - .

- requests already present in the system at time t
and - requests arrived during t and t!

Table 3 is a survey on these different components of the initial

amount of work E(To3i).

- 319 -

"Mean Number Residual Mean Time
® Lo N L] ‘
N g ETyy) +2y ;i;(‘ P1o}Pa¢(Bvthp)
2) | P opE(Tyoy) Doy N
2
1+cC
. __H2V,
30| PE(Tygoy) > Bov
1+C3{2v. > ‘1’=‘1...n
b Ry (1=cqp)—3—"har
_ . . n
>) %o N “"%o"[%x‘hzv‘
=1
6 Pad h! hE
) ¥ E (Tyyav) By * Bg |
> \,-=1 PR i
7) A3E (Tygay))
-liiggfh + h)
8) Agehay 3 3" fo |
e B
| . e e |
9) ’h1(E(TW1)+h1) h,+ v=1(1 P1o)P3v(h3v+ho)

Table 3: Components of the mean initial amount of work
E(To3i) for class 3i

Lines 1 to 8 refer to requests being already at time t in the system,
having different residual mean times.

Line 9 refers to requests arriving during t and t'.They all will
receive class 1 service,whereas only classes 31 up to 31_1 of them

are receiving total service before the considered classai request.

With (T

)
: _ 031

- aX
1 ABi

after standard manipulations it is obtained

- 320 -

1

-1
i[Byy E(Tygy) + oes

E(T)
W34 yl_‘ iy
1-A,-) A
MG 3y
H (16)
...+[E(Tw1) + ha{A1 + Ay, ¥ ZZAB\,.}Jf
=1
‘ 1 + A h
3* o
+'T-X'1'[A1 gt (1=¢ 2)E22v'] Z '

From this recursive formula for the mean initial waiting time in
a queue 31 (i=1...m) ,with the help of a homogeneous and a particular
solution of the resulting inhomogeneous difference equation it is

possible to derive an explicit solution

, n i
| (1—A1»E(TF1)+A1A2ho+(1-c12>ﬁjz2v. 2: é Z:%
4 ' :: j:: .
E(Tysq) = e = E(Tpq)
1=A, = -
[one by T Lo o]
i=1,..m (17)
whére
E(Tpq) = E(Tyq) + hy (18)

is the expected flow time of class 1 requests.
It has been already indicated that the subsequent waiting time of

a class 3, request (c£.(10),(11),(12)) 1is
i=1

o
s
\fe]

L

[A‘

3.5 Response Times

The response time for a request belonging to a user task of class i
i.e., of user priority i (i=1...m) is the time from the arrival of
the associated I/O interrupt up to the final release of the processor:

E(Tpy) = E(Tpq) +E(Tyq,) +E(Tygqy) +h.m"ho*”’ . (20)

...+(1—p3o) E:; pzj [E(TWZJ)+E(w523)+h2j]
=

The mean total time

computer system would be obtained by adding the mean time in the

- 321 -

a job of user priority i is in the total

channel device subsystem per I/0 access and by multiplication with

the mean number of physical I/O accesses,

4 NUMERICAL RESULTS

4,1 Influence of System Overhead

overhead
A E(TRi) .

8 '+ | ! %

'A1=0.5=const.

m=5 user classes
7 - = 2 = =

=2 non-preemptive system tasks
6 | hy=hy=hj;;,P;%0.5
2 _2_.2 _-
a0~CH1™C n21=0"
=p. =0 20%
5 1 P107P307
4 g
3 4
2 -t
1 L od
user priority
O ¥ : [] : 3"
1 2 3 4 5 i
Fig' : Influence of system overhead on the mean response times

of different user classes

- 322 =~

Fig.3 shows the influence of the operating system phases on the
mean response times of m=5 different user’priority classes.

The processor utilization for user task processing has been taken
fixed '

m
A, = X:. A = 0,5
35 o e

whereas the additional system overhead AO+A1+A2.héS been varied
up to 0.25.

4,2 Waiting Times within Internal Operating System Queues

It has been confirmed by several calculations that the waiting

times within internal operating system gueues often can be neglected
compared with the waiting times in a user task queue. 2
To give some figures,for the highest user priority the fraction of
waiting in internal operating system queues (levels 1,2) was up to
10% for a system with 50% overhead and up to 20% for the same

number of user and operating system instructions (100% overhead).

4,3 Comparison of Total’Response Times

For many purposes it is sﬁfficient to consider. the processor as a
black box and to describe its behaviour by the different response
times for different user pribrities.of special interest here is

the question,how large is the influence of the operating system
phases on the discrimination of the different user priority classes.

priorities as a function of the total processor utilization.

Compared with the calculation results are results for corresponding
models without feedbacks.

If system overhead is considered to globally 'enlarge user task
phases,a comparison model with 3 qQueues is obtained,each with a
mean service time of h =1.4 and a squared coefficient of variation
of 0.612.This model has béen calculated for the two bordering cases
of pure preemptive and pure non—preemptive services.

There is another possibility to calculate approximately the response
times by assuming for each of the 6 gueues in the example a Poisson

input process.The resulting model with a mixture of preemptive and

- 323 -

A E(Tpy) b I£ class
. . n 3
m=3 user classes , //
5“' = 2 = =
h3i—1.O'CH31_1.O’p31—0.333 /
n=2 non-preemptive system tasks /
ho=o,h1=héi=0.2,p2i20.5 /

2 .2 £
C1™CH21=0+3 [/ n
P1o=P30=0 ’ / ’/ class

N _ j 2
3.4
class
1
24
= f calculation results of feedback model
1T —— p analysis with 3 pure preemptive élésses
——1 analysis with 3 non-preemptive classes
—7" analysis of corresponding system with
6 external queues.
total ,
utilization
‘ } — + — - -+ 1 e
0 o2 .4 , .6 .8 A
Fig., 4: Comparison of total response time results of the feedback

model and of models without feedbacks

- 324 -

nonpreemptive classes has been calculated with the help of preemption-

distance priority 'results /10/.

As can be seen,for this example none of the simpler models can be used
with good accordance for the response times of all 3 user priority

classes,

5 SUMMARY AND CONCLUSION

A processor model has been considered with different priorities of
user jobs and with different 0peratlng system phases.The feedback
model has been analyzed for general service time distribution func-
tibns,which only have to be specified by their first two moments.

Numerical examples have been given showing the influence of system
overhead,and giving hints relating the necessity of modefing inter-
nal operating system queues.This necessity,as expected,heavily
depends on the amount of overhead which can be selected properly

in the model.

In any case,if waiting times within internal operating system
queues are of interest,they have to be modeled.

The assumption of a Poisson input process of the I/O0 interrupts
could be considered. as a certain drawback of the analysis,since
often models with a finite number of sources are more appropriate.
Nevertheless,it can be expected that for same processor utilization
and percentage of coverhead the n
feedbacks is smaller for finite source than for this infinite
source model. '

Furthermore,when modeling distinct operating systems,much more
complicated models may result,e.g. with

- feedbacks from the I/O—interrupt gueue to system task gqueues
- I/O-compute overlap for the same job ‘
= gating mechanisms e.g. to preserve integrity of control tables

Such a more detailed model“has been developed and described in /12/
based on the supervisor of the operating system DOS/VS. '

REFERENCES

/1/ ADIRI,I.

/2/ ANDERSON,H.,
A.dr.

/3/ BASKETT,F.

- 325 -

Introduction to gqueueing theory with applications

to computer systems
Computer Science Department Monograph Series,RA 42,
IBM Research Division,Yorktown Heights,1972

Approximating pre-emptive priority dispatching in
a multiprogramming model.
IBM Journal of Res.Dev. 17(1973)4,533-539

Open,closed,and mixed networks of queues with

CHANDY,K.M. different classes of customers
MUNTZ,R.R. JACM 22(1975)2,248-260
PALACIOS,F.G.

/4/ BUZEN,J.P.
/5/ BUZEN,J.P.
/6/ COBHAM,A.

/7/ CONWAY,R.W,.

Queueing network models of multiprogramming
Thesis,Harvard Univ. Camb. Mass., 1971

I/0 subsystem architecture
Proc. IEEE 63(1975)6’871-879

Priority assignment in waiting line problems
Operations Research 2(1954),70-76

Theory of Scheduling

MAXWELL ,W.L.Addison-Wesley Publishing Company,1967

MILLER,L.W.

/8/ ENNS,E.G.

/9/ HERZOG,U.

/10/ HERZOG,U.

Some waiting-time distributions for queues with
multiple feedback and priorities
Operations Research 17(1969)3,519=525

Optimal Scheduling Strategies for Real-Time Computers
IBM J.Res.Dev, 19(1975)5,494-504

Priority models for communication processors
including system overhead

8th International Teletraffic Congress (ITC),
Melbourne,November 1976 ,Paper 623

/11/ KLEINROCK,L.Queueing systems,Vol I,IT

/12/ KRAEMER,W,

/13/ KUEHN,P.

John Wiley,1975/76

Performance investigations with a DOS/VS based
operating system model
Submitted to an IBM Journal

Zur optimalen Steuerung des Multiprogramminggrades

in Rechnersystemen mit virtuellem Speicher und Paging
Lecture Notes in Computer Science,Vol 34,Springer,
Berlin/NY 1975,567-580

/14/ LEWIS,P.A.W.A cyclic-queue model of system overhead in multi-
SHEDLER,G.S.programmed computer systems

/15/ REISER,M.

JACM 18(1971)2,199-220
Queueing networks with several closed subchains:

KOBAYASHI,M,.theory and computational algorithms

/16/ REISER,M.

IBM Research Rpt RC 4919,July 1974

Interactive modeling of computer systems
IBM Systems Journal 15(1976)4,309-327

