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The study of traffic flow in modern computers and communi-
cation networks and various other technical systems leads in
many cases to systems or subsystems with queues arranged in
series or tandem.

This paper is concerned especially with a system of two
unlimited queues in series, when Poisson traffic is offered to the
first stage and the service times in the two stages are independent
of each other and negative exponentially distributed. The first
stage includes one service-unit, while the second stage is allowed
to be a multiserver queueing system.

In this paper, by pursuing a particular customer ( call or re-
quest) at his walk through the whole system, the fate of a
customer in the second stage is determined as a function of all
possible components of fate in the first stage. Though the flow
times (waiting plus service times) of the same customer in the
successive stages are independent, other values of fate (e.g. the
waiting times) are not independent.

Die Untersuchung des Verkehrsflusses in Rechnern und Uber-
tragungsnetzen und zahlreichen weiteren Systemen Sfiihrt in
vielen Fillen auf Systeme oder Subsysteme mit seriell ange-
ordneten Warteschlangen.

Dieser Beitrag behandelt ein spezielles 2-stufiges System mit
unbegrenzt groffen Wartespeichern, einem Poisson-Ankunfts-
prozef in Stufe 1 und unabhdngigen, negativ-exponentiell ver-
teilten Bedienungszeiten. Die 1. Stufe enthdlt 1 Bedienungs-
einheit, in Stufe 2 konnen mehrere Bedienungseinheiten vor-
handen sein.

Durch das Verfolgen von speziellen Test-Anforderungen beim
Durchlauf durch das ganze System wird das Schicksal einer
Anforderung in Stufe 2 bestimmt als Funktion aller moglichen
Komponenten des Schicksals in Stufe 1. Obwohl die Durchlauf-
zeiten { Warte- plus Bedienungszeiten) derselben Anforderung
in beiden Stufen unabhingig sind, trifft dies nicht fiir andere
Schicksalsgrofen (z. B. Wartezeiten) zu.

% Revised version of a paper presented at the 7th Internationl
Teletraffic Congress, Stockholm, June 13-20, 1973.
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1. Introduction

1.1 General remarks

Modern electronic computers are very complex in structure
and in operating strategies. To judge their effectiveness, many
aspects have to be considered, including throughput or re-
sponse time questions, which are tried to be answered by
means of queueing theory. Nowadays only such models can
be treated with, which either describe the traffic behaviour
and/or structures relatively globally or which are models for
some subconfigurations. To determine the traffic character-
istics within such computer systems models can be made at
various levels

—the job or program level
— the instruction level

or in an intermediate level which can be représented in com-
puters with paging by pages or generally by tasks, which
could be handled without interrupt of the central processing
unit.

Besides arrangements of one or more parallel servers (single

stages) there are configurations which can be described by a (

serial arrangement of queues. The system considered here
could be interpreted as a simple computer model for the
service of jobs (fig. 1).

-~ BS CPU
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Fig. 1. Computer configuration.

DTU: data transfer unit

CPU: central processing unit (= 1 processors)
MS: main storage

BS: backing storage

Related structures can be obtained by analyzing a serial
arrangement in the instruction level as there are instruction
pipelines etc.

1.2 Description of the system

The system dealt with consists of two unlimited queues ar-
ranged in series, where the input process to the first stage is
a Poisson process with mean arrival rate A. The arriving
customers, calls or requests, shortly referred to as calls, first
are served by a single server and then by one server of the
second stage, which is allowed to be a multiserver system
(fig. 2).
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Fig. 2. The system.

The service or holding times Tg; (i=1, 2) of a call in both
stages are independent of each other and negative expo-
nentially distributed with distribution functions (d.f.)

def _
P(Ty<t) © H()=1—¢*" (1)
and means ’
nd r 1
E(Ty)=—=h | 2

L

The traffics offered A; are defined by

A
and the utilizations
A, 2 .
Qi=}‘1—:=E with  pw=n;g (4)

Both stages are assumed to be in statistical equilibrium, so
that

A<min (py, 1) . )

Considering a general call at its walk through this system, the
following time diagram is obtained:

Tyw; is the random waiting time not including service T,
and T’r; the random flow time in stage i. The queue disciplines
in both stages are, as long as no d.f.’s of the waiting times
are concerned, arbitrary, otherwise in order of arrival (FIFO).

1.3 Known results

It is well known, that the output of the first stage is a Poisson
process with mean output rate A (Burke [1; 3], and others), so
that each single stage may be computed completely according
to the formulae for the M/M/n queueing system, cf. e.g.
Syski [11].
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Fig. 3. General time diagram.
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Fig. 4. Relations between fate values.

Jackson [5] proved the state probabilities of the single stages
of such a system at the same time to be independent of each
other. So it is possible to quote directly the state probabilities
of the whole system.

Considering a particular call at its walk through the whole
system, a further group of traffic characteristics may be
obtained which will be regarded in this paper in more detail.

Fig. 4 represents a graphical survey of some relations between
various fate values (random variables) of a certain arbitrary
call in such a two stage system (n1 > 1 included).

Besides Ty, Twai, Tr; and the number of calls met upon
arrival in stage i (X3, arr¢); also the number of calls left behind
in the first stage (X1,dep1) and the departure sequence of the
first stage previous to the departure of the considered call
(Prev. dep. seq.) are involved.

The arrows connecting two values showing whether (se-
parately considered) they are dependent or not, are labeled
with references to the literature ([*] means basic parts of
this paper).

Using the concept of reversibility of a Markov chain, the
independence of the flow times was shown by Reich [9; 10]
for single server and by Burke [3] for multiserver systems.

Nelson [7] derived by convolution an expression for the
distribution function of the total waiting time in a (more
generally structured) system, assuming independence of the
waiting times in the single stages.

Burke [2] proved that the waiting times of a call in the in-
vestigated system with ng =1 are dependent. Using the theo-
rem of Jackson and the virtual delay in stage 2, he showed
by explicit calculation that the probabilities of waiting
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W;=P (Tw; > 0) in the first and second stage are not
independent. Though the traffic offered to stage 2 is pure
chance traffic, the future fate of a call (number X arr2 of
calls met in stage 2 upon arrival there and/or waiting time
Twe) is not independent of its previous fate in stage 1.

1.4 Treated problems

The aim of this paper is to investigate and to throw more
light upon the dependencies between these various fate values
of a call in the two successive stages and to extend known
results. Therefore, several test-calls with different and more
or less known fate in the first stage are considered.

First, there are calls with special assumptions about the
waiting time in the first stage (no waiting, waiting in the first
stage of unknown duration, known waiting time (> 0)).

Determining the number of calls met by these test-calls upon
arrival in the second stage, the influences of these values to
the further fate (waiting or flow time) are obtained. Admitting
both calls with known and unknown service time in the first
stage, also the influence of the service time in the first stage is
shown (chapter 2).

The knowledge of all these dependencies is the precondition
for the determination of total fates (total waiting time d.f.
with total probability of waiting and mean total waiting time
of the waiting calls). Since in a preliminary chapter it is
shown, that the additional assumption of a concrete waiting
time (> 0) in the first stage has no further effect (called
‘limited dependency’), it is possible to determine the d.f. of
the total waiting time by convolution of special terms in
chapter 3.

In the last chapter, further test-calls are considered, which
have found a certain number of predecessors in the first stage.
Considering all possible paths in a random walk diagram, the
number of calls met in a second (single server) stage is
determined. It is shown that for the queue lengths no such
‘limited dependency’ is valid as for the waiting times.

2. Test calls with given waiting time in stage 1

2.1 Output process of M|M/n during concrete waiting time

The aim of this preliminary investigation is to obtain state-
ments about the behaviour of a stationary single stage M/M/n
system with FIFO during a certain waiting time Ty =t¢ (> 0)
of a test-call. Let py (j, 20)=P (Xarr=Jj| Tw=1t0) be the
probability that this test-call has met j (> n) calls upon its
arrival in the whole stage. Applying the theorem of Bayes it
holds:

. . - P Xarr= j
P(Xarrz.] i TWELtO’ t0+dt])=P(TYWE([IO tOJ‘{‘)‘dt])
“P(Ty e[t to+dt]| Xp=)) ©)

Inserting known expressions into the right side and making
the limit transition dr — 0, it is obtained

o (P0) ™"
(j—m!
It is obvious that this expression (which is independent of ¢)

pW(jszO)ze IO>Oaj2n (63)
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is identical with the probability that j—n=z calls arrive
during #9:

The probability that a call with concrete waiting time
Tw=to (> 0) has met z (> 0) calls in the waiting storage, is
the same as the probability that the same call upon leaving
the waiting storage (to begin service) leaves z (> 0) calls
behind.

If a call with concrete waiting time 7o (> 0) has met j (> n)
calls upon arrival in the whole stage (this occurs with proba-
bility pw (J, t0)), exactly j—n+1 calls must be served until
its service begins. Since the departure of the last one of them
coincides with the end of Ty, exactly j—n calls leave the
system during 7¢. If we forget the value of j, nevertheless the
Poisson distribution (6a) must be fulfilled for reasons of
stationarity. This implies that the output intervals during #o
are negative exponentially distributed with mean 1/ (Poisson).

2.2 General way of calculation

The observation of the system starts at time 7, when the
fixed service time 71 =11 of a test-call begins.

From the state probabilities .ps” (x) at time T+ (called starting

&

probabilities), which are independent of the required service
time #1, the state probabilities ¢ps’’ (x| 71) at time (T+#1)~
(called meeting probabilities) are determined. (Prefix ¢ means
that the probability is a conditional probability related to a
special call, where ¢ =0 refers to a call with Ty1=0and c=1
to a call with Ty > 0 of known or unknown duration.)

2.3 Starting probabilities in stage 2

Using the theorem of Jackson [5], it is obvious that the state
probabilities opg’ (x) at the arrival of a nonwaiting call in
stage 1 are independent and according to the absolute state
probabilities:

0P (X)=p,(x) )
where
P2 (0)22 0<x<n,
x! )
.pZ(x)z Ax (8)
P2(0) ——=— x=n,—1
ny!ny " é
with '
AR 1
Pz(o)'"zj'»**“:Ez,nz(Az)zwz )
a: 1_i4£
ny

which is the absolute probability of waiting in the second
stage according to the second formula of Erlang, cf. e.g.
Syski [11].

For calls which have to wait in the first stage the following
situation prevails:

at time T— ¢ the considered test-call with waiting time 7 (> 0)
arrives in stage 1. Due to Jackson’s theorem the state proba-
bilities of the second stage at time T ¢ are identical with the
absolute values according (8). During the subsequent time 7¢
the input process of the second stage is Poisson (shown in2.1),

so the state probabilities of the second stage at time 7~ will
also be distributed according to the absolute values. So

, 0 for x=0
12 ()= p,(x—1) for x>0

Tt is obvious that (10) is also valid when the concrete value
of Ty is unknown, or when a concrete service time Tg1 =11
is preassigned to a test-call.

(10)

2.4 Meeting probabilities in stage 2

Let p (i, 11) be the probability that i calls leave the second
stage during the service time Tg1 =11 of a test-call. As long
as stage 2 is fully occupied (X2 > ng), the rate of the whole
stage to serve one call will be uz=ny - &2 (cf. fig. 5). So the
meeting probabilities are

Ty =1t

stage 1

stage 2 —
oPh (%) wpalalty)

T Tt
Fig. 5. Time diagram.

x=n,

11
¢=0,1; an

cp/z/(x l tl): Z pU: tl)‘cp/z(x_l— L)
i=0o
where

== oty '(.U/Ztly l>0

- > (12)
i!

p (ia Zl) =e
is the probability of i Poisson events during 71. By integration
we will get the meeting probabilities for corresponding test-
calls with unknown service time Tg1:

D)= ] pa(xlt)dH (1) ¢=0,1;  (13)
0

For test-calls which have not waited in stage 1 it is obtained
from (11)

, : def
P(X5 area=%|Ty1=0,Ty,=t;) = opa(x[1;)=
:pz(x).e—(ﬂu“l)h x>n,

(14)

If the assumption of a certain service time is dropped, we
receive by (13) with (1)

def
P(X, prer=x|Typ1=0) = ¢p3(x)=—————="py(x
(X2.amr2=%|Tw1=0) = ¢p2(x) PR p2(x)
(15)
Similarly, we obtain the meeting probabilities for calls with
Twi > 0 of known or unknown duration (¢=1):

1175(?”tl)zpz(x—l‘)‘e“(uz_x)“ X>n (16)
; - gl -

N — e S —1 17

1P2 (%) P! pa(x=1 (17

Considering a call of which only the service time in the first
stage is known, we get from (14) and (16) by weighting
summation

def 0
P(Xy a2 =x| Ty =11) = Pz(x!t1)=<1‘Q1+‘Q':>'

—(p2—A)ty

"p2(x)e X2, (18)

2.5 Conditional probabilities of waiting

Summing up the méeting probabilities, the probability of
waiting in stage 2 is obtained for the various test-calls:

o0

P (T >0 Tyy=t)= 3 p>(x|t) (19)
1f service time is unknown:
cW2: Z cp;(x> C=0,], (20)

(14) and (16) yield with (19) after some intermediate cal-
culations

def
P(Ty,>0] Ty =0,Ty =t) = P(Ty,>0| Ty, =1)=

=E; ., (Az)'e%m_/m1 (21)
and
- n —(ua— A)t1 .
1P (Ty,>0] TH1=t1):ZZ;'E2,n2(A2)‘e (= At (22)

Considering test-calls with unspecified service times, the
following formulae are obtained:

def
P(Tyy>0] Ty, =0) = W, =oF E; ,,(4,)

with
&1 Q2
F= = (<) (23)
et —A 0100102
def
P(Ty,>0| Ty >0) = (Wo=,F E; ,,(A4))
with

_ Hy &y _ 1

Aler+u,—24) 01+02—0102
Comparing the two probabilities of waiting, we get the simple
relation

(>1)(24)

F

A
OW2:72—2'1W2

2

(25)

In fig. 6 these conditional probabilities of waiting are plotted
versus the utilization o= As/ng of stage 2 with pa2/g1 as
parameter.

All curves for gWa are situated below Wo=Ejs n2(A2), all
curves for 1 Wy above.

2.6 Conditional waiting time distribution functions in stage 2

If it is further assumed that a considered test-call must wait
in the second stage, for each test-call the same conditional
meeting probabilities are obtained as for all waiting calls in
stage 2 together:

A A, T
P(X5 a2 =X TW2>0)=<1‘“'2“>'<"2) X=n,

Uy
(26)
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Fig. 6. Conditional probabilities of waiting.

Therefore the following is true:

As soon as a call must wait in the second stage, the number
of calls met and therefore the further fate (waiting time, flow
time) is independent of the previous fate in stage 1 (waiting
and/or service time).

(With the results of chapter 4 it can be shown that this is
only true, if no special number of calls met in the first stage
X1,arr1 (> 0) is assumed.)

If, for example, the queue discipline in stage 2 is FIFO, each
of these test calls waiting in the second stage has the same
(complementary) conditional d.f. as all calls together:

def —(uz— At

P(Ty,>1| Ty, >0) = Wy (>1)=e (27)

Dropping the condition that the test-call has to wait in the
second stage, it is obtained by (27) with (21) to (24)

A P
P (T >t Tyy = ty) = 2222 —tomnenso (g 4,
A, ¢
" (28)
pW2(>1):¢»F'Ez,nz(Az)‘e_(m_}')r (29)

Formula (29) for unknown service time in stage 1 yields for
ng =1 the same expressions given by Burke [2].

From (28) it is possible o determine the fate of a call with a
certain required service time in the first stage by weighting
summation:

P(Ty,>t|Tyy=t1)=P(Tyy>1, Ty =0] Ty, =1,) +
+P(Tyy>1, Ty >0 Ty =ty) =

=<1—Q1+%>'Ez.nz(/42)'€_(m—“(11“) (30)
P

3. Determination of total fates

The independence of the flow times in the two stages proved
in the literature causes the total flow time d.f. to be a simple
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convolution of the two single stage flow time d.f.’s, cf. 1.3.
Determining the total waiting time d.f., the dependencies of
the waiting times in the single stages must be taken into
account. This is now possible, because in the previous chapter
these dependencies not only have been shown to exist but
also completely determined, for known and for unknown
service time as well.

3.1 Total probability of waiting

The total probability of waiting W is the probability that a
call has to wait somewhere in the system.
W=P(Ty>0)=P(Ty,>0)+
+P(Ty1=0)P(Ty,>0| Ty, =0)=
=P(Ty{>0)+P(Ty,>0)—P(Ty,>0,Ty,>0) (31)

Using (23) or (24)

W, W.
W=W, +Wy———L -2
01+02—010,
where
) , A A
Wiy=0,=—, W,=E A =227 2
1 01 81 ’ 2 Z,nz( 2)7 @2 1, ”252 ( )€

In fig. 7 the total probability of waiting is shown for na=1.
For comparison, the total probability of waiting assuming
independence is also depicted:

W, =W, +W,— W, W, (33)

appr

The total probability of waiting always is less than that value
obtained by assuming independence of the waiting times,
because preferably such calls wait in the second stage, which
have already waited in the first stage.

An analogous relation to (31) yields with P (T > 0| Tw1=

Fig. 7. Total probability of waiting.

=0, Tg1=1) from (21) a formula describing the dependence
of W from the service time in the first stage:

P(Ty>0| Ty =t) =W, +(1=Wy) Wyre”#27P0(34)

3.2 Mean total waiting time of the waiting calls

The mean total waiting time related to a// calls is (independent
of the sequence of the stages) the sum of the mean waiting
time in the single stages related to all calls, even if the waiting
times are dependent:

E(TW)ZE(TW1)+E(TW2) (35)
So the mean total waiting time of the waiting calls is

_E(Ty)
=37 (36)

If, for example, 2 single server stages with i1 =hg=h are in
series (A1 =A9s=A) it holds

24 2k (37)

3.3 Distribution function of the total waiting time
In a 2-stage system it generally holds

P(Ty>t)=P(Ty,=0)P(Ty>1| Ty, =0)+
+P(Ty;=0)P(Ty,>1t| Ty =0)+
+P(Ty >0, Ty,>0)-
P(Tyi+ Ty >t Ty >0, Ty, >0) (38)

In this weighted summation of (complementary) conditional
d.f’s all weighting probabilities are known and P (Two >
> t| Twi1=0) was derived in (29). The last d.f. is concerned
with calls waiting in both. stages. Because it was shown that
in the considered system the random values of Twi and Twe
are independent of each other if and only if both are > 0,
convolution only is allowed under these additional conditions:

P(Ty+ Ty >t Ty, >0, Ty, >0)=
=P(Ty>t| Ty1>0)« P(Ty,>t| Ty, >0)=
ze—(skfﬂ,)r*e—(uz—l)t (39)

By the irrelevance of the concrete value of Twi (> 0) it can
be shown that
P(Ty >t Ty, =0)=P (T, >0| Ty, =0)

P(Ty >t Ty, >0) (40)
So, finally, the d.f. of the total waiting time can be written as:

P(Ty >0 W (> 0=

A &y — A S
5*_ 1 . sy W, e (e =20
& &yt Uy —A &~
gy — 4 2 W, e R

ety — A &y~
for e +p, (41)

A u— 4 —(u i)t
~+~—*~7‘W 1 tyr-e
{,U 2#_‘_/{ 2( +I’L)}

for e =p,=pu (42)

In case of ng =1 a symmetrical expression in ¢1 and &2 can be
achieved:
A&y gy — A

W(i>t)=— —= . i .e—(el—i)t_]_
( ) 81 82_81 81+82—/{

: 1 @
& & — e
LR . e B7IT for g e,
&y 8y —8&y &1 TEY— A

If 2 single server stages are in series, the total waiting time
d.f. is independent of the sequence of the two stages, i.e. the
two stages are interchangeable in relation to the total waiting
time. This term was used by Reich [10] for systems with
sequence-independent total flow time distribution function.

It is obvious that the total waiting time d.f. for calls with a
preassigned service time in the first stage is obtained by the
very same procedure.

3.4 Correlation and error considerations

Assuming independence of the waiting times, the approximate
total waiting time d.f. simply is obtained by convolution:

W (> appe =P (T > 1) s P (Tyy > 1) (44)

As a simple example, for 2 equal single server stages (41 =
=Ao=A, hy =hg=h) it holds

= e

W(>z>appr~A{2—A+A(1—A)%}-e““‘”” (45)

The (complementary) d.f. according (42) is

t
W(>t)=2%{3—214+(}_14).;}.e~(1—A).n (46)

In fig. 8 these two d.f.s, which have the same expectation
E (Tw), are depicted.

It is easily seen, that the exact curves yield, due to the de-
pendence of the waiting times, a greater variance than the
approximated ones.

We have
var(Ty)=var(Ty )+ var(Ty,)+2cov(Ty, Twz)

with

hy=hy =h
Ay=Ady=A

Fig. 8. Total waiting time distribution function.
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coV(Tyy, Twa)=E (T Tyw) —E(Tyy) E(Tyy)=
_ A 1 _ A
ey —A)(ea—A) e e — A £r76y
The correlation coefficient

(T, Twa) =

(47)

Ccov (Tw1> TWZ)
Jvar (Ty ) /var (Ty,)

which is in case of var (Tw1)=var (Twsz) identical with the
relative increase of variance, when (positive) covariance is
taken into account, is shown in fig. 9 for ng=1. For com-
parison, a simple example for nz > 1 is also depicted.
Determining the relative errors (Wappr — W)/ W, which have
in principle the same traffic dependencies as the correlation
coefficients, we will obtain maximum values decreasing from
339 for ng=1 to 4% for na=10.

4. Test-calls with given starting position in stage 1 (random
walk)

In this chapter the conditional meeting probabilities

def
P(Xz,arrZleXl,arrlle) = pZ(xixl)

are considered, that is to say, the dependence of the number
of calls (queue lengths) met upon the arrivals of the same
call in the two stages. In order to obtain explicit results, the
case of two single server stages is considered.

4.1 General way of calculation

The walk of a call through the system may be described by a
sequence of flow-states, the call is engaged with (path in a
random walk diagram). Since the fate of the considered call
is not influenced by successing calls (FIFO), the random walk
diagram is a directed graph without loops (fig. 10).

A general flow-state iy, iz related to a considered call is
defined such, that i1 calls are in the first and iz in the second
stage, where successing calls are irrelevant, but including the
call in question. If this flow-state exists, the next event is
either the ending of service in the first or second stage with
probabilities

€ € )
pi=—"-3 D2 =1 (43)

If a stage is empty, double arrows show that the single-step
probability is equal to 1 (reflecting barrier).

Each call starts its walk at the starting flow-state j1, j2 and
moves on a certain path with certain probability to the
absorbing flow state 0, 0 where the call leaves the system. It
is not difficult to guote the d.f. of the time a call spends in a
flow-state ; then it is obvious, how Tw1, Tr1, Twe and Tra are
reflected in this diagram.

Let be:

—pr (i1, iz) the flow-state probability, that the walk of a call
from ji,j2 to 0,0 touches i1, iz (j1,je implicitly under-
stood);

—d; the number of ‘p;-transitions’ of a path (p;-distance),
i=1,2;
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r(Twi, Two)

min =min(e1, €2)
Q@max = Max (Q\r 97)
ny=1
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Fig. 9. Correlation coefficients.

—d the number of transitions of a path without alternative.

Then the probability of a certain path is equal to

P =1 i (49)

path ™

and the flow-state probability is equal to the sum of proba- é b

bilities of all paths leading from j1, j2 to the considered flow-
state.

If a call uses the transition from 1, x to 0, x+1, it meets
exactly x calls upon arrival in the second stage. Thus it is
sufficient to calculate the flow state probabilities pr (1, x)
(x=0...j1+ja—1), from which directly the conditional
meeting probabilities for a certain starting pattern {xi, Xa}

, N def
P(XZ,arrZ'__xIXl,arr1=x19X2,arr1:x2) = py(x|xq,%5)

are obtained. Finally a weighted summation over xg yields
p2 (x|x1).

P 2P B L. -
l 11,12J——|Jﬂ,iz+ﬂ———> —————— ——F,11+/2~1}—>ﬁr71+]2J

i L

Lt g ——{osia]

Fig. 10. Random walk diagram.

4.2 Flow-state probabilities

For a fixed starting flow-state j1, jo the probability of a path
to a fixed flow-state 1, x depends on its number do of flow-
states with idle time for stage 2. For j1—1 < x < j1+je—1
there is no path which touches such an idle state. Therefore,
all possible paths from a fixed starting position have the same
probability and the number of paths is simply to quote. For
0 < x < j1—1 there are paths having dyg=0, 1, ... domax idle
states. If k (do, x) is the number of paths from flow-state
1,72 (1> 1,j2 = 0) to a flow state 1,x (x> 0), which
touches dp idle states, so it holds:

do max

pr(l,x)= Z k(do.x) pi'-py (50)
do=
with d1=j1—1—do, do=j1 =1 +j2—x, domax=/1 X
To determine k (do, x), the following definition and lemma is
made (fig. 11):

Fig. 11. Directed path.

Let v (dy, u, v, a) be the number of paths leading from (0, 0)
to (u, v), which touch but not cross the line y=x+ a exactly
dotimes (¢ > 0,u> 0,0 < v < uta).

LEMMA:
v(dg,u,v,a)=
w0\ (u+ v
-1 ( u)_(u+a) for do=0 (51a)
u—!—v——dd) (u,_;-y_.do‘
<u+a—~1 i ) for O<dy<v—a+1

(51b)

PROOF: Fora> 0,u > 0,0 < v < u+a, (51a) is identical
with lemma 2-of Milch and Waggoner [6] and may be proved,
also for a >0, u >0, 0 < v < uta, with the reflection
principle, cf. e.g. Feller [4]. (51Db) is for the same conditions
part of corollary 2 in [6] and has been proved by the so-called
telescope principle. Because of » (do, u, v, 0)=v (dy—1, u—1,
v, 1) for dg > 0, a=0 is also allowed. Then the validity for
v=0 is obvious.

Going back to the random walk diagram with
k(dy,x)=v(dg, j1—1,j1— L+j,—x,j,) (52)

an explicit general formula for the flow-state probabilities
pr (1, x) can be derived.

4.3 Conditional meeting probabilities

If a call starts its walk with flow-state j1, jo, upon its arrival
x1=j1—1 respectively xp=js calls already have been in the
system. So with

pa(x|xp.x)=pp(l,x) py for x>0 (53)
(50) to (52) yield
2x1+x2-—x>+

pa (x| Xy, x,)=p3 "7 "{m‘*“{
‘ X1

+p';.xixpi1{(xlﬁ—xz*l-l—iy)_pl(\x1+x2%i>}} 5)

i=o Xq+x;—1 Xq+X,

If x > x1 the sum should be replaced by 0.
With
— 1\) def
= ]
e

it can be shown that (54) generally holds for xi, x2 > 0,
0< x < x1+xo.

These meeting probabilities for a certain starting pattern
{x1, x2} may also be interpreted as state probabilities of a
single stage M/M/1 with arrival rate ¢; and service rate e
(> or < e1) upon the arrival of call number x;+1, when
at the begin of the arrival process exactly xg calls have been
in the system. (Investigation of ‘time’-dependence where
‘time’ is represented by the ordinal number of the arriving
call.)

This kind of consideration was made by Takdcs [12], who
derived with the theory of homogeneous Markov-chains an
extensive expression for the bivariate generating function of
these higher transition probabilities. For a rather simplifying
special case of this function an explicit result was stated,
which yields transferred to this problem

:JPi x.x‘ i_ 2xy—i LpXi T X
p2(x[x4,0) (p2> i;x2x1‘i< X, )Pl 2" (55)

By complete induction, accordance between (55) and (54)
with x9=0 can be shown.

By weighting summation over xg the wanted conditional
meeting probabilities are obtained :

pZ(x|X1): Z P(Xz,alrr1:x2|Xl.nrrl:xl).

x2=0
P2 (x| x4, Xy) (56)
So the general formula is
oG

1TX, Z

x)=(1—=4,)p3 (Azpz)j'
J-m\x (0, x—x1)

2,X +J x . X1 —X )

,x 1 X i

o ! ) +py Z I
¢ i=0

j—1+l) ('x1+j+i‘)
. X4 >
1 xyrj— 1) TP gy =0

(57)

pa(x

The sum over i should be replaced by 0 if x > xi.
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In fig. 12 these meeting probabilities are plotted and com-
pared with the absolute meeting probability pz (x). In this
example, where the second stage is slower than the first stage
(g2 < &1), it is vividly shown, how momentary variations
(traffic peaks) in the first stage are continued later on in the
second stage.

palzlx)
0,4 A, =035 4,=0,7
———p )

03
0,2
0,1

0 7T
0o 1 2 3 4 5 6 7 8 9 10 «

Fig. 12. Conditional meeting probabilities.

If x > x1, no idle situation is possible for stage 2 and 57
can be simplified to

] . 1 xg+1
xx)z(I*Az)'A2+1'<A1+A:‘_-I4E>
x>x,=0 (58)

pa(x

which is for x;=0 identical with gp2” (x) according (15),
derivated in chapter 2.

Equation (57) shows that, for instance, the probability of
waiting in the second stage is the higher, the greater the
number x1 of calls met in the first stage. This means that here
no such ‘limited dependency’ is valid as obtained for the
waiting times.

4.4 Further fate values

The number of calls met in the second stage is completely
sufficient for the determination of the further fate in stage 2,
as there are the conditional waiting and flow time distri-

E(x|x)

4

T T T

6 8 10 %,

Fig. 13. Conditional expectations in stage 2 (e2 > €1).
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¢. 14, Conditional expectations in stage 2 (e2 < €1).
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butions. E.g. the mean waiting time and the mean flow time
can be simply deduced from the conditional expectation

. def e )
E(x|xy) = E(X3 a2 | X1 ar1 =X1)= Z X py (x| xyq)
x=0
(59)
which are shown in figs. 13 and 14.
By these curves the following behaviours (obtained by
plausible separate arguments) are confirmed:
If es > &1, according to a quasistationary behaviour
A5

Iim E(x|x1)=ij2' with A} 2%7 (60)
2

X1~ w 2

whereas in case of e < &1 the expectation value nearly
linearly increases with gradient

E(x1x1+Ax1)~E(xlxl)~l &
Axy BT
since the probability that the second stage is idle tends to 0
for sufficiently high &1 and x1.
Considering total fates as in chapter 3, besides the total

(61)

probability of waiting and the inherent mean total Waiting{/ ‘

time of the waiting calls, the total number of predecessors in
stage 1 and 2

P(Xl,arr1+X2,arr2:x>= z P(Xl,arrlzx_j)'
J

j=0
P2l x=J) (62)
further can be determined, which is equivalent to the number
of phases a total waiting time is composed of.

Conclusion

For a system with two queues in series the fate of a callin the -

second stage was determined as a function of all components
of the previous fate in stage 1, existing dependencies were
illuminated and calculated. Therefore, it is possible to give a
more detailed fate prediction of special calls (e.g. with certain
required service time).

1t was shown that in relation to the waiting times the de-
pendency is limited, so that as practical result the total
waiting time d.f. could be determined. é

The error made by assuming independence was shown, which
cannot always be accepted in this system. Moreover, the
dependencies including the correlation coefficient may be
considered to give orientation values for corresponding sys-
tems, if service time d.f. has no memoryless property as
investigated ; also it is hoped that these results may give more
insight into these problems if the structure is more com-
plicated.

The results given for the total waiting time d.f. are valid for
systems with #; =1 and ng > 1. In case of m1 > 1 the fate in
the second stage depends on the concrete value of the waiting
time in the first stage, because of the possibility of overtaking
in the first stage.

Finally, it may be noted that it is possible to extend the
results of chapters 2 and 3 to a system with several parallel

queucing systems in the second stage [13] (tandem queues
with group selection).

The author wants to express his thanks to the Deutsche
gemeinschaft (German Research Society) which
supported this work, being part of a research project.
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gemeinsamen Unternehmung opfern. So ist es nur natiirlich, daf eine Wissenschaft-
liche Redaktion gelegentliche Verinderungen in Kauf nchmen muB; immerhin ist die
Tatsache, dald dies fiir die ¢R bis vor kurzem nicht galt, mehr als bemerkenswert.
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und Promotion bis 1956 am Institut fir Praktische Mathematik (Prof. Walther) in Darmstadt und entwickelte dort als einer der
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