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Abstract: The general single server system G1/G/1 has
been treated manifold, but only for some special cases
handy formulae are available. Very often exact calcu-
lations are too cumbersome and sophisticated for
practical engineering, as well as upper and lower bounds
generally are too gross approximations.

Therefore the need was felt to support traffic
engineers with simple explicit approximation formulae,
based on a 2-moments approximation.

In this paper such formulae are given for the mean
waiting time and the probability of waiting, which have
been derived in [23].

The quality of the formulae, which have been checked
by numerous comparisons with exact and simulation
results, is such, that within the most interesting range
of server utilizations from 0.2 to 0.9 the error is less
than 20 % (typically < 10 %) for all combinations of
the arrival and service processes characterized by the
following distribution types: D, E3, E,, M, H,.
Besides these types, for validation purposes, also other
distribution functions have been investigated, differing
in the third and higher moments.

The formulae are also easily applicable with compara-
ble accuracy to batch arrival systems by considering
equivalent single arrival arrangements.

By known relations, also simple approximations are
provided, e.g. for the variances of the associated output
process, and the mean length of an idle and a busy
period, respectively.

Stichworte: Wartesystem G1/G/1,2-Momenten-Approxi-
mation, mittlere Wartezeit, Wartewahrscheinlichkeit,
Gruppenankiinfte

Zusammenfassung: Fiir das Wartesystem G1/G/1 (allge-
meine Verteilungsfunktionen fiir den Ankunfts- und
Bedienungsprozess, eine Bedienungseinheit) sind nur
fiir einige spezielle Fille handliche Formeln verfiigbar.
Sehr oft sind exakte Berechnungen zu miihsam und

zu kompliziert fiir die ingenieurmaliige Anwendung,
wie auch obere und untere Grenzwerte zu grobe Néhe-
rungen darstellen.
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Deshalb wurde die Notwendigkeit gesehen, den Ingenieur
bei verkehrsmaligen Untersuchungen mit einfachen
expliziten Naherungsformeln zu unterstiitzen, die auf
einer 2-Momenten-Approximation beruhen.

In diesem Beitrag werden solche Formeln angegeben fiir
die mittlere Wartezeit und die Wartewahrscheinlichkeit,
die in [23] abgeleitet wurden.

Die Giite der Ndherungsformeln, die durch zahlreiche
Vergleiche mit exakten und mit Simulationsergebnissen
gepriift wurden, ist so gut, dal8 innerhalb des interessie-
renden Bereichs des Angebots von 0,2 bis 0,9 der

Fehler kleiner als 20 % (typisch < 10 %} ist fiir alle
Kombinationen von D, E,, E,, M, H,-Ankufts- und
Bedienungsprozessen.

Neben diesen Typen wurden zur Validierung auch andere
Verteilungsfunktionen benutzt, die sich im 3. und in

den hoheren Momenten unterscheiden. ‘

Die Formeln sind ebenfalls leicht anwendbar auf Sy-
steme mit Gruppenankiinften, da in diesen Fallen dqui-
valente Systeme mit Einzelankiinften definiert werden
kdénnen,

Mit Hilfe bekannter Beziehungen stehen auch einfache
Néherungen zur Verfiigung, z. B. fiir die Varianz des zuge-
horigen Ausgangsprozesses und fiir die mittlere Dauer
einer Freizeit- und Arbeitsperiode.

1 Introduction
1.1 General Remarks

In computers and communications systems very often
queueing problems may be represented by queueing sy-
stems of the type GI/G/1 (general input and general
service process, single server). For traffic engineers in
particular, the mean waiting time and the probability
of waiting are of interest for system analysis or design.
In the literature, exact and explicit solutions for such
queueing systems are available only for certain types of
arrival or service processes (e.g. M/G/1).
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Very often these different solutions for different traffic
assumptions require the numerical evaluation of roots of
transcendental equations by the aid of computers. For
other types of arrival or service processes implicit solutions
are known (e.g. based on Lindley’s integral equation).

But often these solutions are not straightforward and/or
require a lot of evaluation work.

In many applications of traffic engineering, either the
procedures and tools for these solutions are not
available for the engineers in due time of the amount

of evaluation work is not justified for quick estimates.
On the other hand, known approximation formulae for
the delay are limited strongly in application range (e.g.
heavy traffic approximations).

Therefore, the urgent need was felt to support the
traffic engineer with simple explicit but general approxi-
mation formulae for the mean waiting time and the
probability of waiting,

The restriction to the first two moments of the inter-
arrival and service time distribution functions (d.f.s) was
near at hand, since e.g.

® in case of Poisson input the mean waiting time only
depends on the first two moments of the service
time d.f.,

® 2.moments approximations have been proved useful
e.g. for overflow systems,

® the models used for system analysis often are
approximate models themselves, and often exact
d.f.s are not known at all.

In addition, very encouraging results have been
obtained with 2-moments approximations applied to
queues in series [17], considering many different d.f.s
of service times.

1.2 Some Notations
Let be

Ta = interarrival time of requests

Ty = waiting time of a request

Ty = service or holding time of a request

Tr = flow time of a request (= Ty + Ty)

Tip =duration of an idle period

Tpp= duration of a busy period

Tp = interdeparture time of requests

Now, the traffic offered A (or server utilization) is

E(Tu)

E(Ta)
with E(Ty) = h as mean service time and X as arrival
rate of the requests.

A E(Tg)=2-h, (1.1)

The queue discipline may be arbitrary as long as it is
independent of the service times.

The d.fs of the interarrival and service times be
Fa (t) and Fy(t), with associated coefficients of
variation

ca =V Var(Ta)/E(T4), cy =+/Var(Ty)/E(Th).
(12)

1.3 Main Results Obtained for Single
Arrivals

The key results derived in [23] are simple explicit
approximation formulae for the mean waiting time
E(Tw) and the probability of waiting W in a GI/G/1
system:

B30y

2(1-A) (1=cp)* |
- ' CA <1
€ 3A Ch + iy
(02A + C%‘I) s (13)
ch—1 ,
eT(U-A)y—T—— ¢ >1
| Ca tdch
and
W=A+(ch—1):
1+cf\+A'CIEI 2
Py 2 Py D) CA<1
1+A(cg—1)+A% -(4ca +c)
‘A(1-A)- (1.4)
aA ca>1

Ca + A% (4ch +ch)

The accuracy of these formulae has been tested by
comparisons with a large amount of exact and
simulation results, including in particular systems with
all combinations of D, E4, E,, M, H, d.f.s.

From these results, further traffic characteristics can
be obtained (e.g. mean queue lengths), also for batch
input systems.

2 Existing Explicit Results

The substantial amount of publications relating to the
general queueing system GI/G/1 demonstrates the
state of the art of queueing theory ,which nevertheless
cannot reveal the gap between exact mathematical
results and quick engineering applications.

Several calculation methods have been developed to
solve GI/G/1 problems, including

® ERLANG’s method of phases, see e.g. [1] —[3],

® LINDLEY’s integral method [4].

® KENDALL’s method of the imbedded Markov
chain [5].

These methods and others have been proved very
powerful to penetrate into the theoretical depth
and to develop many exact results. But for practical
applications there are severe disadvantages:

1) Some methods require special traffic assumptions
in order to be applicable.

2) Most of the existing exact results include Laplace
transforms and generating functions as well as roots
of partly very sophisticated equations.
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3) For each type of a special GI/G/1 system, the
way of obtaining numerical results may be more
or less different.
In the essence, simple explicit and exact formulae for
the mean waiting time and the probability of waiting
exist only for the case of Poisson input (M/G/1). The
well-known formula of POLLACZEK and KHINTCHINE
(1930/32), cf. e.g. [3], is

Al
E(TW)—”z((—lilT) “h, (2.1)

here only given for the first moment of the waiting
time.

The associated probability of waiting simply is
W=A. (2.2)

The need for bridging the above mentioned gap has
been recognized manifold and resulted e.g. in

® the application of numerical inversion techniques
for Laplace transforms,

@ fitting observed distributions by step functions [6]
or phase-type functions, '

® tables for queueing systems of different types, see
e.g. [19],

@ the derivation of upper and lower bounds for
the mean waiting times [9], [10], [11].

KINGMAN [7] has derived an upper bound for the
‘mean waiting time in GI/G/1
A[(ca/a2) + 4] .

2(1-A)
being a good approximation for heavy traffic (A —~ 1).

E(Ty) < (2.3)

Some authors also derived lower bounds or low traffic
approximations ([8], [9]) for single arrival GI/G/1
queues.

Also diffusion approximation methods have been
applied [12], to obtain heavy traffic formulae even for
transient conditions. The mean virtual delay for
stationary conditions has been approximated in [12] by

A 2 2
E(Tw)virtual = T((CIA___:';ACTH)‘ “h. (2 -4)

Unfortunately, the upper and lower bounds for real
mean waiting times are not very useful for the major
interesting range of utilizations. E.g. the heavy traffic
formula (2.3) applied to A = 0.7 overestimates the
mean waiting times up to 100 %.

Therefore, the goal was set to derive purely heuristi-
cally an extension of the Pollazcek-Khintchine formula,
allowing to give quick answers with a reasonable
accuracy, though being restricted to the first 2 moments
of interarrival and service time d.f.s.

3  Systems with Single Arrivals
3.1 Approximation of the Mean Waiting Time

Preliminary investigations had shown, that a good
starting point for the heuristic approximation of the
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mean waiting time was the formula

B(Tw) =55 a7 (¢ + o) 2(A kb, G.D)

containing a refinement function g(.). This function
has been derived in [23] by using exact boundary con-
ditions and by a heuristical determination of free
parameters, which led to the final result (1.3).

Fig. 3.1 is an example of comparisons between the
approximate results according to (1.3) and results of
simulation runs.

The coincidence between approximate and simulation
results is sufficiently good. This has also been shown
for many other cases, c.f. [23].
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Fig. 3.1 Mean Waiting Times for D/G/1 Systems (I Simulation
results with 95 % confidence intervals. H, is a hyperexponential
d.f. with 2 alternative branches being utilized equally.)

3.2 Approximation of the Probability of
Waiting

Similarly as in the previous case for the mean

waiting time, the frame of the formula for the

probability of waiting W had to satisfy different

boundary conditions. As a reasonable base it was

selected

=A+CA-1D-A-(1-A) f(A ci, ch) (3.2)

with f () as another refinement function. This function
has been derived analogously in [23], leading to (1.4).
Fig. 3.2 shows as an example some approximation
results for the probabilities of waiting for systems with
E, input processes, compared with simulation results
(small confidence intervals omitted).
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Fig. 3.2 Waiting Probability for E4/G/1 Systems

3.3 Error Considerations

Since only the first two moments of both interarrival
and service time d.f. are considered, certain errors have
been tolerated from the start.

First of all, as a dedicated statement, for all GI/G/1
systems with arbitrary combinations of the d.f.s

Da E43 E2’My H2 (cz :2)’ H2 (C2 :4)

(here called “standard” types), the error in the mean
waiting time and the probability of waiting is less than
~ 20 % for traffics offered A = 0.2 up to 0.9. Typically,
the error is less than 10 %.

The same error limits are obtained even if higher
variances of H, d.f.s are included, only restricted by
the condition

¢k +ch <12,

which seems to be uncritical for practical applications.
To judge the influence of the third and higher moments,
many other types of d.fs have been investigated in
[23], confirming the wide application range of the
approximation formulae.

4 Systems with Batch Arrivals

In this chapter it is shown that the formulae for the
mean waiting time and the probability of waiting also
can be applied to system with batch arrivals by defining
equivalent single arrival systems.

4.1 General Remarks

In communications systems, e.g., often the arrivals at
centralized units occur in batches or groups of
arbitrary size K, now being assumed to be an indepen-
dent random variable. Let pg (K =0, 1, ..) be the
probability that at a possible arrival instant of a batch
(characterized by a d.f. for the interarrival times Tap
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of batches) a batch of size K arrives. For reasons of
generality, let also “batches™ of size K = 0 be included.
This is useful especially in so-called sampled systems,
where the batches only arrive at equidistantly distri-
buted clock instants (see e.g. [13]).
Now, by standard calculations, general relations
between characteristic values of the first request of a
batch (indexed by an additional 1) and an arbitrary
member of it can be established. With respect to the
mean waiting time it results

( Var (K) h
E(Tw)=E(Twi) + { 5o *EE)=1) 5. @.1)

This formula can be found e.g. in [10], [ 13] and [14].

With respect to the probability of waiting, it can be
simply stated that with the probability q that an
arbitrary request is the first request within its batch

_ 1 _1=po
T"EKIK>0) ~ EK) (.2)
it holds
W=q-W;+(1—q)- 1. (4.3)
This means
w=1—%—3—(”ﬁp)i’l (1=W,). @.4)

The two formulae (4.1) and (4.4) allow to determine
values for single requests, if the corresponding ones of
the first of a batch are known, see 4.2.

4.2 Equivalent Systems with Single Arrivals

The waiting time of the first request of a batch can be
calculated by considering an equivalent system, de-
fining a whole batch (> 0) as a “super-request” [2].
Then the new interarrival times are the times between
the arrivals of batches > 0, the service times are the
total times to serve a whole batch (> 0).

- If we denote the characteristics of the equivalent sy-

stem by an additional asterisk#, then
E(T§{)=EXIK>0)-E(Ty). 4.5)
With

Var(T§) = E(Ty)?* Var(K|K > 0) + E(K|K > 0)
-Var(Ty) (4.6)

it can be shown that the resulting equivalent (squared)
variation coefficient of service time is

—py [ Var(x
C#:lE(IE()) { Ea(rlg)) +CIZJ-J"P0~ 4.7)

Let now the arrival process be characterized by

® the interarrival times Top of batches (of size
K > 0), i.e. the times between successive closings
of an “input switch”, with mean E (T4 ) and
variation coefficient cpp,

® the batch size probabilities px (K = 0).
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Since the equivalent system is based on batches of size
>0, it holds

E(T*)-E(TAB) 4.8
A I_Po ( . )
and

c¢%? =(1-po) cap * Po- (4.9)

Summarizing, the equivalent system is characterized by

@ the mean service time

E(T*)=—E—(E— -E(Ty) (4.10)
H 1-=po ’

@ the same traffic offered as in the original batch
input system
. E(TH) E(K)-E(Tu) A
E(TX) E(TaB) ’
® and the variation coefficients ¢} and c{j according
to (4.9) and (4.7).
These values have to be calculated before using the

GI/G/!1 approximation formulae for the equivalent
single arrival system.

4.11)

4.3 Examples for Batch Arrival Systems

Since for M/G/1 systems the formulae (1.3) and (1.4)
are exact, all batch arrival systems rendering equivalent
M/G/1 systems will be calculated exactly.

This holds for negative exponentially distributed
interarrival times between batches of arbitrary size

K > 0 and distribution (i.e. ¢35 = 1, po = 0).

Combining (4.1) with (1.3) and (4.7) to (4.11), it
results for negative exponentially distributed interarrival
times between batches of arbitrary size K > 0

E(Ty) = == A1+2+Var(K) E(K)-1
( W) _2(1 _A) ( CH) E(K) + ( ) .
4.12)
For the probability of waiting from (4.4) with W; = A
1 —po
W=1 EK) -(1-A). (4.13)

Eq. (4.12) is identical with a result of GAVER [20],
who derived the generating function of the state
probabilities of systems with compound Poisson arrival
processes (K>0).

Since the formulae are exact for compound Poisson
arrival processes, for validity purposes, it remains to
show examples, where the times between two batch
arrivals are not negative exponentially distributed.

To select an extreme but nevertheless important case,
equidistantly distributed interarrival times are selected,
i.e. so-called sampled systems. These systems may be
conceived as having an input switch being closed
periodically.
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Fig. 4.1 Mean Waiting Times for Sampled Batch Arrival Systems
(Poisson distributed batch sizes)

If the single requests arrive in front of the sample
switch with negative exponentially distributed inter-
arrival times, the distribution of the batch sizes is
Poisson, having Var (K) /E(K) = 1.

For the examples shown in fig. 4.1 the clock time
was chosen to be equal to the mean service time
(E(Tag) = E(Ty)), rendering A = E(K) and thus deter-
mining the po values via the Poisson distribution.
Then from (4.9) c%* = p,, whereas cjf’ is determined
with (4.7).

The solid lines are exact results, the curves for M and
E, have been calculated with a program of
WEISSCHUH and wizGALL [15]. For constant servi-
ce times it simply holds (LANGENBACH-BELZ [13])

E(Tw)=é—(-1-f";7g~h. (4.14)

The associated curves for the probabilities of waiting
W nearly have been identical for all 3 d.f.s with the
line W = A, both simulation and approximate calcu-
lation. Therefore they are not shown here.

Remember that these approximation results have
been obtained with very low calculation effort. Further
curves can be found in [19] and [23].

5 Determination of Further Traffic Values

Up to this chapter only the expected waiting time
E(Tyw) and the probability of waiting W have been
considered, both for single arrival and batch arrival
systems. Based on relations for a wide class of stationary
single server systems (MARSHALL [9], RICE [16]), the
approximation formulae (1.3) and (1.4) can also be used
to calculate approximately further systems character-
istics.



5.1 Output Variance

The following relation between the variance of the
output process and the mean waiting time can be found
in [9]:

Var(Tp) = Var(T4) + 2Var(Ty) — % (1-A) E(Tw).

5.1
Using coefficients of variation and E(Tp) = E(T4):
E(T :

ch=ck +2A% ¢ —2A(1 - A) - (h‘”) . (52)

With E(Tw) according to (1.3) this is a simple and
explicit approximation for the variation coefficient ¢p
of the output or departure process.

This formula specializes for Poisson input to the well-
known form [21]

ch=1-A%(1-ch). (5.3)

KUHN [18] has used (5.2) for the output processes in
general queueing networks and took over (1.3) (see
also output figures in [18]).

5.2 ldle and Busy Period

According to an exact formula from [16]
1
(1-W)- E(Trp) =5~ h, (5.4)

also the mean time E(Typ) of an idle period can be
approximated, using (1.4):

1-A

E(TIP)=m' h. (5.5)

There is also a possibility to approximate the mean
length of a busy period Tgp via the relation [16]

Py

1
E(Tgp) = P, “E(Typ), (5.6

where Pg is the absolute probability of an empty
system. For pure waiting systems, as being considered
here, Py =1 — A, such that with (5.5)

1
E(TBP)=—“—~~1 _w'h. (5.7
In RIORDAN [22] eqns. (5.4) and (5.6) are derived

without special assumptions concerning the input
process. Thus the equations for the mean idle period

(5.5) and the mean busy period (5.7) are also applicable

to batch input systems with W according to (4.4).

6 Summary and Conclusion

For the general single server system GI/G/1 simple
2-moments approximations have been given for the
mean waiting time and the probability of waiting. The
stimulae have been the gap between many complex

exact results and a quick numerical calculation for
engineering purposes.

With the restriction to 2 moments, the formulae and
application should be quick and simple, naturally thus
inducing certain errors.

The accuracy of the formulae has been investigated
and proved to be very useful within a wide range of
applications or traffic assumptions, also easily including
systems with batch arrivals.

In addition, also simple formulae are available for the
variances of the output processes as well as the mean
values for the idle and busy periods.

The usefulness of the approximation of the mean
waiting times and of the output variances has been
already demonstrated by KUHN [18] in context with
queueing networks. Also tables including these
approximations are provided [19].

It is hoped that these heuristic approximation, which
cannot and will not replace GI/G/1 investigations with
detailed reflection of the interarrival and service time
d.f.s, will be helpful for the traffic engineer to obtain
very quickly and simply useful estimates for the delay
in his special single server models.
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