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Abstract

Realistic source models reflecting the main characteristics of traffic sources such as their cor-
relation structure are necessary to investigate the performance of ATM network components.
In this paper we study a discrete-time single server queueing system with a non-renewal input
process which fulfills the above requirements while still being analytically tractable.

An ezact analysis of the infinite and of the finite capacity queue yields the state probabilities at
departure instants and at an arbitrary time as well as the loss probability. Further, we present

an approzimate solution for the finite buffer system which allows a significant reduction of the
computational effort. The analysis is used to demonstrate the influence of serial correlations
in the arrival process. Finally, some ezamples and numerical results are given to illustrate the

accuracy of the approzimation.

1 Introduction

Realistic source models reflecting the main characteris-
tics of traffic sources such as video codecs are essential in
order to study the performance of ATM network compo-
nents. For simulation purposes, the source models can in
principle be sufficiently detailed (though complex), but
for analytical investigations they are usually very sim-
ple. Unfortunately, the simulation technique has several
limitations which reduce its applicability for the perfor-
mance study of ATM networks. These limitations are
due to the measurement of extremely small probabilities

“below 108 and the runtime requirements for complex

traffic models. Hence, analytic models which enable a
queueing analysis are useful, e.g., when dimensioning a
statistical multiplexer to provide a loss probability of
10710, \

Commonly used analytic source models are the Pois-
son. process and the Bernoulli process. However, these
models do not incorporate important characteristics of
the traffic such as its correlation structure or periodic-
ity [16]. Therefore, more realistic models are required
which include the discrete-time nature and other basic
properties of the cell traffic, while still being analyti-
cally tractable. The Discrete-Time Markovian Arrival
Process (DMAP) [1] is a promising approach in this di-
rection, because it covers various source models which
have been previously applied to model ATM traffic, e.g.,
the talkspurt-silence source studied in [7].

In this paper we first give a formal definition of the
DMAP and derive some of its important characteris-
tics like the counting function and the interarrival time

distribution. Then the analysis of an infinite capacity
discrete-time single server queueing system with a gen-
eral service time distribution is briefly described. Since
the arrival process is a discrete-time analog of the MAP
introduced in [10], the analysis follows the same concepts
as outlined there and in [13, 14]. Based on an embed-
ded Markov chain approach, the queue length distribu-
tion and its moments at departure and arrival instants
as well as at an arbitrary time are obtained.

The following analysis of the DMAP/G/1 queue with fi-
nite buffer capacity yields an exact solution for the state
probabilities and the loss probability. In order to re-
duce the computational effort, an approximation for the
state probabilities immediately after a departure instant
is derived by taking into account the state probabilities
at departures in the system with infinite buffer capacity.
Finally, a number of applications for this general queue-
ing model are presented. We study the characteristics
of the Leaky Bucket algorithm used for ATM source
monitoring and the influence of serial correlations in the
arrival process on the queueing performance. Further,
it is shown how the model can be used to analyze a
discrete-time finite capacity GI/G/1 queue, a problem
which is in general very difficult to solve for arbitrary
service time distributions.

2 A Discrete-Time Markovian Arrival
Process

The DMAP is a stochastic process which is based on an
irreducible discrete-time Markov chain with state space
{1,...,m}. If the process is in state i at time k - At, it
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moves to state j at time (k+1)-At with probability u;; =
cij + dij. Here, ¢;; is the probability that the transition
from state 7 to state j occurs without an arrival, and d;;
is the probability that the same transition generates an
arrival event. Thus, the process is completely defined in
terms of the matrices C and D, where C = [¢;;] and D =
[di;] . From this definition it is clear that the transition
matrix of the underlying Markov chain is C + D, and
consequently 70, (¢;; + di;) = 1, V4. In the following,
the state of the Markov chain describing the DMAP will
be called its phase to avoid confusion with the state of
the queueing system we consider later on.

Note that the DMAP is the discrete-time analog of a
stochastic process described in [10]. It was introduced
in [1], and a detailed description of its characteristics
can be found in {2]. The next paragraphs summarize
the results of [2] which are relevant in the context of
this paper.

In order to compute the transition matrix of the embed-
ded Markov chain described in Section 3 it is necessary
to evaluate the counting function of the arrival process,
i.e. the distribution of the number of arrivals in an inter-
val of k time slots. Considering a single slot, it is clear
from the above definition of the process that d;; is the
probability that in the next time slot there is an arrival
and the process will be in state j, given that the current
state is 7. Analogous, ¢;; is the probability that in the
next time slot there is no arrival event and the state of
the Markov chain will be j, given that the momentary
state is 7.

Let Pij(n,k) be the conditional probability that there
are n arrivals in the interval (0, %] and that the state of
the process is j at the end, given that it starts in phase
¢ at time 0. The matrix P(n,1) = [P;;(n,1)] describing
a single time slot is given by

C ifn=0
P(n,1)=¢ D ifn=1 (1)
0 otherwise.

Consequently, the generating function of P(n,1) is
P(z,1) = > P(1,1)2* =C+Dz. 2)
v=0

Due to the Markovian properties of a DMAP, the general
expression for the generating function of P(n, k) is easily
obtained as

P(z,k) = [P(z,1)* = [C + DzJ*. (3)

The general expression for P(n, k) is rather difficult to
derive, since the matrix multiplication is not a commu-
tative operation. However, P(n,k) can be computed
numerically using a recursive scheme similar to the al-
gorithm described in [9].

Let fi;(k) be the conditional probability that the inter-
arrival time is k time slots and that the state of the

DMAP at the next arrival is j, given that the state was
i at the previous arrival. If the interarrival time is ex-
actly k time slots there must be k — 1 slots without an
arrival, followed by the last slot with an arrival event.
Therefore, the probability matrix £(k) is given by

C'D ifk>1
f(k) = { 0 otherwise,

with generating function

(4)

H:)= 3 4() =2 (I-C2)'D, <1, ()

vr=1

where A~! denotes the matrix inverse of A.. In order to
determine the mean value and higher order moments of
the interarrival time, we need the derivatives of f(z) for
z = 1. It can be proved by complete induction that the
n-th derivative of f(z) is

f(z)™ = al. (I-Cz)" ) ¢! D, (6)

From this general relationship, the matrix of mean in-
terarrival times is immediately derived:

76) L= (1= ©)7* D ("

3 Analysis of the DMAP/G/1 Queue

The queueing model consists of a discrete-time single
server queue with infinite capacity and FIFO service dis-
cipline. The arrival process is supposed to be a DMAP
characterized by the transition matrices C and D. The
service time has a general discrete-time distzibution A(k),
k > 0, with moments p(™ = 12 v"h(v), pV) = h.
Mutual independence is assumed with respect to the ar-
rival process and the service times. Since we consider a
discrete-time queueing system, an arrival and a depar-
ture may occur simultaneously. In this case the arriving
customer enters the system immediately before the de-
parting one leaves (arrival first, AF).

Let 75, be the time until the k-th departure in the above
queueing model, given that 7o = 0. Note that the phase
of the arrival process completely contains its memory.
Therefore, if we define R), and Ji to be the number of
customers in the system and the phase of the DMAP
at 77, the sequence {(Bey Jo, Top1 — ) = k > 0}
forms a semi-Markov chain with state space {(r, j) :
r 2 0,1 < j £ m} The transition probability
matrix has the same structure as for the M/G/1 queue
and is given by

B, B, B,
Ag A, A, ...
Q= 0 A, A, ... , (8)

0 0 A,




where the m x m matrices A, and B, are determined

by

A, = i P(n,v) - k(v), (9)

v=0

B,=U-A,, and (10)
U=Y €*D=f(2)[tm=(I-C)"' D. (11)
v=0

[A.)i; is the conditional probability that there are n ar-
rivals during a service time and the DMAP is in phase
j at the departure instant, given that the system was
not empty after the last departure with the DMAP in
phase i. In addition, U gives the phase transition prob-
abilities between the beginning and the end of an idle
period, which is the time between a departure leaving
the system empty and the next arrival.

The solution method for this queueing model is based
on a matrix analytic approach, which can be found in
several publications [10, 13, 14]. Our intention is not to
reproduce the whole analysis. However, for complete-
ness, we briefly outline the major steps using matrix
analytic techniques. Some steps are also required to de-
scribe the exact and an approximate calculation of the
loss probability for the queue with finite buffer capacity.

In order to derive the state probabilities at departures
the stationary state vector &y is needed. Its components
zg,; corresponid to the probability that a departure leaves
the system empty with the DMAP in phase . We start
by defining some additional variables:

EF := mean length of an idle period (in time slots).

EB := mean length of a busy period (time between
two successive idle periods).

eos O e-t= mean number of departures in a busy period.
I o= stationary phase vector at departure instants
after which the system is empty.
g = (1,1,...,D7T.
A := mean arrival rate of the DMAP. It is deter-

mined by A = @ - D - €, where the stationary

S phase vector 7 is implicitly given by @ - (C +

D)=77-=1

Using the equations

EF -1 z _
EF+EB _~ P B = h-EK and
T —fa-o b= a0yt
leads to
- I 1- I
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The following derivation of [ is based on the matrix G(k)

‘with components [G(k)];; corresponding to the condi-

tional probability that a busy period ends after exactly
k departures with the DMAP in phase j, given that
it was in phase i at the beginning of this busy period.
Due to the structure of Q this is equal to the probability
that the first departure leaving r customers in the sys-
tem occurs exactly after k transitions with the DMAP in
phase 7, given that the embedded Markov chain started
in state (r + 1, i). The probability is independent of r,
r > 0. Hence, denoting G(z) = 122, G(v) 2*, we ob-
tain for |z] < 1

&)=z S A[CE)] =2 T PEE) h)

=z 2 [C+DG()]” h(v). (13)

Assuming C + D to be irreducible and p < 1 (stable
system), the matrix '

G=3 G)=G(z) |im= 3 [C+DGI h() (14)

v=0 v=0

is stochastic [13] and represents the phase transition ma-
trix of a busy period. Its stationary vector is given by
7-G =g, § €= 1. The matrix G may be computed
by successive substitutions in Equation 14. More effi-
cient algorithms are giver in [5] to reduce the number
of iterations especially at high loads. Since there is al-
ways an idle period followed by a busy period betwe_‘en
two successive departures leaving the system empty, ! is
determined by
lveg=i, [l.e=1 : (15)
Using Equation 14 it can be shown that §(C+DG) = §.
This together with Equation 15 implies

[=[§a-C)&]™-§A-C) and (16)
L2 G- o). (17)

b~

fa = )\
As described in [15] the vectors Z,, » > 0, can be ob-
tained using the numerically stable recursion

r—1
g = (2B, + Y FAuo) (I-A)7Y, r2>1,(18)

v=1

where A, = Z A, -G"™ and

v=w
oo

B, = EBV~G”“‘”, for w > 0.

v=w

From the state probabilities at departures the station-
ary queue length distribution at the end of an arbitrary
time unit is now derived. First we focus on the prob-
ability yo; that the system is empty at the end of an
arbitrary time slot with the DQ/IAP in phase j. This is
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only possible if the last departure has left the system
empty and there have been no further arrivals. Hence,
the element [Y°2, C¥});;/ETp is the conditional proba-
bility that the system is in state (0, 7) at the end of an
arbitrary time unit, given that the last departure left
the system empty with the DMAP in phase i. Note
that the mean number of time units between successive
departures ETp is equal to the mean interarrival time
ET4 = 1/) in a queueing system without losses. This

leads to

Fo=Ad 3. C"=X2&(I-C)'=(1-p) g (19)

v=0

In a similar way the vectors 7, 7 > 1, can be obtained,
although the scenarios are more complex. The deriva-
tion goes along the line of reference [10], with the only
difference that we consider a discrete-time model. Due
to space limitations the details are skipped, the resulting
expression is

G223 3 S C'DPEr-1F) > A

k=0 1=0 v=k+1
+A Y 7 Y Pr—wk) > h(v). (20)
w=1 k=0 v=k+1

After some manipulations Equation 20 leads to the fol-
lowing recursion (compare with [10]):

Gor=[F D4 M1 — &) -I-C)7%, r>0. (21)

4 The Finite Capacity Queue

In order to obtain the loss probability of the system with
finite buffer capacity we calculate the stationary state
probabilities Z* at departures and the probabilities gy
at the end of an arbitrary time slot. In the following,
the asterisk "’ indicates that the corresponding quantity

refers to the finite buffer system.

For a system with finite buffer size s, the transition ma-
trix of the Markov chain is given by

B, B, ... B,.1 Bj.
Ay A, ... A AL,
Q' =1 0 Ay ... A, AL |, (22)
0 0 ... A Aium)
where A¥ =3 A, and
V=:
By,=)Y B,, forw>1.
v=w

A direct or an iterative solution of the system of equa-
tions (£}, ..., #7) Q* = (L3,..., ;) yields the exact values
of Z*. However, these methods are either memory or
time consuming, especially for large m and s. Therefore,
in the second part of this section an approximation is

proposed which reduces the computational effort. If an
exact solution is necessary, it can be obtained very effi-
ciently from an additional iteration starting with the ap-
proximated values. In this case the iteration converges
rapidly, because its initial vectors are already close to
the exact solution.

In the next paragraphs the stationary queue length dis-
tribution at an arbitrary time slot 7%, 0 <7 < s+41,1s
related to the state vectors * at departures. Except for
¥+ 41, this can be done by considerations similar to Equa-
tion 19 and 20 with the difference that the arrival rate A
has to be replaced by the inverse of the mean interdepar-
ture time ET5. Since there is either an idle period and
one service time — in the case where a departure leaves
the system empty — or exactly one service time between
two successive departures, the mean interdeparture time
can be calculated from

d ~ -

ETp =&+ —4(2) o= €+ h
=& -I-C)'.€+h. (23)
For computing the blocking probability ¢;,; the fact is
used that the sum of all probabilities §* must be equal
to the stationary phase vector @ of the arrival process.
In agreement with [3] the following expressions for the
queue length distribution at an arbitrary time slot are

obtained:
1

R TR (24
1
T = | Dtz (F0 — 8| (1-C)7
+1 ETD +1 bl
r=0,.,s—1 , (25)
Vo1 = 7?"2?;: (26)
r=0

Finally, the loss probability B can be computed from

P{queue full, cell arriva.l} 1 - ‘
= =-g...D.
B P{cell arrival} 3 Yot ¢

or by applying 1/ET} = A(1 — B) together with Equa-
tion 23 which leads to

1 .
B=1- %7 (28)
A Liap

Another way to obtain B is based on the following di-
rect approach for the blocking probability (compare with

Equation 20):

G =M1=B) > > > hk+v)
r=s+1 k=0 v=1
& UPE—-1,k)+ Y, & P(r—wk)|(29)
w=1 .

Here, the summation 3372,,; - takes into account pos-
sible cell losses between the last departure and the ar-
bitrary time slot. Using Equation 27 and 29 some ma-
nipulations finally lead to




B= a(d”('n—:;" 5:,“A0a Ala ) , where
1+ a(ﬂ:o, eeey 2}:, Ao, Al, .‘.)
a(i:';, wesy 2—;:, A.o, A.1, ...) =
oo r—1 o s r—u
UL [[-Talery Ya -
r=s+1 v=0 r=s+1 w=1 v=0

(30)

In the sequel, an approximation for the state.probabil-
ities at departures is given in order to obtain an effi-
cient estimation for the loss probability. Note, that the
state probabilities #¥, r < s, are computed from & in
the same way as in the system with infinite capacity.
The transition probabilities differ only for the vector Z3.
Therefore we take the probabilities Z,, » < s, of the in-
finite capacity system as an spproximation for Z;. The
vector Z* is then estimated using the transition proba-

bilities of Q*. This leads to-

s—1
:E: ~ (fOB:um + Z ETA:;;+1) . (I - A.::um) - . (31)
r=1

Since the vector 3°2_, ZF must be stochastic, the vectors
Z* have to be normalized.

According to our experience an approximation of B us-
ing Equations 23-28 together with the approximation
for Z* yields results which tend to be smaller than the
exact values. With Equation 30 instead of Equations
23-28 the computational effort is higher, but our inves-
tigations have shown that this estimation is pessimistic
which is preferred in most cases. Furthermore, its rela-
tive approximation error has been smaller. In the next
section some examples and numerical results are given,
which illustrate also the accuracy of the second approx-
imation.

5 Applications

The DMAP is a very general arrival process and covers
many discrete-time processes excluding batch arrivals.
For instance, D = p and C = 1 — p implies a Bernoulli
process with arrival probability p. A very general class of
processes called General Modulated Deterministic Pro-
cesses (GMDP) (8] can be modelled as a DMAP. This
class includes the well-known burst silence model and
the Markov Modulated Deterministic Process (MMDP)
as a special case [2]. In addition, a DMAP allows the
modelling of an arbitrary discrete-time renewal process,
which has a well-defined maximum interarrival time. Let
Pr be the probability of the interarrival time being & slots
and p, = 0 for £k = 0 and k& > 3. Then the matrices C
and D are given by

0l-p O pn 00
C=|0 0  B-landD=| - 00/. (32)
0 © 0 1 00
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Further examples for the modelling of various discrete-
time processes without batch arrivals can be found in [2].
For a burst silence arrival process and a deterministic
service time the results have been validated by compar-
ison with the results obtained from discrete-time analy-
sis [19].

As a first application, we will study the characteristics
of the Leaky Bucket algorithm used for source monitor-
ing in ATM networks. This algorithm can be modelled
as a finite capacity single server queueing system with
deterministic service time h [17]. As shown in Figure 1

p()l pBO

Tl \ EXI p12 Tg, EXg

Figure 1: State transition diagram of an MMDP
with 3 states

the input process is assumed to be an MMDP with 3
states which may describe the cell generation process
of a variable bitrate source (e.g. video codec for ATM
networks). In the states 1 and 2 cells have a constant
interarrival time Ty and Tb, respectively. While being in
state 0 no cells are emitted. The number of cells gener-
ated in the states 1 and 2 and the sojourn time of the
silence state have a shifted geometric distribution with
mean EX; = EX,; = EX and ES. State changes occur
with probability pw, = 0.5, v # w. The offered traffic
A and the burstiness BU of this arrival process can be
computed from the equations

B 2EX h
“EX (T +T5)+ ES

max. cellrate 7, EX (Th+T2)+ ES
- 2EXT

A and

BU =

. (33)

mean cell rate

Figure 2 depicts the cell loss probability of the Leaky

Bucket mechanism versus bucket size for different source
parameters. Obviously, the cellloss probability increases
with the load. Higher burstiness and longer burst du-
ration also lead to higher cell loss probabilities. Note
that in all cases comsidered here Ty and T, have been
smaller than kb which implies that the proposed approx-
imation yields exact results, since the arrival process
must be in the silence phase as long as the system is
empty (including the previous departure). The silence
phase corresponds to exactly one phase of the DMAP, so

%
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Figure 2: Cell loss probability versus bucket size

that I* = [ Hence, the approximation uses the correct
phase probability ratio and leads to exact results.

In a second example, the influence of serial correlations
within the arrival process is investigated. Since the cor-
relation of consecutive interarrival times is characterized
by the coefficient of correlation ¢, we have used an ar-
rival process where c. is easily adjustable {18]. This pro-
cess has two states with interarrival times T, v = 1, 2,
being constant in each state. Therefore the process is
equivalent to the one shown in Figure 1 without the si-
lence phase, where the number of cells emitted in one
state has a shifted geometric distribution with the same
mean value EX = (1—g)~! for both states. Here,1—g¢
denotes the probability of changing the state after each

cell arrival. For Ty # T, the mean ET}y, the coefficient

of variation c,, and the coefficient of correlation ¢, of the
interarrival time T4 are given by j

1
ETA == E[T] + Tz],

=’1_T1/T2 , and ¢, =2g— 1. (34)

1 +T1/T2

These parameters can be chosen independently from
each other fo. ETy > 0,0< ¢, < 1l,and -1 <c. < 1.
A coefficient of variation greater than 1 can be obtained,
if the mean number of cells generated in each state are
different. Figure 3 illustrates the loss probability versus
coefficient of correlation for different buffer sizes, assum-
ing a constant service time h = 5. The loss probability
increases rapidly with the coeflicient of correlation, be-
cause the state sojourn times of the arrival process tend
to infinity if ¢, approaches +1. Conversely, the process
is a more or less deterministic alternating sequence of
T, and T if c. is close to —1.

The relative error of the proposed approximation shown
in Figure 4 is evaluated from exact results, obtained by

t
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Figure 3: Loss ‘probability versus coefficient of cor-

relation
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0.0
-1.0 -0.6 -0.2 0.2 0.6 1.0
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Figure 4: Relative approximation error versus coef-
ficient of correlation

an iterative solution of the equation system resulting .
from the transition matrix given in Equation 22. The
approximation is based on Equation 30. The curves in-
dicate a good agreement of approximate and exact re-
sults. For'the case where the relative error is maximal,
we have studied the influence of ¢, and A. Investiga-
tions have shown that the relative approximation error
increases slightly with ¢, and 4. In all cases we studied
the approximated cell loss probability has been larger
than the exact value.

6 Conclusion

In this paper an exact analysis of a general discrete-time
single server queueing model with correlated input is
presented. For the system with finite buffer capacity an
exact and an approximate solution for the loss probabil-




ity is given. As an example an MMDP arrival process is
applied to study the characteristics of the Leaky Bucket
algorithm used for source monitoring in ATM networks.
It is also shown how the model can be used to analyze a
discrete-time GI/G/1-s queue with a well-defined max-
imum interarrival time.

Further the influence of serial correlations within the ar-
rival process on the cell loss probability is investigated.
The study indicates a good agreement of the approx-
imate results with the exact solution, which is either
memory or time consuming. The relative approximation
error increases with the offered traffic and the coefficient
of variation, but within our investigations it has always
been small. In all cases the approximated cell loss prob-
ability' has been larger than the exact value. Future
work includes the study of algorithms for matching the
parameters of a DMAP to measurements of variable bi-
trate video codecs.
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