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Extended Abstract

Realistic source models reflecting the main characteristics of traffic sources such as video
codecs are essential in order to study the performance of ATM network components. For sim-
ulation purposes, the source models can in principle be sufficiently detailed (though complex),
but for analytical investigations they are usually very simple. Unfortunately, the simulation
technique has several limitations which reduce its applicability for the performance study of
ATM networks. These limitations are due to the measurement of extremely small probabilities
below 107€ and the runtime requirements for complex traffic models. Hence, analytic models
which enable a queueing analysis are useful, e.g., when dimensioning a statistical multiplexer
to provide a loss probability of 10-1°,

Commonly used analytic source models are the Poisson process and the Bernoulli process.

its correlation structure or periodicity. Therefore, more realistic models are required which
include the discrete-time nature and other basic properties of the cell traffic, while still being
analytically tractable.

The Discrete-Time Markovian Arrival Process (DMAP) [1] is a promising approach in this
direction. It is a stochastic process which is based on an irreducible discrete-time Markov
__Chain with state space {1,... »m}. If the process is in state i at time k- At, it moves to state
_J at time (k + 1) - At with probability u;; =-¢j + dij. Here, ¢;; is the probability that the

_ terms of the matrices C and D, where C = [c;;] and D = [d;;] . From this definition it is
~ clear that the transition matrix of the underlying Markov Chain is C + D, and consequently
X=i(cij+di) =1, Vi. In the following, the state of the Markov Chain describing the DMAP
will be called its phase to avoid confusion with the state of the queueing system considered

can be found in [2]. It covers many discrete-time processes excluding batch arrivals. For

and the Markov Modulated Deterministic Process (MMDP) as a special case [2)- In addition,

vell-defined maximum interarrival time.

However, these models do not incorporate important characteristics of the traffic such as

- transition from state i to state j occurs without an arrival, and d;; is the probability that
~the same transition generates an arrival event. Thus, the process is completely defined in

nstance, D = p and C = 1 — p implies a Bernoulli process with arrival probability p. A
ery general class of processes called General Modulated Deterministic Processes (GMDP)
6] can be modelled as a DMAP. This class includes the well-known burst silence model [5]

DMAP allows the modelling of an arbifrary discrete-time renewal 'brqc&es, 'Whi¢h?jw

ater on. Note that the DMAP is the discrete-time analog of a stochastic process described
n [8]. It was introduced in [1] and [12], and a detailed description of its characteristics . .
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The queueing model studied first consists of a discrete-time single server queue with in-
finite capacity and FIFO service discipline. The arrival process is supposed to be a DMAP
characterized by the transition matrices C and D. The service time has a general discrete-
time distribution h(k). Mutual independence is assumed with respect to the arrival process
and the service times. Since we consider a discrete-time queueing system, an arrival and a
departure may occur simultaneously. In this case the arriving customer enters the system
immediately before the departing one leaves (arrival first, AF). The solution for this queueing
model is based on a two-dimensional embedded Markov Chain at departure instants describ-
ing the state of the system by the number of customers and the phase of the DMAP. The
state probabilities at departures and the stationary queue length distribution can be obtained
using a matrix analytic approach, which can be found in several publications [8, 10, 11].

In order to obtain the loss probability of the system with finite buffer capacity s the
stationary state probabilities at departures and the blocking probability are calculated. Due
to the finite state space the exact values of these probabilities can be computed directly or

iteratively by solving the system of equations given by the Markov Chain. However, these

methods are either memory or time consuming, especially for large m and s. Therefore,
an approximation for the state probabilities and the loss probability is given by taking into
account the state probabilities at departures in the system with infinite capacity, thus reducing
the computational effort. If an exact solution is necessary, it can be obtained very efficiently
from an additional iteration starting with the approximated values. In this case the iteration
converges rapidly, because its initial values are already close to the exact solution.

As an application, the characteristics of the Leaky Bucket algorithm used for source mon-
itoring in ATM networks is investigated. This algorithm can be modelled as a finite capacity
single server queueing system with deterministic service time [13].
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Figure 1: State transition diagram of an MMDP Figure 2: Cell loss probability versus bucket
with 3 states ~ size

As shown in Figure 1 the input process is assumed to be an MMDP with 3 states which
may describe the cell generation process of a variable bitrate source (e.g. video codec for ATM
networks). In the states 1 and 2 cells have a constant interarrival time T} and T, respectively.
While being in state 0 no cells are emitted. The number of cells generated in states 1 and
2 and the sojourn time of the silence state have a shifted geometric distribution with mean
EX, = EX; = EX and ES. State changes occur with probability p,, = 0.5, v # w.
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Figure 2 depicts the cell loss probability of the Leaky Bucket mechanism versus bucket size
for different source parameters. Higher burstiness BU (= max. cell rate / mean cell rate)
and longer burst duration lead to higher cell loss probabilities.

In all cases considered here the proposed approximation yields exact results. In general,

the approximation error is small and almost independent of the buffer size s according to our
experience.
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