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Abstract—Firewalls are a crucial building block for secur-
ing interconnections between networks of different security
domains. Newer IP based applications such as IP telephony
require that packet filters are configured dynamically by session-
aware entities. Several architectures and protocols were proposed
for firewall remote control (e. g., IETF MIDCOM and NSIS).
However, on the nodes that could host the control entity no
common local interface for managing packet filter rules exists.
This forces developers of firewall control entities to use firewall
specific interfaces and limits portability across operating systems
and firewall implementations. This paper describes the design
of an operating system independent interface, which allows
the firewall control entity to modify firewall rules from user
space. We implemented this interface for Netfilter chains of the
Linux operating system kernel taking functional and security
requirements into account. Based on measurements, we analyze
the performance characteristics and conclude that the approach
is feasible for small to medium network setups.

I. INTRODUCTION

Firewalls are a proven and widely deployed means for
securing network interconnections. However, the usage of out-
of-band signaling protocols such as SIP for IP telephony and
multimedia applications imposes new challenges on them.
While in the past firewall configuration usually was static
and self-contained these new applications require dynamic
changes to the rulesets, depending on the session signaling.
Various protocols for firewall control have been proposed and
implemented as prototypes. However, few of the prototypes
can actually change the firewall ruleset with reasonable ef-
ficiency. This is because the interface for modifying firewall
rulesets in the operating system is not standardized and usually
rather complex. This paper proposes an operating system
independent API, which intentionally covers only the most
important functions, in order to keep it as easy to use as
possible. A prototype implementation shows the feasibility;
measurements are used to assess the performance of this
approach.

The reminder of this paper is organized as follows: Sec-
tion II shows why dynamic firewall control is needed and
gives a classification of the various control architectures that
have been proposed. The first operating system for which we
have implemented our API is Linux. Its firewall subsystem
Netfilter will be introduced in section III. Section IV covers
the design of the API. Section V details the relevant parameters
for characterizing firewall performance in a VoIP scenario.

Measurement results from our API running on Linux are
presented in section VI. The paper concludes with section VII.

II. FIREWALL CONTROL FRAMEWORKS AND PROTOCOLS

A. The SIP/RTP firewall traversal problem

A firewall is one or a group of network elements that
enforce an access control policy on the traffic at the border
between network domains with different security levels and
requirements. That is, a firewall is basically a gateway that
relays traffic from one domain to the other, but only if the
traffic is compliant to a specific security policy. Often, it is
implemented as a packet filter, i. e., as a router that forwards
only compliant packets while discarding the others.

The firewall policy is usually expressed by a list of policy
rules, each being “the binding of a set of actions to a set
of conditions” [1]. A policy rule that allows specific packets
to pass a packet filter is also called a pinhole. Traditionally,
in many realistic deployment scenarios a static configuration
of the pinhole list has been sufficient, often complemented
by connection tracking inside the packet filter (i. e., keeping
state information and allowing inbound replies only after
an outbound request). This is possible due to the in-band
signaling and the “well known port numbers”-concept most
traditional Internet services such as WWW or e-mail follow.

However, some applications differ from these concepts. In
the considered IP telephony scenarios, the Session Initiation
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Fig. 1. SIP signaling messages and RTP media streams may travel on
different paths through the network
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Protocol (SIP) is used for call control signaling. The actual
user data (speech) is transported in separate flows, using
the Real-time Transport Protocol (RTP). RTP stream param-
eters are negotiated dynamically using Session Description
Protocol (SDP) messages embedded in the SIP signaling.
These parameters include the codec, bit rate, etc., but also
information which is relevant for firewall configuration, such
as IP addresses and UDP port numbers. This dependency
between protocols is complicated by the fact that signaling
messages and media streams may travel on different paths
through the network (e. g., to roaming users, see Fig. 1).

Due to this dynamic nature of SIP/SDP and RTP, a static
configuration of packet filters on the media path is no real
option, as it would either block all RTP streams or would have
to allow all UDP traffic, rendering the firewall’s protection
almost useless in many network scenarios. Instead, firewalls
have to interact with the session signaling, in order to allow
only those media streams that have been announced by means
of signaling first. Several architectures and protocols have been
proposed for this purpose; an overview will be given next.

B. Classification of SIP/RTP firewall architectures

Fig. 2 shows a classification of SIP/RTP firewall archi-
tectures. In the following, the logical entity that handles the
signaling messages is referred to as signaling component, the
entity for the media streams will be called media component.
An important criterion is whether the signaling component
and the media component are located in one common or two
separate physical network elements. In both cases, if several
parallel network interconnection points are available between
the security domains, one can further distinguish whether the
architecture forces a media stream to traverse one specific
media component, or whether the decision which one to use
is left up to a dynamic routing protocol.

The main advantage of placing signaling and media com-
ponent into one network element is that the control interface
between these components will be an internal one, i. e., no
signaling protocol is needed. However, this solution prohibits
scenarios like the one depicted in Fig. 1, where the signaling
messages for a roaming user are sent via his home network,
whereas the media streams flow on a direct path to the
communication partner, resulting in lower latencies.

1) Protocol helpers: If an enforcement of the media path
is not required, a full-fledged protocol entity for the session
signaling protocol is not always needed. A passive analysis
of the signaling messages may be sufficient to determine
the parameters needed to open the pinholes for the media
streams. The protocol helpers within the Netfilter framework
(see below) implement this concept successfully for many
protocols such as FTP. However, there are several drawbacks
of integrating a SIP/SDP parser directly into the packet filter:

• SIP is a text based protocol allowing various formats
for the same message. It may use different transport
protocols that may fragment a message over several IP
packets. Therefore, a rather complex parser is required to

media forced to traverse firewall
Example: Distributed SBC

path−coupled signaling

Example: IETF NSIS

path−decoupled signaling

IETF MIDCOMExample:

media forced to traverse firewall
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Example: Netfilter protocol helper

no enforcement of media path

SIP/RTP Firewall

no external interface
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signaling protocol needed
two separate firewall elements

no enforcement of media path

Fig. 2. Classification of SIP/RTP firewall architectures

extract the SDP information. This is error-prone and may
increase the likelyhood of implementation weaknesses.

• SIP messages may be encrypted in order to provide
confidentiality in insecure networks. In such cases, the
protocol helpers are not able to extract the required
information from the SDP.

• Passive analysis of SIP does not allow policy enforcement
on a session level, e. g., rejecting calls from specific users.
Therefore, an additional SIP proxy or B2BUA will be
needed in many scenarios.

• It is difficult to determine when the pinholes have to
be closed again, as even SIP messages may travel on
different paths through the network (e. g., the INVITE
might be sent via proxies while the BYE is sent directly).

• As already mentioned this scheme fails if media streams
flow through a different firewall than the corresponding
signaling messages. Therefore, this solution most useful
for smaller sites that have only one Internet access link.

2) Session Border Controllers: An SBC combines a SIP
B2BUA as signaling component and a media component, such
as an RTP proxy or a packet filter, in one box. SDP information
in the signaling messages will be modified by the B2BUA,
causing the multimedia endpoints to send the media streams
not to the other party but to the SBC, thereby forcing the media
path to go through the SBC. This solution may overcome the
above-mentioned problems at the cost of having to process SIP
messages and keeping call state at every network border, which
increases the total effort. Furthermore, SBCs introduce single
points of failure that cannot be circumvented by rerouting on
the IP layer.

3) Distributed Session Border Controllers: Having the sig-
naling and media components placed on different network
elements allows to process signaling messages at a central
place in the network, in conjunction with the authorization on
a session basis. Then, only the media streams will be filtered at
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the edge. This also allows media streams taking an optimized
path with potentially smaller end-to-end delays, as discussed
above. However, a signaling protocol is needed between the
two components. When using a distributed SBC, its signaling
component will modify the SDP information in order to force
the media traverse one specific media component.

In contrast, the following two solutions do not influence
the path of the media streams between the two multimedia
endpoints. It is determined by the IP layer routing protocol,
which may be able reroute in case of a node or link failure.

4) IETF NSIS: The NSIS architecture [2], implemented
by the GIST and NAT/FW NSLP protocol layers, follows
the principle of path-coupled firewall signaling. Based on the
normal routing tables, signaling messages are sent along the
(future) media path, in order to announce a new flow and to
create and maintain the necessary state information.

5) IETF MIDCOM / SIMCO: When using path-decoupled
signaling, firewalls on the media path may be controlled
directly from SIP entities in the core of the network (Fig. 3).
As fewer parties are involved, authentication is less complex
and the protocol can work more efficiently. However, the
central entities need to know the network topology and routing
state, in order to configure those firewalls which are actually
on the media path. Several protocols implement this idea, e. g.,
the MIDCOM MIB [3], H.248 [4], or SIMCO [5].

C. The need for a packet filter control API

The previous section has outlined that there is a wide
solution space for the coordination between the signaling and
media components of a SIP/RTP firewall. As each of these
schemes has its individual advantages and disadvantages it is
likely that different protocols will be deployed in different
networks. On the other side, there are also various options for
the media component, e. g., RTP proxies or packet filters.

A popular choice for prototype development and deploy-
ment in small to medium sized networks is to use the packet
filter included in many personal computer operating systems,
such as Linux or OpenBSD. However, the application pro-
gramming interface (API) for adding packet filter rules into
the operating system kernel is not standardized and in many
cases rather complex. To facilitate development of new firewall
solutions, this paper proposes such an API which can be used
by firewall control frameworks. An implementation for Linux
shows the feasibility and the performance of this approach.

("middlebox")
packet filter
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protocol
MIDCOM

interface

SIMCO

SIP UA SIP UA

user Buser A

SIP B2BUA
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SIP

RTP
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Fig. 3. The IETF MIDCOM architecture (acc. to [6])

III. LINUX NETFILTER

Netfilter is the Linux packet filtering framework that pro-
vides functions for packet filtering and mangling in the IP
stack of the Linux kernel. On initialization, the functions
register with hooks in the kernel and are called when packets
pass the hook. Command line tools and libraries allow to
configure Netfilter from user space.

A. Filter and Conntrack

The Filter function performs stateless packet filtering and
allows to specify sophisticated rules. In contrast, Conntrack is
the stateful connection tracking function. For other Netfilter
functions (mangle, nat) and further details on the Linux
networking architecture refer to [7].

Filter registers at hooks for communication to and from the
local host (input and output hooks) as well as at the forwarding
hook that is called for packets routed through the host. A
Filter rule consists of conditions (called matches) and an action
(called target) that applies if all conditions hold. Basic matches
are, e. g., protocol, IP address and port numbers while targets
are, e. g., accept or drop. Filter keeps several filter rules in
linear structures, so-called chains. A global filter table keeps
references to all chains and distinguishes between built-in and
user-defined chains: the former are named according to the
hooks and are always present. They serve as starting point
for filtering. The latter can serve as targets and allow better
structuring and administration of the firewall configuration.
Once a packet passes a hook, the kernel processes the rules
of the corresponding chain linearly until a rule matches. If
the target is a user chain, the kernel continues on that chain
until a target determines the final action (e. g., accept, drop).
If no rule matches, the per-hook default policy applies. There
are also hooks for packet mangling and NAT, that operate on
separate tables and chains. They are not considered here.

In contrast to the Filter function, the connection tracking
system (Conntrack) enables stateful packet filtering. Conntrack
registers with highest priority at the very first hook that is
called when a received packet enters the stack. It classifies
packets whether they belong to a new, established or expected
flow. It may also verify sequence numbers in transport layer
protocols. The classification is based on a hash table lookup,
where the hash is calculated over the five tuple or parts of it.
Conntrack stores the classification result in packet metadata
that can be accessed from Filter rules, e. g., in order to
accept all packets belonging to established connections. When
connections terminate or after an inactivity timeout Conntrack
removes the flows from its hash table.

B. Focus on Filter

Obviously, the hash-based conntrack module performs faster
for a high number of rules than linear search in the Filter
chains. However, a hash-based algorithm works only for exact
(five tuple) matches and not for address ranges. Yet, many
firewall control protocols, such as MIDCOM or NSIS, which
could make use of the framework developed here, require
support for address and port ranges and wildcarding (which
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can be mapped to ranges). Therefore, our first approach,
which is presented here, is based on Filter rules only. Using
combinations of chains, conntrack or other extensions like
ipset (hash, bitmap and tree based filtering) is for further study.

Our solution works on a user-defined chain that is modified
by the control framework, while all other chains and configu-
rations remain untouched. This enables the administrator to set
up other firewall rules and to define how the controlled chain
is embedded in this configuration. However, one problem with
Conntrack and firewall control remains: typical configurations
start with rules that accept all packets belonging to established
connections, i.e., that are present in Conntrack’s hash table. In
such cases, sending a packet that matches a pinhole in the
controlled chain results in a new Conntrack entry, allowing all
further packets to be accepted until the connection terminates.
Removing pinholes, e. g., in case of attacks, would not nec-
cessarily cut off all unwanted traffic. This is not acceptable.

There are three possible solutions to this problem: The first
and simplest solution is to completely disable Conntrack by
not loading the modules and not referring to Contrack from
Filter chains. In a more sophisticated second solution, the fire-
wall administrator enables Conntrack only for permanent rules
that are not going to be managed by the control framework.
Thus, Netfilter chains use the Conntrack classification result,
e. g., for TCP connections and DNS only, but not for other
UDP traffic (possibly VoIP). Removing flows from Conntrack
once the pinhole is closed would be the third solution. This
requires much more additional functionality in the backend
and knowledge about which Conntrack entries originate from
a certain rule (n:1 mapping in case of pinholes with ranges).

C. Managing filter rules

The library libiptc provides functions for managing filter
rules that operate on chains of a table (see Fig. 4). Libiptc
performs changes on a user space representation of the chains,
which differs from the kernel space representation: In the
kernel, Netfilter rules are stored consecutively in memory as a
blob (binary large object block), optimized for fast parameter
matching. Contrary, the user space representation consists of
linked lists of dynamically allocated objects. That is, the user
space representation is optimized for efficient modifications.

table as set of linked lists

table as blob

p
a

rs
e

r

c
o

m
m

a
n

d
 l
in

e

flush()

del()

insert()

add()

init()

commit()

libiptc

iptables −A ..

ip
ta

b
le

s

user space

kernel space

r2 r3 r4

r5 r6 r7

chain 1

chain 2

r2r1 r3 r4

r5 r6 r7

n
e
tf
ilt

e
r 

c
o
re

r1

parse table

compile table

Fig. 4. Management of Netfilter rules with libiptc

The usual way for Netfilter configuration is using the
command line tool iptables, which is basically a command line
parser that uses libiptc for rule management. Before iptables
can perform any changes to filter rules, it has to call the
init function of libiptc that parses the blob of the requested
table and creates the user space representation. Afterwards,
iptables calls libiptc functions, which change the user space
representation (e. g., adding or deleting rules). When finished,
it calls the commit function, which triggers the compilation of
the user space representation into the blob and eventually the
replacement of the old ruleset in the kernel.

For large rulesets, parsing and compiling the ruleset requires
a high effort compared to adding or deleting a few rules. That
is, from a performance point of view, rarely changing many
rules at once is better than doing frequent minor changes.
It becomes obvious, that developers did not design libiptc
for dynamic rule management in the first place. In most
Netfilter-based firewalls, this is not a problem, since static
rules and protocol helpers together with Conntrack perform
well. However, the requirements for this work are different
and thus this approach of ruleset management can become a
bottleneck. Thus, the overhead imposed must be considered
when designing and deploying the framework.

IV. DESIGN AND IMPLEMENTATION OF THE PINHOLE API

Given the multitude of firewall control frameworks and
the different UNIX-like operating systems the goal of this
project was to specify a simple, flexible, and secure API for
adding packet filter rules into the operating system kernel.
The API implementation was first used to connect our SIMCO
server [8] with the Linux Netfilter.

A. Requirements and architecture

The API was designed to be as easy to use as possible: the
add() call allows to open a new pinhole in the firewall, with
specified parameters such as IP adresses and port numbers.
It returns an ID, which can be used to remove the pinhole
with the delete() call. As changing the firewall ruleset may be
resource-consuming, these requests are not processed imme-
diately. Instead, commit() has to be called in order to make all
pending requests effective. The decision when to call commit()
is left to the application. Our SIMCO server measures the time
spent for each commit() call. The next call may be scheduled
only after a pause, which is at least C times as long. This
scheme yields short response times as long as the system is
only slightly loaded. If, however, the ruleset grows larger, no
more than 1

1+C of the CPU time will be spent for updates.
The code was split into two modules, a frontend module

to be integrated into the firewall control protocol entity and a
backend which runs as a standalone auxiliary process. Fig. 5
shows these modules together with our SIMCO server. This
design has been chosen in order to fulfill various requirements:

• Simple integration of the frontend into various firewall
control frameworks: no special libraries such as libiptc
have to be linked against the main process.
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• Operating System independence: In order to support
different operating systems only the backend module has
to be modified. Then, all firewall control frameworks that
use the frontend may be ported easily.

• Robustness: in case of malfunction of the main process
the auxiliary process can remove all the firewall rules
which were installed by the firewall control framework.
In case of errors while installing a new ruleset it can
perform a rollback to the last known good state.

• Security: changing the firewall ruleset in the kernel re-
quires elevated (e. g., “root”) privileges. However, pro-
cesses that accept connections from the network often are
vulnerable against attacks due to implementation weak-
nesses, such as buffer overflows. Therefore, it is desirable
to execute the main process with lower privileges, as this
may limit the damage caused by potential exploitations.
The interface between frontend and backend is used for
this privilege separation.

• Optimization: the ruleset may be optimized for bet-
ter filtering performance. Some general optimizations,
such as merging adjacent or overlapping pinholes, may
be performed in the main process. Other optimizations
specific to the packet filter itself are better performed
in the operating system specific backend. Currently, no
optimization algorithms are implemented.

B. Internal communication

Communication between the main and auxiliary process
uses a Unix domain socket and a simple protocol, which
reuses the message format of the SIMCO PER message.
Therefore, this internal protocol is labeled as “SIMCO lite”
in Fig. 5. Compared to SIMCO, some simplifying assump-
tions are made: The backend process can handle only one
incoming connection from the frontend. No cryptographic
message protection is necessary as communication is host-
internal. The backend cannot handle rule lifetimes or conflicts
between contradicting rules. Therefore, these checks have to

be done in the frontend. The protocol allows for incremental
changes as well as for a complete exchange of the ruleset. As
explained above, libiptc performance is largely independent of
the number of rules that are updated at once. Therefore, our
SIMCO server simply transmits the complete ruleset to the
backend whenever changes are required.

C. Measurement Testbed

For functional tests and performance measurements (see
next section) a testbed was installed (see Fig. 6). It consists
of seven personal computers, each with a 2.8 GHz Pentium 4
CPU, Intel Gigabit Ethernet cards and the Linux kernel version
2.6.22. The firewall computer with our SIMCO server and the
firewall API is located between the insecure network (top)
and the secure “inside” network (bottom), each consisting of
a switched Gigabit Ethernet segment. A third Ethernet segment
(dashed lines) is used for control and management.

Using the SIMCO protocol the controller can add or remove
pinholes from the firewall. Packet senders on both sides of the
firewall generate corresponding UDP packet flows, with packet
sizes (160 bytes payload) and interarrival times (20 ms) that
are typical for many VoIP applications. The packet receivers
report delays and lost packets to the control server. Using
four computers for sending and receiving the emulated RTP
flows ensures that the performance bottleneck is actually in the
firewall computer. One further computer allows to send “DoS
attack” traffic at a configurable rate, which does not match any
pinhole in the firewall.

V. PACKET FILTER PERFORMANCE CHARACTERISTICS

In the following we discuss the performance impact of a
Linux based firewall using our API and SIMCO. We assume
a scenario where the firewall has to inspect the traffic from a
large number of simultaneous calls.

A. Relevant characteristics

From a subscriber’s viewpoint, three parameters are relevant
to characterize the performance of a VoIP packet filter:
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• The mean processing delay δF of legitimate packets while
traversing the packet filter contributes to the end-to-end
delay of IP packets and thus to the ear-to-mouth delay,
which should be as small as possible [9].

• Packet losses decrease the voice quality. Even though
most speech codecs can tolerate some packet losses, the
probability pF that a legitimate packet is lost in the packet
filter should be as close to zero as possible.

• The mean delay δu for adding a new pinhole to the
packet filter contributes to the post-selection delay or
the answer signal delay [10]. Other contributors to these
call setup delays, which are unpleasant to subscribers,
are the firewall control signaling and the transport of the
corresponding signaling messages. The latter was studied
in detail in [11].

From the network operator’s viewpoint the most important
performance characteristic is the number of simultaneous
sessions m that can be handled by the packet filter without
exceeding limits for the quality parameters given above. Atten-
tion has to be paid to the fact that a media stream may have to
traverse several firewalls, each contributing to these end-to-end
metrics. Furthermore, the packet filter has to be dimensioned
such that it can process and reject illegal packets at the highest
assumed rate (esp. Denial-of-Service attacks by “flooding”)
without impeding its ability to forward the legitimate traffic.

B. Influencing factors
A personal computer usually has only one or few central

processing units (CPU). Several tasks can be processed quasi-
simultaneously by allocating CPU time slices to them by turns.
In the considered firewall scenario the main tasks are:

• The SIMCO main process, which communicates with the
SIMCO agents, and manages the policy rules and their
lifetimes, etc.

• The SIMCO auxiliary process, which installs the effective
rule set into the operating system kernel.

• IP packet handling in the kernel: reception, access con-
trol, routing, transmission, etc.

• Other tasks in the operating system kernel or in other
processes, e. g. recording of event log files.

Some of these tasks are implemented as processes in the
user space, others take place in the operating system kernel or
in interrupt handlers. Context switches between these different
tasks cause additional latencies. IP packets may be buffered at
various places while travelling through the IP stack. Several
packets may be processed in one time slice, especially at
high packet rates. Due to this complex interdependencies it
is hardly possible to develop a simple analytic model for the
packet delays or the maximum packet rate that can be handled.
However, it is possible to identify basic parameters on which
the CPU utilization for updating the ruleset and for filtering
the packets depends on. According to our measurements these
two tasks consume the biggest share of CPU ressources. The
limited availability of these ressources eventually leads to
delays under high loads and causes the system to become
overloaded if these parameters exceed certain limits.

Assuming a mean number of simultaneous multimedia
sessions m and a mean session duration h, the mean session
arrival rate follows as λC = m

h . For each multimedia session
two pinholes (one per direction) have to be opened at the
beginning and closed at the end. Therefore, the mean rate of
ruleset changes is

λuc = 2 · 2 · λC = 4
m

h
(1)

and the number of pinholes for the media streams is 2m
Furthermore, a (usually constant) number c of policy rules is
needed for SIP and other auxiliary protocols, e. g., DNS. Thus,
the mean total number of policy rules in the packet filter is

U = 2m + c . (2)

The CPU utilization caused by ruleset updates depends both
on the number of rules U in the ruleset and on the ruleset
change rate λuc. The dependence on U is due to the fact that for
each change, the complete ruleset is read from kernel space to
user space, modified there, and written back (see Sec. III-C). If
λuc increases this process will be triggered more often, causing
higher CPU utilization. However, to ensure consistency, ruleset
updates must not be performed in parallel. That is, an arriving
change request may have to wait until the current update
process is completed. With higher λuc the probability increases
that several requests arrive during that waiting time; they can
be processed at once in the next update cycle.

A packet filter with white list configuration compares the
characteristic parameters of each received IP packet with the
ruleset. If a matching policy rule can be found, the packet
will be forwarded, otherwise it will be discarded. Netfilter
usually searches linearly in the list of policy rules. Assuming
that the legitimate traffic spreads evenly over the pinholes,
U
2 comparisons are needed per RTP packet in the mean. In
contrast, disallowed packets have to be compared with all U
rules until it is clear that they do not conform with the security
policy and have to be discarded. Regarding the number of
rule comparisons the illegal traffic therefore causes a higher
CPU utilization than the legitimate traffic. Other (e.g., hash-
based) approaches for storing and searching within the ruleset,
may reduce this dependence from the ruleset size (see above).
However, problems occur if the pinhole specifications include
ranges for some parameters. In the following we will analyze
a configuration based on Netfilter’s Filter function only.

With two media streams per session and assuming that all
used codecs geneate the same mean packet rate λM the packet
rate at the packet filter is

λi = 2m · λM + λX , (3)

where λX denotes the rate of illegal packets sent by attackers.
The signaling traffic is neglected here. This requires a rate of

λF = 2m · λM ·
1
2
U + λX · U = U(m · λM + λX) (4)

rule comparisons. They compete with the other tasks of the
firewall (see above) for the same CPU ressources.
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VI. MEASUREMENT RESULTS

A. Ruleset update transaction delay

The first measurement examines the transaction delays for
adding or deleting two pinholes corresponding to a multimedia
session, as a function of the number U of pinholes that
are already in the ruleset (Fig. 7). In order to isolate this
effect, no traffic was sent through the packet filter during
this measurement. One hundred measurement cycles were
performed for each measurement point. In every cycle two
policy rules were added and removed again. The figures show
the mean transaction delays.

As already mentioned, for each change the complete ruleset
is read from kernel space to user space, modified there,
and written back to the kernel space. These operations are
performed in libiptc and the contribution of the expensive
commit operation is indicated in Fig. 7. The delays grow
almost perfectly linear with the ruleset size.

The figure also shows measurement results for changing
the ruleset with the standard iptables-restore command. This
mechanism is faster than the iptables command, as it is also
able to commit several changes at once. Thus, this is the next
best choice for a firewall control daemon that does not directly
use libiptc or our API and therefore, we give those values
for comparison. As expected, the commit operation takes the
same time for our API implementation and iptables-restore.
The larger overall delay of iptables-restore might result from
the effort for processing text based rule descriptions.

B. Packet loss and packet delay with static ruleset

The second series of measurement studies the packet pro-
cessing delays δF and the packet loss probability pF of legiti-
mate packets in the packet filter, depending on the number of
simultaneous multimedia sessions m.

In this measurement, no attack traffic was sent (i. e.,
λX = 0). Furthermore, no sessions were established or termi-
nated during one measurement, i. e., the SIMCO server was
not active (h →∞).

Fig. 8 shows δF and pF over the number of pinholes
U = 2m, which were added before each measurement. Load
generators were used to send a packet flow through each
pinhole. Emulating RTP streams with G.711 voice codec, these
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flows consisted of 50 UDP packets per second, each carrying
160 bytes payload. In the depicted parameter range, the relative
utilization of the Gigabit Ethernet segments was only few
percents. The measurements show that up to about m̂ ≈ 500
simultaneous sessions, which correspond to an overall packet
rate λ̂i ≈ 50000 1

s and a ruleset size of Û ≈ 1000, no packet
losses occur. Packet delays are very small and in the same
order of magnitude as the measuring accuracy; they cannot be
distinguished from the measurements with Netfilter disabled
(i. e., the computer working as router). Above this stability
boundary m̂ both packet loss and delays increase dramatically
and prohibit any reasonable communication.

C. Defense against malicious packet floods

The main task of a firewall is to reject traffic that does not
conform to the security policy, including packet floods from
Denial-of-Service attacks. At the same time it must be able to
forward the legitimate traffic. The maximum rate of malicious
traffic that can be rejected without impairing the legitimate
flows has been studied in the next series of measurement.

The basic parameter for the graphs shown in Fig. 9 is again
the number of simultaneous sessions m. Using the SIMCO
server and a SIMCO load generator pinholes with a constant
lifetime of h = 180s were added. The interarrival times of new
pinholes were negative-exponentially distributed and the mean
value was chosen such that U = 2m pinholes were open at the
same time in the mean (lower X-axis). Packet generators were
dynamically configured to send flows with a packet rate of
λM = 50 1

s through each pinhole, i. e., the mean overall rate of
legitimate packets was m ·100 1

s (lower part of the bars, upper
X-axis). In this state, still without sending malicious traffic,
the mean delay for a ruleset update was measured (lower line,
right Y-axis). Again, this delay turned out to be small, with a
strong increase above ca. 450 to 500 simultaneous sessions.

Next, an additional packet generator was used to send UDP
packets (160 bytes payload) not matching any pinhole, which
therefore must be discarded. Starting at zero the packet rate of
this attack traffic was increased until the packet filter’s ability
to forward the legitimate traffic was impaired so much that the
packet loss probability exceeded 0.1% (upper and middle part
of the bars, left Y-axis). This maximum rate of attack traffic
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starts at 180,000 packets per second for only 10 simultaneous
sessions and reaches zero at m̂ ≈ 500. This effect has to be
considered for capacity planning: Under normal conditions the
packet filter should have to handle significantly fewer than the
m̂ simultaneous sessions that are possible in principle, in order
to have enough free capacity to handle the malicious traffic.

At this maximum packet rate the CPU is completely used for
packet handling; the ruleset update process, which has lower
priority, suffers from starvation. Therefore, in a third step the
attack packet rate was decreased to 90% of the maximum
value determined before. Then, ruleset update delays were
measured again (upper line). They were significantly higher
than when measured without attack traffic. Nevertheless, for
m < m̂ they are still acceptable, even if several firewalls have
to be configured sequentially during call setup.

VII. CONCLUSION

Traditionally, firewall rulesets were configured rather stati-
cally. However, newer applications such as SIP-based VoIP re-
quire dynamic reconfiguration based on the session signaling.
Unfortunately, the API for adding firewall rules to the operat-
ing system kernel has not been standardized as, for example,
the socket interface for TCP connections has. Therefore, this
paper proposes such an API, which intentionally covers only
the most important functions, in order to keep it as easy to
use as possible. It can be used by protocol entities of various
firewall control protocols that have been proposed recently.

Our code that provides this API for Linux is open source
licensed under the GPL. It is available for download from
http://sourceforge.net/projects/simco-firewall.

Our measurements show that a standard PC with Linux can
filter the traffic of several hundred simultaneous IP telephony

sessions. However, packet filters need resources not only for
forwarding legitimate traffic, but also for discarding illegal
traffic such as DoS floods. Our measurements also consider
this effect and can be used for firewall capacity planning.
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