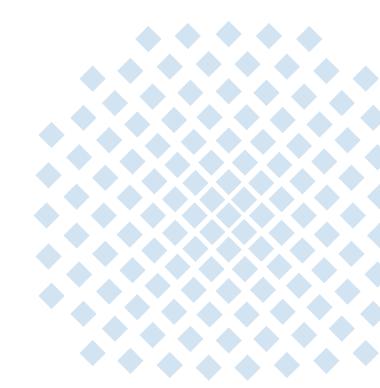


Improving Anomaly Detection for Text-based Protocols by Exploiting Message Structures


"Security in NGNs and the Future Internet" Workshop, Berlin

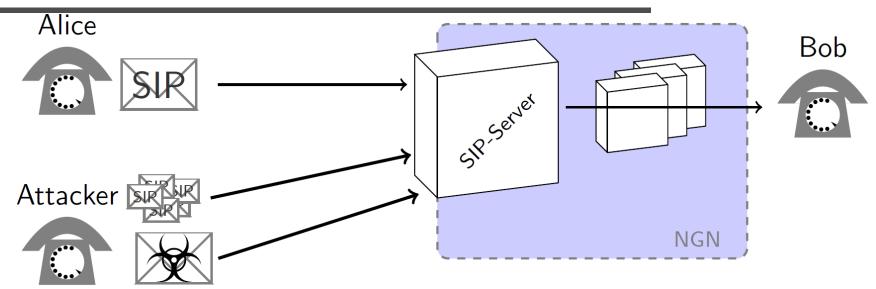
Martin Güthle, Jochen Kögel, Stefan Wahl (Bell Labs), Christian Müller, Matthias Kaschub

mguethle@xunit.de

September 20th, 2010

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter

Motivation


Approach

Improvement

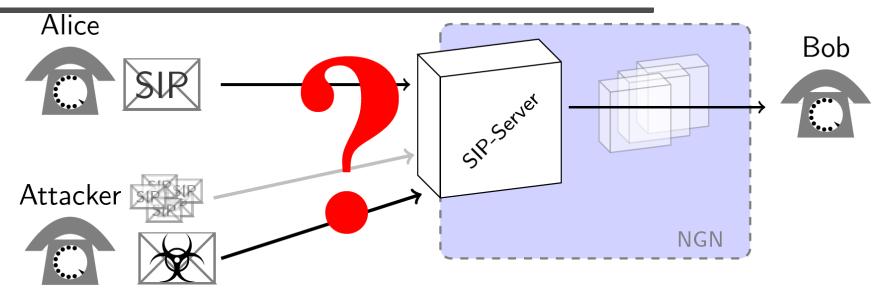
- Extension for better detection
- Extension for higher throughput

Conclusion and Outlook

Motivation

Threat: Attacks on server

SIP: High susceptibility to vulnerabilities


- SIP server open to the outside: UNI of NGN
- SIP is complex and extensible
 - static filtering impossible
 - high probability of implementation weaknesses

Type of attacks against SIP servers

- Denial of Service
- Server integrity (e.g. gain root access) \rightarrow effects thousand of millions customers

© 2010 Universität Stuttgart • IKR

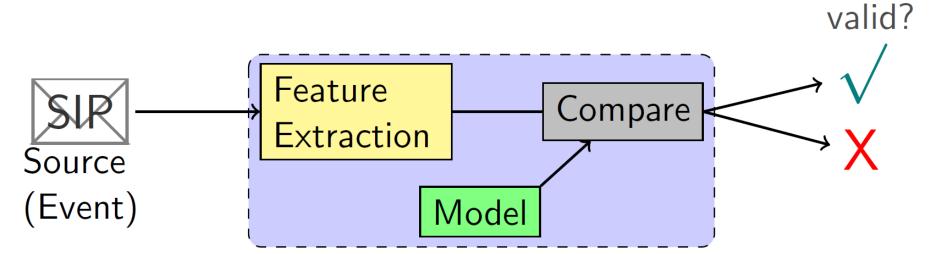
Motivation

Threat: Attacks on server

SIP: High susceptibility to vulnerabilities

- SIP server open to the outside: UNI of NGN
- SIP is complex and extensible
 - static filtering impossible
 - high probability of implementation weaknesses

Type of attacks against SIP servers


- Denial of Service
- Server integrity

© 2010 Universität Stuttgart • IKR

 \rightarrow At border of the NGN (Firewall)

→Stateless

Overview

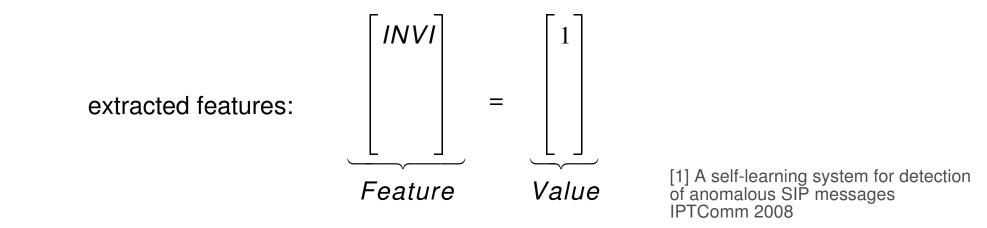
Intrusion detection by anomaly detection

- Compare against model: classification
- Predefined model based on a training set

Requirements

- 1. Good detection rate
 - ~100% true positive
 - <0.1% false positive
- 2. High throughput

Feature Extraction (n-grams)


Converting text into features with numerical values

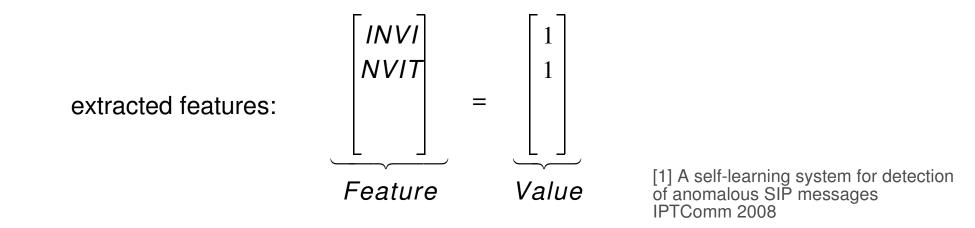
- · Header fields can occur in any order
- Leverage previous work [1]
 - N-grams for feature generation
 - Dimension with good trade off between detection and performance is 4 ([1])

Principle of n-gram extraction

A sliding window is shifted over the text

INVITE sip:bob@exampleiNVITE.com SIP/2.0

Feature Extraction (n-grams)


Converting text into features with numerical values

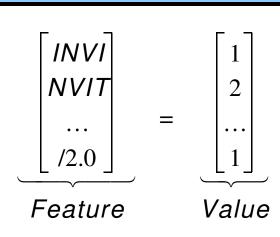
- · Header fields can occur in any order
- Leverage previous work [1]
 - N-grams for feature generation
 - Dimension with good trade off between detection and performance is 4 ([1])

Principle of n-gram extraction

A sliding window is shifted over the text

Feature Extraction (n-grams)

Converting text into features with numerical values


- · Header fields can occur in any order
- Leverage previous work [1]
 - N-grams for feature generation
 - Dimension with good trade off between detection and performance is 4 ([1])

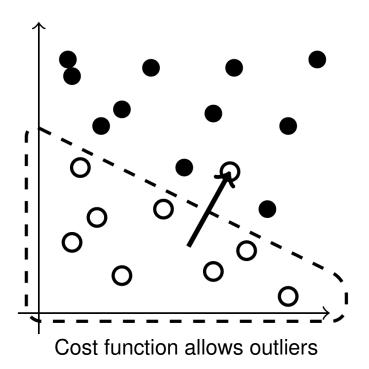
Principle of n-gram extraction

A sliding window is shifted over the text

INVITE sip:bob@exampleiNVITE.com SIP/2.0

extracted features:

[1] A self-learning system for detection of anomalous SIP messages IPTComm 2008


Model description and the compare unit

Classifier-based machine learning algorithm: Support Vector Machine (SVM)

- Cost factor defined with $C \in [0;\infty)$ (SVM extension [2])
- Additional extension: one class classification
- LibSVM implementation

Current limitations

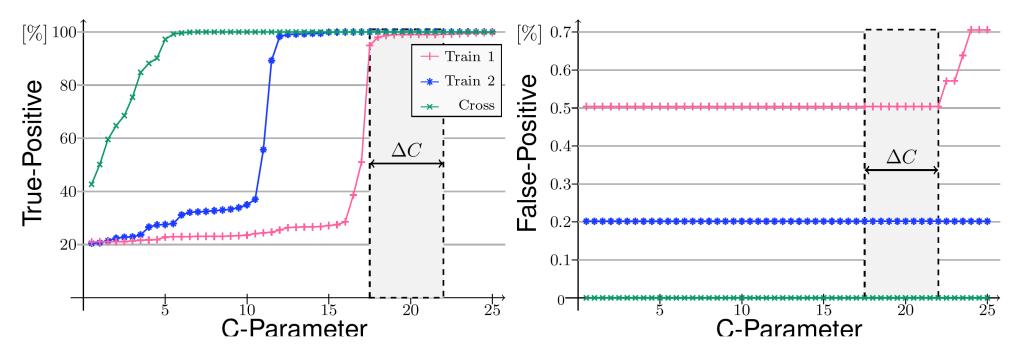
- Labeled data set needed
- Training defines allowed features
- Retraining is not possible

[2] Support vector domain description Pattern Recognition Letters 20 (1999)© 2010 Universität Stuttgart • IKR Security in NGNs and the Future Internet

Basic results

Used data set

Three different training and test data sets


- Training and test data sets are labeled
- Data sets are automatically generated, based on Codenomicon

Name	# messages	# valids	# invalids	used for
Train 1	610	598	12	training only
Train 2	928	900	28	training only
Test 1	12,923	2,923	10,000	test only (Train 1 + 2)
Cross	12,586	11,579	1,007	10 fold cross validation

Overview of the used data sets

Basic results

Evaluation of cost factor (C)

Results

- High detection rate \rightarrow approach works with these sets
- Remaining problem
 - Range ΔC very narrow
 - False-Positive rate still too high
- \rightarrow Improvement necessary

Basic results

What are reasons for the high False-Positive rate and narrow ΔC ?

- Different types of messages (Request / Response + INVITE / ACK ...)
- Optional header fields + different occurrence (e.g. multiple Via)
- Value of header fields may need session knowledge

SIP/2.0 180 Ringing
Via: SIP/2.0 ex.com;branch=abcd;
From: Alice <sip:alice@ex.com>
To: Bob <sip:bob@example.com>
CSeq: 1 INVITE
Content-Length: 0

ACK sip:bob@example.com SIP/2.0 From: Alice <sip:alice@ex.com> To: Bob <sip:bob@example.com> CSeq: 4511 ACK Content-Length: 0

Keyword extension

SIP/2.0 180 Ringing
Via: SIP/2.0 ex.com;branch=abcd;
From: Alice <sip:alice@ex.com>
To: Bob <sip:bob@example.com>
CSeq: 1 INVITE
Content-Length: 0

ACK sip:bob@example.com SIP/2.0 From: Alice <sip:alice@ex.com> To: Bob <sip:bob@example.com> CSeq: 4511 ACK Content-Length: 0

Consider the parts which identify these reasons \rightarrow **Keywords**

- A header field (e.g. Via)
- Any token inside the message (e.g. branch)

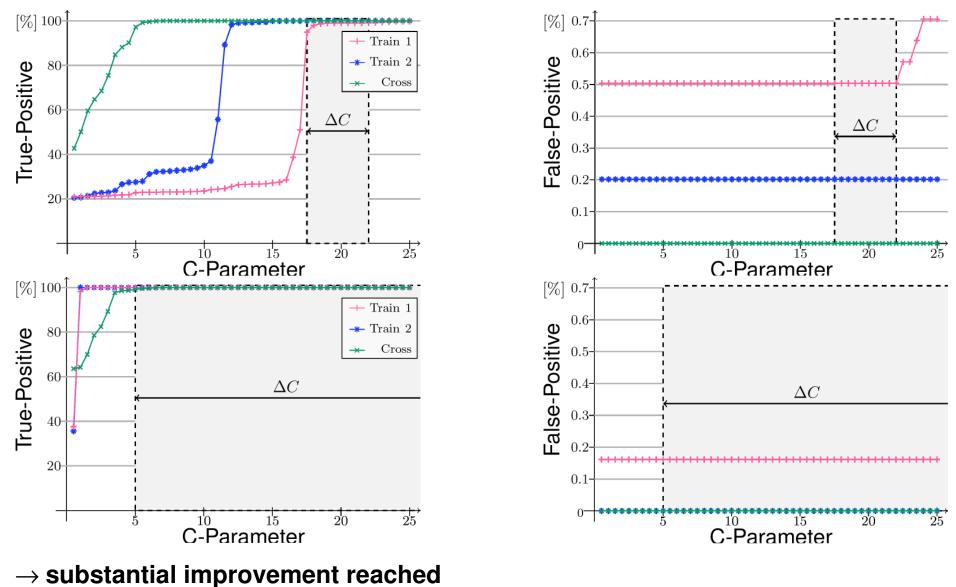
Possible actions correspond to a keyword

- 1. Keyword as additional feature
- 2. Replacement of session specific information
- 3. Start additional further processing

Usage of the keywords INVI . . . 1. Keyword as additional feature 12.0Option 1: Occur of the keyword Via =Option 2: Value correspond to the keyword Content-Length Feature Value 2. Replace session specific information SIP/2.0 180 Ringing Via: SIP/2.0 ex.com; branch=abcd; Content-Length: 0

 \rightarrow Independent to the session state (comparable to noise)

3. Start additional processing


These keywords call additional code (e.g. using CSeq to generate submodels)

1

1

()

Evaluation with Submodels and Remove of session information

© 2010 Universität Stuttgart • IKR

Throughput optimization

Influence on the throughput

- Number of features (done)
- Number of support vectors (done)
- Data structures used inside the code (to-do)

Name	Before optimization	After optimization	Mbps 0 10 20 30 40 50 60 70 80 90 100 T I
Train1	2.2 Mbps 461 msg/s	45.1 Mbps 9 615 msg/s	Train 1
Train 2	3.0 Mbps 633 msg/s	52.4 <i>Mbps</i> 11 162 <i>msg/s</i>	Train 2
Cross	1.4 <i>Mbps</i> 374 <i>msg/s</i>	14.5 <i>Mbps</i> 3 904 <i>msg/s</i>	Cross

Conclusion and Outlooks

Conclusion

Anomaly detection for SIP messages based on

- Machine learning using SVM
- n-grams for feature extraction

Contribution: Significant improvement of sensitivity and detection

- Using keywords
 - As additional features
 - Removing of session information
 - Allow additional processing
- Introduction of multiple models

Throughput optimization

Outlook

- Definition of the training traces
- Simplify the expendability to any kind of SIP extensions
- Extend the detection method to other text based protocols