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Abstract. More than 20 years after the launch of the public Internet,
operator forums are still full of reports about temporary unreachability
of complete networks. We propose FACT, a system that helps network
operators to track connectivity problems with remote autonomous sys-
tems, networks, and hosts. In contrast to existing solutions, our approach
relies solely on flow-level information about observed traffic, is capable
of online data processing, and is highly efficient in alerting only about
those events that actually affect the studied network or its users.
We evaluate FACT based on flow-level traces from a medium-sized ISP.
Studying a time period of one week in September 2010, we explain the
key principles behind our approach. Ultimately, these can be leveraged
to detect connectivity problems and to summarize suspicious events for
manual inspection by the network operator. In addition, when replay-
ing archived traces from the past, FACT reliably recognizes reported
connectivity problems that were relevant for the studied network.
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1 Introduction

“Please try to reach my network 194.9.82.0/24 from your networks ... Kindly
anyone assist”, (NANOG mailing list [1], March 2008). Such e-mails manifest
the need of tools that allow to monitor and troubleshoot connectivity and perfor-
mance problems in the Internet. This particularly holds from the perspective of
an individual network and its operators who want to be alerted about disrupted
peerings or congested paths before customers complain.

Both researchers [2,3,4,5] and industrial vendors [6,7] have made proposals
for detecting and troubleshooting events such as loss of reachability or perfor-
mance degradation for traffic that they exchange with other external networks,
unfortunately with mixed success. Predominantly, such tools rely on active mea-
surements using ping, traceroute, etc. [2,4]. Besides, researchers have suggested
to leverage control plane information such as publicly available BGP feeds [8,3,9],
although Bush et al. [10] point out the dangers of relying on control-plane in-
formation. Other concerns about existing tools include a high “dark” number of



undetected events [8], a narrow evaluation solely in the context of a testbed or
small system [9,5], or the time gap between the occurrence of an event and its
observation and detection [8].

In this paper we propose FACT, a system that implements a Flow-based
Approach for Connectivity Tracking. It helps network operators to monitor
connectivity with remote autonomous systems (ASes), subnets, and hosts. Our
approach relies on flow-level information about observed traffic (and not on
control-plane data), is capable of online data processing, and highly efficient in
alerting only about those events that actually affect the monitored network or
its users.

In contrast to existing commercial solutions [7,6], we do not consider ag-
gregate traffic volumes per interface or per peering to detect abnormal events,
but pinpoint on a per-flow basis those cases where external hosts are unrespon-
sive. On the one hand, this requires careful data processing to correctly handle
asymmetric routing and to eliminate the impact of noise due to scanning, bro-
ken servers, late TCP resets, etc. On the other hand, our flow-based approach
allows to compile accurate lists of unresponsive network addresses, which is a
requirement for efficient troubleshooting.

To test our system we rely on a one-week flow-level trace from the border
routers of a medium-sized ISP [11]. We demonstrate that our approach can be
leveraged to detect serious connectivity problems and to summarize suspicious
events for manual inspection by the network operator. Importantly, replaying
flow traces from the past, FACT also reliably recognizes reported connectivity
problems, but only if those are relevant from the perspective of the studied
network and its users. Overall, we believe that our approach can be generally
applied to small- to medium-sized ISPs, and enterprise networks. In particular
networks that (partially) rely on default routes to reach the Internet can strongly
benefit from our techniques, since they allow to identify critical events even if
these are not visible in the control plane information.

2 Methodology

Our goal is to enable network operators to monitor whether remote hosts and
networks are reachable from inside their networks or their customer networks,
and to alert about existing connectivity problems. Such issues include cases
where either we observe a significant number of unsuccessful connection attempts
from inside the studied network(s) to a specific popular remote host, or where
many remote hosts within external networks are unresponsive to connection
attempts originated by potentially different internal hosts.

To obtain a network-centric view of connectivity, we rely on flow-level data
exported by all border routers of a network, see Fig. 1. In this regard, our ap-
proach is generally applicable to all small- and medium-sized ISPs, and enterprise
networks. Monitoring the complete unsampled traffic that crosses the border of
our network allows to match outgoing with incoming flows and to check for ab-
normal changes in the balance between incoming and outgoing flows for external
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Fig. 1. Measurement infrastructure and flow types.

endpoints at different aggregation levels (hosts or networks). In particular net-
works that (partially) rely on default routes to reach the Internet can strongly
benefit from such an approach, since it allows to identify critical events even if
these are not visible in the control plane information.

As shown in Fig. 1, we distinguish between five flow types : Internal connec-
tions never cross the network border, and thus are neither recorded nor studied
further in our approach. Since the scope of this paper is limited to cases where
remote hosts or networks are unresponsive to connection attempts originated
by internal hosts, we ignore flows that traverse our network (Traversing) or
flows for which we cannot find traffic in the outbound direction (OnlyIn), e.g.,
caused by inbound scanning. If we can associate outgoing flows with incoming
flows, we assume that external hosts are reachable (InOut) and also take this as
a hint that there exists connectivity towards the remote network. Note that the
incoming flow can enter the network via the same border router that was used
by the outgoing flow to exit the network. Yet, due to the asymmetric nature of
Internet paths this is not necessary [9]. Finally, we observe flows that exit the
network but we fail to find a corresponding incoming response (OnlyOut).

To detect potential connectivity problems, we focus on the latter category
OnlyOut. Note that we rely on the assumption that our measured flow data is
complete, i.e., for any outgoing flow the associated incoming flow is observed by
our collection infrastructure provided that there has been a response in reality.
Evidently, network operators only want to get informed about critical events
that include loss of connectivity towards complete networks or towards popular
hosts that a significant share of internal hosts tries to reach. Our approach to
achieve this goal is twofold.

First, we heavily rely on data aggregation to investigate connectivity towards
complete networks. More precisely, we aggregate occurrences of OnlyOut flow
types across external hosts, /24 networks, or prefixes as observed in public BGP
routing tables. For example, only if we observe within a certain time period a
considerable number of OnlyOut flow types towards different hosts of a specific



Fig. 2. Architectural components of FACT.

external network, and no InOut types, we conclude that the complete external
network is currently not reachable for internal hosts. Hence, our decision is not
based on observed connectivity between a single pair of internal and external
hosts.

Second, we take into account the number of internal hosts that are affected by
connectivity problems towards a host, network, or BGP prefix, i.e., the severity
of an observed event. For example, loss of connectivity towards an individual
external host is interesting for a network operator if a large number of different
internal hosts fail to reach such a popular service. Moreover, knowing the number
of affected internal hosts is crucial to extract short summaries of candidate events
which network operators can check manually in reasonable time.

3 Data Sets

We investigate our approach based on data collected in the SWITCH net-
work [11], a medium-sized ISP in Switzerland connecting approximately 30 Swiss
universities, government institutions, and research labs to the Internet. The IP
address range contains about 2.2 million internal IP addresses. For our stud-
ies we have collected a trace in September 2010 (OneWeek) that spans 7 days
and contains unsampled NetFlows summarizing all traffic crossing the 6 border
routers of the SWITCH network. This results in 14 − 40k NetFlow records per
second. In addition to OneWeek we extract some shorter traces to study selected
connectivity problems from the past, see Section 5.

4 Connectivity Analysis

The implementation of FACT includes four major components, see Fig. 2. Af-
ter data collection, a preprocessing step removes some flows from the data
stream, e.g., blacklisted hosts or information that is not needed to achieve our
goals. For a limited time we keep the remaining flows in the 5-tuple cache,
which is continuously updated with the latest flow information. In the follow-
ing we will provide more details about the implementation of the individual
components.



4.1 Data Collection and Preprocessing

In addition to standard flow information including IP addresses, port numbers,
protocol number, packet counts, byte counts, etc., we store identifiers for the
border routers and interfaces over which traffic with external networks is ex-
changed. Next, we exclude a considerable number of unnecessary flows to save
memory and computational resources, but also eliminate flows that have turned
out to be harmful for the detection of connectivity problems. Such flows include
for example traffic from/to PlanetLab hosts or bogon IP addresses, and multi-
cast. For now, we generate an appropriate blacklist manually, but we plan to
automate this process in the future. For reasons already described in the pre-
ceding section, we remove in this step also all flows of the class Traversing and
Internal, see Fig. 1.

4.2 5-tuple cache

The subsequent data processing respects the fact that the active timeout of our
flow collection infrastructure is set to 5 minutes.4 Therefore, we partition the
timeline into intervals of 5 minutes and proceed with our data processing when-
ever such a time interval has expired. Our goal is to maintain for each interval
a hash-like data structure (5-tuple cache) that, for observed flows identified by
IP addresses, protocol number, and application ports, stores and updates infor-
mation that is relevant for further analysis. This includes packet counts, byte
counts, information about the used border router and the time when the flows
were active for the in and out flow. Note that at this point we implicitly merge
unidirectional to bidirectional flows (biflows).

After the time interval has expired we extract from the obtained biflows and
remaining unidirectional flows two sets: The set ConnSuccess includes those bi-
flows of type InOut where at least one of the underlying unidirectional flows
starts or ends within the currently studied time interval and are initiated by
internal hosts5. The second set, called ConnFailed, includes only those unidi-
rectional flows of type OnlyOut where the outgoing flow either starts or ends
in the currently studied time interval. To reduce the effect of delayed packets
(e.g., TCP resets), we here ignore unidirectional flows if a corresponding reverse
flow has been observed during any of the preceding time intervals.6 All other
flows of the 5-tuple cache that are not in the set ConnSuccess or ConnFailed
are excluded from further consideration for this time interval.

While ConnSuccess flows indicate that an internal host in our network can
indeed reach the external host, we take occurrences of ConnFailed as a hint
for potential connectivity problems with the remote host. However, the latter
assumption does not necessarily hold when applications (e.g., NTP or multicast)

4After 5 minutes even still active flows are exported to our central flow repository.
5We rely on port numbers to determine who initiates a biflow.
6Our hash-like data structure is not deleted after a time period of 5 minutes but

continuously updated. Only if a biflow is inactive for more than 900 seconds, it is
removed from our hash-like data structure.
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Fig. 3. External hosts, networks, and prefixes.

are inherently unidirectional. Hence, we exclusively take into account HTTP
traffic using port 80, which is symmetric by nature and due to its popularity
visible in any type of network.7 More marginal fine-tuning of our data processing
is required. Yet, given space limitations we refrain from providing more details.

4.3 Analyzer

To study observed connectivity with remote hosts and to detect potential prob-
lems, the analyzer component processes the sets ConnSuccess and ConnFailed

every 5 minutes. We aggregate ConnFailed and ConnSuccess flows for the
same pair of internal and external host if we find more than one flow, pos-
sibly with different port numbers. The obtained host-host tuples are classi-
fied as HostHostSuccess if at least one ConnSuccess flow has been identi-
fied, HostHostFailed otherwise. Based on this initial aggregation step, we in-
dependently compute three stronger aggregation levels: we group host-host tu-
ples into one tuple if they affect the same external host (ExtHostSuccess or
ExtHostFailed), the same external /24 network (ExtNetSuccess or ExtNet-

Failed), and BGP prefixes (ExtPrefixSuccess or ExtPrefixFailed). With
respect to the last granularity, we use publicly available BGP routing tables
to determine the corresponding BGP prefix for a given external host. Again,
we classify an aggregate class as Success if at least one tuple is marked as
HostHostSuccess.

Fig. 3 displays the number of visible and unresponsive external destinations
if the three aggregation granularities are applied to OneWeek, see Section 3. Ac-
cording to Fig. 3(a) the absolute number of visible external destinations shows a
strong daily and weekly pattern irrespective of the used aggregation level. Aggre-
gating from host-host into ExtHostFailed and ExtHostSuccess, respectively,
reduces the peaks from 525K to 90K tuples (/24s: 50K, prefixes: 25K). This pro-
vides evidence for the high visibility that our data has on external networks. How-
ever, Fig. 3(b) reveals that generally only a small fraction of external hosts (peaks
of 700) are unresponsive and therefore classified as ExtHostFailed according to

7Experiments relying on DNS traffic turned out to work as well.



our methodology. This fraction is significantly smaller for ExtNetFailed (peaks
of 600) and ExtPrefixFailed (peaks of 180), respectively.

However, to cope with daily and weekly fluctuations and to limit the degree
to which a single internal host (e.g., a scanning host) can impact our connectivity
analysis, we need to take into account the severity of an observed event as well.
By this we understand the number of internal users that actually fail to establish
connectivity with a specific external host, /24 network, or BGP prefix during
our 5 minute time intervals. Figure 4(a) displays the number of external /24
networks that are unresponsive to 1, 2, 5, and 10 internal hosts for the time
spanned by OneWeek. The majority of these ExtHostFailed “events”, namely
98%, only affect 1 internal host.

Yet, here it is important to study Fig. 4(b). It is also based on OneWeek

and counts for every external host the number of 5-minute time intervals for
which it has been classified as ExtHostFailed. This number (x-axis) is plotted
against the maximum number of internal hosts (y-axis) that failed to establish
connectivity with this external host (ExtHostFailed) at any 5-minute interval of
OneWeek. We find that the majority of external hosts (96%) are only unresponsive
in less than 10 time intervals of our trace. However, some hosts are unresponsive
most of the time, e.g., abandoned ad servers. Data preprocessing as described in
Section 4.1 could be refined to automatically blacklist such hosts and possibly
their networks. Finally, we observe few external hosts that are unresponsive only
during a small number of time intervals, but with a high maximum number of
affected internal hosts. Cross-checking with technical forums in the Internet, we
find that these events include for example a Facebook outage on August 31,
2010.

We point out that the data processing in FACT is faster than real time for
SWITCH, a medium-sized ISP covering an estimated 6% of the Internet traffic
in Switzerland and approximately 2.2 million IP addresses: flow data spanning
5 minutes8 can be processed using a single thread in less than three minutes
with a maximum memory consumption of less than 4GB. Aging mechanisms
for our data structures6 ensure that the overall memory consumption does not
increase during long-term use of our system. Due to hash-like data structures
we can access individual flows in our 5-tuple cache in constant time. The total
time required for data processing mainly depends on the number of active flows.
In principle, it is even possible to parallelize our processing by distributing the
reachability analysis for different external networks to different CPU cores or
physical machines. Yet, we leave it to future work to study FACT’s performance
for large tier-1 ISPs and how to make it robust against potentially higher false
positive rates if sampled flow data is used.

8We see up to 200 million flows per hour.
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5 Case Studies

In this section we present a short analysis of three connectivity problems that
were either detected by the network operator or publicly documented. To analyze
those cases, we rely on data collected as discussed in Section 3.

Black-holing: On May 18, 2010, all services in an external /24 network were
not accessible from SWITCH between 08:30 and 08:45. According to the oper-
ators of SWITCH, this problem was most likely due to a tier-1 provider that
black-holed parts of the reverse traffic towards SWITCH. Yet, at this time the
operators could only speculate how many hosts and customers, or even other
/24 networks were affected by this problem. Applying FACT we confirm that
the reported /24 network is indeed reported as unreachable at around 08:30.
Surprisingly, FACT reveals that the overall number of unreachable hosts and
/24 networks has doubled compared to the time before 08:30 while the number
of unresponsive BGP prefixes is increased by a factor of even 6, see Fig. 5(a).
Moreover, the reported /24 network is not even in the top ten list of the most
popular unresponsive networks. This suggests that the impact of this event has
been more serious than previously believed.

RIPE/Duke event: On August 27, 2010, some parts of the Internet became
disconnected for some 30 minutes due to an experiment with new BGP attributes
by RIPE and Duke University [12]. FACT reveals that at around 08:45 the
number of popular unresponsive /24 networks indeed doubled. According to
Fig. 5(b), for some BGP prefixes more than 15 internal hosts failed to establish
connectivity. Yet, overall our analysis reveals that the impact of this incident on
SWITCH and its customers was quite limited compared to the public attention
that this event obtained.

Partitioned IXP: After scheduled maintenance by AMS-IX, SWITCH’s con-
nection to that exchange point came back with only partial connectivity. Some
next-hops learned via the route servers weren’t reachable, creating black holes.
The next morning, several customers complained about external services being
unreachable. Overall, it took more than four hours until the problem was finally
solved by resetting a port. Fig. 5(c) shows that the number of unresponsive BGP
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Fig. 5. Case studies: unresponsive BGP prefixes

prefixes is almost ten times higher than normal, over a time period of more than
four hours. We believe that FACT would have helped to detect such a serious
problem much faster and provided valuable hints about the origin of the problem.

6 Related Work

Approaches for detecting and troubleshooting reachability problems can be gen-
erally classified into two classes: active probing and control plane based.

With respect to active probing, Paxson et al. [9] are probably the pioneers
to use traceroute for studying end-to-end connectivity between a (limited) set
of Internet sites. Zhang et al. [2] perform collaborative probing launched from
Planetlab hosts to diagnose routing event failures. Commercial solutions such
as NetQoS [7] or Peakflow [6] generally rely on active measurements using ping,
traceroutes, or continuous SNMP queries to network devices. Moreover, they
frequently aggregate traffic volumes per interface, peering links, etc. to detect
abnormal events, and hence do not base their analysis on a flow-level granular-
ity as our work suggests. In contrast to active probing, the passive monitoring
approach of FACT does not impose any traffic overhead and, importantly, only
creates alerts for those unreachable hosts/networks that users actually want to
access. Finally, FACT avoids an intrinsic problem of active probing techniques
such as ping or traceroute, namely the implicit assumption that reachable hosts
actually do respond to such tools.

In addition to active probing, a considerable number of research papers,
e.g., [8,13] rely almost exclusively on control-plane information in the form of
BGP routing feeds. However, Bush et al. [10] have clearly pointed out the dangers
of such an approach, e.g., the wide-spread existence of default routes. In contrast,
FACT is able to detect unreachability at multiple and finer granularities (e.g.,
on a host basis) than any approach that is purely based on routing data.

Later work including e.g., Hubble [3] and iPlane [4] rely on hybrid approaches
combining active measurements with BGP routing information. Feamster et
al. [14] adopt such an approach to measure the effects of Internet path faults on
reactive routing. Overall, we believe that the passive approach adopted by FACT
is very powerful compared to active probing and control-plane based techniques.



Yet, we plan to integrate active probing into our system to crosscheck detected
reachability problems and to pinpoint the underlying causes.

7 Conclusion

We have proposed FACT, an online data processing system that helps operators
to acquire facts about connectivity problems with remote autonomous systems,
subnets, and hosts. In contrast to existing solutions, our approach relies solely on
flow-level information extracted from traffic crossing the border of the network.
We showed, with the help of reported real-world events, that FACT can be used
to alert only about those events that actually affect the studied network or its
users. Importantly, data processing of FACT is already faster than real time for
a medium-sized ISP.

In the future we plan to refine and integrate our techniques into existing
tracing tools (e.g., nfdump), to generate alerts based on automatically deter-
mined thresholds, and to provide summary reports that allow network operators
to quickly troubleshoot connectivity problems. Ultimately, we plan to make our
implementation of FACT available for public use.
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