
INSTITUT FÜR
NACHRICHTENVERMITTLUNG

UND DATENVERARBEITUNG
Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Universität Stuttgart

A userspace API for netfilter control

Netfilter Workshop 2007, Karlsruhe

Sebastian Kiesel, Jochen Kögel, Sebastian Meier, Christian Blankenhorn

Institute of Communication Networks and Computer Engineering

University of Stuttgart

{kiesel, koegel, smeier, blankenhorn}@ikr.uni-stuttgart.de

September 11, 2007

Institute of Communication Networks and Computer Engineering University of Stuttgart

• Problem statement

- limitations of connection tracking

- alternatives

• Firewall Control Frameworks: Overview

å Requirements on a Pinhole API

• Pinhole API for netfilter

- Design considerations

- Implementation status

- Mapping of pinholes to netfilter

• Conclusion and Outlook

Agenda

Institute of Communication Networks and Computer Engineering University of Stuttgart

Scenario

• control flow and RELATED media flow

- VoIP: SIP and RTP

• strict fine-grained policies

- not -A OUTPUT -p UDP -j ALLOW

- more than allow/not allow connection from/to

• more than one border element (load-balancing, protection, multi-
homing,..)

SIP Proxy

text

SIP

RTP

Problem Statement

Institute of Communication Networks and Computer Engineering University of Stuttgart

Approach 1: Connection Tracking only

problems

- extensibility/maintainability:

new kernel modules for new or changed control protocols

- robustness/security risk:

parsing of complex protocols in the kernel

- no authorization/fine-grained policies

requires additional internal SIP-proxy/B2BUA

conntrack sync

SIP Proxy

text

SIP

RTP

Problem Statement

Institute of Communication Networks and Computer Engineering University of Stuttgart

Apporach 2: Application Layer Gateways (ALG)

• SIP-ALG: Session Border Controller (SBC)

- Processing of signaling and media (all in user space)

- All RTP routed through ALG independent of IP-Routing

- SBC needs full application knowledge (RTP codecs, ...)

- packet filter in front of SBC: completely open to UDP? Conntrack?

ALG (SBC)

ALG (SBC)

SIP Proxy

text

SIP

RTP

Problem Statement

Institute of Communication Networks and Computer Engineering University of Stuttgart

Approach 3: Firewall Control Protocol

• firewall control daemons

- running on firewall machines

- accepting only messages from authorized machines

• session stateful server (SIP B2BUA)

- extracts RTP-flow parameters from signaling messages

- authorizes calls

- signals pinholes to open/close

SIP B2BUA

firewall control SIP Proxy

text

SIP

RTP

Problem Statement

Institute of Communication Networks and Computer Engineering University of Stuttgart

Approach 3: Firewall Control Protocol - prohibiting flows (IDS)

Firewall control daemon: how to control packet filter?

- calling command line tools

- using libraries (libiptc, nfnetlink)

å lots of dependencies on filter implementation, libraries, formats, OS

å general API makes sense

å detailed requirements? first have a look at firewall control...

IDS

SIP B2BUA

firewall control SIP Proxy

text

SIP

RTP

Problem Statement

Institute of Communication Networks and Computer Engineering University of Stuttgart

Firewall Control Frameworks

Firewall/NAT Control protocol zoo

• IETF MIDCOM Framework

- Implemetation: Simco

• IETF NSIS

- path-coupled signaling framework (QoS requests, NAT, firewall)

• H.248 MEGACO

- ETSI: Profile for controlling media relays (BGF)

- H.248.37: signal SBC to replace addresses for NAT traversal

å Focus on firewall control: MSimco, NSIS

Institute of Communication Networks and Computer Engineering University of Stuttgart

MIDCOM Framework (RFC 3303)

• abstract protocol semantics for NAT/FW control

• abstract protocol entities

SIP

proxy

PDP

MIDCOM

filter

MIDCOM
protocol
interface

protocol
interface

policy

packet

("middlebox")

SIP UA SIP UARTP

SIP

MIDCOM

specific
impl.

repository
policy

user A user B

public network (e.g., Internet)private domain

Firewall Control Frameworks

Institute of Communication Networks and Computer Engineering University of Stuttgart

MIDCOM/SIMCO
• implementation of Midcom:

simple middlebox control protocol (SIMCO), (RFC 4540)

• NAT + Packet filter signaling – our focus: packet filter

• enable (PER) and prohibit (PDR) pinholes (white list)

• Pinhole

- two "address tuples" (transport protocol, address, prefix, port, portrange)

- ports and address wildcarding

- inbound/outbound/bidirectional

å can be mapped on 5-Tuple with ranges

Problem: multiple packet filters at network edge

• must be handled by client, independent of packet filters

• 1st possibility: know routing

• 2nd possibility: open pinholes in every packet filter

Firewall Control Frameworks

Institute of Communication Networks and Computer Engineering University of Stuttgart

IETF NSIS (next steps in signaling)

• Framework for path-coupled signaling

- idea: signal nodes on path independent of IP routing (e.g. for QoS)

- generic messaging layer (General Internet Signaling Transport)

• Datagram/Connection Mode

• TCP, UDP, IPSec

- NSIS Signaling Level Protocols (NSLP) on top of GIST

• NAT/Firewall Control

- NAT/Firewall control NSLP (draft-ietf-nsis-nslp-natfw-15.txt)

- Authorizationbased on tokens (draft-manner-nslp-auth-03.txt)

Firewall Control Frameworks

Institute of Communication Networks and Computer Engineering University of Stuttgart

NSIS Firewall Signaling:

• Pinhole description based on existing flow

- sub_ports: how many contiguous ports (0..1)

- Allow/Deny

- blocking traffic with EXT messages (for whole prefix, port wildcard)

packet
filter

packet
filter

B2BUA
SIP

B2BUA
SIP

SIP

RTP

NSIS

Domain 2Domain 1

Firewall Control Frameworks

Institute of Communication Networks and Computer Engineering University of Stuttgart

There are several reasons for changing packet filter rules dynamically

- firewall control protocols (our motivation)

- ALG implementations

- Intrusion detection systems

Often realized by calling iptables, but libraries available are very specific
(libiptc). Strong dependency on filter realization.

å Why not designing a common (high-level, userspace) API?

å We started based on requirements from a SIMCO-Prototype

Requirements on an API

Institute of Communication Networks and Computer Engineering University of Stuttgart

(Our) Requirements
• open/close pinholes

• pinhole: 5-Tuple (incl. subnets + port ranges)

- bidirectional: two pinholes

• independent of filter-implementation (and OS)

• transaction semantics

• no control of whole packet filter, only dedicated rule sets
(e.g. one chain)

• fast

- frequent rule changes (VoIP)

- high packet rate

Requirements on an API

Institute of Communication Networks and Computer Engineering University of Stuttgart

Vision

Have a look into the details..

Clientlib

Backend

BSD PFconntrackipset

BSDchains set+chains ...

enterPH

SIMCO
NSIS

NATFW IDS

removePH uniform interface
(OS independent)

unpriv. user

priv. user (root)

kernel

OS/config/kernel capab.
according to
translation plugin

chains nf−hipac

Application/Daemon

Pinhole API for netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

Interface

Example: C++ interface

ruleManager.request(MODIFY_RULESET);

int ruleID1 = ruleManager.addRule(

"1.2.3.4", 24,

100, 200,

"2.3.4.5",24,

300, 400,

IPPROTO_UDP, AF_INET);

ruleManager->commit();

ruleManager.request(MODIFY_RULESET);

ruleManager.delRule(ruleID1);

int ruleID2 = ruleManager.addRule(

"5.6.7.8", 24,

100, 200,

"6.7.8.9",24,

300, 400,

IPPROTO_UDP, AF_INET);

ruleManager->commit();

Pinhole API for netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

Frontend
• keeps all rules/pinholes

- optimization possible (hook)

while stil being able to delete

rules per ID

- enables differential updates

- failure: last known good

• commit rules as batch to
backend

- in intervals (with backoff-Alg)

- currently: complete rule set

- libiptc backend performance:

changing or rewriting rules takes

almost the same time

- socket communication: reuse of SIMCO message definition + added

new control messages

Pinhole API for netfilter

good
known

last

init add del commit

optimizedcurrent

SIMCO Lite Client

Transaction Manager

rule set management

internal Interface (via Socket)

to Backend

C
o

n
tr

o
l

Optimizer

Institute of Communication Networks and Computer Engineering University of Stuttgart

Backend
• processing of frontend requests

• translation of pinholes to netfilter rules

• notify frontend about status

• failure recovery, e.g. frontend crash

• only Translation module II is
packetfilter-dependent

Pinhole API for netfilter

in
it
()

fl
u

s
h

()

a
d

d
()

in
s
e

rt
()

d
e

l(
)

c
o

m
m

it
()

Intern−>Netfilter

SIMCO−>Intern

Translation I

Simco Lite Server

Unix Domain Socket

C
o
n
tr

o
l

Adapter

from Frontend

Translation II

internal interface

Institute of Communication Networks and Computer Engineering University of Stuttgart

Backend
• works on predefined chain

• integrate this chain into your packet filter configuration

• configure the rest of packet filter as you like

Example configuration of a packet filter using phapi

iptables -N phapi #chain to be used by daemon

iptables -A FORWARD -j phapi

iptables -A FORWARD -j DROP

#starting daemon

#syntax: phapi_backend -s <socket> -u <socket_user> -c <chain_name>

[-t <target>]

phapi_backend -s /tmp/phapi -u koegel -c phapi

Pinhole API for netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

Performance

Measurements with libiptc backend (VoIP Scenario)

- 20 ms packetizing time: 100 pps/call (bidir.), no bursts

- 8 pinholes per call: (asymmetric RTP + RTCP) x 2

- "bad/unwanted traffic" - will be filtered, but

• also contributes to overall packet rate

• check against every rule (other packets match after half of the rules)

- entering changed pinhole set into netfilter chain

• in fixed time intervals (every ??100 ms)

• effort depends on amount of pinholes

• effort independent of number of changes

• at high packet rates

- P4 2,53 GHz

Pinhole API for Netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

Pinhole API for Netfilter

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400
D

e
la

y
 (

in
 m

s
)

P
a

c
k
e

t
lo

s
s
 (

in
 %

)

Number of rules

VoIP-Traffic only

simultaneous calls

Rule-Entry delay
Packet delay

Packet loss

Institute of Communication Networks and Computer Engineering University of Stuttgart

Summary

Current stage

- preview version: http://www.ikr.uni-stuttgart.de/Content/firewall/

- C++ API

- backend based on libiptc

Open issues

- C interface

- rule optimizer?

- handling TCP direction

- improving performance

- Nat support

How to map pinholes to netfilter?

Pinhole API for netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

TCP direction
• meaning of direction different than for UDP:

not direction of packet flow but direction of connection establishment

• One TCP-pinhole signaled

- source->destination (for every packet)

- destination -> source (RELATED, !--syn)

- if using conntrack – closing pinhole means removing conntrack entry

å makes API implementation complicated and dependant on static configuration

- therefore: first go for simple !--syn

• Two pinholes signaled (bidirectional)

å two rules, direction of connection establishment does not matter

å more intelligence in the backend

Mapping to netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

Improving performance

Criteria

- faster rule changes

- faster filtering

Hash-based?

- exact flow match only (no ranges)

- thus: combination of hash and list

• pinhole without range: use hash

• pinhole with range: use list

• pinhole with small range: several hash-entries (what is small? 4, 10, 100?)

- conntrack? ipset?

Mapping to netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

1. Conntrack

- pinholes in conntrack table (permanent/timeout?)

- already present in most configuration, implicit semantics

... --state ESTABLISH, RELATED -j ACCEPT

2. IPset

- currently no 5-tuple match, extension possible

- simple configuration, just like using chains

- fast: 10.000 entries are no problem

Idea for fast netfilter backend

- extension of backend - ipset for small pinholes, chains for ranges

- how to combine this with TCP-direction-problem?

• two 5-tuple ipsets + list

• first set for all pinholes, target: tcp !--syn

• rule filtering on TCP --syn

• second set with pinholes allowing SYN

• ...or extending the 5-tuple ipset with flag for --syn?

Mapping to netfilter

Institute of Communication Networks and Computer Engineering University of Stuttgart

Conclusion
• simple Pinhole API

- 5-tuple + ranges + direction sufficient for most firewall control tasks

- transaction semantics: defined state and less communication effort

• current prototype implementation phapi

- daemon + socket communication: privilege separation

- uses netfilter chains: decent performance, could be better

Discussion
• Additional requirements?

- rate limiting

- NAT support

• Better performance by suitable mapping of pinholes to netfilter

- ipset for 5-tuples? conntrack?

- suitable for large scale setups?

Conclusion and Discussion

