
A Framework for Model-Driven Proposal

and Evaluation of TABAC Strategies

Jochen KÖGEL1, David LUTZ2, Marc BARISCH1, Yongzheng LIANG2

1
University of Stuttgart, Institute of Communication Networks and Computer Engineering

Email: {jochen.koegel, marc.barisch}@ikr.uni-stuttgart.de
2
 University of Stuttgart, Computing Center

Email: {lutz, liang}@rus.uni-stuttgart.de

Abstract: Trust, Accounting, Billing, Auditing and Charging (TABAC) are crucial
functions of productive IT and telecommunication systems. However, they are often
not considered in early stages of development, but have considerable impact on
commercial success at later stages. On the one hand, these functions are costly to be
added after having a running prototype. On the other hand, they should not be bur-
dens in early development stages. In order to solve this dilemma, we propose a
framework for model-driven proposal and evaluation of TABAC strategies. This
framework allows both: evaluating the possibilities to add TABAC functions at an
early development stage and adding TABAC strategies to running prototypes by us-
ing existing interfaces and applying general models from a model pool. The frame-
work not only proposes suitable strategies based on capabilities and requirements of
the existing system. Moreover, it aims at instantiating the TABAC functions in a
runtime environment for feeding them with real data from the existing system. This
outstanding feature allows compiling a proposal for the best suiting strategy based on
realistic interactions with the prototype.

Keywords: Model-driven design, Accounting, Billing, Auditing, Charging

1. Introduction

Today, business in the IT-Service and Telecommunication sector is subject to rapid changes
and requires a flexible computing and communication infrastructure. It is key to adapt the
existing infrastructure to new requirements and to enable the fast introduction of new ser-
vices. In particular time to market is in many cases the crucial factor that determines on
commercial success of newly introduced or adapted services. Therefore, it is required to
have efficient development and management processes.
 The typical development process, however, is time consuming and involves the creation
of several prototypes and testing phases before moving new services to production systems.
In many cases prototypes only show the basic feasibility and integration into the existing
infrastructure, but often neglect features that are important for productive operation. Among
these often neglected features are trust, accounting, billing, auditing, and charging (TA-
BAC). Adding such features in late development stages delays the introduction of new ser-
vices even more. On the other hand developing such functionality in prototypes at an early
stage is questionable, since the prototypes might not make it into production.
 Therefore, we propose a concept that allows the introduction of TABAC functionality
in a very late stage of the service development process or even after the service has been
deployed. That means developers can focus on the actual prototype development to im-
prove time to market. Hereby, we have two application scenarios in mind (Sec. 1.1), lead-
ing to a couple of requirements (Sec. 1.2) and key aspects of our concept (Sec. 1.3).

1.1 Application Scenarios

Many different application scenarios exist where our concept might become advantageous.
Throughout this paper, we will restrict ourselves to two application scenarios, which we
consider as important: Future Internet testbeds and existing IT-service infrastructures.
 Future Internet testbeds: In recent years a couple of Future Internet testbeds [1,2]
have been built or are in development [3]. These testbeds are in most cases focused on the
provision of testing platforms and the empirical evaluation of new protocols and services.
Therefore, TABAC functionality is often neglected in the testbed itself and in the protocols.
 Existing IT-service infrastructure: Due to changed regulations or new requirements
with respect to charging, it might become necessary to introduce TABAC functionality into
existing systems. An example for such a transition is given in Sec. 5.

1.2 Requirements

Our concept has to be flexible, extensible and cost-efficient in order to improve the service
development process. Moreover, it must be even usable by other persons than the service
developers and provide adequate feedback about the configured system.
 A high degree of flexibility means first of all that we have to deal with a plethora of
different TABAC strategies. For example in case of charging we have to differentiate
between offline and online charging. In particular the latter one might have an impact on
the prototype. That means we need some kind of repository that provides the different
strategies. Moreover, our concept must be adaptable to different prototypes and service
infrastructure, i.e. different architectures and protocols are in place that need to be
abstracted in an appropriate way. It must also be possible to compare the impact of different
TABAC strategies on the prototype itself and on the generated revenue. That means our
concept has to comprise evaluation possibilities.
 Since prototypes as well as TABAC strategies are subject to change over time, it must
be possible to extend and adapt the components in our concept in an easy way. For
example, if a new charging model comes up or the regulation changes it must possible to
provide new components to support the changes.
 In addition to faster development times, we have to ensure that our concept is cost
efficient. That means that only minimal changes within existing prototypes and service
infrastructures are necessary for the introduction of TABAC functionality. Moreover, our
concept must not tremendously impact the performance of the prototype itself.
 Moreover, our concept has to provide a high degree of usability. It should be possible
that non-experts make use of our concept. That means that a graphical user interface is
required that allows the combination of different TABAC strategies with the prototype
under consideration.
 Finally, we have to evaluate the combination of TABAC strategy and prototype with
respect to the feasibility, the potential revenue, and the costs created by introducing the
TABAC strategy.

1.3 Overall Approach

Our approach intends not to be invasive to the existing infrastructure, but being an add-on
for proposing and evaluating TABAC strategies (see Fig. 1). Based on the development
process of the prototype, the administrators and developers select the interfaces that can be
used for retrieving the required data. The description of these interfaces together with their
capabilities and dependencies is passed along with the requirements for the TABAC solu-
tion to our framework.

 The framework itself (see Fig. 1, right) contains information and dependency models
that include existing standards and is extensible by adding prototype-specific information.
Based on the existing and prototype-specific models, the framework proposes several suit-
able strategies. These strategies are then put into a runtime environment (RE), where they
process live data gathered from the prototype interfaces. This step allows the evaluation of
different strategies based on real data with typical characteristics from the prototype in or-
der to find the most suitable approach. The evaluation result can not only be used to find the
best suitable strategy, but also serves as input for prototype developers and administrators
(dashed arrow in Figure 1).

Figure 1: High level view of the framework and the workflow

In order to realize this approach with the requirements introduced before, we have selected
an approach based on a couple of key features.
• Model-based: Since we have different TABAC strategies as well as very different pro-

totypes and service infrastructures, we have based our concept on models. Abstract
models represent the different TABAC strategies that can be instantiated and combined
with prototypes, which are as well described by models.

• User Interface: Our concept is based on a graphical user interface that allows the user to
evaluate different TABAC strategy combinations and get feedback on the potential
results by real-time evaluation.

• Tool support: The creation of models and the corresponding instantiation is a complex
task. Since we do not want to build everything from scratch, our concept is based on
existing modelling tools like EMF [4] or IBM Rational Tau[5].

• Runtime environment (RE): For the interworking between the models and the
prototypes, we make use of an RE. The RE allows the placement of instantiated models
and let them work on real monitoring data. Based on the resulting data, we can provide
the above introduced evaluation possibility.

1.4 Structure of Paper

The remainder of this paper is structured as follows. Sec. 2 reviews the related work in the
area of modelling and in particular what can be achieved with modelling at runtime. Sec. 3
introduces the overall framework to achieve the introduced requirements and to provide the
key features. We illustrate the relevant workflows in Sec. 4 and provide an exemplary study
of the application of the proposed framework and workflows for a VoIP prototype in Sec. 5.

2. Related Work

Since we do not want to enhance TABAC functionality on its own, but rather employ exist-
ing standards and protocols, we focus on related work in the area of models and in particu-
lar on models at runtime. Hereby, a model in terms of Model-Driven Engineering (MDE) is

an abstraction of some aspect of an existing or planned system. Models are used to describe
complex systems at multiple levels of abstraction and from a variety of perspectives. MDE
is typically used to describe software development approaches in which abstract models of
software systems are created and transformed into concrete software implementations.
In the last years we have experienced the emergence of new applications classes, which are
highly complex, inevitably distributed, and operate in heterogeneous and rapidly changing
environments. These systems are required to be adaptable, flexible, and reconfigurable.
MDE has focused primarily on using models at design, implementation, and deployment
stages of development. It is limited to meet the new challenges. The concept of Models at
Runtime [6] extends the applicability of MDE techniques to runtime and makes use of
modelling techniques beyond the design and implementation phase. System users can use
runtime models to observe and monitor the runtime behaviour. A runtime model can also be
used to dynamically adapt the model within running systems [7]. A key benefit of runtime
models is that they provide a richer semantic base for runtime decision-making related to
system adaptation, configuration, validation and other runtime concerns.
The EU FP7 Project DiVA [8] provides an integrated framework for managing dynamic
variability and unifies runtime adaptation and runtime evolution by monitoring both the
run-time platform and the design models. The paper [9] presents the modelling of account-
ing components both at business level and at network level. The accounting components are
responsible for correlating network and service level accountable events, resulting in a sin-
gle bill for the service subscribers. The white paper [10] depicts an information model for a
federated accounting management system.

3. Framework

Our framework provides model-driven development and proposal of TABAC strategies.
However, this is not limited to creating models based on a model pool, but also includes a
RE for connecting the models to the interfaces of the prototype and evaluation of TABAC
strategies with live data.

3.1 Overview

Our framework supports a workflow for selecting suitable TABAC strategies and evaluat-
ing them using live data from prototypes. This workflow is indicated in the overall frame-
work overview in Fig. 2 by the dotted arrows. It starts with collecting interface properties
and TABAC requirements serving as input for the strategy proposal and selection that is
based on an extensible model repository. The Instantiation of the models leads to a repre-
sentation of the TABAC strategy in a RE, which allows the collection of measurement data
for strategy evaluation. The result serves as input to the prototype provider for identifying
suitable strategies and possible improvements. Sec. 4 further details this workflow.
 In order to support this workflow, our framework relies heavily on models that re-
side in a model repository, which is the core of the first building block: the Model Layer

(Fig. 2). This Model Layer also contains the Strategy Proposal & Selection component, the
model Instantiation and the Strategy Evaluation. The second building block is the Runtime

Layer that evaluates instantiated models using live data from the prototype and delivers
measurement data to the Strategy Evaluation. In addition to these two layers, the interfaces
to the prototype form a third part. These are not only protocol and monitoring interfaces,
but also interfaces for TABAC descriptions and results as well as user interfaces for the
evaluation process.

Figure 2: Detailed Framework overview

3.2 Model Layer

The purpose of the Model Layer is providing generic models for TABAC concepts and
strategies with several concrete refinements, such as support for certain protocols or session
concepts as a basis for instantiation of strategies and their evaluation. Besides these con-
cepts, the model repository also contains a pool of TABAC strategies and patterns for dif-
ferent trust models. For creating TABAC strategies, the present models are extended by
definitions from the prototype. The goal is to limit the amount of models and knowledge
that has to be added manually to a minimum.
 Based on the strategy selected, the required components are taken from the model re-
pository. The Instantiation block puts them together so that the required processing steps
are defined and feeds the model with prototype specific parameters. The resulting descrip-
tion of a TABAC strategy is then put into the Runtime Layer for evaluation.

3.3 Runtime Layer

In order to evaluate TABAC strategies with live data from the prototype, the Runtime Envi-
ronment (RE) takes instantiated models, connects them to the prototype and performs
measurements for the strategy evaluation. This includes transformation of protocol-specific
data models to generic concepts that are aligned with the items of the model repository.
 While in a straight-forward approach the RE collects monitoring and accounting data,
we envision also active communication of the RE and models with the prototype. This
might be necessary for certain strategies, where additional user-specific records from AAA
servers are required. Also prepaid charging models demand for interaction with the proto-
type for tearing down sessions when users run out of credits.

3.4 Interfaces towards the prototype

A critical part of our framework are the interfaces towards the prototype and its administra-
tors. As shown in Fig. 3 on the left, this includes interfaces for collecting data that will be
processed. Such data can be delivered using well-known protocols, such as SNMP, IPFIX
or DIAMETER, but also yet unknown prototype-specific protocols. Thus, our approach is
to map data delivered by these protocols to general concepts of our models in the prototype
interface part in order to be independent of protocol peculiarities.

Figure 3: Interfaces of the framework

 Internal interfaces that have to be obeyed by the RE concern the deployment and strat-
egy evaluation interface. Here, it is vital to transform the deployment description and meas-
urement data to a common format to get consistent evaluation results.
 For reaching our goal of usability of the overall framework, an admin interface is pro-
vided that serves as central dashboard for strategy selection and evaluation. It presents each
step of the workflow and drastically enhances the process, since the effort for e.g. a strategy
where additional protocol modules are required can already be estimated at an early stage.

4. Workflow

While Sec. 3 has presented the design of the intended framework, this section provides an
overview how the framework will be used to connect to prototypes and to enable TABAC
models at runtime. The overall workflow can be divided into six steps that have to be car-
ried out. These steps are: Problem Detection, Planning and Identifying the Interfaces, De-
ployment of TABAC-models, enabling the prototype’s Interfaces, Simulation and Meas-
urements, and Evaluation of the data received and the TABAC-models used.

Problem Detection: The first step is the formulation of the problem, which shall be solved
by using the TABAC framework. We have identified three different challenges for using
this framework. Firstly, the framework can be used to enable TABAC functionalities that
have been forgotten when establishing the prototype. Secondly, the framework can be used
instead of deploying TABAC elements, e.g., because the prototype’s purpose is not related
to TABAC elements, so, the use of this framework avoids efforts regarding TABAC com-
ponents. Finally, this framework can be used to evaluate TABAC strategies. A prototype
operator may have deployed TABAC concepts and uses this framework to evaluate them.
This framework can then be used to evaluate the TABAC functionalities and to analyze
suitable solutions for this prototype. Therefore, before starting to use the framework, the
prototype administrator has to formulate the problem, the framework shall address.

Planning: Besides identifying the problem, the capabilities of the prototype and the in-
tended way of proceeding have to be taken into consideration. Thus, after detecting the
problem, in a planning phase the procedure of connecting the prototype to the model reposi-
tory provided by the framework has to be defined. This includes initially identifying the
possible interactions of the prototype with the framework’s repository, such as available
protocols and layers as well as defining the intended TABAC elements.

Model Deployment: After the planning phase has detected the layers, protocols and inter-
faces intended to communicate with the TABAC models, the model has to be deployed.
This is carried out by choosing the required elements from the TABAC model repository
provided by the framework. Here, several elements can be combined to TABAC models to
be connected to the prototype. However, if the planning phase has identified a TABAC
functionality not provided by the repository, the framework offers the opportunity to create
new models for this particular case. For deployment of the TABAC models, a user-friendly
frontend for the repository will be created.

Interface Enabling: When having established the TABAC model that is expected to be
connected to the prototype, the interfaces of the prototype have to be enabled in order to
communicate with the model. Therefore, the elements of the prototype that supply the re-
quired data identified during the planning phase have to be activated and to be connected to
the runtime model to deliver the data.

Measurements: As soon as the model deployment phase has provided a TABAC model
and the interface enabling step has connected the model to the prototype, the admin may
start the model-driven measurements. To run the demanded processes, the admin can either
get data from test-users or carry out the required operations based on models and simula-
tions. The measurement phase has to execute prototype operations in order to collect this
data required for the model evaluation.

Evaluation: After the measurement phase has provided enough data, the collected data can
be analysed. These evaluation procedures rely on the problem statement defined at the be-
ginning of the process. The first evaluation, which is the same for each of the problem
statements, is related to the quality of gathered data. The framework provides evaluation
functionalities that are able to discover whether the received data are of such a quality that
they can be used for TABAC elements. The second evaluation step focuses on finding the
best strategy, evaluate different TABAC concepts used within the prototype and provide the
best suiting elements of the deployed TABAC models.

5. Usage Scenarios

In order to get an idea of the functionality of the framework, we consider a scenario where
TABAC functions are added to an HD video conference and collaboration prototype.

5.1 From Prototype to productive Service

In our scenario an IT company has developed a HD videoconference and collaboration sys-
tem as a prototype. Due to its unique features the prototype is highly popular and heavily
used for collaboration tasks with other companies. Even other companies ask whether they
could use this service for their internal collaboration and they would pay for it. At this
point, the question for suitable TABAC strategies arises, since the prototype is already
used, has proven its stability and usefulness but lacks TABAC functions.
 The administrators discuss with business department how to charge other users and how
to include accounting functions into the prototype. With the help of our framework, they
can evaluate different strategies with only allowing access to a few interfaces and without
changes to the running prototype.

5.2 Requirements and available interfaces

In a first step, the TABAC requirements and interfaces of the service must be defined as
input to our framework. The administrator and the business department identify the follow-
ing requirements
• Users of the service must be known to the company or known users have to provide

statements that they trust users they invite.
• Collaboration sessions should always include all participants, even if one of them runs

out of credits. Reduced quality is acceptable but has to be logged.
• The charging should consider the resource usage of the collaboration sessions and com-

pensate in a suitable way. What actually is charged for is not put into requirements.

In addition to these requirements, the administrator compiles as list of available interfaces
jointly with the developers. The following interfaces are available:
• IP traffic accounting to the endpoints of the media streams (e.g. IPFIX)
• Charging interface to the company’s billing system

• Session details from the video conference service (IP address of participants, duration
of sessions, video quality). This data is available once the sessions are terminated.

• Control interface to the system that allows for setup and teardown of sessions.

5.3 Proposed strategies

Based on the input from the administrator, our framework identifies the following three
strategies as first candidates for an evaluation:
• Strategy A “Postpaid with detailed CDR”: Users are charged according to duration and

amount of traffic caused using the collaboration service. The framework detects that the
information for correlating CDRs with traffic information is only available after session
termination, thus this must be a postpaid strategy.

• Strategy B “Prepaid based on quality level and duration”: The framework suggests us-
ing a prepaid module from its model repository where credits can be bought using the
companies billing system. When a user runs out of credits, the session is typically ter-
minated with this model.

• Strategy C: “Pay per use”: Each time the collaboration service is used, a fix amount of
money is charged from the user using the company’s billing system.

5.4 Result

Based on the three proposals, the administrator selects the three strategies for instantiation
and test in the RE. Over a certain time the strategies are evaluated while the prototype is
used as usual. The strategy evaluation block then compiles results for the three strategies
• Result Strategy A: The postpaid strategy is able to interact with the company’s billing

system to correctly bill the users. However, the CDRs are sometimes incomplete and
correlating traffic accounting data with end users is often imprecise.

• Result Strategy B: Using a prepaid strategy works in this case, however, tearing down
the session in case of empty credits of one user violates the requirements. The frame-
work suggests extending the control interface to enable quality degradation in this case.

• Result Strategy C: Pay per use in principle works, but the amount charged from users is
not aligned with the resource usage caused, leading to implausible bills. This results
from usage and traffic properties, which could only be determined using real data.

The framework decides that Strategy B is the most suitable one, even if minor changes at
the service interfaces are necessary. In our scenario, this strategy was not initially in focus,
but proved to be realistic by putting the TABAC strategy into work in the RE.

5.5 Advantages of this Procedure

The approach described in this paper can be used to achieve even more benefits, such as
ignoring TABAC elements and focusing on research topics. Since this approach will define
suitable TABAC elements at the end, the company taken for this example scenario benefits
from the large TABAC repository, the TABAC element evaluation and the intactness of the
running prototype. Firstly, the company has no need to gain knowledge about all possible
TABAC strategies, since the repository contains a huge pool of different solutions. Here,
lots of resources are saved. Secondly, predefined algorithms are able to choose the best fit-
ting solutions out of a pool based on measurements taken with the prototype. Thus, the

company does not have the need to compare all the results and to select, possibly faulty,
one of them, since the algorithms will present a list of the best ones. Thirdly, the prototype
does not need to be touched, except of defining and configuring the interfaces to the TA-
BAC framework. By following the concept of defined, non prototype-specific TABAC
models, no add-ons are required for the evaluation. Thus, the prototype can remain un-
changed and even in operation.

6. Conclusions

We introduced a framework for model-driven selection and evaluation of TABAC strate-
gies. It allows administrators to evaluate TABAC strategies for already existing prototypes
in order to turn them into productive commercial systems. Additionally, the framework can
provide feedback for developers. Our example scenario demonstrated that the process need
not stop at proposing strategies. Moreover, the real value lies in putting the models to work
in a Runtime Environment using real data and interfaces. This leads to a comprehensive
evaluation with high value for administrators and developers. We plan to prove the applica-
bility of this approach by implementing this framework and demonstrate its capabilities by
interfacing to real prototypes.

Acknowledgements

The research leading to these results has received funding from the European Community's
Seventh Framework Programme (FP7/2007-2013) under grant agreement nr. 215832
(SWIFT).

References

[1] PlanetLab – An Open Platform for Developing, Deploying and Accessing Planetary Scale Services,
www.planetlab.org

[2] Szegedi, P et al.: With evolution for revolution: managing FEDERICA for future internet research,
IEEE Communications Magazine, Volume 47, Issue 7, 2009

[3] German Lab – National Platform for Future Internet Studies, www.german-lab.de
[4] Eclipse Modeling Framework (EMF), http://www.eclipse.org/modeling/emf/
[5] IBM Ratioanl Tau, http://www.eclipse.org/modeling/emf/
[6] R. France, B. Rumpe: Model-driven Development of Complex Software: A Research Roadmap. Future

of Software Engineering (FOSE’07)
[7] Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, Jean-Marc Jézéquel: Modeling and

Validating Dynamic Adaptation, Models@run.time Workshop, Toulouse, France, 30 September 2008
[8] EU Project DiVA http://www.ict-diva.eu/DiVA
[9] P. Hellemans, C.Redmod, K.Daenen, D.Lewis: Accounting Management in a TINA-Based Service and

Network Environment. Proceedings of the 6th International Conference on Intelligence and Services in
Networks, pages: 13-24, ISBN: 3-540-65895-5

[10] B.Bhushan: White Paper: Federated Accounting Management of Service Usage in a Business-to Busi-
ness Environment, IST-1999-10357/UCL/WP6/0930-V1

