
Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing.A. Kirstädter

Copyright Notice

c©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de



Load Sharing in a Distributed IMS Architecture
Jochen Kögel∗, Stefan Wahl†, Michael Scharf∗ and Marc C. Necker∗

∗Institute of Communication Networks and Computer Engineering (IKR), Universität Stuttgart, Germany
Email: {jochen.koegel, michael.scharf, marc.necker}@ikr.uni-stutgart.de

†Bell-Labs Germany, Alcatel-Lucent Deutschland AG
Email: stefan.wahl@alcatel-lucent.de

Abstract—The IP Multimedia Subsystem (IMS) serves as
universal platform for fast and standardized creation of mobile
services. Typical deployment models for the IMS favor centralized
session control and application servers. Furthermore, they rely
on sophisticated border elements for, e.g., policy enforcement.
One step towards a simpler architecture is the integration of
call control, application server, and media functions intoborder
elements. This leads to a distributed IMS architecture withequal
processing nodes, which drastically reduces system complexity
and scales on functional module instantiation basis.

However, the distributed nature of the architecture reduces
the statistical gain. In this work, we study a suitable load
sharing concept that counters or even over-compensates this
problem. In principle, this mechanism realizes one large virtual
central server with small control and message overhead. Our
simulative evaluation shows the feasibility and performance of
our approach.

I. I NTRODUCTION

Public voice telephony is more and more realized by
Next Generation Networks (NGN) that are based on Internet
Protocol (IP) technology. The 3GPP IP Multimedia Subsystem
(IMS) and its extension ETSI TISPAN are NGN frameworks
that standardize converged session control functions for end-
to-end multimedia conversational services over an all-IP net-
work. These NGN frameworks are expected not only to replace
the existing PSTN, but also to provide a platform for rapid
service creation. IMS defines functions for session control,
application servers, and media transport, which can be imple-
mented either in a centralized or a distributed architecture. In
most deployment scenarios, Session Border Controllers (SBC)
are placed at the domain boundaries. Traditional SBC elements
only perform a certain part of the session control functions.
The IP Multimedia eXchange (IMX) concept [1] proposes an
alternative architecture that integrates call control, application
server, and media functions into the border elements and
thereby reduces the number of central components. The
resulting platform consists of equal general-purpose nodes
that realize the IMS functions at the edge. This integrationnot
only simplifies the platform management and operation, but
it can also reduce the signaling complexity inside the system.

However, such a distributed IMS architecture comes at some
cost: Some of the distributed nodes can get overloaded because
of unpredicted traffic patterns, flash crowd effects, value-
added services such as televoting, or platform failures. Asa
result, calls may have to be dropped even though other nodes
in the platform still have significant spare capacity. In theory,
such overload could be avoided by dimensioning each element
for the worst-case scenario, but this is not a cost effective
solution. It would result in a much larger total amount of

resources compared to a centralized design that benefits from
statistical multiplexing gains. This is why a distributed IMS
architecture essentially needs load sharing mechanisms that
can distribute processing efforts among the different nodes.

Load sharing is not a new concept and is already widely
used with PSTN equipment (e.g., [2]) and large-scale
server clusters [3]. Local load balancing schemes for IMS
servers have also been studied [4], and there are ongoing
standardization activities concerning overload signaling [5].
However, the realization in a highly distributed IMS system
imposes a number of unique constraints. Therefore, this paper
systematically analyzes load balancing concepts for such en-
vironments. We introduce different realization alternatives and
discuss design issues. Furthermore, we develop a scalable load
balancing architecture and develop a lightweight relocation
strategy for the IMX platform. The benefits of our solution
are illustrated by an analysis and selected simulation results.

The rest of this paper is structured as follows: Section
II introduces the IMX concept and derives the requirements
for load balancing. In Section III, we discuss the degrees of
freedom, and differences of IMX to server clusters. SectionIV
then presents our load balancing architecture for a distributed
IMS realization. A numerical analysis of our concept and the
results of simulation studies can be found in Section V. Finally,
Section VI concludes this paper.

II. IMX: D ISTRIBUTED IMS OF EQUAL NODES

The mapping of IMS functions to components is not stan-
dardized and offers a variety of possibilities, which are dis-
cussed here together with resulting constraints for load sharing.

A. Degrees of freedom for IMS deployment

The IMS architecture defines different Call Session Control
Functions (CSCF), which handle signaling messages and call
state, and Media Resource Functions (MRF). The service
logic is realized in Application Servers (AS). Within the
IMS/TISPAN architecture, the Proxy-CSCF (P-CSCF) func-
tion is located at the border between access network and core
network in order to perform security functions and registration
handling. In many deployment scenarios, P-CSCF functions
are integrated into Session Border Controllers (SBC), which
also integrate e.g. policy decision functions (PDF) on the
media path. Similarly, Interrogating-CSCF (I-CSCF) placed at
the border to other networks may be realized by SBCs, too.

Extending the idea of SBCs, a further reasonable integration
step is to enhance the border element towards fully integrated
IMS nodes, so that they implement also other IMS call control



IP Transport

Stream Switching

Media Processing

Session Signaling

App. Server

SOAP
SIP

Middleware
incl. inter IMX 

resource management

Middleware
incl. inter IMX 

resource management

Optimized call
and control flows;

inherent protection system
IP Transport

Stream Switching

Media Processing

Session Signaling

App. Server

IP Transport

Stream Switching

Media Processing

Session Signaling

App. Server

IMX node

IMX domain

IMX node

SOAP
SIP

Fig. 1. Illustration of the IMX concept

functions, including I-CSCF and Serving CSCF (S-CSCF),
basic application server (AS), and media capabilities [1].
This IMX concept substitutes the central servers that handle
requests of all clients by several identical nodes that each
processes the requests [6]. As shown in Figure 1, an IMS
platform then consists of several distributed IMX nodes.

One advantage of IMX is that a significant portion of the
SIP signaling between P-, I- and S-CSCF and Application
Server (AS) is intra-cluster communication and can thus
be realized by an optimized communication middleware
that also handles transfer and access to session and user
information (e.g. call state or user policies in the Home
Subscriber Server). To the outside world the cluster offers
standard interfaces like any other IMS implementation. This
enables mixed deployment scenarios and smooth migration
paths, where one part of a platform is realized as IMX cluster
and the other part by IMS components. Another feature is
that the IMX nodes can make use of advanced application
server technology, i.e., the different functions can be realized
as modular software components. Each registered subscriber
corresponds to a certain number of instantiated componentson
an IMX node. By separating state from function instantiations
and virtualization techniques, even a live migration of the
components among different nodes might be possible.

B. Benefits of load sharing

Typical deployment models for NGN platforms favor a
small number of server locations with several tightly coupled
servers in clusters. Load balancing mechanisms distribute
incoming calls across the servers of one site to achieve
equal load distribution and high availability [2], [7]. In such
scenarios, load originating from several access networks con-
centrates on one server cluster leading to statistical gain. Thus,
the server cluster can handle load peaks from single access
networks appropriately.

In the IMX, processing resources are not centralized but
distributed across a high number of border nodes. If each
IMX node handles only calls of directly connected access
networks, statistical gain will be significantly reduced. In order
to avoid expensive overprovisioning, load sharing mechanisms
that move processing load from highly loaded to underutilized
nodes are essential. Additionally, load sharing across the
complete platform even leads to better statistical gain than

a centralized solution with several clusters. However, load
sharing mechanisms of typical server clusters differ from
mechanisms required for IMX: In the former case, the goal of
equal load distribution is often realized by a central dispatcher
that associates clients with servers. In IMX, the goal is not
equal load distribution but reacting before overload situations
occur. Additionally, in IMX the offloading IMX nodes still
stays in the path between client and processing IMX node
and keep on handling registrations. Thus, established solutions
with central dispatchers cannot be used.

III. L OAD SHARING CONCEPTS

This section introduces the design space for load sharing
and shows the differences between IMX and server clusters.

A. Design space

Load sharing mechanisms that distribute work according
to the current load situation require mechanisms for load
information gathering as basis for resource allocation (see Fig-
ure 2). The two basic steps of load information gathering and
resource allocation can be further subdivided in a measurement
and update policy as well as a transfer, location and redirection
policy (see also [2]). The measurement policy defines how
often the system performs load measurements, their granularity
and aggregation strategy of values (mean, peak,...) resulting in
a node-local load view. How to distribute the load information
is determined by the update policy that defines mechanisms
like an update protocol. Based on the global load view, the
transfer policy specifies when to change a task assignment
pattern or to relocate tasks. When relocation or reassignment
is triggered, the location policy determines how load is shifted
between nodes and the redirection policy determines how
much load (e.g. how many tasks or calls) are relocated.

All previously mentioned steps of load sharing offer several
degrees of freedom in their realization and form the design
space for load sharing. At the two stages where inter-node
communication is required for updating state, namely obtain-
ing the global load view and assigning workload (sessions) to
nodes, there are three design choices. It is beyond the scope
of this paper to discuss the design space in detail, however,
we give a basic classification illustrating our choice for IMX.

Fig. 2. General scheme for load sharing and derived policies



• Trigger: value or time based
Updates can be triggered periodically (time based) or
only if values exceed certain thresholds or trend changes.
Value based mechanisms reduce the communication ef-
fort, but reduce the possibilities for achieving fine-grained
view or control.

• Triggering entity: push or pull model
Either the source or the sink of information (or workload,
respectively) can trigger updates.

• Architecture: centralized or distributed
The centralized model forms a star topology where all
traffic traverses a dedicated central node. Contrary, the
distributed model results in a full mesh with more mes-
sages but similar traffic at every node.

As we will show in Section IV, we chose for IMX an update
mechanisms that is centralized, time based, and pull model
based. Concerning work assignment, we chose a distributed
mechanism that is value and push model based.

B. Differences to server clusters

The typical setup for web server clusters is a high number
of servers hidden behind a load balancer [3]. In [2] such
concepts are transferred to centralized call server clusters,
however with static distribution schemes and a small number
of call servers only. The IMX scenario is different from
web and call server scenarios, since IMX nodes will always
stay in the path for processing or policing tasks. A problem
closer to the IMX scenario is presented in [8], where web
servers forward new connections to other servers by rewriting
addresses directly in the network stack. However, the resource
allocation mechanism statically forwards a fix rate of requests,
which is inappropriate for IMX where relocation is more
costly. In summary, there is no approach close to the IMX
scenario, which is why we developed a suitable concept.

IV. L OAD SHARING IN A DISTRIBUTED IMS PLATFORM

This section covers function relocation support, resource
management, and the load sharing approach developed on top.

A. Platform-supported function relocation

As introduced in Section II-A, the IMX architecture allows
dynamically creating and assigning instantiations of func-
tional components , while state information is kept in objects
separated from the actual instances. These instantiationsare
managed by a Local Resource Manager (LRM) belonging to
the IMX node. When created, these instances mainly allocate
memory and no CPU resources, since they are not yet assigned
to users and are thus inactive and stateless.

Figure 3 illustrates how IMX handles user registrations and
sessions. As shown at IMX1, the functionality of an IMX node
consists of a relocatable portion of stateless function instances
and non-relocatable functions that are transport related (e.g.
forwarding, policing, redirections). The latter have always to
be performed at the ingress node (iNode). With the registration
of a user, the dispatcher on the IMX node takes a User Control
Manager (UCM) instance and assigns it semi-statically to this
user. This results in registration state on the iNode, as indicated

Fig. 3. Session offloading by function relocation with IMX

in Figure 3. Depending on the user’s activities, the UCM takes
appropriate instantiations of functional components fromthe
LRM and controls the appropriate functional chaining as well
as the session state of these components. If a new session
is initiated and resources on the iNode are scarce, the UCM
will not get functional instances from the LRM, but the LRM
will trigger function relocation. In this case, the UCM will
associate instances on a remote node with the user and transfer
the required state information, while traffic is redirected
accordingly. The iNode will remain the contact point for this
user and continues to handle its registration. The relocation
principle is also shown in Figure 3, where a new session arrives
at IMX2 and is relocated to IMX3, while the registration will
still be handled at IMX2. Functions of existing sessions will
not be relocated. We will label IMX nodes to which functions
are relocated as oNode in the context of a session.

B. Load information gathering and update

In our load sharing concept, each IMX node takes relocation
decisions on its own, i.e., the resource allocation decisions
are performed in a distributed fashion and value based. This
enables fast reaction in situations of high load and timely
function relocation when the call arrives without the necessity
to query a central instance for relocation decisions. We
describe the resource allocation mechanism in Section IV-C.

In contrast to the distributed resource allocation mechanism,
we chose a centralized load update strategy, which is designed
for load update periods of few seconds enabling suitable
reaction times. With the Global Resource Manager (GRM) as
central hub for load information, a star topology is realized that
reduces the amount of load update messages the IMX nodes
have to process. In terms of trigger we decided to use periodic
time-based updates, which can deliver timely information.
Since IMX platforms will base on high-bandwidth core net-
works, there is no point in saving message transfers between
IMX nodes. Concerning the triggering instance we chose a pull
model based on a three-way handshake. An advantage of the
pull model is the fact that load information updates are faster
and provide fresh information at the same time to all nodes.

Figure 4 shows the IMX update strategy. The GRM triggers
the update by sending anupdateRequest Message to the



Fig. 4. Measurement and update strategy

LRMs of all IMX nodes at once. On its arrival, IMX nodes
measure the mean resource occupation and translate it into a
load index as detailed in the next section. Each node sends an
updateResponse containing its load index to the GRM.
Once the GRM received allupdateResponse messages, it
sends anupdateResult message containing load informa-
tion about all nodes to every IMX node. With this mechanism,
all results will arrive at the GRM within a short time slot and
can directly be included in oneupdateResult.

We can quantify the additional effort caused by the update
strategy based on the message and data rate. For each of the
n IMX nodes, three messages are sent per node in one update
interval u leading to the message rate

m =
3n

u
(1)

at the GRM (linear with n). With a packet size ofL
per updateRequest or updateResponse and
updateResult size being n · L, the update protocol
consumes at the GRM the overall data rate at of

r =
2n · L + n · n · L

u
=

L

u
(2n + n2) (2)

(quadratic withn). For reasonable numbers, likeu = 1 s,
L = 50 Bytes andn = 50, the data rate is only1.04 Mbps

with 150 messages per second. Message and data rates for
the update protocols at the IMX nodes are almost negligible:
Three messages per second and a data rate of20 kbps are
needed, which is very small compared to e.g. SIP signaling
alone (about120 kbps at a call arrival rate of5 per second

and ten 300-Byte SIP messages per call).

C. Resource Allocation

Since sessions cannot be completely offloaded, relocation is
always costly and all sessions should be handled in the iNode
as long as possible. Thus, early call relocation for achieving an
equal load distribution would be counterproductive. Further-
more, suitable dimensioning of IMX platforms should assure
that nodes are equipped with resources according to the size
of the access network they serve. Nodes will therefore offload
sessions only in case of high load. The definition of the load
index reflects these conditions and requirements.

The load index is calculated based on the load level
ρ ∈ [0..1], which is the ratio of mean resource usage to
available capacity in the previous measurement interval.ρ only
describes the occupancy of resources assigned to per-call IMX

functions. Thus, atρ = 0.0 basic functions and background
tasks are running, registrations of idle clients are handled,
but no sessions are active. Contrary, atρ = 1.0 no further
incoming sessions are handled, but enough resources for
resource management and overload control are available.

Our relocation strategy subdivides the load index values in
three ranges that describe the node’s behavior concerning load
sharing and is defined by the parametersϕ andω as follows:

• accepting: 0 ≤ ρ < ϕ

• passive: ϕ ≤ ρ < ω

• offloading: ω ≤ ρ ≤ 1, 0

In our load sharing approach, each IMX node decides on
its own how to relocate calls based on its current load
index. Thus, according to Section III-A, our approach can
be classified as distributed, value- and source-triggered.
Concerning the transfer policy, IMX nodes offload new
sessions as soon as they are in the stateoffloading.
Our location policy specifies that sessions are offloaded to
nodes inaccepting state. The offloading node selects in
a round-robin fashionaccepting nodes from the list given
in the updateResult message. As soon as a node starts
offloading, it will relocate all new calls (redirection policy).
If no node in accepting state can be found, a node in
offloading state will try to handle new calls locally.

The load sharing mechanism adds only small effort on
the IMX nodes, since besides measurement and update, no
extensive processing is required. Additionally, the parameters
ϕ andω can be pre-calculated taking the load characteristics
and system parameters into account, as we show in
Section V-B. Switching fromoffloading immediately
to the accepting state in cases of varying load can be
prevented by the intermediatepassive state. The size of
thepassive range therefore adds a hysteresis to the system.
Increasing the passive range decreases the number of nodes
in accepting state and therefore limits the overall system
capacity. How to set the hysteresis in this trade-off depends
heavily on the system implementation and its sensitivity to
oscillations. Therefore, we will not consider the passive state
(i.e., ϕ = ω) in our evaluation.

V. QUANTIFICATION OF LOAD SHARING BENEFIT

Here, we consider a two node scenario for understanding
the basic behavior of our load sharing mechanism. We first
calculate the optimal threshold setting for the static case, then
we evaluate the system by simulation with stochastic load.

A. System model

We focus on the fundamental properties of an IMX system
and therefore use a system model that abstracts from the imple-
mentation and deployment specific details. The model covers
the architecture, resource behavior and the load imposed on
the system in the form of a traffic model.

We consider a platform with several access networks, each
connected to an IMX node residing at the platform border. The
IMX nodes are interconnected by a high-speed network. Thus,
network effects on load sharing mechanisms are negligible and
not part of our model. We assume that IMX nodes feature



TABLE I
MODEL PARAMETERS

Symbol Description Default value
A normalized system load none, input parameter
h mean call holding time 180s

λi mean call setup rate Ai

h

c resource capacity of an IMX node 1, 000, 000
e resource consumption at IMX

node where call is handled
1, 000

f resource consumption per call at
iNode if call is relocated

50

b relocation overhead 1.05 (from e andf )
x load asymmetry 0.5

suitable overload control and drop new requests when the ca-
pacity is exceeded, leading to a blocking behavior. The nodes’
load level is calculated based on integer values for resource
capacity and consumption. In this work, we only consider one
type of processing resources. Differentiating between resource
classes (e.g. memory, specialized processors) would lead to a
more complex optimization problem for placing functions.

For the simulation study, we assume the holding time of
sessions to be exponentially distributed with the constant
mean h. The arrival rateλi is assumed as exponentially
distributed and its mean value is set depending on the load
originating from the access network connected to nodei.
Both assumptions are reasonable for conversational traffic.
This leads to the offered traffic for nodei: Ai = λi · h

and the normalized load forn nodesA = 1

n

∑
n

i=1
Ai. In

order to study the load sharing mechanisms, we impose load
asymmetry described by the parameterx. For simplicity, we
suppose that half of the access networks impose the high load

A1 = (1 + x)A, (3)

the other half the low load

A2 = (1 − x)A. (4)

The resources consumed by one session are described by the
effort e required to handle the call both locally or relocated
and the additional relocation effortf . The latter represents the
SIP-parsing, encryption and decryption as well as transport
effort that is required in iNode in case of function relocation.
The relocation overhead ratio is defined as

b = 1 +
f

e
. (5)

Resource consumption for active sessions is assumed to be
constant. Typically, there are several hundred active sessions in
parallel, which will average out load peaks in resource usage.
In our model, calls affect only one IMX node, which is e.g.
valid for value-added service calls. End-to-end call between
two clients corresponds to two service calls. Table I summa-
rizes the model parameters and gives exemplary default values.

B. Considerations for the ideal and static case

This estimation derives a guideline for the load sharing
parameterω by considering a scenario with two IMX nodes,
a load asymmetryx, and relocation overhead ratiob.

As discussed, we omit the “passive” range (ϕ = ω), but
extending the calculations for also takingϕ into account would

Fig. 5. Scenario for estimating the load sharing parameterω

be straight-forward. The same value forω is used for all nodes.
For estimating an optimal value forω, we consider the static
case (infinite call holding time). Figure 5 shows two nodes,
where IMX1 receives more traffic (A1) than IMX2 (A2). li
calls are handled locally andri calls are relocated, with

Ai = li + ri. (6)

Figure 5 shows resource occupation in the ideal case:
All resources of IMX1 are occupied when IMX2 reaches
the offloading state. IMX1 handlesl1 calls locally and
forwardsr1 calls to IMX2, while IMX2 handles alll2 calls
locally. Settingω higher would lead to a sub-optimal case,
since IMX1 starts relocation too late and will block while IMX
2 is still in accepting state. Contrary, a lowerω would cause
IMX2 to leave the “accepting” stage too early and in the end
IMX1 would have to handle calls locally while being in state
offloading. Even in the ideal case, there are free resources
at IMX2 when IMX1 blocks, which is an intended property
that avoids overloading remote nodes by relocating calls to
them up to their limit. From Figure 5, we can derive the follow-
ing relations: Full utilization in IMX1 (7), utilization inIMX2
(8), and (9) from comparing occupation of IMX1 and IMX2.

c = l1 · e + r1 · f (7)

ω · c = l2 · e + l1 · e (8)

l1 = l2 + r1 (9)

Equations (6), (7), (8), and (9) yield together with the
definitions ofx (2,3), andb (5), the optimal setting as

ω =
1

1 − x + bx
. (10)

Considering the definitions ofx andb, ω is limited to values
in [0..1]. The exemplary values of Table I yieldω = 0.975.

C. Simulation environment

For gaining performance insights into the load sharing ap-
proach under stochastic traffic load, we performed simulations
of the IMX system using an event-driven simulation library



[9] with signaling extensions. The simulation environment
allows implementing call setups and load updates directly
as messages flows between nodes (e.g. between IMX and
GRM). Access networks are modeled as nodes containing
call message generators that generate call setup messages
according to a predefined IAT distribution and add the call
duration as message parameter.

On arrival of call setup messages, IMX nodes check whether
they have enough resources left for the required call process-
ing. If it is possible to handle the call completely locally,or
only the non-relocatable portion, they register the resource
utilization in their load schedule. Otherwise they drop the
call. The simulation keeps per-node and global statistics on
drop events. Depending on the current load index and the
availability of nodes inaccepting state, IMX nodes forward
call messages originating from directly attached generator
nodes to other nodes. If the outgoing node blocks despite the
load view of the ingress node wasaccepting, the resource
consumption for the non-relocatable part is removed. LRM
functions exchange load update messages with the GRM ac-
cording to the load update protocol. For each parameter set,we
ran 10 simulation batches with 1 or 10 Million call setups each.

D. Simulation results

We show the influence of the load sharing parameterω on
the overall blocking probability for different load valuesand
constant asymmetry (x = 0.5). Figure 6 depicts the blocking
probability for different settings of the load sharing parameter
ω and for varying normalized load. For understanding the basic
effects, we consider here a two node scenario. There is a mini-
mum blocking probability for a certain load sharing parameter.
This minimum drifts to higher values ofω when load is
increased. As a result, there is no general optimal setting for ω.

If ω is set too high, IMX1 starts relocation too late and has
too few resources left for handling the non-relocatable part,
while IMX2 would still be capable of handling offloaded
calls. A slight increase ofω can already correspond to a
considerable amount of resources not available for handling

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

10
−5

10
−4

10
−3

10
−2

10
−1

load sharing parameter ω

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Blocking probability over ω
for different load values (A)

estimated optimum
ω = 0.975

A = 850

A = 900

A = 930

A = 950
A = 970

A = 1000

Fig. 6. Simulation results. The estimated optimum results from the calcula-
tions for the static case in Section V-B

the small non-relocatable part. Ifω is set too low, IMX2
leaves theaccepting state earlier. Sincee is much higher
than f , slight changes ofω only affect a smaller number of
calls, thus a settingω too low does not cause such dramatic
degradation than settingω too high. Thus, we can derive the
guideline that rather a too low parameter value should be
chosen. Additionally, the estimation for the ideal and static
case can serve as a good starting point, while the maximum
tolerable blocking probability and expected traffic load must
be known for fine tuning. Simulations with more IMX nodes
delivered similar results with certain statistical gain.

VI. CONCLUSIONS

Distributed IMS approaches can integrate all functions into
edge and border nodes. They offer a great flexibility and scal-
ability while simplifying deployment. However, load sharing
mechanisms are essential for shifting load between nodes for
handling sudden load changes. In this paper we presented a
load sharing mechanism for a distributed IMS. We analyzed
the design space and identified possible solutions. Based on
this, we develop a strategy that fits best the requirements of
a distributed IMS realization. Our load sharing mechanism
is light-weight and imposes minimal overhead on the overall
system. The mechanism can be tuned using our formula for
estimating the main load sharing parameter, which takes the
relocation overhead and load asymmetry as input. Simulation
results show the fundamental characteristics of our algorithm
and illustrate the benefit of load sharing. Our results can serve
as basis for further implementation-specific refinements ofthe
load sharing concept and general dimensioning guidelines.
Furthermore, extensions towards systems that calculate load
sharing settings from observed behavior are possible.

ACKNOWLEDGMENT

Special thanks to Christian Müller, who developed the
signaling simulation extensions. This research is partially
funded as part of the ScaleNet project by the German Federal
Ministry of Education and Research (BMBF).

REFERENCES

[1] S. Wahl, K. Oberle, M. Kessler, P. Domschitz,The next Step in IMS
Architecture – a Comprehensive IMS Network Element, Proc. Broadband
Europe 2006, Geneva, Switzerland, Dec. 2006.

[2] M. Asif, S. Majumdar, G. Kopec,Load sharing in Call Server clusters,
Computer Comm., vol. 30, nr. 16, pp. 3027-3045, 2007.

[3] V. Cardellini, E. Casalicchio, M. Colajanni, P. S. Yu,The state of the art
in locally distributed Web-server systems, ACM Computer Surveys, vol.
34, nr. 2, pp. 263-311, 2002.

[4] T. Bessis,Improving performance and reliability of an IMS network by
co-locating IMS servers, Bell Labs Technical Journal, vol. 10, nr. 4, pp.
167-178, 2006.

[5] V. Hilt, I. Widjaja, D. Malas, H. Schultzrinne,Session Initiation Protocol
(SIP) Overload Control, IETF draft-hilt-sipping-overload-05, Jul. 2008.

[6] S. Wahl, K. Oberle, M. Stein, J. Riemer, C. Peña,An implementation of
application layer based continuous mobility for conversational services,
Proc. of Broadband Europe 2007, Antwerp, Belgium, Dec. 2007.

[7] K. Singh, H. Schulzrinne,Failover, load sharing and server architecture
in SIP telephony, Computer Comm., vol. 30, nr. 5, pp. 927-942, 2007.

[8] A. Bestavros, M. Crovella, J. Liu, D. Martin,Distributed Packet Rewriting
and its Application to Scalable Server Architectures, Proc. Sixth Interna-
tional Conference on Network Protocols, 1998.

[9] IKR SimLib, http://www.ikr.uni-stuttgart.de/Content/IKRSimLib/


